
AN INTRODUCTION TO HAUSDORFF AND BOX COUNTING

DIMENSION

TOMI ROSSINI

Abstract. Dimension is a way to assign a number to a set in Rd which cap-
tures its scaling property. In this paper we will discuss two approaches to define

a notion of dimension: Hausdorff dimension and box counting dimension.
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1. What is a Measure?

Measure theory seeks to generalize the notion of “area” that arises when studying
subsets of Euclidean space. A measure on Rn is a way to define the following
assignment

subsets of Rn −→ [0,∞],

A 7−→ area of A.

It is not always possible to define a notion of area which gives a consistent real
number to every subset of euclidean space. Therefore, it becomes necessary to
restrict attention to a smaller family of subsets of Rn. This family should be closed
under union and complementation - indeed, if we can measure two sets then we
should be able to measure their union and complement. Again we can see some
similarity to a distance function, but this time we are operating on sets. This
motivates the definition of σ-algebra.
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Definition 1.1. A non-empty collection of subsets J of Rn is called a σ-algebra if
it satisfies the following properties:

(1) Rn is an element of J .

(2) If A is an element of J then Ac is also an element of J .

(3) If A1, A2, · · · are elements of J then
⋃∞

i=1 Ai is also an element of J .

Remark 1.1. As J is closed under complementation and countable union, it is
automatically closed under countable intersection.

Thus, our measures will be assignments

σ-algebra −→ [0,∞],

A 7−→ area of A.

Every topological space has a natural σ-algebra associated to it, the Borel σ-algebra.

Definition 1.2. The Borel σ-algebra B is the smallest σ-algebra containing all
open subsets of Rn.

1.1. Defining a Measure. We can now rigorously define a measure on a σ-algebra.

Definition 1.3. A measure µ on a σ-algebra J is a function

µ : J −→ [0,∞],

A 7−→ µ (A)

which satisfies the following two properties:

(1) The measure of the empty set is 0,

µ(∅) = 0.

(2) The measure µ is countable additive,

µ

 ∞⋃
j=1

Ej

 =

∞∑
j=1

µ(Ej)

for every countable sequence of disjoint sets {Ej} in J .

We record some easy but important consequences of this definition.

Proposition 1.4.

(1) If A,B are elements of J such that B ⊂ A then

µ (A \B) = µ (A)− µ (B) .

In particular, if B ⊂ A then µ (B) ≤ µ (A).

(2) If A1, A2, A3 . . . are elements of J and A1 ⊂ A2 ⊂ . . . then

lim
j→∞

µ(Aj) = µ

 ∞⋃
j=1

Aj

 .
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For a proof of these facts see chapter three of [1].

1.2. Examples of Measures. In this section, we record some basic examples of
measures.

Example 1.5. Let J the collection of all the subsets of Rn. For A ∈ J , define
µ(A) to be the number of elements in A. This measure µ is called the counting
measure.

Example 1.6. Let {xi}∞i=1 be a collection of points in Rn and let {ai}∞i=1 be a
collection of real numbers.

Let J be the σ−algebra of all subsets of Rn and define µ by the following formula:

µ(A) =
∑

{i|xi∈A}

ai.

Then µ is a measure.

Example 1.7. Define a measure δx on all subsets of Rn by the following condition:
δx(A) = 1 if and only if x ∈ A. This measure is called the point mass at x.

2. Outer Measures

These examples of measures may not be that interesting. Moreover, they bear little
resemblance to how we define the area of rectangles or triangles in Euclidean space.
To construct a measure which generalizes this particular notion of area, it is often
easiest to define an outer measure first.

Definition 2.1. An outer measure on Rn is a function ν : P (Rn) → [0,∞] satis-
fying the following three properties:

(1) The outer measure of the empty set is 0,

ν(∅) = 0.

(2) It is order preserving,

if B ⊂ A, then ν(B) ≤ ν(A).

(3) It is countably subadditive,

ν

 ∞⋃
1=j

Aj

 ≤
∞∑
j=1

ν(Aj) for any subsets {Aj} of X.

Outer measures are often easier to define due to their less restrictive definition.
Moreover, outer measures always define a measure when we restrict to the σ-algebra
of “ν-measurable subsets”.

