
CONWAY’S 99-GRAPH PROBLEM: A BOOLEAN SATISFIABILITY APPROACH

NATHANIEL SELUB

Abstract. In this paper, we present a framework for solving Conway’s 99-graph problem using a Boolean
satisfiability problem (SAT) solver. We begin by encoding the problem into conjunctive normal form (CNF).

Then, we append symmetry-breaking clauses to the CNF encoding in order to improve SAT solver perfor-
mance by preventing it from exploring isomorphic regions of the search space. Finally, we describe several

basic substructures that must be contained in any possible Conway 99-graph, which aid in fixing variables

in our SAT problem and simplifying the CNF encoding.

Contents

1. Introduction 1
2. Encoding the Problem in Conjunctive Normal Form 2

2.1. Conjunctive Normal Form 2
2.2. Encoding the problem as a Boolean formula 2
2.3. Converting the Boolean formula to Conjunctive Normal Form 3

3. Breaking Symmetries in the Conjunctive Normal Form 5
4. Substructures of the Conway 99-Graph 6
5. Next Steps 7
6. Acknowledgements 7
References 7

1. Introduction

Conway’s 99-graph problem poses the following question: Does there exist an undirected graph with 99
vertices such that each edge belongs to a unique triangle and each non-adjacent vertex pair belongs to a
unique quadrilateral?

A Boolean formula is an expression built from Boolean variables (variables that are either TRUE or
FALSE), Boolean operators (AND, OR, NOT), and parentheses. An assignment of truth values to these variables
is called an interpretation. The Boolean Satisfiability Problem (SAT) is to determine if a given
Boolean formula can be made true. If there exists an interpretation that results in the formula being TRUE,
the formula is called satisfiable, and if every possible interpretation results in the formula being FALSE, the
formula is called unsatisfiable. A program designed to check the satisfiability of a SAT instance is called
a SAT solver.

Conway’s 99-graph problem can be expressed as a SAT problem. Consider 4851 =
(
99
2

)
Boolean variables

e1,2, e1,3, . . . , e98,99. Here, ei,j indicates the presence (TRUE) or absence (FALSE) of an edge between vertices
i and j. Let F be a Boolean formula whose arguments are the aforementioned Boolean variables such that
F is TRUE if and only if each edge belongs to a unique triangle and each non-adjacent vertex pair belongs to
a unique quadrilateral. Then, Conway’s 99-graph problem is equivalent to determining the satisfiability of
F .

A decision problem yields a “yes” or “no” answer for an input. In computational complexity theory, the
nondeterministic polynomial time class (NP) is the set of all decision problems such that “yes” instances
have solutions whose correctness can be verified in polynomial time. A problem is NP-complete if it is in
NP and can emulate any other problem in NP with a solution that can be verified quickly. It is known that
SAT is NP-complete.

1

In general, NP-complete problems are hard to solve. However, modern SAT solvers are very effective. As
of 2023, they can process instances with nearly one billion variables and billions of clauses [2]. Conway’s
99-graph problem can be encoded as a SAT instance whose number of variables and clauses is well within
these bounds, which makes it a candidate for resolution with a SAT solver.

This paper is structured as follows: In Section 2, we define conjunctive normal form (CNF) and show how
to encode Conway’s 99-graph problem as a Boolean formula in CNF. Section 3 introduces the concept of a
symmetry of a Boolean formula and demonstrates how to introduce symmetry-breaking clauses to improve
SAT solver performance. In Section 4, we identify a substructure in a putative Conway’s 99-graph, which
allows us to fix certain variables in the CNF encoding and simplify the final CNF formula. Finally, Section
5 outlines potential methods to solve the Conway’s 99-graph problem using the techniques described in this
paper.

2. Encoding the Problem in Conjunctive Normal Form

2.1. Conjunctive Normal Form. A truth function is a function that takes truth values as input and
yields a unique truth value as output. For example:

• The AND operator, represented as ∧, is the truth-functional operator of conjunction.
• The OR operator, represented as ∨, is the truth-functional operator of disjunction.

Furthermore, we denote the inverse of a Boolean variable x as x̄ ≡ ¬x, where ¬ is the logical NOT operator.
We define a clause as a disjunction of literals. A formula is said to be in conjunctive normal form

(CNF) if it consists of a conjunction of one or more clauses. Thus, one can view a CNF formula as an “AND
of OR’s”.

