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Abstract. This paper explores the concepts of Martingales in Probability

Theory. We first begin with some definitions and concepts to make the paper

more accessible for a general audience. Then we see how Martingales can
be used to analyze simple betting games and examine the famous Martingale

betting strategy. We end the paper by seeing some applications of Martingales

in Financial Mathematics, specifically with the Fundamental Theorem of Asset
Pricing and the Black-Scholes options pricing formula.
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1. Measure, Probability and Random Variables

We begin with some familiar definitions from probability theory cast in a measure-
theoretic framework.

Definition 1.1. A probability space is a triple (Ω,F , P ) where:

• Ω is a set of outcomes
• F is a set of events
• P : F → [0, 1] is a function that assigns probabilities

We assume that F is a σ-algebra, that is a nonempty collection of subsets of Ω.
Note that a measurable space, (Ω,F) is the same as a probability space without
a function, P that assigns probabilities.

Definition 1.2. A measure is a function, µ : F → R with

(1) µ(A) ≥ µ(∅) = 0 for all A ∈ F
(2) µ(∪iAi) =

∑
∀i

µ(Ai), where Ai ∈ F is a countable sequence of disjoint sets

Definition 1.3. A probability measure is a measure with µ(Ω) = 1
1
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Definition 1.4. A measurable function is a function X : Ω → E from a mea-
surable space, (Ω,F), to another measurable space, (E,S),
if X−1(B) ≡ {ω : X(ω) ∈ B} ∈ F for all B ∈ S, where B is any Borel set.1

We now introduce and discuss basic and familiar concepts about random vari-
ables which will be central throughout the discussion of Martingales.

Definition 1.5. A random variable is a real valued measurable function,
X : Ω → E, where Ω is a set of outcomes and E is a measurable subset of R. When
we want to emphasize the σ-algebra, F , we say X ∈ F or we say X is F-measurable.

Definition 1.6. The distribution of a random variable X is a probability measure,
µ, on R such that µ(A) = P (X ∈ A) where A is any Borel set.

Definition 1.7. The distribution function, F (x) = P (X ≤ x), of a random
variable X is a function which is generally used to describe the distribution of X.

Definition 1.8. The expected value of a random variable X is defined as
E[X] =

∫∞
−∞ XdP where P is a probability measure.

Definition 1.9. The variance of a random variable X is defined as
V ar(X) = E[X2]− (E[X])2

2. Martingales and a Simple Game

Consider a simple game with a fair coin, which has a probability of 1
2 of landing

on its head and an equal probability of 1
2 of landing on its tail. Suppose you start

out with $0 and win $1 if you land a heads and lose $1 if you land a tails. To study
games like this one it is useful to understand the concept of a Martingale, which
we build up to in this section.

Definition 2.1. Assume we have a probability space (Ω,F0, P ), a σ-algebra F ⊂
F0 and a random variable X ∈ F0 with E[X] < ∞. The conditional expectation
of X given F , E[X|F ], is defined to be any random variable Y such that:

(1) Y ∈ F , that is Y is F-measurable.
(2) for all A ∈ F ,

∫
A
XdP =

∫
A
Y dP

Any such Y is said to be a version of E[X|F ].

I assert that the conditional expectation exists and is unique without providing
the proof as that would be beyond the focus of this paper and does not add much to
our analysis later on. Instead we will look at some useful properties of conditional
expectations.

Theorem 2.2. Properties of Conditional Expectation:

(1) Linearity: E[aX + Y |F ] = aE[X|F ] + E[Y |F ]
(2) Monotonocity: If X ≤ Y , then E[X|F ] ≤ E[Y |F ]

Proof. For (1): First we note that the right hand side of the equality is a version
of the left hand side, which means it is F-measurable as well. If A ∈ F , then by

1A Borel set is any set that can be formed from open sets through the operations of countable
union, countable intersection, and relative complement.
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linearity of the integral we have:∫
A

(aX + Y )dP = a

∫
A

XdP +

∫
A

Y dP

= a

∫
A

E[X|F ]dP +

∫
A

E[Y |F ]dP =

∫
A

(aE[X|F ] + E[Y |F ])dP

which proves (1).
For (2): ∫

A

E[X|F ]dP =

∫
A

XdP ≤
∫
A

Y dP =

∫
A

E[Y |F ]dP

Let A = {E[X|F ]− E[Y |F ] ≥ ϵ > 0}. Now, we see the set A has probability 0 for
all ϵ > 0, which proves (2). □

Definition 2.3. A filtration Fn is an increasing sequence of σ-algebras.