Definition 2.2. A set E is called ν measurable if it decomposes every subset of X
additively. I.e., for all A ⊂ X,

ν(A) = ν(A ∩ E) + ν(A \ E).
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Theorem 2.3. Let ν be an outer measure. The collection M of ν- measurable sets
forms a σ-algebra, and the restriction of ν to M is a measure.

For a proof see Theorem 1.2 of [3].

Definition 2.4. We call the restriction of Hausdorff n−dimensional measure to
Hn−measurable sets the Lebesgue Measure, Ln. From this we see that the Lebesgue
measure provides an expansion of the traditional definition of volume in Rn.

We now state and prove a key theorem:

Proposition 2.5. Suppose C is a collection of subsets of Rn such that ∅ ∈ C and
there exists D1, D2, . . . ∈ C such that Rn =

⋃∞
j=1 Dj. Suppose ℓ : C → [0,∞) with

l(∅) = 0. Define

ν(E) = inf

{ ∞∑
i=1

ℓ(Ai) : Ai ∈ C for each i and E ∈
∞⋃
i=1

Ai

}
.

Then ν is an outer measure.

The moral of this proposition is that it is possible to define an outer measure on Rn

by stipulating the size of some “elementary sets” and then taking an appropriate
infimum.

For example, we could stipulate C to be the collection of all rectangles in Rn and
ℓ(C) to be the usual area of that rectangle. Then, by Proposition 2.5, we obtain an
outer measure ν which assigns to each subset A ⊂ Rn the size of the most efficient
covering of A by rectangles.

Proof of Proposition 2.5. We verify ν satisfies the definition of an outer measure.

(i) As ℓ(∅) = 0 we can see ν(∅) = 0. Thus, the outer measure of the empty set
is 0.

(ii) Let B ⊂ A, such that A,B ⊂ X. Let B be the set of all covers of B, and
let A be the set of all covers of A. As B ⊂ A we know A ⊂ B thus
inf B ≤ inf A. Hence,

ν(A) ≥ ν(B).

(iii) Let A1, A2, · · · ⊂ X, and ϵ > 0. For each i there exists Ci1, Ci2, · · · ∈
C such that Ai ⊂

⋃∞
j=1 Cij such that

∞∑
j=1

ℓ(Cij) ≤ ν(Ai) +
ϵ

2i
.

We note that,
∞⋃
i=1

Ai ⊂
∞⋃
i=1

∞⋃
j=1

Cij
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and therefore,

ν

( ∞⋃
i=1

Ai

)
≤

∞∑
i,j=1

ℓ (Cij) =

∞∑
i=1

 ∞∑
j=1

ℓ(Cij)


≤

∞∑
i=1

ν(Ai) +

∞∑
i=1

ϵ

2i

=

∞∑
i=1

ν(Ai) + ϵ.

As ϵ was chosen arbitrarily we conclude that

ν

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

ν(Ai).

□

3. Hausdorff Measure and Dimension

We now define Hausdorff measure and dimension. Hausdorff measure can be defined
for any positive real parameter s. This parameter s will determine the scaling
properties of the measure. Namely, if A ⊂ Rn and λ > 0 is a positive real number
then

Hs (λA) = λsHs (A)

where Hs denotes the Hausdorff measure with parameter s.

In turn, Hausdorff measure allows us to define the dimension of a set. We can
define an “s-dimensional set” as a subset A ⊂ Rn such that Hs (A) is positive and
finite (this is not completely true for technical reasons but captures the important
idea).

3.1. Hausdorff Measure. We make a series of definitions with the end goal of
defining a measure which scales like λs.

Definition 3.1. Let U ⊂ Rn, U ̸= ∅. The diameter of U is defined as

|U | = sup{|x− y| | x, y ∈ U}.

Definition 3.2. Let E ⊂ Rn. A δ-cover of E is a collection of subsets {Ui} such
that E ⊂

⋃∞
i=1 Ui, and 0 < |Ui| ≤ δ for each i.

Definition 3.3. Letting E ⊂ Rn, and let s be a non-negative number. We define
the s, δ Hausdorff content of E by the following formula

Hs
δ(E) = inf

{ ∞∑
i=1

|Ui|s | Ui is a δ cover of E

}
.
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To get the Hausdorff s-dimensional outer measure of E, we let δ → 0. Note that,
if δ1 ≤ δ2 then any δ1-cover of E is automatically a δ2-cover of E. In particular, it
follows that

Hs
δ1(E) ≥ Hs

δ2(E).

