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Abstract

In this paper, we introduce the hyperbolic plane and define geodesics on this plane. We also define
continued fractions and give several examples of real numbers expressed as continued fractions. After
giving background on both these subjects, we explain how they are related to the Farey Tessellation,
including the proof of how to derive a continued fraction from the Farey Tessellation. Finally, we introduce
convergents and give a geometric interpretation of convergents on the Farey Tessellation.

1 Introduction to Hyperbolic Geometry

The geometry we know best, from our earliest algebra classes, is Euclidean geometry. However, other
geometries exist, one of which is Hyperbolic geometry. Hyperbolic geometry can be represented using the
upper half of the Euclidean plane R2, which can be identified with the upper half of the complex plane C.
We denote this space H. Let us then consider the set {(x; y) | y > 0} ⊂ R2, which can be interpreted as the
set of complex numbers with a positive imaginary part, or {z | Im(z) > 0}.

We know that in the Euclidean space R2 the length element is

ds =
√

(dx)2 + (dy)2.

This means that to compute the length of a curve γ(t) : [0, 1] → R2, we need to compute the integral∫ 1

0

√
ẋ(t)2 + ẏ(t)2dt,

where the horizontal and vertical coordinates of any point in the curve are functions x(t) and y(t) of the
parameter t.

Let us now consider a different length element:

dsH =

√
dx2 + dy2

y
.

This is the length element in the hyperbolic plane. In this plane, as we move from one point to another,
we are continually dividing by the y coordinate, or renormalizing by the y coordinate. If we measure the
lengths using this length element, then instead of the equation above, we will get that the hyperbolic length
lH(γ) of the same curve γ(t) : [0, 1] → R2 will be

lH(γ) =

∫ 1

0

√
ẋ(t)2 + ẏ(t)2

y(t)
dt.

1.1 Geodesics in Hyperbolic Geometry

In Euclidean geometry, a line is the shortest path between two points. However, in hyperbolic geometry
these shortest paths, called geodesics, do not always take the shape of straight lines. Intuitively, we can see
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Figure 1: Segment Lengths in H

this is true because in the hyperbolic plane (represented by the upper half of the complex plane), a horizontal
straight line that is higher up would technically be shorter than one further down, since we are renormalizing
by the y coordinate, as shown in Figure 1. This implies that sometimes a direct horizontal line is not the
shortest path between two points; it can make paths shorter to move higher in the plane.

We can see a concrete example of this if we consider two paths connecting the points −2 + i and 2 + i.
The first path is completely horizontal, and thus has hyperbolic length∫ 2+i

−2+i

√
ẋ(t)2 + 0

1
= 4.

However, suppose we have another path σ that goes diagonally up from −2 + i to 2i and then diagonally
down from 2i to 2 + i. A parametrization of this path is given by

σ(t) =

{
(2t− 2) + i(1 + t) 0 ≤ t ≤ 1

(2t− 2) + i(3− t) 1 ≤ t ≤ 2
.

In R2, therefore, this means that

x(t) = 2t− 2

y(t) =

{
1 + t 0 ≤ t ≤ 1

3− t 1 ≤ t ≤ 2.

As a result,

x′(t) = 2

y′(t) =

{
1 0 ≤ t ≤ 1

−1 1 ≤ t ≤ 2.

Therefore by the hyperbolic length equation

lH(σ) =

∫ 1

0

√
5

1 + t
dt+

∫ 2

1

√
5

3− t
dt

=
√
5 log(1 + t)

∣∣∣1
0
+

√
5 log(3− t)

∣∣∣2
1

= 2
√
5 log 2,
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which is about 3.1. Note that this path, despite being longer than the horizontal in the Euclidean plane, is
shorter than a simple horizontal path in the Hyperbolic plane. It turns out that in the Hyperbolic plane,
the shortest paths between two points (geodesics) are either vertical lines or semicircles with centers on the
real axis.

Proposition 1. Vertical lines are geodesics between points in the hyperbolic plane.

Proof. Let us consider two points, a and b, which lie on the same vertical line. We can denote a path from
a to b where the x coordinate is unchanging as η(t). Let γ(t) be an arbitrary path with the same endpoints
a and b. We know that

lH(γ) =

∫ b

a

√
ẋ(t)2 + ẏ(t)2

y(t)
dt

≥
∫ b

a

√
0 + ẏ(t)2

y(t)
dt

= lH(η).

