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Abstract. Persistent homology is a recent, yet widely-used technique in topo-

logical data analysis due to its effectiveness in studying the behavior of data
by efficiently detecting central holes and noise in point clouds. This paper

aims to introduce simplicial homology and computing simplicial homology

groups, singular homology, homotopy invariance, determining persistence and
constructing barcode and persistence diagrams from the Rips complex, and

finally comparing the persistence of simple homeomorphic spaces.
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1. Introduction

Topological data analysis has been a powerful tool in studying data sets in various
fields such as social science, ethnography, and physics. Realistically, a huge amount
of large point clouds that are used in statistical studies are met with noise, such
as a handful of anomalies in data that does not necessarily agree with the rest of
the data set. This makes it difficult even for the human eye to assess. Algorithms
from a handful of subfields have been used to tackle this problem, and one such
method is the use of persistent homology. Using the basic foundations of algebraic
topology, persistent homology attempts to find central holes in large point clouds,
efficiently filtering out the noise.

The first section introduces simplices, which are essentially n-dimensional trian-
gles. From there, we can glue those simplices together to form ∆-complexes and
simplicial complexes. Then, we introduce the concept of simplicial homology, which
is a method of studying the structure of simplicial complexes.

The second section introduces concepts that will be useful in persistent homology
such as singular homology and homotopy invariance. At the end of the section, we
will be able to assess the homology groups of homeomorphic spaces and any two
spaces where one is deformation retractable to the other.
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The third section dives into persistent homology. The Rips complex will be in-
troduced, and several terms essential to persistent homology will be defined as well,
such as filtered simplicial complexes, barcode diagrams, and persistence diagrams.

The last section compares the persistent homology of point clouds that represent
homeomorphic shapes. Using Python, the persistent homology of the following pairs
are evaluated: the circle and the ellipse, and the square and the rectangle.

2. Simplicial Homology

We start with the concept of simplices, simplicial complexes, and computing
homology groups of simplicial complexes.

Definition 2.1. Assigning vertices [v0, ..., vn] to the unit vectors along the coordi-
nate axes of Rn+1, we can define the standard n-simplex as

∆n = {(t0, ..., tn) ∈ Rn+1 |
∑
i

ti = 1 and ti > 0 for all i}

Definition 2.2. Let ∆n = [v0, ..., vn] be an n-simplex in Rn. Any n−1 dimensional
subset of ∆n is a face of ∆n.

Definition 2.3. The boundary of ∆n, namely δ∆n is the union of all faces of ∆n.

Definition 2.4. The interior of ∆n, namely the open simplex ∆̊n, is defined as
∆n − δ∆n.

We can glue different n-simplices together in order to form ∆-complexes.

Definition 2.5. A ∆-complex on a space X is a collection of maps σα : ∆n → X,
with n depending on the index α, such that:

(1) The restriction σα|∆̊n is injective, and each point of X is in the image of
such restriction.

(2) Each restriction of σα to a face of ∆n is one of the maps σβ : ∆n−1 → X,
where we identify ∆n−1 as the face of ∆n.

(3) A set A ⊂ X is open if and only if σ−1
α (A) is open in ∆n for each σα.

A simplicial complex is a ∆-complex with simplices uniquely determined by its
vertices.

We want to relate a simplicial complex to its simplices in each dimension, which
will be done through simplicial homology.

Definition 2.6. Let X be a simplicial complex and ∆n(X) the free abelian group,
whose basis is given by the open simplices enα ∈ X where enα = (0, ..., 1, ..., 0) such
that the 1 is in the n-th position. Elements of ∆n(X), which are also called n-chains,
are written as finite sums

∑
α nαe

n
α, for nα ∈ Z.

To relate elements of an n-chain, we define the boundary operator.

Definition 2.7. Let σα : ∆n → X be a mapping from an n-simplex to a topological
space X. The boundary operator is defined as the homomorphism δn : ∆n → ∆n−1

such that
δn(σα) =

∑
i

(−1)iσ | [v0, ..., v̂i, ..., vn]

where v̂i denotes an omission of the i-th vertex.
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Boundary operators map from an n-simplex to an n−1 simplex, so applying the
operator constantly yields the following chain.

...
δn+2−−−→ Cn+1

δn+1−−−→ Cn
δn−→ Cn−1

δn−1−−−→ ...

In order to understand the structure of a simplicial complex through its respec-
tive chain, we introduce the concept of homology, which gives us an idea of the
shape itself through its cycles and boundaries.

