
THE PRIME GEODESIC THEOREM

HADI RIHAWI

Abstract. We prove the Wiener-Ikehara Tauberian theorem and use it to

prove the prime number theorem. We utilize the Selberg trace formula to prove

the prime geodesic theorem, the prime number theorem analog for primitive
closed hyperbolic geodesics. We discuss improvements made to the bound,

especially that of Iwaniec.

Contents

1. Introduction 1
2. Complex Analysis 2
3. Harmonic Analysis on H 3
4. Special Functions 5
5. Trace and Summation Formulas 10
6. The Prime Number Theorem 11
7. The Prime Geodesic Theorem 14
Acknowledgments 17
References 17

1. Introduction

In this expository paper, we discuss the tools needed to understand the proofs of
the prime number theorem and the prime geodesic thoerem. To that end, we begin
in Section 2 by giving a brief catalog of definitions and theorems from complex
analysis which are crucial in the proof of the Wiener-Ikehara theorem, the manip-
ulations performed on the functions introduced in Section 4, and the description of
geodesics. The content of this section can be found in [4]. In Section 3, we intro-
duce integral transforms on the upper half-plane and define geodesic in the modular
group. In Section 5, we give the most important tools towards proving the prime
geodesic theorem and Iwaniec’s improvement to the bound. In Section 6, we prove
the Wiener-Ikehara theorem using complex analysis and use it to directly prove the
prime number theorem following the proof given in [7]. Finally, in Section 7, we
state and prove the prime geodesic theorem and discuss the various improvements
to the bound, with special focus on Iwaniec’s proof given in [6].

We introduce some of the notation which will be used throughout the paper
below.

Definitions 1.1. When we write

f(x) ≪ g(x),
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we mean that there exists some constant C such that f(x) ≤ Cg(x).
When we write

f(x) = O(g(x)),

we mean that there exists some constant C such that |f(x)| ≤ Cg(x) as x→ ∞.
When we write

f(x) ∼ g(x),

we mean that f(x)/g(x) → 1 as x→ ∞.

2. Complex Analysis

We state in this section a few of the definitions and theorems from complex
analysis necessary to understand the language and proofs of the upcoming sections.
These statements and their proofs can be found in [4].

Definition 2.1. A function

f : D → C, D ⊂ C,

is complex differentiable at a ∈ D if and only if

lim
z→a

f(z)− f(a)

z − a

exists. We denote this limit by f ′(a) if it exists.

Definition 2.2. A function is analytic or holomorphic in its domain if it is complex
diffentiable at every point in its domain. A function is entire if it is complex
differentiable at every point in C.

Definition 2.3. Let D ⊂ C be open and f : D → C be an analytic function. a is
a singularity of f if a is not in D but has the property that, for some r > 0, the
punctured disk

•
Ur(a) := {z ∈ C

∣∣0 < |z − a| < r}
is contained in D.

Definitions 2.4. Let f and a be as in the previous definition. a is:

• removable if and only if f can be analytically extended to D ∪ {a}.
• non-essential if and only if there exists an m ∈ Z such that a is a removable
singularity of g(z) = (z − a)mf(z).

- a non-essential singularity which is not removable is called a pole.
• essential if and only if it is not non-essential.

Theorem 2.5 (Maximal modulus principle). Let D ⊂ C be a domain. Let f : D →
C be an analytic function. If its modulus |f | : D → R+ reaches the maximum on
D, then f is constant.

In the discussion of Iwaniec’s proof, we will make use of the following gener-
alization of the maximal modulus principle. The Phragmén-Lindelöf principle is
a technique used to prove the boundedness of analytic functions on unbounded
domains.

Theorem 2.6 (Phragmén-Lindelöf principle). Let D ⊂ C be a domain with bound-
ary ∂D. Let f : D → C be an analytic function. If |f(z)| ≤ M on ∂D, then
|f(z)| ≤M everywhere in D.
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We introduce here the standard Poincaré model of the hyperbolic plane.

H := {z = x+ iy ∈ C : y > 0}, ds2 =
dx2 + dy2

y2

The geodesics on H are the arcs of circles that intersect ∂H orthogonally, i.e.,
semicircles with endpoints on ∂H and straight lines orthogonal to ∂H. For our
purpose, we care about orientation-preserving isometries of H, i.e., the projective
special linear group.

Definition 2.7. The projective special linear group is given by

PSL2(R) :=
{[
a b
c d

]∣∣∣∣a, b, c, d ∈ R, ad− bc = 1

}
Definition 2.8. A Möbius transformation or a homographic transformation is a
rational function giving a bijective map from C → C:

(2.9) z 7→ az + b

cz + d
, a, b, c, d ∈ C and ad− bc ̸= 0.

