
RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS

OTTO REED

Abstract. Hidden Markov models are a powerful tool in signal processing and time-series settings.
In this paper we consider three fundamental estimation problems of hidden Markov models: filter-
ing, smoothing, and prediction. We first derive recursive expressions for all three distributions in
arbitrary state space and subsequently consider the only two settings where these recursions can be
implemented exactly: finite state space and linear Gaussian models. In the former we derive the
forward-backward algorithm and Viterbi algorithm; in the latter, we derive and explore applications
of the famous Kalman filter.

Contents

1. Introduction 1
2. Foundations of Hidden Markov Models 2
2.1. Markov Processes 2
2.2. Hidden Markov Models 5
2.3. Nondegeneracy 6
2.4. Two Essential Questions 8
3. Filtering, Smoothing, and Prediction 8
3.1. Estimation 9
3.2. Conditional Distributions 11
3.3. Filtering 12
3.4. Smoothing 14
3.5. Prediction 16
4. Finite State Space Models 17
4.1. Finite State Filtering, Smoothing, and Prediction 18
4.2. The Forward-Backward Algorithm 19
4.3. The Viterbi Algorithm 20
5. Linear Gaussian State Space Models 23
5.1. One-Step Prediction and Kalman Filtering 24
5.2. Kalman Filtering in Multiple Linear Regression 28
Acknowledgements 29
References 30

1. Introduction

Suppose we are climate scientists studying long-term weather patterns who wish to know the
weather in Boston in June of 1905. No official weather records survive but we have discovered
the personal journal of an enthusiastic Bostonian ice cream salesman who meticulously detailed
how much ice cream he sold each day of the summer. From personal experience and rigorous

1

2 OTTO REED

statistical inquiry, we know that the amount of ice cream consumed is highly correlated to the
weather. Furthermore, we know that weather can be modeled by a Markov process with state given
by “recent weather”; it is a natural assumption that the weather will not be influenced by what it
was a century ago.

Thus, we have a “hidden” process, the weather, which can be modeled as Markov, and a set of
observations, the ice cream sales, which we can think of as being “generated” by the hidden process.
Together, the observable and unobservable components form a hidden Markov model. We wish to
use our observations to make inferences about the hidden process, i.e., determine the weather from
the amount of ice cream sold. However, inference is not the only use of our model. If we decided
to retire from climate science in favor of being ice cream salesman, we could instead use our model
to more faithfully model ice cream sales so as to prepare our supply more efficiently for a given
weather forecast.

Fortunately, hidden Markov models have even more applications than ice cream-based weather
inference or weather-based ice cream modeling; in the broadest sense, we can think of the hidden
component as some signal and the observed component as a noisy measurement of that signal.
This interpretation has a clear connection to life in the digital age, where bits are being streamed
constantly to and from devices across the globe. As anyone who has tried to watch live sports
on airplane WiFi can attest, the information received is inevitably different from the information
transmitted due to radio wave interference (we call such interference the noise of the channel). Of
course, before we begin to explore estimation problems such as reconstructing the hidden signal from
the observed measurement, we must first define the model in which we wish to perform estimation.

2. Foundations of Hidden Markov Models

2.1. Markov Processes. As mentioned above, the model we will develop is built on Markov
processes. Although Markov processes are one of the simplest types of stochastic (i.e., random)
processes, they are undoubtedly one of the most ubiquitous and powerful. The rich theory of
Markov processes alone is enough to fill an entire textbook (or several), so we will take only a
cursory overview. We begin our exploration with a critical idea in the study of Markov processes:
transition kernels. From [1], we have the following definition:

Definition 2.1.1 (Transition Kernel). Let (X,X) and (Y,Y) be measurable spaces. A kernel from
(X,X) to (Y,Y) is a function P : X× Y→ R+ such that for every x ∈ X and A ∈ Y,

(i) the map A 7→ P (x,A) is a (positive) measure on (Y,Y);
(ii) the map x 7→ P (x,A) is X-measurable.

Furthermore, if P (x,Y) = 1 for all x ∈ X, then P is a transition kernel. If additionally X = Y, then
P is a Markov transition kernel–or simply Markov kernel–on (X,X).

Intuitively, P (x,A) is the probability that the next state of the process is in the set A ⊂ X when
the current state of the process is x ∈ X. Hence, the transition kernel “transitions” the law of
the state forward by one time step. An X-valued stochastic process (Xk)k≥0 (that is, a stochastic
process where each Xk takes values in a measurable space (X,X)) on a probability space (Ω,F,P)
possesses the Markov property if

P[Xk+1 ∈ A|X0, . . . , Xk] = P[Xk+1 ∈ A|Xk] for all A ∈ X, k ≥ 0

Using the language of transition kernels, we can formalize the notion of a Markov process.