Definition 2.4. A sequence Xn is said to be adapted to Fn if Xn ∈ Fn, for all n.

Definition 2.5. If Xn is a sequence that satisfies:

(1) E[|Xn|] < ∞
(2) Xn is adapted to Fn

(3) E[Xn+1|Fn] = Xn

for all n, then X is a Martingale with respect to Fn

Going back to the game mentioned at the start of this section, it is evident that
if you were to play this game for a long time, the expected value of your winnings
would be $0. The winnings here are in fact an example of a Martingale, as I will
now prove:

Proposition 2.6. Let Xn represent your wealth after the nth round of the fair coin
flip game has been played. Then Xn is a martingale.

Let ξn = 1 if you land a head and ξn = −1 if you land a tail on the nth toss. Let
Xn denote your winnings at time n, that is Xn = ξ1+ ξ2+ ....+ ξn and X0 = 0. Let
F0 = {∅,Ω} and Fn = σ(ξ1, ...., ξn), which is the σ-algebra generated by (ξ1, ..., ξn).
Firstly, we can observe that Xn ∈ Fn for all n ≥ 0 which means Xn is adapted
to Fn. Further, we have E[|X|] < ∞. This satisfies the first two properties in
Definition 2.5. As each coin flip is independent of the result of the previous flips,
we have:

E[Xn+1|Fn] = E[Xn + ξn+1|Fn] = E[Xn|Fn] + E[ξn+1|Fn]

by the first property in Theorem 2.2.

As Xn ∈ Fn and ξn+1 ∈ Fn,

E[ξn+1|Fn] = E[ξn+1] = 0 and E[Xn|Fn] = Xn

⇒ E[Xn+1|Fn] = Xn

satisfying the third property in Definition 2.5 and proving that the earnings, Xn,
in this game are a Martingale.

This shows that when playing this game your expected winnings do not change
in any round and always remain $0, which was the initial amount of money you



4 PRAKHAR SAXENA

started with. This can be expressed by E[Xn] = X0. Games with this property are
called fair games. In the next section we will look at some games which are not
fair.

3. Unfair Games

We will now examine a betting strategy for the game of Roulette, which is
commonly found in casinos. We will look at the American Roulette wheel which
has 38 coloured slots: 18 red, 18 black and 2 green slots. Although it is possible
to make a variety of bets in a regular game of Roulette, we will consider a simple
strategy where you only bet on a single colour in each round the game is played.
If you bet on red (black) and the ball lands in a red (black) slot, then you win the
same amount that you bet. If you bet on green and the ball lands in a green slot,
then you end up winning 17 times the amount you bet.

Looking at this game it is evident that if you were to play the same strategy
(picking the same colour) repeatedly then you would end up with a net loss over a
long period of time. This is an example of a supermartingale, which is defined
in the same way as a Martingale except (3) in Definition 2.5 is changed to:
E[Xn|Fm] ≤ Xm for any n > m.

Proposition 3.1. Let Xn represent your wealth after the nth round of roulette has
been played. Then Xn is a supermartingale.

We begin with X0 > 0. Suppose Bn represents the amount of money you bet
and Wn represents the amount of money you won in round n. Further, let Fn =
σ(B1(W1 − 1), ...., Bn(Wn − 1)) for n ≥ 1. This means:

Xn+1 = Xn +Bn(Wn − 1)

⇒ E[Xn+1|Fn] = E[Xn +Bn(Wn − 1)|Fn]

= E[Xn|Fn] + E[Bn(Wn − 1)|Fn]

= Xn + E[Bn|Fn]E[(Wn − 1)|Fn]

As Bn ∈ Fn, E[Bn|Fn] = Bn and as Wn is constant, E[(Wn−1)|Fn] = E[(Wn−1)].
Now we can see that if the strategy picked is betting on red/black and you ’win’ in
a round then Wn = 2 and Wn = 0 otherwise. As the probability of ’winning’ is 18

38

⇒ E[(Wn − 1)] =
36

38
− 1 = − 1

19
Similarly, if the strategy is betting on green: Wn = 18 if you win,

⇒ E[(Wn − 1)] =
36

38
− 1 = − 1

19

⇒ E[Xn+1|Fn] = Xn − Bn

19
< Xn

as Bn > 0
which satisfies (3) from Definition 2.5 and (1) and (2) are also clearly true. This

shows that your winnings in this game are a supermartingale.
An ‘unfair’ game may also may be one that is favourable towards the players.