In particular, for every E ⊂ Rn the limit lim
δ→0

Hs
δ(E) exists. This justifies the

following definition.

Definition 3.4. The s-dimensional Hausdorff measure is an outer measure on Rn

defined by the following formula: for E ⊂ Rn

Hs (E) = lim
δ→0

Hs
δ(E).

We now prove the fundamental scaling property of Hausdorff measure.

Proposition 3.5. If F ⊂ Rn and λ > 0 then

Hs(λF ) = λsH(F )

where λF = {λx : x ∈ F}.

Proof. We will show that

Hs (λF ) ≤ λsHs (F ) and Hs (λF ) ≥ λsHs (F ) .

(1) If {Ui} is a δ-cover of F then λUi is a λδ-cover of λF . Hence,

Hs
λδ(λF ) ≤

∞∑
i=1

|λUi|s = λs
∞∑
i=1

|Ui|s

≤ λsHs
δ(F ).

This holds for any δ-cover. Letting δ → 0 gives

Hs(λF ) ≤ λsHs(F ).

(2) If we replace λ with 1
λ and F with λF we use the previous inequality to

obtain

Hs(F ) ≤
(
1

λ

)s

H(λF )

Rearranging we obtain the desired inequality,

λsHs(F ) ≤ Hs(λF ).

□
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Figure 1. The Hausdorff dimension marks the critical transition
between Hs (F ) = ∞ and Hs (F ) = 0.

3.2. Hausdorff Dimension. Now that we have defined the s-dimensional Haus-
dorff measure we can define Hausdorff dimension. The definition of Hausdorff
dimension originates with the observation that for every set F ⊂ Rn there is a
critical parameter s∗ below which Hs (F ) = ∞ and above which Hs (F ) = 0. We
call Hausdorff dimension dimH(F ) := s∗, where again s∗ is our critical parameter.
This transition and the critical parameter, is depicted in Figure 1.

The fact that there exists a critical parameter is the content of the following propo-
sition.

Proposition 3.6. If Ht (F ) = ∞ then for all s < t Hs (F ) = ∞. Similarly, if
Hs (F ) < ∞ then for all s < t Ht (F ) = 0.

Proof. Let {Ui} be a δ-cover of F . Then,

∞∑
i=1

|Ui|t ≤
∞∑
i=1

|Ui|t−s|Ui|s ≤ δt−s
∞∑
i=1

|Ui|s.

Therefore, if s < t and Hs (F ) < ∞ then letting δ to 0 gives that

Ht (F ) = 0.
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Conversely, if s < t and Ht (F ) = ∞ then for any δ-cover {Ui} of F we have

Hs (F ) ≥
∞∑
i=1

|Ui|s ≥
∞∑
i=1

|Ui|t.

Sense Ht (F ) = ∞ the right-hand side can be made arbitrarily large by making δ
small. Hence,

Hs (F ) = ∞.

□

Example 3.7 (Middle thirds Cantor set). A prototypical example in fractal geom-
etry is the middle thirds Cantor set. This set is constructed by first removing the

Figure 2. Middle-Thirds Cantor Set

middle third of the interval C0 := [0, 1] we get the union E1 :=
[
0, 1

3

]
∪
[
2
3 , 1
]
. Now

we take the intersection C1 := C0 ∩ E1 =
[
0, 1

3

]
∪
[
2
3 , 1
]
, now as both C0, and C1

are closed so is the intersection. Now we remove the middle third of each interval
again, getting E2 =

[
0, 1

9

]
∪
[
2
9 ,

1
3

]
∪
[
2
3 ,

7
7

]
∪
[
8
9 , 0
]
. Now again intersecting we get

C2 := E2 ∩ C1, and we iterate ad infinitum. Thus, the middle thirds Cantor set C
is defined as follows, let Ei be the sets

Ei =

3n−1−1⋃
i=0

([
3i

3n
,
3i+ 1

3n

]
∪
[
3i+ 2

3n
,
3i+ 3

3n

])
.
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Remark 3.8. In the preceding proofs we use the following notation:

Cj := ∩j
i=1Ei.