To find the cycles of a specific boundary operator, we find all possible linear
combinations of paths such that the resulting path creates a loop. The amount of
generators yield the kernel of the n-th boundary operator. For example, the 2nd
boundary operator of a standard 2-simplex is isomorphic to Z because the only
generator is the sum of its vertices. Computing the boundaries of a shape involves
finding all possible combinations of the boundary operator in the n+ 1 dimension,
hence we evaluate the image of the n+ 1 boundary operator [1].

We use the concept of cycles and boundaries to define homology groups.

Definition 2.8. The n-th simplicial homology group is defined as the quotient
group

H∆
n (X) =

Z∆
n

B∆
n

=
ker δn
Im δn+1

where Z∆
n and B∆

n correspond to the cycles and boundaries of X, respectively.

Example 2.9. As an example, we will find the n-th simplicial homology group of
a standard hollow triangle with ordered vertices [v0, v1, v2].

Proof. First, we will calculate the 0th homology group. We have three 0-simplices
in a 2-simplex, and we know that every element in C0 maps to zero. Thus, ker δ0 ∼=⊕3

i=1 Z. To find Im δ1, let a, b, c ∈ Z. We produce the following linear combination:

aδ1[v0, v1] + bδ1[v1, v2]− cδ1[v0, v2] = a(v1 − v0) + b(v2 − v1)− c(v2 − v0)

= v0(c− a) + v1(a− b) + v2(b− c).

There are two generators for Im δ1. Hence, H∆
0 (X) =

⊕3
i=1 Z

Z
⊕

Z
∼= Z. To find H∆

1 (X),

we need to find ker δ1. By definition, we find the kernel by setting the linear
combination to zero.

v0(c− a) + v1(a− b) + v2(b− c) = 0

This is only possible if a = b = c, thus there is only one generator. Hence, ker δ1 ∼=
Z. Notice that since the triangle is hollow, there are no 2-simplices. This implies
that the only possible input of δ2 is zero. Hence, H1(X) = Z

0
∼= Z. The homology

groups of higher dimensions would yield 0
0 , which is 0, as 0 represents the trivial

group. Hence,

Hn(X) =

{
Z if n = 0, 1

0 else

□

The following propositions will be useful in studying persistent homology.

Proposition 2.10. Corresponding to the decomposition of a simplicial complex X
into its path-components Xα there is an isomorphism of H∆

n (X) with the direct sum⊕
α H∆

n (Xα).
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Proof. Let X be a simplicial complex. Fix n ∈ N. Notice that taking the n-th
boundary operator of X yields the sum of all n-th boundary operators of indi-
vidual n-simplices. Thus, the direct sums of ker(δn(Xα)) and Im(δn+1(Xα)) are
isomorphic to ker(δn(X)) and Im(δn+1(X)), respectively. Hence,

⊕
α H∆

n (Xα) ∼=
H∆

n (X). □

Proposition 2.11. Let X be a nonempty and path-connected simplicial complex.
Then H∆

0
∼= Z.

Proof. Let X be a nonempty and path-connected simplicial complex with n 0-
simplices. Fix a 0-simplex x in X. For any 0-simplex y in X, there exists a
continuous function ϵ : I = [0, 1] → X such that ϵ(0) = x and ϵ(1) = y. Thus,
δ1(I) = y − x. Since this holds true for all 0-simplices in X, B∆

0 (X) has n − 1
generators. We know that δ0 yields the zero map, thus Z∆

0 (X) ∼=
⊕n

i=1 Z. Hence,
H∆

0
∼= Z. □

Proposition 2.12. If X is a point, then Hn(X) = 0 for n > 0 and H0(X) ∼= Z.

Proof. Let X be a point. Since X contains one 0-simplex and no n-simplices for
all n ∈ N, ker δ0 ∼= Z and Im δ1 = 0. Thus, H0(X) ∼= Z. Now fix n > 0. Then
ker δn = 0 and Im δn+1 = 0. Hence, Hn(X) = 0. □

3. Other Useful Concepts

Singular homology is a way to find the homology groups of any topological space,
not just simplicial complexes. Finding the homology groups of a more general space
uses the same concepts of cycles and boundaries.

Definition 3.1. A singular n-simplex is defined as the map σ : ∆n → X where
∆n is a ∆-complex.

Definition 3.2. Let Cn(X) be a free abelian group whose bases are given by the
set of singular n-simplices in X. Then singular n-chains are elements of Cn(X)
defined by the finite sum Σiniσi for ni ∈ Z and σi : ∆

n → X.