Definition 2.10. The modular group Γ is the group of Möbius transformations of
the upper half of the complex plane, i.e.,

Γ := PSL2(Z)
and for a transformation P ∈ Γ,

z 7→ Pz :=
az + b

cz + d
.

3. Harmonic Analysis on H

We begin this section by classifying elements of Γ. A more detailed account
of this work can be found in [3]. We classify the non-identity members in Γ by
their fixed points. Finding the fixed points of a transformation requires solving the
equation Pz = z:

Pz =
az + b

cz + d
= z =⇒ cz2 + (d− a)z − b = 0.

The value of the discriminant of this quadratic in z will give the number of solutions
it has, and thus the number and location of the fixed points.

(d− a)2 + 4bc = d2 + a2 − 2ad+ 4bc

= d2 + a2 + 2ad− 4(ad− bc)

= (a+ d)2 − 4 = tr(T )2 − 4.

We thus define the classes of transformations as follows:

Definition 3.1. A transformation P ∈ Γ is:

• elliptic if |tr(P )| < 2, i.e., P has one fixed point in H.
• parabolic if |tr(P )| = 2, i.e., P has one double-root fixed point in ∂H.
• hyperbolic if |tr(P )| > 2, i.e., P has two fixed points in ∂H.

The names of the classes are borrowed from the shape of the conic ax2 + bxy +
cy2 = 1 in terms of its discriminant d = b2 − 4ac. For our purposes in relating
the proof of [6], we focus on the hyperbolic transformations. We characterize the
hyperbolic conjugacy class to define the norm of a transformation.
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Definition 3.2. A hyperbolic transformation P ∈ Γ is primitive if it is not a
non-trivial power in Γ.

This definition implies that every hyperbolic element of Γ is a power of a unique
primitive hyperbolic in Γ.

Proposition 3.3. Let P be a hyperbolic transformation in Γ. Then P is conjugate

to a matrix of the form

[
λ 0
0 λ−1

]
.

Proof. We solve for the eigenvalues of P :

det(P − xI) = det

[
a− x b
c d− x

]
= (a− x)(d− x)− bc = ad− ax− dx+ x2 − bc

= x2 − (a+ d)x+ (ad− bc) = x2 − tr(P )x+ 1

x2 − tr(P )x+ 1 = 0

Since |tr(P )| > 2, this polynomial has two distinct real roots, q and r. By Vieta’s
formulas, we have that

tr(P ) = q + r and q =
1

r
Let q = λ so that r = 1/λ and tr(P ) = λ+λ−1. Then λ and 1/λ are the eigenvalues

of P . Thus,

[
λ 0
0 λ−1

]
for |λ| > 1 is the representative for the conjugacy class of

hyperbolic transformations P in Γ. □

The conjugate matrix found above acts as multiplication by λ2. We use this to
define the norm of the hyperbolic transformation.

Definition 3.4. The norm of a hyperbolic element P is given by

NP := λ2

with λ as defined in 3.3.

Notice that we must have that tr(P ) = λ+ 1/λ is an integer n > 2. Hence, NP
also has the form

NP =

(
n+

√
n2 − 4

2

)2

=
1

4

(
n2 + n2 − 4 + 2n

√
n2 − 4

)
=

1

2
n2 − 1 +

1

2
n

∞∑
k=0

Γ( 12 + 1)

k!Γ( 12 + 1− k)
(−4)k(n2)

1
2−k

=
1

2
n2 − 1 +

1

2
n

(
n− 2

n
+O(n−3)

)
= n2 − 2 +O(n−2).

We can also show that primitive hyperbolic conjugacy classes correspond to
equivalence classes of primitive indefinite binary quadratic forms as demonstrated
by Sarnak in [10]. This correspondence provides another way of interpreting the
norms NP . Given a primitive (gcd(a, b, c) = 1) binary quadratic form ax2 + bxy+
cy2 with discriminant d = b2 − 4ac > 0, let h(d) denote the number of inequivalent

classes with discriminant d and let ϵd = 1
2

(
n+

√
dm
)
> 1 be the smallest solution

of Pell’s equation n2 − dm2 = 4. Then the norms of primitive classes are ϵ2d with
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multiplicity h(d). In fact, there is a one-to-one correspondence between the classes
of forms and hyperbolic elements.

We define below a few integral transforms that we will encounter as we build up
to the prime number theorem and the prime geodesic theorem.

Definitions 3.5. The convolution of two functions f and g is given by

(3.6) (f ∗ g)(x) :=
∫ ∞

−∞
f(y)g(x− y)dy.