Proposition 2. Semicircles with center on the real axis are geodesics between points in the hyperbolic plane.

Proof. Let us consider two points a and b which do not lie on the same vertical line. Then there is a unique
semicircle with center on the real axis which passes through both points. We assume for now that the center
lies at the origin, because translating the path horizontally does not change its length in the hyperbolic
plane. Suppose this semicircle has radius r0. We denote a path from a to b on the semicircle as η(t), and let
γ(t) be an arbitrary path with endpoints a and b. For this proof, we use polar coordinates instead of x and
y coordinates, using the identity that ẋ(t)2 + ẏ(t)2 = r−2ṙ(t)2 + θ̇(t)2. Then we have that

lH(γ) =

∫ b

a

√
r−2ṙ(t)2 + θ̇(t)2

sin(θ(t))
dt

≥
∫ b

a

√
0 + θ̇(t)2

sin(θ(t))
dt

= lH(η).

Remark. Semicircles and vertical lines completely describe geodesics in the hyperbolic plane; there are no
other kinds of shortest path.

2 Introduction to Continued Fractions

Definition 2.1. A continued fraction is defined as an expression

x = n0 +
1

n1 +
1

n2+
1

n3+...

where x ∈ R and ni ∈ N ∪ 0.

We use the notation x = [n0;n1, n2, n3 . . .] to express x as a continued fraction. As an example, we can
look at 3

5 .
3

5
= 0 +

1
5
3

= 0 +
1

1 + 2
3

= 0 +
1

1 + 1
3
2

= 0 +
1

1 + 1
1+ 1

2
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As a result, we have that n0 = 0, n1 = 1, n2 = 1, and n3 = 2. Thus 3
5 = [0; 1, 1, 2]. It is easy to see how we

can use this process to represent any rational as a continued fraction.
If x is an irrational number, then this similar process produces an infinite continued fraction. For an example

of an irrational number as a continued fraction, we can look at x = 1+
√
5

2 .

x =
1 +

√
5

2
= 1 +

√
5− 1

2
= 1 +

1
2√
5−1

= 1 +
1

2(
√
5+1)
4

= 1 +
1

1+
√
5

2

= 1 +
1

x

This means that

x = 1 +
1

x
= 1 +

1

1 + 1
x

= 1 +
1

1 + 1
1+ 1

1+...

and therefore that x = [1; 1, 1, 1, . . .].

3 Neighbors and the Farey Tessellation

In this section, we will be building the Farey Tessellation; this is a method of dividing the hyperbolic plane
that has a fascinating connection to continued fractions. However, to build the Farey Tessellation, we first
need to understand neighbors.

Definition 3.1. Two rationals p
q and r

s are called neighbors if

|ps− rq| = 1.

As an example, note that any integer n is neighbors with n+ 1:

|n× 1− (n+ 1)× 1| = |n− n− 1| = | − 1| = 1.

We also want to introduce a new operation, ⊕, which is an incorrect kind of fraction addition (what many
have been told not to do in elementary school).

Definition 3.2. Given two rationals p
q and r

s ,

p

q
⊕ r

s
=

p+ r

q + s
.

Proposition 3. If p
q and r

s are neighbors, then p
q is neighbors with p

q ⊕ r
s .

Proof.
|p(q + s)− (r + p)q| = |pq + ps− rq − pq| = |ps− rq| = 1.

Similarly, r
s is also neighbors with p

q ⊕ r
s .

Proposition 4. If p
q < r

s , then
p
q < p

q ⊕ r
s < r

s .

Proof.

p

q
<

r

s

ps < rq

pq + ps < pq + rq

p(q + s) < (p+ r)(q)
p

q
<

p

q
⊕ r

s
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Figure 2: The Farey Tessellation

And,

p

q
<

r

s

ps < rq

ps+ rs < rq + rs

(p+ r)s < r(q + s)
p

q
⊕ r

s
<

r

s
.