Definition 3.3. A boundary map δn : Cn(X) → Cn−1(X) is formally defined as

δn(σ) = Σi(−1)iσ|[v0, ..., v̂i, ..., vn]
where v̂i denotes an omission of the i-th vertex.

Definition 3.4. The n-th singular homology group is defined as the quotient group

Hn(X) =
Zn(X)

Bn(X)
=

ker δn
Im δn+1

Persistent homology only deals with simplicial complexes, but singular homology
is needed as it gives us context to homeomorphic spaces. These definitions are sim-
ilar to their simplicial counterparts, except that the map σ : ∆n → X implies that
the image does not have to be a simplicial complex. It follows that homeomorphic
spaces have isomorphic singular homology groups, but it is not necessarily so with
simplicial homology groups [1].

In persistent homology, we will encounter a lot of simplicial complexes that
contain hundreds of simplices. Most of the time, those simplicial complexes have
trivial homology groups due to homotopy invariance.
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Definition 3.5. A homotopy is defined as the family of maps ft : X → Y, t ∈ I,
such that the function F : X × I → Y given by F (x, t) = ft(x) is continuous.

Since I is the unit interval, then we can say that f0 and f1 are homotopic if
there exists a homotopy ft [1].

One can intuitively see that homotopies can be used to retract topological spaces,
which is defined as follows:

Definition 3.6. Let A ⊂ X be a subspace of a topological space X. Then A is a
deformation retract of X if there exists a homotopy F : X × I → X such that the
following holds for all x ∈ X and a ∈ A:

(1) F (x, 0) = x
(2) F (x, 1) ∈ A
(3) F (a, 1) = a.

Let us, for example, consider an open-ended cylinder. This cylinder can be
collapsed to a circle. Since the circle is a subspace of the cylinder, we say that the
cylinder is deformation retractable to a circle.

Theorem 3.7. If X is deformation retractable to Y , then Hn(X) ∼= Hn(Y ).

A proof is provided in Hatcher’s book. Using Theorem 3.7 along with Proposition
2.12 tells us that if a space is deformation retractable to a point, then that space
has trivial homology.

Notice that any mapping of two simplicial complexes f : K → K ′ induces a
homomorphism f∗ : Hn(K) → Hn(K

′). This fact will be used when formally
defining persistent homologies.

4. Persistent Homology

The goal of persistent homology is to be able to study the behavior of a large
data set when put into a point cloud. This is done by creating a simplicial complex
in the point cloud and studying the homology groups of that simplicial complex
given a distance parameter.

For this section, we will be repeatedly using the concepts from the simplicial
homology section and the propositions proven in the singular homology section.
To avoid confusion, we use the notation Hn(X) instead of H∆

n (X), as singular
homology will not be involved anymore.

Suppose we have a set of points in a point cloud. Using the point cloud, we
want to be able to create a simplicial complex. Thus, we will introduce the Rips
complex.

Definition 4.1. Let xα be a collection of points in Euclidean space En. Then the
Rips complex, labeled Rϵ, is a simplicial complex such that each k-tuple of points
{xα}k0 form a k-simplex if and only if every two points are at most ϵ apart.

For example, if three points are pairwise ϵ
2 apart, then a 2-simplex would be

formed. For different values of ϵ, different simplicial complexes could be formed,
and thus the homology of the simplicial complex could change.

The goal of persistent homology is to be able to discern what the behavior of the
data is when translated into a point cloud. That means a right distance parameter
ϵ is necessary. The problem is what ϵ to choose: if ϵ = 0, then we would get
many 0-simplices, which does not give us meaningful information about the data.
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However, if we choose a large ϵ, then according to Theorem 3.7 the shape itself
will have trivial homology. This is why we analyze the behavior of data not from
distinct individual distance parameters, but rather from the change of homology
groups for all values of ϵ.

Definition 4.2. Let K be a simplicial complex with subsets K1 ⊂ K2 ⊂ ... ⊂ Kl =
K. Then K is a filtered simplicial complex.

Definition 4.3. Let K1 ⊂ K2 ⊂ ... ⊂ Kl be a filtered simplicial complex. Then
the p-th persistent homology is defined as the pair

({Hp(Ki)}1≤i≤l, {fi,j}1≤i≤j≤l)

where f : H(Ki) → H(Kj) is the induced homomorphism from the inclusion map
Ki ↪−→ Kj .

As a simple example, consider the following points in the Cartesian plane:
(0, 0), (0, 1), (−1, 3), and (2, 0). Below is a diagram of two separate filtration steps
and a table containing the 0th and 1st homology groups of all possible simplicial
complexes.