Definition 2.1.2 (Homogeneous Markov Process). Let (Ω,F,P) be a probability space. An X-
valued stochastic process (Xk)k≥0 is said to be a homogeneous Markov process under P if there

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 3

exists a Markov transition kernel P on the measurable space (X,X) such that

(2.1) P[Xk+1 ∈ A|X0, . . . , Xk] = P (Xk, A) for all A ∈ X, k ≥ 0

Remark. It is standard to introduce the notion of a filtration to formalize the available information
at a given time step. We choose to omit an explicit definition of filtered probability spaces in favor
of implicitly using the natural filtration (not only is every process adapted to its natural filtration,
but it is also the coarsest such filtration) since we do not utilize the former in our broader discussion
of hidden Markov models.

Continuing with our interpretation of transition kernels, we can think of P (x,A) as the probability
that state of the process will be in the set A ⊂ X in the next time step given that the current state
is x ∈ X. The additional description of “homogeneous” specifies that this probability is the same
at each time step k. However, since we will deal almost exclusively with homogeneous Markov
processes, we will drop the descriptor “homogeneous” and mention explicitly when the process is
not time homogeneous. We will refer to (X,X) as the state space of the process (we will also typically
say “on X” to mean “on the state space (X,X)”) and the probability measure µ on (X,X) where
µ(A) = P[X0 ∈ A] as the initial measure.

In general, we want to understand how a given Markov process evolves in time. Hence, we
seek the probability distribution or law of the process. As given by [5], the law of a process is the
pushforward measure from the probability space (Ω,F) to the state space (X,X). Notably, as proved
in [7], the law of a Markov process is determined by its finite-dimensional distributions, that is, the
joint distribution of X0, . . . , Xk for all k ≥ 0. This fact motivates a fundamental result in the study
of Markov processes detailed in [3], [1], and Lemma 1.5 of [8]:

Lemma 2.1.3. Let (Xk)k≥0 be a Markov process on X with transition kernel P and initial measure

µ. Then, for any bounded, X⊗(k+1)-measurable function f : Xk+1 → R,

E[f(X0, . . . , Xk)] =

∫
f(x0, . . . , xk)P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0)

In other words, the initial measure and transition kernel of a Markov process entirely determine
its finite-dimensional distributions, and therefore the law of the process.

Proof. Let F(Xk+1) be the set of all bounded, X⊗k+1-measurable functions f : Xk+1 → R and define

H = {f ∈ F(Xk+1) | f(x0, . . . , xk) = f0(x0) · · · fk(xk)}.

4 OTTO REED

Trivially, X⊗k+1 is a π-system, so, by the monotone class theorem, F(Xk+1) ⊂ H. Thus, it is
sufficient to consider functions of the form f(x0, . . . , xk) = f0(x0), . . . , fk(xk). Note that

E[f0(X0) · · · fk(Xk)] = E[f0(X0) · · · fk−1(Xk−1)E[fk(Xk)|X0, . . . , Xk−1]]

= E

[
f0(X0) · · · fk−1(Xk−1)

∫
fk(xk)P (Xk−1, dxk)

]
= E

[
f0(X0) · · · fk−2(Xk−2)×E

[
fk−1(Xk−1)

∫
fk(xk)P (Xk−1, dxk)

∣∣∣∣X0, . . . , Xk−2

]]
= E

[
f0(X0) · · · fk−2(Xk−2)×

∫
fk−1(xk−1)fk(xk)P (xk−1, dxk)P (Xk−2, dxk−1)

]
· · ·

= E

[
f0(X0)

∫
f1(x1) · · · fk(xk)P (xk−1, dxk)P (Xk−2, dxk−1)

]
=

∫
f0(x0) · · · fk(xk)P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0),

as desired. □

Before we move on to hidden Markov models, we introduce some helpful notation and definitions.
Let (Xk)k≥0 be a Markov process on X with transition kernel P . For the following, every measure
will be on (X,X), and we will use “measurable” to mean X-measurable.

For any bounded measurable function f : X→ R, we define the function Pf : X→ R by

Pf(x) =

∫
f(y)P (x, dy) for all x ∈ X.

By the Markov property, for any Markov process (Xk)k≥0, we have

E[f(Xk+1)|X0, . . . , Xk] = Pf(Xk).