To build the Farey Tessellation in the complex plane, we start by drawing a vertical line from every
integer n ∈ R on the real axis to ∞. We then connect each n to n+ 1 by a semicircle.
Inductively, if two rationals on the real axis p

q and r
s are neighbors, then we connect p

q and p
q ⊕ r

s by a

semicircle, and we connect p
q ⊕

r
s and r

s by a semicircle. For example, given n and n+1, we’d connect n and
2n+1

2 by a semicircle, and connect 2n+1
2 and n+ 1 by a semicircle. In Figure 2, we can see an approximate

representation of the Farey Tessellation after several of these iterations.

4 Farey Tessellation And Hyperbolic Geometry

It is easy to see that the tiles of the Farey Tessellation have boundaries that are geodesics in the hyperbolic
plane, and therefore are hyperbolic triangles. We also include the point ∞ in this plane, which can be
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interpreted as the meeting point of two vertical lines. Thus we will call the triangle with vertices 0, 1 and
∞ the basic triangle and denote it by ∆.

We now want to consider the set of transformations T =

(
a b
c d

)
where a, b, c, d ∈ Z, ad − bc = 1, and

T (z) = az+b
cz+d for any z in the complex plane. We will call this set SL(2,Z); anybody familiar with linear

algebra would recognize SL(2,Z) as the set of all 2 × 2 matrices with integer entries and determinant 1.

Note that if we have some g ∈ SL(2,Z), then g−1 ∈ SL(2,Z). Let g =

(
a b
c d

)
. Then g−1 =

(
d −b
−c a

)
:

(
a b
c d

)(
d −b
−c a

)
=

(
ad− bc −ba+ ab
cd− dc −bc+ ad

)
=

(
1 0
0 1

)
.

This means that g−1 has all integer entries. Additionally, since g has determinant 1, then g−1 also has
determinant 1, meaning g−1 ∈ SL(2,Z). Also note that if we have g1, g2 in SL(2,Z), then this means that
g1g2 ∈ SL(2,Z) as well: the entries of this matrix are all integers, and its determinant is det(g1)×det(g2) = 1.

We know that Mobius transformations, which take the form T (z) = az+b
cz+d where a, b, c, d ∈ C, preserve

angles and geodesics. Thus T preserves geodesics. Suppose we take some T =

(
p r
q s

)
where ps − rq = 1

and consider T (∆). Then we know that T (0) = r
s , T (1) =

p+r
q+s = p

q ⊕ r
s , and T (∞) = p

q . This means that
the vertices of the basic triangle are brought to the vertices of the tile in the Farey Tessellation defined by
p
q ,

r
s , and

p
q ⊕ r

s . Because T preserves geodesics, then this means that the interior of ∆ is also transferred
to the interior of this tile. Note that given the way we define the Farey Tessellation, each of its tiles has
vertices p

q and r
s where p

q and r
s are neighbors. This means that if we assume p

q > r
s , ps − rq = 1. As a

result, each tile of the Farey Tessellation is the result of some transformation T (∆) where T =

(
p r
q s

)
.

Proposition 5. The triangles in the Farey Tessellation cover the hyperbolic plane without overlapping each
other.

Proof. To prove this, we want to show that the tiles have no interior points in common. In other words,
given the interiors I1 and I2 of two tiles, we want to show that I1 ∩ I2 = Ø. We can denote the interior of
∆ as ∆◦; therefore, we want to show that T1(∆

◦) ∩ T2(∆
◦) = Ø since every tile in the Farey Tessellation is

the result of some transformation T ∈ SL(2,Z).
In fact, we only have to show that g(∆◦)∩∆◦ = Ø for all g ∈ SL(2,Z), because this implies the same for all
tiles in the Farey Tessellation. As proof, suppose we let I1 = g1(∆

◦) and I2 = g2(∆
◦) where g1, g2 ∈ SL(2,Z).

This means that g−1
1 g2 ∈ SL(2,Z) as well. Let us assume that ∆◦ ∩ g−1

1 g2(∆
◦) = Ø. We know that all

members of SL(2,Z) preserve geodesics, and therefore keep tiles of the Farey Tessellation intact, meaning
that ∆◦ ∩ g−1

1 g2(∆
◦) = g1(∆

◦) ∩ g1g
−1
1 g2(∆

◦). As a result,

∆◦ ∩ g−1
1 g2(∆

◦) = g1(∆
◦) ∩ g1g

−1
1 g2(∆

◦) = g1(∆
◦) ∩ g2(∆

◦) = Ø.