The Fourier transform of a function f is given by

(3.7) f̂(ξ) :=

∫ ∞

−∞
f(x)e−2πiξxdx.

The Laplace transform of a function f is given by

(3.8) Lf(s) :=
∫ ∞

0

f(t)e−stdt.

The Mellin transform, often regarded as the multiplicative version of the Laplace
transform, of a function f is given by

(3.9) Mf(s) :=

∫ ∞

0

f(x)xs−1dx.

And finally, we define the hyperbolic Laplacian, which is closely related to the
zeros of the Selberg zeta function (Definition 4.16).

Definition 3.10. The hyperbolic Laplace operator or hyperbolic Laplacian on H is
given by

∆ := y2
(
∂2

∂x2
+

∂2

∂y2

)
.

The Laplacian has eigenvalues

λj =
1

4
+ t2j = zj(1− zj), zj =

1

2
+ itj .

4. Special Functions

Definition 4.1. The logarithmic integral function is given by

(4.2) li(x) :=

∫ ∞

2

dt

log t

for x ≥ 2.

Lemma 4.3.
x

log x
∼ li(x).

Proof. Integrating li(x) by parts, we get

li(x) =
x

log x
+

2

log 2
+

∫ x

2

dt

(log t)2

=
x

log x
+

∫ x

e

dt

(log t)2
+

(
2

log 2
+

∫ e

2

dt

(log t)2

)
.
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Since 1/(log t)2 is decreasing, we have that∫ x

e

dt

(log t)2
=

∫ √
x

e

dt

(log t)2
+

∫ x

√
x

dt

(log t)2

≤
√
x+ x

(
1

log
√
x

)2

=
√
x+

4x

(log x)2

Thus
log x

x

∫ x

e

dt

(log t)2
≤ log x√

x
+

4

log x

so that
log x

x

∫ x

e

dt

(log t)2
→ 0 as x→ ∞.

Hence
log x

x
li(x) = 1 as x→ ∞.

□

Definition 4.4. A Dirichlet series is any series of the form
∞∑

n=1

an
nz

,

where z ∈ C and {an} ⊂ C.

Definition 4.5. The Riemann zeta function is given by

ζ(z) :=

∞∑
n=1

1

nz

for ℜ(z) > 1.

Zeta functions are a special class of generating functions which are defined in
terms of a countable collection of numbers. These functions can keep track of these
values, and the study of these functions allows one to extract information about
their associated values. The Riemann zeta function carries information related to
the distribution of prime numbers.

Proposition 4.6. ζ(z) is absolutely convergent for ℜ(z) > 1.

Proof. Let z = x+ iy. For all δ > 0 we have∣∣∣∣ 1nz
∣∣∣∣ = 1

nx
≤ 1

n1+δ

□

Corollary 4.7 (Euler product formula).

(4.8) ζ(z) =
∏

p prime

(
1− p−z

)−1

Proof. ζ(z) is absolutely convergent for ℜ(z) > 1 by the previous Proposition.

ζ(z) = 1 +
1

2z
+

1

3z
+

1

4z
+ · · ·

1

2z
ζ(z) =

1

2z
+

1

4z
+

1

6z
+ · · ·
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Subtracting the second equation from the first removes all terms containing a factor
of 2. (

1− 1

2z

)
ζ(z) = 1 +

1

3z
+

1

5z
+

1

7z
+ · · ·

1

3z

(
1− 1

2z

)
ζ(z) =

1

3z
+

1

9z
+

1

15z
+ · · ·

Subtracting the second equation from the first removes all terms containing a factor
of 3. Since ζ(z) converges absolutely, we can repeat this process for every prime to
get

ζ(z)
∏

p prime

(1− p−z) = 1

□

Definition 4.9. The prime counting function is given by

π(x) := #{p prime: p ≤ x} =
∑
p≤x

1

Definition 4.10. The von Mangoldt function is given by

Λ(n) :=

{
log p if n = pm for some m ≥ 1,

0 otherwise.

The following special functions closely relate to the prime counting function π.

Definition 4.11. The Chebyshev psi function is given by

ψ(x) :=
∑
n≤x

Λ(n)

or equivalently,

ψ(x) =
∑
p≤x

[
log x

log p

]
log p.

Definition 4.12. The Chebyshev theta function is given by

ϑ(x) :=
∑
p≤x

log p.

Theorem 4.13.

(4.14) −ζ
′(z)

ζ(z)
= z

∫ ∞

1

ψ(t)t−z−1dt

for ℜ(z) > 1.