Then define

C def
=

∞⋂
j=1

Ej .

We state the first fact about the middle thirds Cantor set.

Proposition 3.9. The middle third Cantor set has Lebesgue measure 0.

Proof. Taking the Lebesgue measure of Cj

L(Cj) = inf

{ ∞∑
i=1

vol(Ei) : Cj ⊂
⋃

{Ui}

}
.

By the definition of Cj , it is the disjoint union of 2j intervals of length 3−j . There-
fore,

L(Cj) =
2j

3j
.

We see that:

L(C) = inf
j∈N

L(Cj) = inf
j∈N

(
2

3

)j

= 0.

□

We can state something more precise which implies the previous proposition.

Proposition 3.10. The middle thirds Cantor set has Hausdorff Dimension of s :=
log(2)
log(3) , and moreover Hs(C) = 1.

Proof. We know that for ϵ > 0 there exists j ∈ N such that:

Hs
δ(Cj \ C) < ε.

Similar to the last proof we know by definition of Cj

Hs
δ(Cj) =

2j

3sj
.

If then 2
3s < 1 we know

lim
j→∞

(
2

3s

)j

= 0.

As s = log 2
log 3 we see at once if δ ≥ 3−j we get Hs

δ(C) ≤ 2j3−sj = 2j2−j = 1. Thus,

if we let j → ∞ we get Hs(C) ≤ 1.
We just need the opposite inequality, thus let I be any cover of C. We want to show
that:

1 ≤
∑
I∈I

|I|s.

Now if we expand each interval slightly as C is compact we want to show that
when I is a finite collection of closed intervals the above equation holds. Reducing
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further we may take each I ∈ I to be the smallest interval that contains some pair
of intervals J, J ′ that occur in the construction of C (J and J ′ need not be intervals
of the same Ej). If J, J

′ are the largest such intervals, then I is made up of J , and
an interval K in the complement of C, and then J ′, i.e:

I = J ∪ J ′ ∪K.

From the construction of Ej we can see that:

|J |, |J ′| ≤ |K|.
Then we see by the additivity of measure:

|I|s = (|J |+ |K|+ |J ′|)s

≥
(
2

3
(|J |+ |J ′|)s

)
= 2

(
1

2
|J |s + 1

2
|J ′|s

)
≥ |J |s + |J ′|s,

as the function xs is concave, and 3s = 2. And so we can see replacing I with the
two subintervals J, J ′ does not increase the sum. Now we may proceed as so finitly
until we have achieved a covering of C by equal intervals of length, say, 3−j . This
must include all the intervals of Ej , and so as 1 ≤

∑
J∈J |J |s is true for this cover

it must be true for the original cover: I. □

4. Box Dimension

Box-counting dimension is a way for defining dimension without a measure. For
F ⊂ Rn we calculate the box-counting dimension by, for a given radius δ, finding
the smallest number of balls that cover F . We call this quantity Nδ. Then taking
log(Nδ)
− log δ as δ → 0 gives the box counting dimension. More formally we define the

lower and upper box dimension of F ⊂ Rn the following:

Definition 4.1.

dimB F := lim inf
δ→0

logNδ(F )

− log δ

dimB F := lim sup
δ→0

logNδ(F )

− log δ
.

(And if this limit exists), We call the box-counting dimension of F :

dimB F := lim
δ→0

logNδ(F )

− log δ
.

And we call Nδ any of the following:

(i) the smallest number of closed balls of radius δ that cover F ;
The rest of these are likewise equivilent to the first notion.

(ii) the smallest number of cubes of side δ that cover F ;

(iii) the number of δ−mesh cubes that intersect F ;

(iv) the smallest number of diameter at most δ that cover F ;
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(v) the largest number of disjoint balls of radius δ with centers in F .

Remark 4.2. The following is an image of each of the different notions of Nδ

Definition 4.3. For some set F ⊂ Rn we call Fδ the δ−neigborhood if

Fδ = {x ∈ Rn||x− y| ≤ δ, y ∈ F}.

In other words the set of points within distance δ of F .

Proposition 4.4. If F ⊂ Rn, then

dimBF = n− lim sup
δ→0

log voln(Fδ)

log δ

dimBF = n− lim inf
δ→0

log voln(Fδ)

log δ
.