A simple example of this can be seen by amending the game in Proposition 2.6,
by using an unfair coin that has a higher chance of landing on heads. Then,
P (ξn = 1) > 1

2 for all n. It is evident that if you were to play this game repeatedly
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you would have E[Xn] > X0, where Xn represents your winnings. This is an
example of submartingale, which is defined in the same way as a Martingale
except (3) in Definition 2.5 is changed to: E[Xn|Fm] ≥ Xm for any n > m.

As the proof that winnings actually are a submartingale in this unfair coin flip
game is very similar to Proposition 2.6 we will skip that and move on to assess a
famous betting strategy known as the Martingale strategy, which can theoretically
be used to make a profit in fair games.

4. Martingale Betting Strategy and Stopping Times

We first state some definitions which will allow us to define and analyze the
betting strategy more formally

Definition 4.1. Let Fn, n ≥ 0 be a filtration. Hn, for n ≥ 1, is called a pre-
dictable sequence if Hn ∈ Fn−1 for all n ≥ 1

This essentially means that the value of Hn can be predicted with certainty,
using only the information available at time n− 1.

Definition 4.2. A random variable N is called a stopping time if {N = n} ∈ Fn

for all n < ∞

In our context a stopping time can be thought of as the time you decide to stop
gambling and walk away from the game with your winnings (losses). It is impor-
tant to note that the stopping time must be determined only using the history that
a gambler has already seen, including and up to the current round of play. For
example, in the following strategy discussed for the fair coin flip game, deciding to
stop playing as soon as you make a profit once is an example of a stopping time.
This can be changed to other types of stopping times as well, for example deciding
to stop playing only when you win 3 times in a row.

Suppose you are playing the fair coin flip game from Proposition 2.6, but now
begin with X0 > 0. We also stop playing this game as soon as we make a profit. Let
Hn be a betting strategy such that H1 = 1 and Hn = 2Hn−1, n ≥ 2 if ξn−1 = −1.
This means if we lose money in round n we double our bet in round n + 1. This
strategy allows you to always leave with a profit of $1, as if you play this game for
a large number of rounds you would almost surely land a head at least once:
P(Flip = Tails) for a large number of rounds consecutively = ( 12 )

N → 0 as N → ∞
For example, suppose you land a tails on the first k successive rounds and a heads
on the (k + 1)th round. Then your winnings on the (k + 1)th round are given by:
−1− 2− 3...− 2k + 2k+1 = 1, which is a profit.

However, this strategy is only theoretically effective as in reality your wealth is
bounded by some finite number and you cannot keep on doubling your bets forever
on a losing streak. The following theorem states the conditions under which you
cannot beat a fair game:

Theorem 4.3. Discrete Martingale Stopping Theorem: If Xn is a martingale
with respect to Fn, and if N is a stopping time for Fn then

E[XN ] = X0

whenever one of the following holds:
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(1) There is a constant b such that, |Xn| ≤ b for all n ≤ N
(2) N is bounded, almost surely
(3) E[N ] < ∞ and there exists a constant c such that, E[Xi+1−Xi|Fi] < c for

all i

We will only prove the theorem for the first condition, as that is the one which
is most relevant to the gambling example as you only have finite wealth (Xn is
bounded). Before proving this we need to state another important theorem in the
study of Martingales:

Theorem 4.4. Martingale Convergence Theorem If Xn is a submartingale
with sup{E[Xn

+]} < ∞ then as n → ∞, Xn converges almost surely to a limit X
with E[X] < ∞

Using this we can now prove the first condition.

Proof. Suppose (1) in Theorem 4.3 is true. As Xn is bounded, using Theorem 4.4,
we have Xn converging pointwise to a random variable, which we will call XN . As
Xn < b for all n, we have |XN∧n| < b. The wedge, ∧, here represents min{N,n}. As
|XN∧n| is bounded by an integrable function we can use the dominated convergence
theorem. This gives us

lim
n→∞

∫
Ω

XN∧ndP =

∫
XNdP

Therefore, limn→∞ XN∧n = XN and E[XT ] = E[X0] □

This shows that under ‘realistic’ conditions there is no strategy that will allow
you to make a certain profit/loss in a fair game, and you will end up with the same
amount of money that you started with.