Therefore, if we assume by contradiction that we have some tile of the Farey Tessellation whose interior
overlaps with ∆’s, then show that the transformation associated with this tile is not part of SL(2,Z), this
will complete the proof. Suppose we have a tile with vertices a

c ,
b
d , and

a
c ⊕ b

d ; assume without loss of

generality that a
c > b

d . For this tile to have interior overlapping with ∆, either a
c > 1 and b

d < 1, or a
c > 0

and b
d < 0. If we have the first case, we can simply apply the transformation T =

(
0 −1
1 −1

)
, which brings 0

to 1, 1 to ∞ and ∞ to 0. This simply switches the vertices of ∆ and turns the first case into the second; so
we can assume that a

c > 0 and b
d < 0. However, we know this overlapping tile relates to the transformation

A =

(
a b
c d

)
. We can assume d > 0 and b < 0, and we know a and c must have the same sign. If a, c > 0,
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then ad − bc ≤ 1 + 1 = 2. Thus it is impossible that ad − bc = 1, meaning A /∈ SL(2,Z). As a result, this
overlapping tile cannot be part of the Farey Tessellation. This means no tile overlaps with ∆, and therefore
that no tiles in the Farey Tessellation overlap.

It is now simpler to show that given some T ∈ SL(2,Z), it corresponds to a tile in the Farey Tessellation.
We know by the proof above that any transformation leading to a tile that overlaps with any others cannot
be part of SL(2,Z). As a result, if T ∈ SL(2,Z), then T (∆) does not overlap interiors with any other tile.
Since the Farey Tessellation covers the entire hyperbolic plane, this means that T (∆) must be a tile in itself.

One result of this statement is that any pair of neighboring rationals must form a tile in the Farey Tes-
sellation, since if p

q is neighbors with r
s and we assume that p

q > r
s , then ps − rq = 1. Since p, q, r, s ∈ Z,

then, the matrix

(
p r
q s

)
must be in SL(2,Z).

We also know that every rational number has at least one neighbor. For example, given some p
q , then we

know p and q are relatively prime, meaning that by Fermat’s little theorem pq−1 = rq for some r ∈ N. As a
result, p

q and r
pq−2 are neighbors since pq−1 − rq = 1. This means every rational number is a vertex of the

Farey Tessellation.

As a special case, consider the transformation J =

(
0 −1
1 0

)
. We can see that J(z) = − 1

z . J is the

unique transformation that maps every geodesic passing through i to itself, while switching the endpoints;
this is useful intuition to visualize how J acts on a geodesic.
To prove this, we first can realize that J(i) = −1

i = i. Since members of SL(2,Z) preserve geodesics, this
means that J maps any geodesic passing through i to a geodesic passing through i. If we can show that
J maps the endpoints to each other, meaning that the endpoints of the geodesic are y and − 1

y given some
y ∈ R, this will be sufficient to complete the proof.

To show this, take some y ∈ R, assuming y > 0 without loss of generality, and consider the geodesic
passing through y and i. This geodesic is a semicircle with center c on the real axis. Since the radius
connecting c to y must be equal to that connecting c and i, this means that y − c =

√
1 + c2. Therefore, we

can see that

y2 − 2yc+ c2 = 1 + c2

y2 − 2yc = 1

−2yc = 1− y2

c =
y2 − 1

2y

c =
y

2
− 1

2y
.

We can now calculate the radius:

r = y − c = −y

2
− 1

2y
.

Therefore, the other endpoint is

c+ r =
y

2
− 1

2y
− y

2
− 1

2y
= −1

y
.

This proves that given y ∈ R, the geodesic passing through y and i has other endpoint − 1
y . Since J preserves

geodesics and brings i to itself, J swaps the endpoints and bring the geodesic connecting y and − 1
y to itself.
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Figure 3: Geodesic to
√
2 on the Farey Tessellation

Figure 4: Examples of L and R Crossings

5 Farey Tessellation and Continued Fractions

The Farey Tessellation has an interesting connection to continued fractions, as introduced above. Having
drawn the Farey Tessellation in the complex plane, we first take some x ∈ R on the real axis; then we draw
a geodesic connecting x to any point on the imaginary axis. In Figure 3, we can see an example of this
geodesic when x =

√
2.