8 HADI RIHAWI

Proof. Let p and q be primes. By Corollary 4.7,

ζ ′(z) =
d

dz

(∏
p

(1− p−z)−1

)

=
∑
p

−p−z log p

(1− p−z)2

∏
q ̸=p

(1− q−z)−1

=
∑
p

−p−z log p

(1− p−z)2
ζ(z)(1− p−z)

= ζ(z)
∑
p

−p−z log p

1− p−z
.

Thus

−ζ
′(z)

ζ(z)
=
∑
p

p−z

1− p−z
log p =

∑
p

∞∑
n=1

p−nz log p

=
∑
k

k−zΛ(k) =

∞∑
k=1

k−z(ψ(k)− ψ(k − 1))(4.15)

where k = pn for some n. By partial summation, taking ak = k−z and bk+1 = ψ(k),

M∑
k=1

k−z(ψ(k)− ψ(k − 1)) = (M + 1)−zψ(M) +

M∑
k=1

ψ(k)(k−z − (k + 1)−z).

By Definition 4.11, it is clear that ψ(x) ≤ x log x. So for ℜ(z) > 1, ψ(M)(M +
1)−z ≤M logM(M + 1)−z → 0 as M → ∞. Thus, we have that

−ζ
′(z)

ζ(z)
=

∞∑
k=1

ψ(k)(k−z − (k + 1)−z)

=

∞∑
k=1

ψ(k)z

∫ k+1

k

t−z−1dt

=

∞∑
k=1

z

∫ k+1

k

ψ(t)t−z−1dt

= z

∫ ∞

1

ψ(t)t−z−1dt.

□

Definition 4.16. The Selberg zeta function is given by

(4.17) Z(z) :=
∏
{P0}

∞∏
n=0

(1− (NP0)
−z−n)

for ℜ(z) > 1, where {P0} is the set of all primitive hyperbolic classes of conjugate
elements in Γ and NP0 is the norm of P0.
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The Riemann hypothesis is the conjecture that the nontrivial zeros of the Rie-
mann zeta function all lie on the line of complex numbers with real part 1/2. Unlike
the Riemann zeta function, the Riemann hypothesis equivalent for the Selberg zeta
function is known to be true. Thus, the zeros and singularities of this function are
well-characterized:

i) a simple zero at z = 1,
ii) nontrivial zeros at z = zj =

1
2 ± itj where zj(1− zj) are eigenvalues of the

hyperbolic Laplacian ∆ corresponding to cusp forms,
iii) nontrivial zeros at z = 1

2ρj where ρj are complex zeros of the Riemann zeta
function,

iv) simple poles at s = 1
2 − n, for n ∈ N.

Finally, we introduce the Bessel functions, and define a related transform and
prove an asymptotic for them that appeared in [6]. These functions relate to Fourier
transforms of powers of quadratic functions.

Definition 4.18. The Bessel functions are generalizations of the trigonometric
function, and they are canonical solutions y(x) of

x2
d2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0

for a complex number α. The Bessel functions are given by

Jα(z) =

∞∑
m=0

(−1)m

m!Γ(m+ α+ 1)

(z
2

)2m+α

.

For real t, the Bessel-Kuznetsov transform of a function f is given by

(4.19) f̃(t) =
πi

2 sinhπt

∫ ∞

0

(J2it(x)− J−2it(x))f(x)
dx

x
.

And for integer k, the transform is given by

f̃(k) =

∫ ∞

0

Jk(x)f(x)
dx

x
.

Proposition 4.20. When α is not a negative integer,

Jα(z) =
1

Γ(α+ 1)

(z
2

)α(
1 +O

(
|z|2

|α|+ 2

))
.

as z → 0.

Proof.

Jα(z) =
1

Γ(α+ 1)

(z
2

)α
− 1

Γ(α+ 2)

(z
2

)2+α

+

∞∑
m=2

(−1)m

m!Γ(m+ α+ 1)

(z
2

)2m+α

=
1

Γ(α+ 1)

(z
2

)α
− z2

4(α+ 1)Γ(α+ 1)

(z
2

)α
+

∞∑
m=2

(−1)m

m!Γ(m+ α+ 1)

(z
2

)2m+α

=
1

Γ(α+ 1)

(z
2

)α
+

1

Γ(α+ 1)

(z
2

)α
O

(
|z|2

|α|+ 2

)
.

□
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5. Trace and Summation Formulas

The main tool in the proof of the prime geodesic theorem is the Selberg trace for-
mula applied to compact hyperbolic surfaces, or the space Γ\H. We simply provide
the formula here without proof. See [12] and [13] for derivations and proofs of the
formula. The Selberg trace formula provides an infinite dimensional representation
homomorphism of the group to matrices.