For n ≥ 1, we recursively define the functions Pnf = PPn−1f with the initial condition P 0f = f .
Then, by repeated application of the tower property of expectation, it follows that

E[f(Xk+n)|X0, . . . , Xk] = E[E[f(Xk+n) | X0, . . . , Xk+n−1]X0, . . . , Xk]

= E[Pf(Xk+n−1)|X0, . . . , Xk]

= E[E[Pf(Xk+n−1)|X0, . . . , Xk+n−2]|X0, . . . , Xk]

= E[P 2f(Xk+n−2)|X0, . . . , Xk]

· · ·
= E[Pnf(Xk)|X0, . . . , Xk]

= Pnf(Xk).

Similarly, for any measure ρ, we define the measure ρP by

ρP (A) =

∫
P (x,A)ρ(dx) for all A ∈ X.

Remark. Note that A ∈ X since P is a Markov transition kernel, although this statement is also true
for arbitrary transition kernels from (X,X) to (Y,Y). In the latter case, ρP would be a measure on
(Y,Y).

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 5

Again, for n ≥ 1, we recursively define the measures ρPn = ρPn−1P with the initial condition
ρP 0 = ρ. If µ is the initial measure of (Xk)k≥0, by Lemma 2.1.3, we have P[Xk ∈ A] = µP k(A) for
all A ∈ X. Hence, µP k is the law of Xk! Finally, for any measurable function f : X → R, we have

(µP)(f) = µ(Pf), i.e.,

∫
f(x)µP (dx) =

∫
Pf(x)µ(dx). Thus, as noted in section 1.1 of [8], this

implies that the maps µ 7→ µP and f 7→ Pf are dual to each other.

2.2. Hidden Markov Models. As discussed in the introduction, a hidden Markov model is a
Markov process with two components: an observable component and an unobservable, i.e., hidden,
component. More specifically, it is a Markov process (Xk, Yk)k≥0 on the state space X × Y where
we can “observe” Yk, but not Xk. Given how natural the signal processing interpretation is, we will
refer to (Xk)k≥0 as the signal process on the signal state space X and (Yk)k≥0 as the observation
process on the observation state space Y. It is important to note that while both the joint process
(Xk, Yk)k≥0 and the signal process (Xk)k≥0 are Markov, the observation process (Yk)k≥0 generally
is not. Thus, Hidden Markov models are capable of modeling non-Markov behavior.

Let us try to motivate a formal definition for a hidden Markov model. As stated in section 1.2
of [8], our definition should encapsulate a Markov process (Xk, Yk)k≥0 with two key restrictions:

(i) the signal process (Xk)k≥0 is Markov;
(ii) the observation Yk is a “noisy functional” of Xk.

Notation. For the sake of brevity, we will frequently abbreviate expressions such as X0, . . . , Xk to
X0:k throughout the rest of this paper.

Definition 2.2.1 (Hidden Markov Model). A stochastic process (Xk, Yk)k≥0 on a product state
space (X × Y,X ⊗ Y) is a hidden Markov model if there exist transition kernels P : X× X→ [0, 1]
and Φ : X× Y→ [0, 1] such that

E[g(Xk+1, Yk+1)|X0:k, Y0:k] =

∫∫
X×Y

g(x, y)Φ(x, dy)P (Xk, dx)

and a probability measure µ on X such that

E[g(X0, Y0)|X0:k, Y0:k] =

∫∫
X×Y

g(x, y)Φ(x, dy)µ(dx)

for every bounded X ⊗ Y-measurable function g : X × Y → R. We call Φ the observation kernel,
with µ and P again being the initial measure and transition kernel, respectively.

Note that by Definition 2.1.2, both (Xk, Yk)k≥0 and (Xk)k≥0 are Markov processes. This fact is one
of several basic properties of hidden Markov models that form the foundation of our exploration.

Lemma 2.2.2. Let (Xk, Yk)k≥0 be a hidden Markov model on (X×Y,X⊗Y) with transition kernel
P , observation kernel Φ, and initial measure µ. Then, the following facts hold:

(i) (Xk, Yk)k≥0 is a Markov process;
(ii) (Xk)k≥0 is a Markov process with transition kernel P and initial measure µ;
(iii) Y0, . . . , Yk are conditionally independent given X0, . . . , Xk:

P[Y0 ∈ A0, . . . , Yk ∈ Ak|X0:k] = Φ(X0, A0) · · ·Φ(Xk, Ak)

Moreover, the finite-dimensional distributions of (Xk, Yk)k≥0 are given by

E[f(X0:k, Y0:k)] =

∫
· · ·

∫
f(x0:k, y0:k)× µ(dx0)Φ(x0, dy0)

k∏
i=1

Φ(xi, dyi)P (xi−1, dxi)

6 OTTO REED

for every bounded, (X⊗ Y)⊗(k+1)-measurable function f : (X×Yk+1)→ R.