Starting from the imaginary axis and working along that geodesic, this arc cuts through a series of the
tiles (the hyperbolic triangles) that make up the Farey Tessellation, cutting through exactly two sides of
each triangle. If the arc cuts through two sides that join at a vertex to its left, this is labeled L, and R if
they meet at the arc’s right. This depends on the direction of the arc; we can see some examples of L and
R crossings in Figure 4. If the arc ends at a vertex of the triangle, we can label this either L or R.

By listing the series of L and R labels for the arc starting from the imaginary axis, we create a cutting
sequence for x, in the format Ln0Rn1Ln2 . . .. For example, take x = 3

2 . We start with one L, then one R,
then it meets at a vertex, so 3

2 has cutting sequence L1R2, or L1R1L1.

As another example, take x = 3
5 . The arc begins cutting 1 R, then 1 L, then 1 R, then it meets the real

line at a rational endpoint, so 3
5 has cutting sequence R1L1R2, or R1L1R1L1. Note that if x ≥ 1, then its

cutting sequence will always start with some number of L, and if 0 < x < 1, its cutting sequence will start
with an R.

Theorem 5.1. Given some x = [n0;n1, n2, . . .], x has cutting sequence Ln0Rn1Ln2 . . ..
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Before proving this, we can first look at some examples.
We know that 3

2 has cutting sequence L1R2 or L1R1L1. We see that indeed

3

2
= 1 +

1

2
= 1 +

1

1 + 1
1

.

Thus 3
2 = [1; 1, 1] = [1; 2], and its cutting sequence is L1R1L1 or L1R2.

Additionally, we saw also that 3
5 had cutting sequence R1L1R2 (which we could denote L0R1L1R2), and

indeed
3

5
=

1
5
3

=
1

1 + 2
3

=
1

1 + 1
3
2

= 0 +
1

1 + 1
1+ 1

2

.

To prove Theorem 5.1, we will need to utilize transformations in SL(2,Z). Namely, we will use P =(
1 1
0 1

)
and J =

(
0 −1
1 0

)
. It is easy to see that P (z) = z + 1 and J(z) = − 1

z for all z in the complex

plane. Note that since P and J are in SL(2,Z), they do not change the orientation of the tiles in the Farey
Tessellation; this means that they do not change cutting sequences, as long as we keep track of the starting
point.
Suppose we have some x ∈ R such that x = [n0;n1, n2 . . .] as a continued fraction, meaning

x = n0 +
1

n1 +
1

n2+...

.

We will assume without loss of generality that x is positive. Then let γ denote a geodesic from the imaginary
axis I to x, which tracks a cutting sequence for x. Finally, we will define unit vectors u−1, u0, u1, . . . at the
points z−1, z0, z1, . . . on γ where the cutting sequence changes from L to R or vice versa. (In this case, z−1

is the original starting point on the imaginary axis.)

Consider the transformation P−n0(γ); this shifts γ n0 leftwards and therefore brings z0 to the imaginary
axis. Now consider JPn0 . This transformation flips γ into the left half of the plane, with z0 staying on the
imaginary axis and pointing to the right. This transformation brings x to JPn0(x) = − 1

x−n0
. Furthermore

n0 +
1

n1 + 1
≤ x ≤ n0 +

1

n1

1

n1 + 1
≤ x− n0 ≤ 1

n1

n1 + 1 ≥ 1

x− n0
≥ n1

−n1 − 1 ≥ − 1

x− n0
≥ −n1,

which means that JPn0(x) lands between −n1 − 1 and −n1 on the real axis. As a result, we know that the
cutting sequence of x created by γ continues as Rn1L . . . (for the same reason that a real number between
natural numbers m and m+ 1 starts with cutting sequence Lm).
We now can consider the transformation JPn1JP−n0 . This essentially shifts JP−n0(γ) n1 rightwards,
then flip it back into the left half of the plane. This means that afterwards, z1 ends up on the imaginary
axis pointing leftwards. We can see that JPn1JP−n0(x) = 1

1
x−n0

−n1
and that since 1

x−n0
< 1 + n1, then
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JPn1JP−n0(x) > 1. Additionally,

n0 +
1

n1 +
1

n2+1

≥ x ≥ n0 +
1

n1 +
1
n2

n1 +
1

n2 + 1
≤ 1

x− n0
≤ n1 +

1

n2

n2 + 1 ≥ 1
1

x−n0
− n1

≥ n2.