Theorem 5.1 (Selberg trace formula). Suppose that there exists δ > 0 such that

h(r) is analytic on |ℑ(r)| ≤ 1

2
+ δ,

h(−r) = h(r),(5.2)

|h(r)| ≪ (1 + |ℜ(r)|)−2−δ.

Let g be the Fourier transform of h such that

h(r) =

∫ ∞

−∞
g(ξ)eirξdξ

Then

∞∑
n=0

h(rn) =
µ(Γ\H)

4π

∫ ∞

−∞
rh(r) tanh(πr)dr +

∑
{P}

logNP0

NP
1
2 −NP− 1

2

g(logNP ),

where rn correspond to the eigenvalues 1/4 + r2n of ∆ and the right hand side is a
sum over conjugacy classes of Γ. The integral corresponds to identity elements and
the sum corresponds to the hyperbolic conjugacy classes {P}. NP gives the norm
of the element P .

We now introduce Kloosterman sums and their associated trace formula which
connects them to the spectral theory of automorphic forms and the prime geodesic
theorem as will be seen in Iwaniec’s proof [6].

Definition 5.3. A Kloosterman sum is given by

S(m,n, c) :=
∑
x≤m

gcd(x,c)=1

e
2πi
c (mx+nx),

where xx ≡ 1 (mod c).

Definition 5.4. A general Kuznetsov trace formula for a function f is given by∑
c≡0 mod N

c−rS(m,n, c)f

(
4π

√
mn

c

)
= Integral transform + Spectral terms.

Iwaniec applies the Kuznetsov trace formula to bound

(5.5)
∑
c

1

c
S(n, n, c)f

(
4πn

c

)
.

The details of the Kuznetsov trace formula can be found in [8].
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6. The Prime Number Theorem

We begin by stating and proving a specific case of a Tauberian theorem of Wiener
and Ikehara. The general Wiener-Ikehara theorem omits (6.4). Both proofs follow-
ing Newman’s method can be found in [7].

Theorem 6.1 (Wiener-Ikehara theorem). Let the Dirichlet series

(6.2) f(z) =

∞∑
n=1

an
nz

, with an ≥ 0

converge for ℜ(z) > 1. f(z) is thus analytic for ℜ(z) > 1. Suppose that there is a
constant A such that

(6.3) g(z) := f(z)− A

z − 1

has an analytic or continuous extension for ℜ(z) ≥ 1. Suppose that there is a
constant C such that

(6.4) sn =
∑
k≤n

ak ≤ Cn for all n.

Then

(6.5) sn ∼ An as n→ ∞.

Proof. Let the conditions of Theorem 6.1 be satisfied. Define

s(v) =
∑
k≤v

ak

so that s(v) is nondecreasing, s(v) = sn for n ≤ v < n+ 1 and s(v) = 0 for v < 1.
Applying partial summation to (6.2) shows that for ℜ(z) > 1,

f(z) =

∞∑
n=1

sn − sn−1

nz
=

∞∑
n=1

sn

(
1

nz
− 1

(n+ 1)z

)

=

∞∑
n=1

snz

∫ n+1

n

v−z−1dv = z

∫ ∞

1

s(v)v−z−1dv.(6.6)

Now, by (6.3), write

g(z)−A = f(z)− A

z − 1
−A = f(z)− Az

z − 1

= z

∫ ∞

1

(
s(v)

v
−A

)
v−zdv(6.7)

We can now substitute v = et so that

(6.8)
s(v)

v
−A = e−ts(et)−A =: ρ(t)

and we set ρ(t) = 0 for t < 0. By (6.4), ρ is bounded above by C − A. A function
ρ is slowly decreasing if it satisfies a relation

(6.9) ρ(t)− ρ(u) ≥ −η(t, u), where η(t, u) → 0
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as u→ ∞ and 0 < t−u→ 0. Notice that this definition is very loose; an increasing
f is also slowly decreasing. For 0 ≤ u < t,

ρ(t)− ρ(u) = e−ts(et)− e−us(eu) ≥
(
e−t − e−u

)
s(eu)

= −
(
1− e−(t−u)

)
e−us(eu) = −

(
1− e−(t−u)

)
(ρ(u) +A)

≥ −(t− u) (ρ(u) +A)(6.10)

Since the expression in (6.9) goes to 0 as t − u goes to 0, ρ is slowly decreasing.
Now consider the Laplace transform of ρ:

Lρ(z) =
∫ ∞

0

ρ(t)e−ztdt =

∫ ∞

1

(
s(v)

v
−A

)
v−z−1dv

=
g(z + 1)

z + 1
− A

z + 1
.(6.11)

By the conditions of Theorem 6.1, Lρ(z) is analytic for ℜ(z) > 0 and has an analytic
extension for ℜ(z) ≥ 0. It is left to prove that ρ(t) → 0 as t → ∞. To that end,
we state and prove, as a lemma, a general theorem on the Laplace transforms of
bounded functions.