K H0 H1

K1 Z4 0
K2 Z3 0
K3 Z2 0
K4 Z 0
K5 Z 0
K6 Z 0

Table 1. The H0 and H1 homology groups of the example given above.

(0, 0)

(0, 1)

(−1, 3)

(2, 0) (0, 0)

(0, 1)

(−1, 3)

(2, 0)

Figure 1. Visualizations of K2 and K5.

As stated in Propositions 2.10 and 2.11, the zeroth homology group of the given
Rips complex is the direct sum of the zeroth homology group of its components,
each of which is isomorphic to Z.

These new simplicial complexes are formed due to the gradual increase of the
distance parameter ϵ, in accordance with the definition of the Rips complex. Addi-
tionally, notice that at any point in this filtered simplicial complex, there are no H1

groups formed at all. This is because according to the definition of the Rips com-
plex, once three vertices are pairwise within ϵ apart, it becomes a filled 2-simplex,
which does not contribute to the first homology group.

Finding the homology groups of each simplicial complex doesn’t tell us about
the true structure of this specific data set. We need to find a way to determine how
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each point in the data set persists over an increasing distance parameter. This is
where barcodes come into play. The existence of barcodes are guaranteed because
of Definition 3.4. For setting up an H0 barcode diagram, we will let the x-axis be
the filtration step (the step in which a new simplicial complex is formed) and the
y-axis be the different connected components initially formed. The following shows
the H0 barcode diagram over all the filtration steps.

1 2 3 4 5 6

(0, 0)

(0, 1)

(−1, 3)

(2, 0)

.

Figure 2. An H0 barcode diagram.

A more convenient and preferred way of looking at the persistence of a point
cloud is through a persistence diagram.

Definition 4.4. A persistence diagram is a space R2
, where R = R ∪ {∞}, such

that a point (i, j) is represented by the barcode interval [i, j).

A typical persistence diagram plots the birth of components against its death,
and an origin that is located at (1, 1) instead of (0, 0). We take a point in the
barcode diagram, for example (0, 0), and its location in the x-axis is the filtration
step in which it was born. Similarly, its location in the y-axis is the filtration step
in which it dies. Plotting all four points from the example in a persistence diagram,
we get the following.

D
ea
th

Birth

Figure 3. A persistence diagram.
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The box on (1, 6) is due to the fact that the point (0, 1) doesn’t really die at the
sixth step. As ϵ increases, the connected component that is deformation retractable
to (0, 1) will stay the same forever, and thus the box signifies a component that
will persist forever.

Indeed, this example’s absence of any H1 groups does not reveal us any central
holes. Intuitively, this tells us one of two things: there are not enough data points,
or this point cloud is almost similar to a single point. When H1 groups are involved,
the y = x line in the persistence diagram would be useful, as points that are farthest
away from this line are defined as the most persistent, and thus would signify a
central hole in the point cloud [3].

It’s possible to arrange these points in a way that would create a first homology
group. We can imagine the points as the vertices of a rhombus. We can intuitively
surmise that there will exist such an arrangement so that a specific distance param-
eter ϵ will create 1-simplices from adjacent vertices, and nothing else. This does not
create any 2-simplices, and it counts as a one-dimnensional hole, hence there exists
an arrangement of four points in the Cartesian plane such that some Rips complex
will have a non-zero first homology group. If this central hole persists long enough,
then that H1 would be more than just noise, but rather an important aspect of the
behavior of this new point cloud.

If we can arrange a set of points and have different homology groups, it is worth
discovering whether two different datasets that resemble two homeomorphic spaces
will have different persistent homologies and potential causes of such differences.

5. Persistence of Simple Homeomorphic Shapes

We have discussed in Section 3 that homeomorphic spaces have the same ho-
mology groups. Specifically, Theorem 3.7 tells us that if a topological space X
is deformation retractable to a another topological space Y , then the homology
groups of X and Y are the same.

In this section, we will take two data sets that resemble simple homeomorphic
shapes: a circle and an ellipse. Intuitively, their diagrams should tell us that there
is a central hole that persist for some time. The construction of the Rips complex
and the generation of persistence diagrams was done through an original Python
script that uses the MatLab and Ripser packages.