This means that JPn1JP−n0(x) lands between n2 and n2 +1, and that thus the cutting sequence continues
Ln2R . . .. As a result, if we continue shifting and flipping γ in such a way, we would be able to find that
the cutting sequence created by γ matches perfectly with the continued fraction of x. In other words, if
x = [n0;n1, n2, . . .], then γ = Ln0Rn1Ln2 . . ..

Remark. It doesn’t make a difference computationally whether we end with L or R. For example, the
cutting sequence L1R1L1 is effectively the same as L1R2, since the continued fraction [1; 1, 1] is effectively
the same as [1; 2]. This is because 2 = 1 + 1

1 , or 1 + 1
2 = 1 + 1

1+ 1
1

. To generalize, some finite sequence

Ln0Rn1 . . . LnmR is the same as Ln0Rn1 . . . Lnm+1 since [n0;n1, . . . , nm, 1] = [n0;n1, . . . , nm + 1].

Remark. Since we know that the continued fraction of some x ∈ R is unique (except for the last value in
finite continued fractions, as mentioned above), then we know that its cutting sequence must also be unique
(excepting the last L or R).

6 Convergents

Definition 6.1. Given some x = [a0; a1, a2, . . .], then let pn

qn
= [a0; a1, a2, . . . , an]. These pn

qn
are called the

convergents of x.

In particular, note that p0 = a0 and q0 = 1. For example, suppose that x = 1+
√
5

2 , meaning x =
[1; 1, 1, 1, 1 . . .]. Then p0

q0
= 1, p1

q1
= 1 + 1

1 = 2, p2

q2
= 1 + 1

1+ 1
1

= 3
2 ,

p3

q3
= 5

3 , and so on.

Lemma 6.1. Take some x = [a0; a1, a2, . . .] and its convergent pn

qn
where n ≥ 2. Then pn = anpn−1 + pn−2

and qn = anqn−2 + qn−2.

Proof. We can prove this lemma by induction. As the base case, we know p0

q0
= a0 and

p1

q1
= a0+

1
a1

= a0a1+1
a1

.
Then

p2
q2

= a0 +
1

a1 +
1
a2

= a0 +
a2

a1a2 + 1
=

a0a1a2 + a0 + a2
a1a2 + 1

=
a2(a0a1 + 1) + a0

a2(a1) + 1
=

a2(p1) + p0
a2(q1) + q0

.

Thus p2 = a2p1 + p0 and q2 = a2q1 + q0.
We now want to prove the inductive case. First, we assume that given some y ∈ R = [b0; b1, b2, . . .] and some
m that pm = bmpm−1 + pm−2 and qm = bmqm−1 + qm−2. Now take some x = [a0; a1, a2, . . .]. Suppose we
have some rm

sm
= [a0; a1, . . . , am + 1

am+1
]; then rm

sm
= pm+1

qm+1
. By the inductive hypothesis,

rm
sm

=
pm+1

qm+1
=

(am + 1
am+1

)pm−1 + pm−2

(am + 1
am+1

)qm−1 + qm−2
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. This means that

pm+1

qm+1
=

(am + 1
am+1

)pm−1 + pm−2

(am + 1
am+1

)qm−1 + qm−2

=
amam+1pm−1 + am+1pm−2 + pm−1

amam+1qm−1 + am+1qm−2 + qm−1

=
am+1(ampm−1 + pm−2) + pm−1

am+1(amqm−1 + qm−2) + qm−1

=
am+1(pm) + pm−1

am+1(qm) + qm−1
.

Therefore, pm+1 = am+1pm + pm−1 and qm+1 = am+1qm + qm−1, which proves the lemma by induction.