Lemma 6.12. Let ρ(t) = 0 for t < 0 and |ρ(t)| ≤ M < ∞ for t ≥ 0. Then the
Laplace transform

(6.13) G(z) = Lρ(z) =
∫ ∞

0

ρ(t)e−ztdt, z = x+ iy,

defines an analytic function for x > 0. Suppose that for |y| ≤ R, the function
Gx(iy) = G(x+ iy) converges uniformly to a limit function G(iy) as x↘ 0. Then
for every positive T and δ,

(6.14)

∣∣∣∣∣
∫ T+δ

T

ρ(t)dt

∣∣∣∣∣ ≤ 4M

R
+

1

2π

∣∣∣∣∣
∫ R

−R

G(iy)
eiδy − 1

y

(
1− y2

R2

)
eiTydy

∣∣∣∣∣ .
If R may be taken arbitrarily large, and the function ρ is slowly decreasing, then

(6.15) ρ(T ) → 0 as T → ∞.

Proof. The proof of (6.14) will be omitted here; a proof of it is given in [7] using
Cauchy’s theorem and the residue theorem. Using this, we prove (6.15).
For fixed δ and R, the last integral in (6.14) goes to 0 as T goes to ∞ since G(z)
is analytic on [−iR, iR] and integration by parts yields

eiTydy =
1

iT
d(eiTy)

We thus conclude that

(6.16) lim sup
T→∞

∣∣∣∣∣
∫ T+δ

T

ρ(t)dt

∣∣∣∣∣ ≤ 4M

R

and assuming that R may be taken arbitrarily large, for every δ > 0 we have

(6.17)

∫ T+δ

T

ρ(t)dt→ 0 as T → ∞.
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Now, suppose also that ρ(t) is slowly decreasing as defined in (6.9). Then taking∫ T+δ

T

(ρ(t)− ρ(T ))dt ≥ −
∫ T+δ

T

η(t, T )dt

and (6.17) shows that, for a given ϵ > 0,

lim sup
T→∞

ρ(T ) ≤ ϵ.

Applying a similar method to
∫ T

T−δ
ρ(t)dt gives the inequality in the other direction.

□

Since ρ(t) satisfies the conditions of the lemma above, ρ(t) → 0 as t→ ∞. □

We now present a theorem expressing the relationship between ψ and π, namely
that the asymptotic of ψ to x is necessary and sufficient for the asymptotic of the
prime counting function π to x/ log x.

Theorem 6.18. As x→ ∞,

π(x) → x

log x
⇐⇒ ψ(x) → x.

Proof. By Definition 4.11,

ψ(x) =
∑
p≤x

[
log x

log p

]
log p ≤

∑
p≤x

log x

log p
log p

= log x
∑
p≤x

1 = π(x) log x(6.19)

If 1 < y < x, we have that

π(x) = π(y) +
∑

y<p≤x

1 ≤ π(y) +
∑

y<p≤x

log p

log y

≤ y +
1

log y

∑
y<p≤x

log p ≤ y +
1

log y
ψ(x).

Taking y = x/(log x)2, we get

(6.20) π(x) ≤ x

(log x)2
+

1

log x− 2 log log x
ψ(x).

Thus, combining (6.19) and (6.20), we have

ψ(x)

x
≤ log x

x
π(x) ≤ 1

log x
+

log x

log x− 2 log log x

ψ(x)

x
.

As x→ ∞,
1

log x
→ 0 and

log x

log x− 2 log log x
→ 1,

so we are done. □

Theorem 6.21 (Prime number theorem).

π(x) ∼ x

log x
.
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Proof. Consider the Dirichlet series given in (4.15):

f(z) := −ζ
′(z)

ζ(z)
=

∞∑
n=1

Λ(n)

nz
.

Since ζ(z) ̸= 0 for ℜ(z) = 1, f(z) is analytic there except for z = 1. Since ζ(z)
behaves like 1/(z− 1) near the point z = 1, f(z) also behaves in the same manner.
Thus, we have that

g(z) := f(z)− 1

z − 1
is analytic for ℜ(z) ≥ 1. an = Λ(n), f , and g satisfy the conditions of Theorem 6.1
with A = 1. Using Chebyshev’s estimate, that π(n) log n ≤ Cn, the partial sums
sn = ψ(n) are bounded by Cn. Hence, Theorem 6.1 implies ψ(x) → x. Thus, the
prime number theorem holds by Theorem 6.18. □

The use of Chebyshev’s estimate can be avoided if the general Wiener-Ikehara
theorem is proven instead.