Given the variables A,B,C,D,E, F , the following are examples of formulas in conjunctive normal form:

(1) (A ∨ B̄ ∨ C̄) ∧ (D̄ ∨ E ∨ F)
(2) (A ∨B) ∧ (C)
(3) (A ∨B)
(4) (A)

By convention, a SAT instance needs to be in CNF in order to be processed by modern SAT solvers.

2.2. Encoding the problem as a Boolean formula. Consider
(
n
2

)
Boolean variables e1,2, e1,3, . . . , en−1,n.

Here, ei,j indicates the presence (TRUE) or absence (FALSE) of an edge between vertices vi and vj . The
ordering of the indices is unimportant, i.e., ei,j = ej,i. For each variable ei,j , there are two Boolean formulae
associated with it

• If ei,j , then there must exist a unique triangle containing ei,j .
• If ēi,j , then there must exist a unique quadrilateral containing vi and vj .

We refer to the first of the above Boolean formulae as the triangle condition for ei,j , which we denote as Ti,j ,
and the second of the above formulae as the quadrilateral condition for ei,j , which we denote as Qi,j .

First, we encode the triangle condition for ei,j as a Boolean formula. Observe that if ei,j is TRUE, then
there exists a triangle containing ei,j if and only if there exists a vertex vk such that k is distinct from i, j
and both ei,k and ej,k are TRUE. Therefore, if ei,j is TRUE, then a triangle containing ei,j exists if and only if

Ti,j,E ≡
∨

1≤k≤n
k ̸=i,j

ei,k ∧ ej,k

is TRUE. We refer to Ti,j,E as the triangle existence condition for ei,j .
Observe that if ei,j is TRUE, then there does not exist more than one triangle containing ei,j if and only if

there do not exist two vertices vk1 , vk2 such that k1, k2, i, j are distinct and ei,k1 , ej,k1 , ei,k2 , ej,k2 are TRUE.
Therefore, if ei,j is TRUE, then there does not exist more than one triangle containing ei,j if and only if

Ti,j,U ≡
∧

1≤k1<k2≤n
k1,k2 ̸=i,j

¬ (ei,k1 ∧ ej,k1 ∧ ei,k2 ∧ ej,k2)

=
∧

1≤k1<k2≤n
k1,k2 ̸=i,j

ēi,k1 ∨ ēj,k1 ∨ ēi,k2 ∨ ēj,k2 ,

2

where we have used De Morgan’s Law. We refer to Ti,j,U as the triangle uniqueness condition for ei,j .
Using the definition of a =⇒ b, the triangle condition for ei,j can be written as

Ti,j = ēi,j ∨ (Ti,j,E ∧ Ti,j,U)
= (ēi,j ∨ Ti,j,E) ∧ (ēi,j ∨ Ti,j,U).

Next, we encode the quadrilateral condition as a Boolean formula. Observe that there exists a quadrilateral
containing vi and vj if and only if there exist two vertices k1, k2 such that k1, k2, i, j are distinct and ei,k1 ,
ej,k1 , ei,k2 , ej,k2 are TRUE. Therefore, a quadrilateral containing ei,j exists if and only if

Qi,j,E ≡
∨

1≤k1<k2≤n
k1,k2 ̸=i,j

ei,k1 ∧ ej,k1 ∧ ei,k2 ∧ ej,k2

is TRUE. We refer to Qi,j,E as the quadrilateral existence condition for ei,j .
Observe that there does not exist more than one quadrilateral containing ei,j if and only if there do not

exist three vertices vk1 , vk2 , vk3 such that k1, k2, k3, i, j are distinct and ei,k1 , ej,k1 , ei,k2 , ej,k2 , ei,k3 , ej,k3 are
TRUE. Therefore, there do not exist more than one quadrilateral containing ei,j if and only if

Qi,j,U ≡
∧

1≤k1<k2<k3≤n
k1,k2,k3 ̸=i,j

¬ (ei,k1 ∧ ej,k1 ∧ ei,k2 ∧ ej,k2 ∧ ei,k3 ∧ ej,k3)

=
∧

1≤k1<k2<k3≤n
k1,k2,k3 ̸=i,j

ēi,k1 ∨ ēj,k1 ∨ ēi,k2 ∨ ēj,k2 ∨ ēi,k3 ∨ ēj,k3 ,

where we have used De Morgan’s Law. We refer to Qi,j,U as the quadrilateral uniqueness condition for ei,j .
Using the definition of a =⇒ b, we can write the quadrilateral condition for ei,j as

Qi,j = ei,j ∨ (Qi,j,E ∧Qi,j,U)
= (ei,j ∨Qi,j,E) ∧ (ei,j ∨Qi,j,U)

Define the Boolean formula
Fn ≡

∧
1≤i<j≤n

Ti,j ∧Qi,j .