Proof. To prove (i), define the Markov kernel of the joint process on the product state space
(X×Y,X⊗ Y) by

Q((x, y), C) =

∫∫
X×Y

IC((x, y))P (x, dx′)Φ(x′, dy′) for all (x, y) ∈ X×Y, C ∈ X⊗ Y.

Additionally, let ν = Φ ⊗ µ be the initial distribution of (Xk, Yk)k≥0. Then, comparing with
Definition 2.2.1, we see that (i) and (ii) follow directly from Definition 2.1.2. Furthermore, (iii)
follows immediately from Definition 2.2.1 and Lemma 2.1.3. □

We will illustrate that the observations (Yk)k≥0 only depend on each other through values of the
hidden process (Xk)k≥0 (as given by (iii)) with a simple example.

Example 2.2.3. Let the signal state space X = {0, 1} and suppose the observations (Yk)k≥0 depend
on the signal (Xk)k≥0 according to

Yk =

{
1 Xk = 1

−1 Xk = 0

Further suppose that P[Xk] = p for p ∈ (0, 1), k ≥ 0. If Yk > 0 for some k ≥ 0, then, since
P[Yk > 0|Xk = 1] = 1,

P[Yk+1 > 0|Yk > 0, Xk = 1] = P[Yk+1 > 0|Xk = 1] = P[Xk+1 = 1] = p.

Thus, Yk and Yk+1 are conditionally independent given Xk. Trivially, Yk and Yk+1 are also condi-
tionally independent given Xk+1, since Yk+1 is given direcly by Xk+1.

2.3. Nondegeneracy. Although we are still working within the world of theory, we will require a
stronger condition on the structure of our observations (Yk)k≥0 that is needed if we wish to use our
model for practical applications.

Definition 2.3.1 (Nondegeneracy). Let (Xk, Yk)k≥0 be a hidden Markov model on (X×Y,X⊗ Y)
with observation kernel Φ. The model has nondegenerate observations if there exists a strictly
positive X⊗ Y-measurable density function Υ : X×Y → (0,∞) and a probability measure ν on Y
such that

Φ(x,B) =

∫
IB(y)Υ(x, y)ν(dy) for all x ∈ X, B ∈ Y

Nondegeneracy guarentees that the model reflects all possible observational values; the positive
density condition ensures that every element of the chosen observation state space has a nonzero
probability of being observed.

Although this is a simple condition, its importance should not be overlooked. When we assume
that a model has nondegenerate observations, we guarentee that we can make inferences about
the hidden process from any set of observations y0, . . . , yk, even if they do not precisely align with
our mathematical definition of the model. If this were not the case, even the slightest amount of
noise could lead to data incompatible with our model, making it hopeless to apply in practice. To
demonstrate the importance of assuming nondegeneracy, we consider an extreme case of a model
that only satisfies our general definition for a hidden Markov model.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 7

Example 2.3.2. Let X = Y = R and let δk, k ≥ 0 be an i.i.d. sequence of random variables whose
law is supported on Z (i.e., P[δk ∈ Z] = 1 for all k ≥ 0). We recursively define (Xk, Yk)k≥0 as

X0 = Y0 = 0, Xk = Xk−1 + δk, Yk = Xk (k ≥ 1).

It is clear that we have a hidden Markov model that satisfies Definition 2.2.1, but not nondegeneracy:
for example, P[δk = 3.14] = 0 for all k ≥ 0. What are the consequences?

Suppose we make a sequence of observations y0, . . . , yk that are generated by our model. Since
δk ∈ Z for k ≥ 0, by construction we should expect that each yk ∈ Z as well. However, in practice,
it is likely that the signal Xn will be perturbed slightly–no transmission is perfect, after all–causing
the corresponding real-world sample yn to no longer satisfy this property. Any attempt at inference
on this observation would certainly fail since according to our model, we have made an impossible
measurement. Clearly, a model susceptible to even the smallest amount of noise is insufficient for
broader applications.