While x/ log x has been shown to be a good approximation for the number of
primes less than or equal to x, numerical calculations have shown that the loga-
rithmic integral function li(x) is a better approximation. We state that here as a
corollary.

Corollary 6.22.
π(x) ∼ li(x).

Proof. Combine Theorem 6.21 and Lemma 4.3. □

7. The Prime Geodesic Theorem

We focus our efforts on primitive closed geodesics, or closed curves that trace out
their image exactly once. These geodesics are also called prime geodesics because
they asymptotically obey a distribution law similar to that found for prime numbers,
as seen in Theorem 6.21. We first define the prime geodesic counting function.

Definition 7.1. Let P0 be a primitive element in Γ. Then

πΓ(x) := # {{P0} : NP0 ≤ x} =
∑

N{P0}≤x

1

gives the number of primitives in Γ with norm less than or equal to x.

We also define the Chebyshev function (as given in Definitions 4.11 and 4.12)
equivalents for geodesics.

Definition 7.2.

ϑΓ(x) =
∑

N{P0}≤x

logNP0

ψΓ(x) =
∑

N{P}≤x

ΛP

where ΛP = logNP0 if {P} is a power of the primitive hyperbolic class {P0},
similar to the von Mangoldt function.

Theorem 6.18 also holds if we take π to be πΓ and ψ to be ψΓ. We now move
on to the main theorem of the paper. We provide the proof given in [12].
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Theorem 7.3 (Prime geodesic theorem).

(7.4) πΓ(x) = li(x) +O

(
x3/4

log x

)
Proof. Given a x > 0, define hx to be the function with Fourier transform

ĥx(r) = 2 cosh
(r
2

)
χ[− log x,log x](r)

Let φ be a mollifier (a smooth bump function) supported in [−1, 1] such that∫∞
−∞ φ(r)dr = 1. Given ϵ > 0, let

φϵ(r) =
1

ϵ
φ
(r
ϵ

)
which is supported in [−ϵ, ϵ] and satisfies

∫∞
−∞ φϵ(r)dr = 1. Notice that hx does

not satisfy all of the conditions necessary to apply the Selberg trace formula given

in (5.4). Define hx,ϵ to be such that ĥx,ϵ = ĥx ∗ φϵ Then,

hx(t) =

∫ log x

− log x

(
e

ξ
2 + e−

ξ
2

)
eitξdξ =

∫ log x

− log x

(
eξ(

1
2+it) + e−ξ( 1

2−it)
)
dξ

=
xz − x−z

z
+
x1−z − x−(1−z)

1− z
hx,ϵ(t) = h(t)φ̂ϵ(t)

where z = 1/2 + it. The Laplacian ∆ is a symmetric, non-negative operator, so its
eigenvalues λ = 1/4+ t2 = z(1−z) are real and non-negative. Then, it must be the
case that either 1/2 < z ≤ 1 or ℜ(z) = 1/2. Since φ̂(t) = 1+O(t), for 1/2 < z ≤ 1,

(7.5) hx(t) =
xz

z
+O(

√
x) and hx,ϵ(t) =

xz

z
+O(

√
x+ ϵx).

And since φ is smooth, |φ̂(t)| ≪ 1/(1 + |t|)2, so for ℜ(z) = 1/2,

|hx(t)| ≪
√
x

1 + |t|
and |hx,ϵ(t)| ≪

√
x

(1 + |t|)(1 + ϵ|t|)2
.

By the latter estimate,

(7.6)

∫ ∞

0

t|hx,ϵ(t)|dt≪ ϵ−1
√
x.

We now apply Theorem 5.1 to the function hx,ϵ and the estimates in (7.5) and (7.6)
to get

∞∑
n=0

hx,ϵ(tn) =
µ(Γ\H)

4π

∫ ∞

−∞
rhx,ϵ(r) tanh(πr)dr +

∑
{P}

ĥx,ϵ(logNP ) logNP0

NP 1/2 −NP−1/2

= O

(∫ ∞

−∞
r|hx,ϵ(r)|dr

)
+ x+O(ϵx+ ϵ−1

√
x)

= O(ϵ−1
√
x) + x+O(ϵx+ ϵ−1

√
x) = x+O(ϵx+ ϵ−1

√
x).