Then, a graph satisfies the conditions of Conway’s 99-graph problem if and only if the Boolean formula
F99 evaluates to TRUE for the Boolean variables corresponding to the graph’s edges. Furthermore, a graph
satisfying the conditions of Conway’s 99-problem exists if and only F99 is satisfiable.

2.3. Converting the Boolean formula to Conjunctive Normal Form. Observe that in order to trans-
form Fn into CNF, it suffices to transform each ēi,j ∨ Ti,j,E and ei,j ∨ Qi,j,E into CNF. Fix i < j and
consider

Ti,j,E =
∨

1≤k≤n
k ̸=i,j

ei,k ∧ ej,k.

If we attempt to convert this to CNF by expanding this formula, the result is
(ei,1 ∨ ei,2 ∨ · · · ∨ ei,n) ∧ (ej,1 ∨ ei,2 ∨ · · · ∨ ei,n) ∧ (ei,1 ∨ ej,2 ∨ · · · ∨ ei,n) ∧ (ej,1 ∨ ej,2 ∨ · · · ∨ ei,n) ∧ · · · ∧ (ej,1 ∨ ej,2 ∨ · · · ∨ ej,n),

where we note that all terms of the form ei,j , ei,i, and ej,j are absent in the above formula. The result is a
formula with 2n−2 clauses, which, for n = 99, is far too large for any computer to handle.

Let F and F ′ be two Boolean formulae. Then, F and F ′ are equisatisfiable if F is satisfiable if and
only F ′ is satisfiable, and equivalent if F = F ′ for all possible input variables. There exist transformations
into CNF that avoid an exponential increase in size by transforming the original formula into a new formula
such that the original formula and the new formula are equisatisfiable rather than equivalent.

First, introduce
(
n
3

)
auxiliary variables ti,j,k for all 1 ≤ i < j < k ≤ n, where the ordering of the subscript

indices is unimportant, e.g., ti,j,k = tj,i,k, such that ti,j,k is TRUE if and only if the triangle containing the
sides ei,j , ej,k, ek,i exists, i.e., ti,j,k ≡ ei,j ∧ ej,k ∧ ek,i. For each auxiliary variable ti,j,k, we enforce the
condition ti,j,k ≡ ei,j ∧ ej,k ∧ ek,i by appending the clauses

Ti,j,k ≡ (t̄i,j,k ∨ ei,j) ∧ (t̄i,j,k ∨ ej,k) ∧ (t̄i,j,k ∨ ek,i) ∧ (ēi,j ∨ ēj,k ∨ ēk,i ∨ ti,j,k)
to our CNF encoding.

3

For each Ti,j,E , we define a new CNF formula

T ′
i,j,E ≡

∨
1≤k≤n
k ̸=i,j

ti,j,k.

Let

T̃i,j,E ≡ ēi,j ∨ T ′
i,j,E

= ēi,j ∨

 ∨
1≤k≤n
k ̸=i,j

ti,j,k

and

T̃i,j,U ≡ ēi,j ∨ Ti,j,U .
Let

T̃i,j ≡ Ti,j,U ∧ Ti,j,E .
Then, by construction, ∧

1≤i<j≤n

T̃i,j

 ∧

 ∧
1≤i<j<k≤n

Ti,j,k

is equisatisfiable with ∧

1≤i<j≤n

Ti,j

For the analogous formula ei,j ∨Qi,j,E resulting from the quadrilateral existence condition, we can avoid
the corresponding exponential growth in clauses that results from a naive conversion to CNF by proceeding
in exactly the same manner.