Although this scenario is highly contrived, it illustrates how Definition 2.2.1 requires further
assumptions to yield models where inference can be performed without issue. In fact, the following
proposition tells us that if an observation kernel satisfies Definition 2.3.1, then any property of a
finite number of observations Y0, . . . , Yk that holds almost surely does so for any choice of transition
kernel P and intial measure µ.

Proposition 2.3.3. Let (Xk, Yk)k≥0 be a hidden Markov model on (X×Y,X⊗ Y) with initial

measure µ on X, transition kernel P , and observation kernel Φ. Furthermore, let (X̃k, Yk)k≥0 be

a hidden Markov model on (X×Y,X⊗ Y) with initial measure µ̃ on X, transition kernel P̃ , and
observation kernel Φ. Suppose Φ satisfies the nondegeneracy assumption of Definition 2.3.1. Then,
for both models, and for n ≥ 0, the law of (Yk)k≤n is absolutely continuous.

Remark. Note that the Yk is the same for both hidden Markov models because Yk only depends
on the observation kernel, which remains the same; the initial measure is on X and the transition
kernel is on X× X.

It follows from this proposition that if y0, . . . , yk is a valid sample path of the observation process
for some model of the signal process (Xk)k≥0 (i.e., has a nonzero probability of being observed in that
model), then it is a valid path for any model of the signal. While nondegeneracy does not guarentee
that inference is robust to error, it ensures that all inference is mathematically well-defined. The
following example illustrates a model that does satisfy nondegeneracy.

Example 2.3.4. Let Y = R and suppose the observations satisfy

Yk = f(Xk) + ηk, (k ≥ 0),

for some X-measurable function f : X→ R. Additionally, assume that ηk, k ≥ 0 are i.i.d. N(0, 1).
Then, the observation kernel Φ is given by

Φ(x,B) =

∫
IB(z)

e−(z−f(x))2/2

√
2π

dz,

for all x ∈ X, B ∈ R. Setting

Υ(x, z) =
e−(z−f(x))2/2

√
2π

,

it is clear that the model satisfies Definition 2.3.1.

With Definitions 2.2.1 and 2.3.1, we can now consider a broad range of general hidden Markov
models.

8 OTTO REED

2.4. Two Essential Questions. Now that we have discussed several examples of hidden Markov
models, we can turn to some deeper theory in the field. There are two central questions which will
motivate all of our further results: estimation and implementation.

(i) Given a hidden Markov model, (i.e., given the transition kernel P , observation kernel Φ, and
initial measure µ) how can we estimate the unobserved signal (Xk)k≥0 using the observed
signal trajectory y0, . . . , yk?

(ii) How can we implement these methods for estimation precisely on a computer, what assump-
tions do we need to make, and what would the corresponding algorithms be?

In practice, the signal (Xk)k≥0 will be completely unobservable. Thus, developing methods to solve
the problem of estimation is integral to applying hidden Markov models in the real world. Of
course, we must also be able to efficiently compute these methods, so our second question is also
fundamental to our exploration.

We will first develop the theory of estimation in a general setting (i.e., arbitrary state space) and
then turn to the two scenarios in which our methods are “computable:” finite state space and the
linear Gaussian setting.

Since the process (Xk)k≥0 is hidden, the problem of estimation is to compute

E[f(Xk)|Y0:N]

for any choice of k and N and any function f : X → R; notice that these objects determine the
conditional distribution for the signal Xk given the observations Y0, . . . , YN . We refer to the problem
as smoothing when k < N , filtering when k = N , and prediction when k > N . We will now develop
methods to compute the conditional expectation in each of these three problems; a key feature of
filtering, smoothing, and prediction (and an ongoing theme throughout this paper) is that solutions
can be found recursively.

In general, the signal state space will be infinite, and thus these distributions will be infinite-
dimensional, making real-world computation intractable. Of course, if we let the signal state
space X = {1, . . . , d} for d ∈ N, then our transition kernel P , observation kernel Φ can be rep-
resented as matrices1 and any measure or function f on X is entirely determined by a vector (e.g.,
f = (f(1), . . . , f(d))⊤). In this case, all of our computations are matrix-vector operations, which
are of course easily implemented precisely on a computer. A more interesting scenario in which the
computations reduce to matrix-vector operations is the linear Gaussian setting, where we assume
that the signal and observation state spaces are given by a system of linear equations. Every Gauss-
ian variable is completely described by its mean vector and covariance matrix, so as long as our
state space is finite-dimensional, these vectors and matrices will be too. Thus, we can successfully
use finite matrix computation to solve a class of estimation problems in uncountable state space.
As it turns out, the cases where the signal state space is finite or linear Gaussian are the only two
cases where estimation can be implemented exactly. Fortunately, as we will see, these cases cover a
broad range of applications for hidden Markov models.