Interestingly, there is another theorem which shows that there is no betting
strategy that will allow you to make money with certainty, in a game where your
winnings are a supermartingale. For example, in the roulette game in Proposi-
tion 3.1. First, I state a Lemma that we need to prove this theorem.

Lemma 4.5. If X ∈ F and E[Y ], E[XY ] < ∞, then E[XY |F ] = XE[Y |F ]

I do not prove this Lemma as it involves some deeper understanding of measure
theory. One can find it in [4]. Now for the supermartingale theorem:

Theorem 4.6. Let Xn, n ≥ 0, be a supermartingale. If Hn ≥ 0 is predictable
and each Hn is bounded then (H · X)n is a supermartingale. Here (H · X)n =
n∑

m=1
Hm(Xm −Xm−1).

Proof.

E[(H ·X)n+1|Fn] = E[(H ·X)n|Fn] + E[Hn+1(Xn+1 −Xn)|Fn]

= (H ·X)n +Hn+1E[(Xn+1 −Xn)|Fn]

as (H ·X)n ∈ Fn, Hn ∈ Fn−1 and by property (1) in Theorem 2.2. Now we have:

E[(H ·X)n+1|Fn] = (H ·X)n +Hn+1E[(Xn+1 −Xn)|Fn] ≤ (H ·X)n

as E[(Xn+1 −Xn)|Fn] ≤ 0 as Xn is a supermartingale, and Hn+1 ≥ 0
□
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This shows that there is no strategy that will allow you to make a certain profit
or even take back the amount of money you started with in a game that follows a
supermartingale process. This means there is no ‘winning’ strategy for the game of
roulette and other similar games found in casinos, making sure ‘The House’ always
wins!

In the next section we see another application of Martingales in the field of
finance.

5. Martingales in Finance

One of the main motivations in modelling financial markets has been to deter-
mine what the ‘right’ or ‘fair’ price is for an asset. Martingales are very useful
in describing the process that the price of a fair asset follows. In this section we
will state the Fundamental Theorem of Asset Pricing, but first we introduce some
assumptions and definitions we need to fully understand the theorem.

We will start off with the No Arbitrage assumption. This means that you can-
not make a risk-free profit without any initial investment. An example of arbitrage
is if the same security was selling for different prices on different markets, then you
could buy it at the cheaper price in one market and sell it at the higher price in
the other market making a risk free profit. We assume no such opportunities exist.

We also assume that a risk free savings instrument exists where you can invest
money for a certain time and receive a fixed rate of return. We call this the risk
free rate. A good real world example of this is a US Treasury bond, where you
can almost certainly make money at the issued interest rate without any risk. We
assume the risk free rate is constant and equal to r.

Definition 5.1. The Risk Neutral Probability of an event A:

PRN (A) =
Price{Contract paying 1 dollar at time T if A occurs}

Price{Contract paying 1 dollar at time T no matter what }

For a general case we can say that the risk neutral probability represents the
market’s expectation of the probability that event A will occur.

The denominator here represent the price of buying the risk free rate instrument
(treasury bond). Compounding at rate r continuously for time T means that the
price of such a risk free contract would be given by e−rT , which will therefore be
the denominator in Definition 5.1.

Using this definition, we can state and interpret 2 versions of the Fundamental
Theorem of Asset Pricing

Theorem 5.2. Fundamental Theorem of Asset Pricing If the assumption of
No Arbitrage is satisfied then there exists a risk neutral probability, PRN , on the set
of outcomes, Ω, such that PRN (ω) > 0, for all ω ∈ Ω. Let S(n) denote the price of

the stock at time n, and let S̃(n) = S(n)
A(n) where A is a risk free asset. Further S̃(n)

is a martingale with respect to the risk neutral probability, PRN . Namely,

E[S̃(n+ 1)|S(n)] = S̃(n)

This is true only under the assumption of no arbitrage as stated above, which
establishes the existence of the risk neutral probability PRN . S̃(n) is known as the
discounted price of the stock. This theorem essentially states that the current
discounted price of a stock reflects the future expectations of the stock’s price. Using
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this theorem, we can say that if we have a stock (which does not pay dividends)
worth $X at time T , then its price today should be ERN [X]e−rT .

A similar version of this theorem can be stated for derivatives of financial instru-
ment. A financial derivative is a contract that derives its value from the performance
of an underlying asset/security. An example of this is an options contract on a stock
or a futures contract on crude oil. Investors can use these derivatives to speculate
on the underlying security’s price movements. We will look at options in further
detail but first we state the Fundamental Theorem of Asset Pricing for derivatives.