First, introduce 3 ·
(
n
4

)
auxiliary variables q(a,b),(c,d) for all ((a, b), (c, d)) such that 1 ≤ a, b, c, d ≤ n and

a, b, c, d are distinct, where the ordering of the tuples and the ordering of the subscripts in each individual
tuple is unimportant, e.g., q(a,b),(c,d) = q(c,d),(a,b) and q(a,b),(c,d) = q(b,a),(c,d), such that q(a,b),(c,d) is TRUE if and
only if the quadrilateral containing the sides ea,c, ec,b, eb,d, ed,a exists, i.e., q(a,b),(c,d) ≡ ea,c∧ec,b∧eb,d∧ed,a.
For each auxiliary variable q(a,b),(c,d), we enforce the condition q(a,b),(c,d) ≡ ea,c∧ec,b∧eb,d∧ed,a by appending
the clauses

Q(a,b),(c,d) ≡ (q̄(a,b),(c,d) ∨ ea,c) ∧ (q̄(a,b),(c,d) ∨ ec,b) ∧ (q̄(a,b),(c,d) ∨ eb,d) ∧ (q̄(a,b),(c,d) ∨ ed,a)
∧ (ēa,c ∨ ēc,b ∨ ēb,d ∨ ēd,a ∨ q(a,b),(c,d))

to our CNF encoding.
For each Qi,j,E , we define a new CNF formula

Q′
i,j,E ≡

∨
((a,b),(c,d))
1≤a,b,c,d≤n
a,b,c,d distinct

q(a,b),(c,d).

Let

Q̃i,j,E ≡ ei,j ∨Q′
i,j,E

= ei,j ∨

∨

((a,b),(c,d))
1≤a,b,c,d≤n
a,b,c,d distinct

q(a,b),(c,d)

 .
and

Q̃i,j,U ≡ ei,j ∨Qi,j,U .
Let

Q̃i,j ≡ Qi,j,E ∧Qi,j,U
4

Then, by construction, ∧
1≤i<j≤n

Q̃i,j

 ∧

∨

((a,b),(c,d))
1≤a,b,c,d≤n
a,b,c,d distinct

Q(a,b),(c,d)

is equisatisfiable with ∧

1≤i<j≤n

Qi,j .

Let

F̃n =

 ∧
1≤i<j≤n

T̃i,j ∧ Q̃i,j

 ∧

 ∧
1≤i<j<k≤n

Ti,j,k

 ∧

∧

(a,b),(c,d)
1≤a,b,c,d≤n
a,b,c,d distinct

Q(a,b),(c,d)

By construction, F̃n is a Boolean formula in CNF that is equisatisfiable with Fn.

3. Breaking Symmetries in the Conjunctive Normal Form

A Boolean formula F of Boolean variables x1, . . . , xn is a function from {0, 1}n → {0, 1}. Let Aut({x1, . . . , xn})
be the set of all automorphisms of the set {x1, . . . , xn}. Then, we define a symmetry of F as any automor-
phism ϕ ∈ Aut({x1, . . . , xn}) such that the following diagram commutes

{x1, . . . , xn} {x1, . . . , xn}

{0, 1}n {0, 1}

ϕ

ψ
ψ
F

for functions ψ : {x1, . . . , xn} → {0, 1}n.
The space of interpretations of F̃n is highly symmetric. In particular, let A be the following assignment

of truth values:

ei,j = xi,j for each ei,j ,

ti,j,k = yi,j,k for each ti,j,k,

q(a,b),(c,d) = z(a,b),(c,d) for each q(a,b),(c,d),

where each xi,j , yi,j,k, z(a,b),(c,d) is either TRUE or FALSE. For σ ∈ Sn, let σ(A) be the following assignment
of truth values:

eσ(i),σ(j) = xσ(i),σ(j) for each eσ(i),σ(j),

tσ(i),σ(j),σ(k) = yσ(i),σ(j),σ(k) for each tσ(i),σ(j),σ(k),

q(σ(a),σ(b)),(σ(c),σ(d)) = z(σ(a),σ(b)),(σ(c),σ(d)) for each q(σ(a),σ(b)),(σ(c),σ(d)).

Then, F̃n(A) = F̃n(σ(A)) for all σ ∈ Sn. These symmetry transformations correspond to the Sn permutation

symmetry on the graph’s n vertices and they partition the space of interpretations of F̃n into distinct orbits.
In principle, there may be additional symmetries of the CNF encoding other than the transformations
described above; however, we restrict our attention to these transformations since they are the only ones we
are aware of.

Without further modifications to the CNF encoding of our problem, the presence of this symmetry greatly
reduces the performance of a SAT solver because without additional constraints, the SAT solver will spend a
substantial amount of time exploring isomorphic parts of the search space. To determine the satisfiability of
F̃n, it suffices to consider a single representative interpretation from each orbit. To prevent the SAT solver
from considering multiple interpretations from the same orbit, we can add additional symmetry-breaking
clauses to the CNF encoding. Our method follows [1].