More specifically, we have that

(7.7) Hϵ(x) :=
∑
{P}

ĥx,ϵ(logNP ) logNP0

NP 1/2 −NP−1/2
= x+O(ϵx+ ϵ−1

√
x).
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We now let

H(x) =
∑
{P}

ĥx(logNP ) logNP0

NP 1/2 −NP−1/2

and would like to show that H(x) = x+O(x3/4). Notice that

ĥxe−ϵ,ϵ(r) ≤ ĥx(r + ϵ) ≤ eϵ/2ĥx(r)whenever r ≥ 0

ĥxeϵ,ϵ(r) ≤ ĥx(r − ϵ) ≤ e−ϵ/2ĥx(r)whenever r ≥ ϵ

For sufficiently small ϵ, we have that

e−ϵ/2Hϵ(xe
−ϵ) ≤ H(x) ≤ eϵ/2Hϵ(xe

ϵ).

Letting ϵ = x−1/4 in (7.7), we get H(x) = x+O(x3/4). Now note that

H(x) = ψΓ(x) +O

 ∑
N{P}≤x

ΛP

NP


since finitely many N{P} are less than a fixed constant and H(x) → ∞. Hence,
ψΓ(x) ∼ x, yielding ∑

N{P}≤x

ΛP

NP
=

∫ x

0

1

y
dψΓ(y) = O(log x),

and thus ψΓ(x) = x+O(x3/4). By definition of ψγ and ϑΓ,

ψΓ(x) =

⌊log x/δ⌋∑
k=1

ϑ(x1/k)

with δ the length of the shortest closed geodesic on Γ\H, so ϑ = x + O(x3/4) as
well. Considering

πΓ(x) =
∑

N{P0}≤x

1 =

∫ x

eδ/2

dϑ(y)

log y
,

πΓ(x) = li(x) +O

(
x3/4

log x

)
follows. □

At the time of Iwaniec’s proof, many mathematicians (such as Huber, Hejhal,
Venkov, and Kuznetsov) had studied the error term in the prime geodesic theorem.
The results found were of the form

πΓ(x) = li(x) +O(x
3
4 (log x)α).

Since the Riemann hypothesis holds for Z(z), the error term should be reducible
down to O(x1/2+ϵ). But since Z(z) has many more zeros than ζ(z), the immediate
consequence of the Selberg trace formula is the error term O(x3/4+ϵ), as seen above.
Iwaniec remarks that the error term can be refined to O(x2/3+ϵ) if the Generalized
Lindelöf Hypothesis for Dirichlet L-functions holds.

In [6], Iwaniec becomes the first to break the 3/4 barrier, proving that

(7.8) πΓ(x) = li(x) +O(x
35
48+ϵ).
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In order to get to this conclusion, Iwaniec needs to establish that, for T ≥ 2 and
X ≥ 47,

(7.9)
∑

|tj |≤T

Xitj ≪ TX11/48+ϵ,

where tj is as found in the eigenvalues 1
4 + t

2
j of the Laplacian. Taking T = X13/48,

(7.8) immediately follows for x ≥ 2. To prove (7.9), Iwaniec gives a smooth version.
For X ≥ 2 and T ≥ 2,

(7.10)
∑
j

t−1
j e−|tj |/TXitj ≪ X11/48+ϵ.

By using a smooth function, the Fourier transform, and its inversion, Iwaniec es-
tablishes that (7.10) implies (7.9). In the following section, Iwaniec connects the
sum in (7.10) to the sum of Kloosterman sums given in (5.5). The latter sum makes
use of the Bessel-Kuznetsov transform defined in (4.19). Finally, Iwaniec proves the
following mean value estimate for the Rankin zeta function for ℜ(z) = 1/2:

(7.11)
∑

|tj |≤T

|Rj(z)|
cosh(πtj)

≪ T 5/2|z|A log2 T

where Rj(z) is the Rankin zeta function given by

Rj(z) :=
∑
n

|ρj(n)|2

nz

where ρj(n) is the n-th Fourier coefficient of corresponding cusp form. This allows
Iwaniec to prove (7.10) and thus (7.8).

Subsequently, many mathematicians worked on reducing the error term. In [9],
Luo and Sarnak obtained an error term of O(x7/10+ϵ) by improving on Iwaniec’s
mean value estimate for the Rankin zeta function. They showed that (7.11) holds
with the exponent 5/2 replaced by 2 + ϵ. In [2], Cai improved on the error term,
reducing it to O(x71/102+ϵ) by refining the steps in Iwaniec’s proof that use the
estimates for character sums. In [11], Soundararajan and Young further reduced
the error term to O(x25/36+ϵ) by placing more emphasis on the connection between
prime geodesics and Dirichlet L-functions.
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