Theorem 5.3. Fundamental Theorem of Asset Pricing (Derivatives) Con-
sider the same setup as Theorem 5.2. Let D be a derivative with S as its under-
lying security, where D(n) represents the price of the derivative at time n. Let

D̃(n) = D(n)
A(n) be the discounted price of the derivative. Then S̃(n) and D̃(n) are

martingales with respect to PRN . Namely,

E[S̃(n+ 1)|S(n)] = S̃(n) and E[D̃(n+ 1)|S(n)] = D̃(n)

Again this is true only under the assumption of no arbitrage. This theorem
expands on Theorem 5.2 by stating that the derivative’s current price reflects the
future expectations of its price, based on the underlying security’s current price.
In the next section we learn a bit more about what options are and how they are
priced.

6. Martingales and Options Pricing

An option is a financial contract with a specified strike price and expiry date
that gives you the right, but not the obligation, to purchase the underlying security
at the specified strike price. We will consider European options, which can only be
exercised on the expiry date (American options can be exercised anytime before or
on the expiry date). There are 2 types of options: call and put. A call option allows
you to buy the underlying at the strike price and a put option allows you to sell at
the strike price. Options are attractive to investors as a hedging and speculative
tool.

We now build up to and examine the Black-Scholes formula, which is widely used
to price European options. We will do this without getting into a lot of technical
details and just to understand the formula and how Martingales play a role in it.
First, we describe the concept of a Wiener Process.

Definition 6.1. The Wiener Process, Wt, is characterized as follows:

(1) W0 = 0 almost surely
(2) For every t > 0, the future increments (Wt+u −Wt, u ≥ 0) are independent

of the past values of Ws, s < t
(3) The increments, (Wt+u − Wt), are normally distributed with mean 0 and

variance u
(4) Wt is almost surely continuous in t

This Wiener process is an example of a continuous time Martingale. In our
previous examples wealth was an example of a discrete time Martingale, as the
wealth was only updated after each round of play. However, with stock market
conditions we receive price updates at rates faster than a millisecond. This makes
a continuous time Martingale better suited in this situation. The Black-Scholes
formula assumes that the log of an asset’s price follows a Wiener process adjusted
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with a drift term, which means the mean of the process is now going to be non
zero. Writing this assumption precisely we have: the log of an asset price, X, at a
fixed future time, T , is a normal random variable, N , with mean, µ, and variance,
Tσ2 with respect to the risk neutral probability. Here, σ2 is a measure of volatility.
We now build up to the Black-Scholes formula:

(1) As X is log normally distributed we have E[eN ] = eµ+Tσ2/2

(2) Let X0 be the current price of the asset. From the Martingale property of
Theorem 5.2 we have

X0 = ERN [X]e−rT = ERN [eN ]e−rT = eµ+(σ2/2−r)T

(3) This means µ = ln(X0) + T (r − σ2

2 )
(4) Let g be a function. Then the price of a contract that pays g(X) at time

T is ERN [g(X)]e−rT = ERN [g(eN )]e−rT

Consider a European call option. Here we define g(X) = max{0, X−K}, where
K is the strike price. This is the profit you can make from the option, as you will
only exercise it if X > K.

Theorem 6.2. The Black-Scholes formula states that the price of contract, with
g(X) defined as above is given by:

ERN [g(X)]e−rT = ERN [g(eN )]e−rT

where N is a normal variable with mean, µ = ln(X0) + T (r − σ2

2 ), and variance,

Tσ2.

As N is a normal variable we can use the formula for its cumulative distribution,
Φ, and write the whole form for the price of the call option. Without going into
the technical derivation we have the final price of the option as:

Φ(d1)X0 − Φ(d2)Ke−rT

where

d1 =
ln(X0

K ) + T (r + σ2

2 )

σ
√
T

and d2 =
ln(X0

K ) + T (r − σ2

2 )

σ
√
T

This price can also be derived from the Black-Scholes equation which is a partial
differential equation that describes how the price of an option varies over time.
Solving that equation to find the correct discounted price gives a Martingale as
the answer. This means the option’s price is a martingale which is equal to the
expected value of the discounted payoff of the option, as stated by the Fundamental
Theorem of Asset Pricing in Theorem 5.3.
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