An irredundant generating set S of a group G is a set of group elements such that S generates G and no
proper subset of S generates G. For CNF encodings with large symmetry groups, it is often advantageous

5

to add symmetry-breaking clauses that break the symmetries corresponding to an irredundant generating
set instead of attempting to break every symmetry in the group. There are several reasons for this. The
first is that the number of symmetries is often extremely large, so attempting to break all of them by
adding symmetry-breaking clauses would add such a large number of new clauses to the CNF encoding
that all potential performance gains from symmetry breaking would be lost. Furthermore, a theorem from
elementary group theory guarantees that the size of an irredundant generating set is at most logarithmic in
the size of the group, so as long as the transformations corresponding to these generators are not extremely
complicated, the symmetries corresponding to the irredundant generating set can be broken with a reasonably
small number of clauses. The disadvantage of this approach is that not all symmetries are broken.

For the symmetries of the formula that we are examining, it is sufficient to consider symmetries of the
form σ = (ab)(cd)(ef)..., where each letter is a variable in the CNF encoding. First, we consider a symmetry
of the form (ab). To break such a symmetry, we introduce a clause of the form ā∨ b. To see how this clause
works, observe the following. Suppose (ab) is a symmetry of the CNF encoding. If a = 0, b = 1 is a satisfying
assignment and (ab) is a symmetry of the CNF encoding, then there is a symmetric equivalent satisfying
assignment with a = 1, b = 0 with no other variables changed. The addition of the clause ā ∨ b ensures that
only the first assignment is allowed.

To break a symmetry of the form σ = (ab)(cd)(ef)..., we proceed as follows. First, choose an ordering
of the variables present in the cycle decomposition of the transformation. Then, for each individual cycle,
sort the variables in the cycle according to this ordering, and after doing so for each cycle, sort cycles by
their first variable. These steps are necessary to break the symmetries in a consistent manner that preserves
satisfiability. To break the symmetry σ, we first add the symmetry breaking clause ā ∨ b. Then, we add
(a = b) =⇒ (c̄∨d), then ((a = b)(c = d)) =⇒ (ē∨f), etc. This construction can be efficiently implemented
by introducing one additional auxiliary variable per cycle that indicates the equality of all variables in the
cycle. For example, a clause with these new auxiliary variables would be of the form (x̄a=b∨ x̄c=d∨ ē∨f). By
an analysis similar to that described before, one can see that the symmetry-breaking clauses introduced for
the symmetry σ allow only one satisfying assignment from the set of satisfying assignments that are related
by σ.

An irredundant set of generators for Sn is

S = {(1, 2), (2, 3), . . . , (n− 1, n)}.
Any element σ ∈ Sn induces the following transformation ϕσ in the CNF encoding

ei,j ↔ eσ(i),σ(j)

tx,y,z ↔ tσ(x),σ(y),σ(z)

q(a,b),(c,d) ↔ q(σ(a),σ(b)),(σ(c),σ(d)),

so each ϕσ is a product of disjoint transpositions of CNF variables of the form

ϕσ = (ei1,j1 , eσ(i1),σ(j1)) · · · (eime ,jme
, eσ(ime),σ(jme))·

(tx1,y1,z1tσ(x1),σ(y′
1),σ(z′1)

) · · · (txmt ,ymt ,zmt
tσ(xmt),σ(ymt),σ(zmt)

)·
(q(a1,b1),(c1,d1), q(σ(a1),σ(b1)),(σ(c1),σ(d1))) · · · (q(amq ,bmq),(cmq ,dmq)q(σ(amq),σ(bmq)),(σ(cmq),σ(dmq))),

where me, mt, and mq are the number of edge variable transpositions, triangle variable transpositions, and
quadrilateral variable transpositions in ϕσ, respectively. For each such transposition, we introduce symmetry
breaking clauses using the methodology described above.

4. Substructures of the Conway 99-Graph

A regular graph is a graph such that each vertex has the same degree. A regular graph with n vertices,
each of degree k, is a strongly regular graph with parameters (v, k, λ, µ) if there exist integers λ and µ
such that every two adjacent vertices have λ common neighbors and every two non-adjacent vertices have
µ common neighbors. It is known that a putative Conway 99-graph must be a strongly regular graph of
parameters (99, 14, 1, 2).