The procedure, with slight modifications of the diagrams shown in the previous
section, is as follows: For the circle, a zone is made from two circles with radii
0.9 and 1.1, and then 200 random points are scattered throughout this zone. The
persistence diagram won’t have filtration steps in its axes, but rather the ϵ value.
As a feature of the Ripser package, instead of having a box to represent infinite
persistence, points will lie on a horizontal line near the top. The procedure for the
ellipse is similar; the inner and outer semi-minor axes are 0.9 and 1.1, respectively.
The semi-major axes are determined by a ratio modifier that is multiplied with the
semi-minor axes. For this section, we will use the following ratio modifiers: 1, 3,
and 10. We will be using two ellipse modifiers to surmise if eccentricity is a criterion
for its change in persistence (if there are any changes at all). A GitHub repository
is available here, along with potentially more examples that will not be used in this
paper: https://github.com/esan0983/phcalculations. Refer to ”ellipse.py” for this
part.
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The six images show the plots of the three shapes and their respective persistence
diagrams.

Figure 4. A 200-point plot of a circle (ratio 1) and its respective persistence
diagram.

Figure 5. A 200-point plot of an ellipse with a ratio of 3 and its respective
persistence diagram.

Figure 6. A 200-point plot of an ellipse with a ratio of 10 and its respective
persistence diagram.

For ratio modifiers of 1 and 3 (the first four diagrams), it is clear where the central
hole persists. However, while it is clear enough that there is a persistent central
hole in the third case (the last two diagrams), there are significantly more holes that
don’t die immediately. The results for the third case overall were more chaotic than
the previous ones. Running the program two more times for each shape confirms
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that fact, since the persistence of the first two modifiers were almost exactly the
same each time, but the set of persistence points for the third modifier abruptly
changed every time. The images below show two more iterations of the code with
a ratio modifier equal to 10.

Figure 7. Two more persistence diagrams of an ellipse with a ratio of 10.

The first point of interest here is the formation of one-dimensional holes for all
three shapes. For the circle, most of the holes form and die at the same ϵ value,
which follows from the fact that the shape itself is radially symmetrical; a point will
create lines with their neighbors almost at the same time as other points do. As
the circle gets more stretched, the one-dimensional holes persist around the same
time, but the times of their birth and death become more scattered.

Another point of interest is, as already mentioned, the instability of the persis-
tence diagram as the ratio modifier increases. The human eye would be able to
figure out what the central hole of an ellipse is, without regard to the eccentric-
ity. However, persistent homology is heavily reliant on the discrete data set that is
given. If a circle is stretched with an equal amount of data points, the point den-
sity would decrease, and would thus change the birth and death of one-dimensional
holes.

With that in mind, the program ran three more times on the same ratio modifier
of 10, but now with a sample size of 1000.
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Figure 8. Three persistence diagrams of an ellipse with a ratio of 10 with a
sample size of 1000.

Indeed, due to the law of large numbers, the standard deviation of the persistence
of the central hole approaches zero as sample size increases. The more data points,
the more continuous the shape seems, and the more likely that persistent homology
will view the shape as if it has a human eye.

Nonetheless, the birth and death of the central holes are different for each shape.
A modified, separate version of the code iterates through all possible ratios from
one to 20, with 0.1 increments. The birth and death of the central hole follows
a general trend: the higher the ratio, the later the birth and death. Refer to
”eclipse progression.py” for this part.

The GIF is included in the repository as ”ellipse.gif,” but four instances of vary-
ing ratios will be shown below.

Figure 9. Four persistence diagrams of an ellipse with ratios 2, 5, 10, and 18.
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This gives rise to the hypothesis that for homeomorphic shapes, as long as there
is a way to determine the major and minor axes of the shape, the ratio between
the two determines its overall persistence. In order to explore this even further, a
similar program was made for a rectangle, with the major and minor axes being
the width and height of the rectangle. Additionally, the ratios in this program
will only go from one to ten. Since a significantly larger sample size is used, a
subsampling algorithm that is implemented in the same package will be used, which
yields a close approximation of resulting persistence diagrams [6]. As per usual,
the GIF will be in the repository as ”rectangle.gif,” and for the program, refer to
”rectangle progression.py.” The four instances will be shown below.

Figure 10. Four persistence diagrams of an ellipse with ratios 1.5, 3, 5.5, and 7.5.

Although a little subtler, the central hole in the persistence diagram still follows
the same trend.

A question of interest that is left unanswered in this paper is if this hypothesis
can be generalized to any collections of homeomorphic shapes. The evidence shown
in this section worked because the examples are simple shapes, meaning that their
minor and major axes can easily be determined. A potential follow up is exploring
whether a trend in persistence can still be seen with general and/or random shapes,
and if so, the criteria (something more reliable than ratio between axes) needed to
exhibit that trend. Constructing simpler shapes around general, more random
shapes and taking the persistent homology of those circumscribed simpler shapes
is a potential approximation method, but it would need further verification and
rigorous testing.
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