This lemma helps prove the following corollary, as well as an important result about the placement of
convergents in the Farey Tessellation.

Corollary 6.1.1. The determinant of the matrix

(
pn pn+1

qn qn+1

)
= ±1 for all n ≥ 0.

Proof. We can again use induction to prove this. For the base case, we can see that

det

(
p0 p1
q0 q1

)
= p0q1 − p1q0 = (a0)(a1)− (a0a1 + 1)(1) = −1.

To prove the inductive case, we first assume that det

(
pm pm+1

qm qm+1

)
= ±1, meaning that

pmqm+1 − pm+1qm = ±1.

However, we can see that det

(
pm+1 pm+2

qm+1 qm+2

)
= pm+1qm+2 − pm+2qm+1. From Lemma 6.1, we can see that

pm+1qm+2 − pm+2qm+1 = pm+1(am+2qm+1 + qm)− qm+1(am+2pm+1 + pm) = pm+1qm − qm+1pm.

Since

pm+1qm − qm+1pm = − det

(
pm pm+1

qm qm+1

)
this means that

det

(
pm+1 pm+2

qm+1 qm+2

)
= −det

(
pm pm+1

qm qm+1

)
.

As a result, since the base matrix

(
p0 p1
q0 q1

)
has determinant −1, this means all such matrices have de-

terminant ±1. More specifically, matrices

(
pm pm+1

qm qm+1

)
have determinant −1 when m is even, and have

determinant 1 when m is odd.

Finally, we want to look at the placement of convergents in the Farey Tessellation; this will give us a
convenient geometrical description of the way convergents approach a certain value x.

Corollary 6.1.2. Let s0, s1, s2, . . . be the sides of the Farey Tessellation which mark the changes in the
cutting sequence of a geodesic γ from L to R and vice versa, starting with s0 being the vertical line from a0
to ∞. Then for all n ≥ 0, the endpoints of sn are pn

qn
and pn−1

qn−1
.
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Figure 5: Geodesic to 7
16 and its convergents (close-up on right)

We can first demonstrate an example of this before proving the corollary. Take the fraction 7
16 . Then

7

16
= 0 +

1

2 + 1
3+ 1

2

.

Thus 7
16 = [0; 2, 3, 2] and has convergents p0

q0
= 0, p1

q1
= 1

2 ,
p2

q2
= 3

7 , and
p3

q3
= 7

16 . If we draw the cutting

sequence for 7
16 and mark out the L and R, then we can see s0, s1, s2 and s3; their endpoints correspond

exactly to these convergent values, as seen in Figure 5.

We can now prove the corollary.

Proof. Suppose we have some x = [a0; a1, a2, . . .] and we draw the geodesic γ from the imaginary axis to x.
Then its cutting sequence is La0Ra1La2 . . .. We know s0 has endpoints a0 and ∞. We define p−1 = 1, and
q−1 = 0 so that p−1

q−1
= ∞ and p0

q0
= a0. After γ cuts s0, there are a1 segments of γ labelled R. We know that

the left endpoint of s1 must therefore still be a0 = p0

q0
. If a1 = 1, then the right endpoint is a0 +1. If a1 = 2,

then this right endpoint is a0 ⊕ a0 +1 = 2a0+1
2 . If a1 = 3, then the endpoint is a0 ⊕ a0 ⊕ a0 +1 = 3a0+1

3 . As
a whole, the right endpoint of s1 is

a1a0 + 1

a1
=

a1p0 + p−1

a1q0 + q−1
=

p1
q1

by Lemma 6.1. We now have a sequence of a2 Ls. We know therefore that the right endpoint of s2 is p1

q1
.

Similarly to the last step, the left hand endpoint moves through a2 steps from p0

q0
towards p1

q1
. If a2 = 1,

then the left endpoint is p1

q1
⊕ p0

q0
= p1+p0

q1+q0
. If a2 = 2, then this left endpoint is p1

q1
⊕ p0

q0
⊕ p1

q1
= 2p1+p0

2q1+q0
. As

a whole, the left endpoint of s2 is a2p1+p0

a2q1+q0
= p2

q2
by the above lemma. We can continue in this way to show

that given a step n, the endpoints are pn−1

qn−1
and pn

qn
, thus completing the proof.
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