Next, we determine several substructures of the Conway 99-graph. Let v1 be an arbitrary vertex and
choose any neighboring vertex, denoting it as v2. Since v1 and v2 are adjacent, they share precisely one
mutual neighbor, which we denote as v3. This formation produces a triangle consisting of vertices v1, v2,
and v3. Furthermore, neither v2 nor v3 can have any other neighbours in the neighborhood N(v0) of v0.

6

Repeating this process, we can sequentially introduce and pair the vertices v4−v5, v6−v7, v8−v9, v10−v11,
v12 − v13, and v14 − v15 in N(v0).

Any two vertices vi, vj in N(v0) that are not part of a triangle must have two mutual neighbors. One of
these neighbors must be v0, but the other vertex must be a new vertex, which we denote as vi,j , where the
ordering of the subscripted indices is unimportant, that is not in N(v0). Suppose vi,j is adjacent to more
than two vertices in N(v0). Then, this would imply that vi,j has more than two mutual neighbors with v0,
which would violate the requirement that vi,j and v0 have exactly two mutual neighbors. Therefore, each
pair of vertices in N(v0) that are not adjacent must have a unique mutual neighbor outside N(v0). For each
vertex vi in N(v0), there exist twelve other vertices in N(v0) that vi is not adjacent to, so upon adding
a vertex vi,j for each pair of non-adjacent vertices in N(v0), we find that all 14 of the neighbors for each
vertex in N(v0) have been determined. This allows us to determine all 14 neighbors of vertices v1, v2, . . . , v15.
Doing so allows us to determine all edge variables ei,j such that at least one of i, j is in {1, 2, . . . , 15}. This
information can then be used to simplify the CNF encoding of our problem.

5. Next Steps

Here, we outline several next steps that could help refine our approach and leverage SAT solvers to tackle
Conway’s 99-graph problem.

(1) Incorporating Regularity Constraints: Our current CNF encoding can be enhanced by adding
regularity constraints, i.e., constraints that enforce the condition that every vertex of a Conway
99-graph must have degree 14. Such constraints can potentially prune large portions of the search
space, thus improving the efficiency of the SAT solver.

(2) Refining the At-Most-One Constraint: The constraint for uniqueness of triangles between
adjacent vertices and quadrilaterals between non-adjacent vertices is an at-most-one constraint. In
our encoding, we implemented a naive version of this at-most-one constraint; however, there exist
more efficient encodings of the at-most-one constraint which can substantially reduce the complexity
of the encoding and increase SAT solver performance.

(3) Fixing Edges to Simplify CNF: In principle, there exists some large number of edges such that,
if fixed, the resulting simplified CNF encoding can be determined as satisfiable or unsatisfiable by a
SAT solver in a reasonable amount of time. If the number of edges is sufficiently small, it is possible
that determining the satisfiability of the entire CNF encoding is computationally feasible by reducing
the problem to the task of determining the satisfiability of a large number of SAT instances that
result from fixing many edges. Much is known about the spectra of strongly regular graphs, which
places restrictions on the spectra of induced subgraphs of strongly regular graphs. These restrictions
on spectra of subgraphs can be used to rule out configurations that must be checked by the SAT
solver.

6. Acknowledgements

First and foremost, I would like to sincerely thank my mentor Michael Klug for his insight, help, and
guidance throughout the summer. I am also grateful to Peter May for organizing the 2023 University of
Chicago REU during which this paper was written.

References

[1] Fadi A. Aloul et al. “Solving Difficult SAT Instances in the Presence of Symmetry”. In: Proceedings
of the 39th Annual Design Automation Conference. DAC ’02. New York, NY, USA: Association for
Computing Machinery, 2002, pp. 731–736. isbn: 1581134614. doi: 10.1145/513918.514102. url:
https://doi.org/10.1145/513918.514102.

[2] Alexander Nadel. “Solving Huge Instances with Intel® SAT Solver”. In: 26th International Conference
on Theory and Applications of Satisfiability Testing. 2023.

7

https://doi.org/10.1145/513918.514102
https://doi.org/10.1145/513918.514102

	1. Introduction
	2. Encoding the Problem in Conjunctive Normal Form
	2.1. Conjunctive Normal Form
	2.2. Encoding the problem as a Boolean formula
	2.3. Converting the Boolean formula to Conjunctive Normal Form

	3. Breaking Symmetries in the Conjunctive Normal Form
	4. Substructures of the Conway 99-Graph
	5. Next Steps
	6. Acknowledgements
	References