Where Fδ is the δ-neigborhood of F
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Proof. If F can be covered by Nδ(F ) balls of radius δ < 1 then Fδ can be covered
by the concentric balls of radius 2δ. this is because each point in Fδ is with in a δ
of some point in F . Hence,

voln(Fδ) ≤ Nδcn(2δ)
n

where cn is the volume of the unit ball in Rn. Now taking logarithms of each side,

log voln(Fδ)

− log δ
≤ log 2ncn + n log δ + logNδ(F )

− log δ

log voln(Fδ)

− log δ
≤ log 2ncn

− log δ
+

n log δ + logNδ(F )

− log δ
.

Hence,

lim inf
δ→0

log voln(Fδ)

− log δ
≤ −n+ lim inf

δ→0

n log δ + logNδ(F )

− log δ
.

Hence,

lim inf
δ→0

log voln(Fδ)

− log δ
≤ −n+ dimBF.(4.5)

We can construct a similar inequality for the upper limits in the same way. On the
other hand if there are Nδ(F ) disjoint balls of radius δ and centers in F , then by
adding the volumes

Nδ(F )cnδ
n ≤ voln(Fδ).

Once again by taking logarithms and letting δ → 0 we get the opposite inequality
of (4.5) when using the equivalent definition given in definition 5.1 (v). □

Now we will do the calculation of box dimension for a few interesting sets. For
these examples we can see that they are all countable, implying that their Hausdorff
dimension is zero, however as we shall see the same is not true for box dimension.

Example 4.6. Find the box dimension of

(1) F =
{

1
n |n ∈ N

}
(2) Fe = {e−n|n ∈ N}.

The set F

Proof. (i) Let δ ∈ (0, 1] if 0 < δ < 1
2 , then let k be the natural number that

satisfies the following:

1

k(k − 1)
> δ ≥ 1

k(k + 1)
.
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If ball U has |U | ≤ δ, then as

1

k − 1
− 1

k
=

1

k(k − 1)
> δ

we know U can cover at most
{
1, 1

2 , . . . ,
1
k

}
. Thus, At least k sets of diam-

eter δ are required to cover F , so Nδ(F ) ≥ k giving:

logNδ(F )

− log δ
≥ log k

log(k(k − 1))
.

Now as we take δ → 0 (note this makes k → ∞ by its definition)

lim inf
δ→0

logNδ(F )

− log δ
≥ log k

log(k2 + k)

dimB(F ) ≥ 1

2
.

But if instead 1
2 > δ > 0 take k ∈ N that satifies the following:

1

k(k − 1)
> δ ≥ 1

k(k + 1)
.

Then k + 1 balls of diameter δ cover [0, 1
k ], leaving k − 1 points of F that

can be covered by k − 1 balls. Thus, Nδ(F ) ≤ 2k, so

logNδ(F )

− log δ
≤ log(2k)

log(k2 − k)

lim sup
δ→0

logNδ(F )

− log δ
≤ log(2k)

log(k2 − k)

dimB(F ) ≤ 1/2.

And so, dimB(F ) = 1
2 .

The set Fe

(ii) Let δ ∈ (0, 1], and let k ∈ N satisfy the following equation:

e−(k+1) < δ ≤ e−(k−1).

Thus if ball U has |U | ≤ δ at least k balls of diameter δ are required to
cover Fe. Hence, Nδ ≥ k implying:

logNδ(Fe)

− log δ
≥ log k

log(e−(k+1))

=
log k

−(k + 1)

=
log k

log δ
.



14 TOMI ROSSINI

Taking δ → 0 we get

lim
δ→0

log k

log δ
= 0.

Thus, dimB(Fe) ≥ 0. Now to upper box dimension. Let δ ∈ (0, 1], and let
k ∈ N satisfy the following equation:

e−(k+1) < δ ≤ e−(k−1).

Thus, if we cover
[
0, e−(k+1)

]
with k + 1 balls of diameter δ and each

remaining point with one such ball we will have at most 2k balls covering
Fe, thus Nδ(Fe) ≤ 2k. Hence,

logNδ(Fe)

− log δ
≤ log(2k)

−(k − 1)

=
log 2

log δ
+

log k

log δ

Taking δ → 0 we get: dimB(Fe) = 0.

□
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