3. Filtering, Smoothing, and Prediction

As discussed above, filtering, smoothing, and prediction are all estimation problems; specifically,
problems in which we estimate the random variables {Xk}k≥0 using the observations Y0, . . . , YN .
However, we have yet to answer a fundamental question: what does it mean to estimate a random
variable Xk?

1We will actually work with the observation density Υ instead of the observation kernel Φ for reasons that will
become apparent later.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 9

3.1. Estimation. Let X be a real-valued random variable and let Y be a C-valued random variable
on a probability space (Ω,F,P) and state space (C,C). Assuming the general idea of a hidden
Markov model, suppose we can observe Y but not X and would like to estimate X using Y . We are
looking for a function g(Y) that is “close” to X under a specific criterion. Generally, this means
that g minimizes some loss function H. For instance, consider the mean square estimation error

E[(X − f(Y))2]

for some function f . As the following lemma tells us, in this case, the function g that minimizes
the error is exactly the conditional expectation.

Lemma 3.1.1 (Conditional Expectation Minimizes Mean Squared Error). Suppose E[X2] <∞ and
let g(Y) = E[X|Y]. Then,

g = argmin
f

E[(X − f(Y))2].

Proof. Note that E[X|Y] is a function of Y and

E[(X −E[X|Y])2] ≤ E[X2 +E[X|Y]2](XE[X|Y] ≥ 0)

= E[X2] +E[E[X|Y]2](linearity of expectation)

≤ E[X2] +E[E[X2|Y]](Jensen’s inequality, monotonicity)

≤ 2E[X2](total expectation)

<∞(by supposition)

Now, let G = E[X|Y] and consider

E[(X −G)2] = E[(X − f(Y) + f(Y)−G)2] for some function f

= E[(X − f(Y))2] +E[(f(Y)−G)2] + 2E[(X − f(Y))(f(Y)−G)](linearity)

= E[(X − f(Y))2] +E[(f(Y)−G)2] + 2E[E[(X − f(Y))(f(Y)−G)|Y]](total expectation)

Letting h(Y) = f(Y)−G and pulling out known factors, we have

E[(X − f(Y))2] +E[h(Y)2] + 2E[h(Y)E[(X − f(Y))|Y]]

= E[(X − f(Y))2] +E[h(Y)2] + 2E[h(Y)(E[X|Y]−E[f(Y)|Y]](linearity)

= E[(X − f(Y))2] +E[h(Y)2] + 2E[h(Y)(E[X|Y]− f(Y)](stability)

= E[(X − f(Y))2] +E[h(Y)2]− 2E[h(Y)2](linearity)

= E[(X − f(Y))2]−E[h(Y)2]

≤ E[(X − f(Y))2].(positivity)

This completes the proof. □

Remark. This result is so fundamental to the study of conditional expectation that it is reasonable
to define the expectation of X ∈ L2(Ω,F,P) given G ⊂ F as the orthogonal projection of X onto the
L2-subspace L2(Ω,G,P), since the orthogonal projection (with the L2 inner product) by definition
minimizes the expected squared error E[(X − Y)2]. As shown in [6], this is a satisfactory approach
for proving many elementary properties of conditional expectation, but a more nuanced definition
is needed to fully capture all notable results.

10 OTTO REED

Thus, the conditional expectation gives the least mean square estimate of the unobserved variable
X given the observed variable Y (see [9] for an alternate proof). In general, we would like to consider
the estimator E[H(X − f(Y))] for some arbitrary loss function H. Solving the general problem
requires the notion of a conditional distribution.

Definition 3.1.2 (Regular Conditional Distribution of X given Y). Let X be a (B,B)-valued
random variable and let Y be a (C,C)-valued random variable on the probability space (Ω,F,P).
The regular conditional distribution of X given Y is a transition kernel PX|Y : C×B→ [0, 1] which
satisfies ∫

f(x)PX|Y (Y, dx) = E[f(X)|Y]

for every bounded B-measurable function f : B→ R.

Remark. The function PX|Y is regular in the sense that it is a transition kernel. The regularity
of PX|Y is precisely why the conditional expectation can be written in terms of integrals for each
y ∈ C.

Intuitively, PX|Y (y,A) = P[X ∈ A|Y = y]. The following lemma from [8] (Lemma 2.4) tells us
that we can use the conditional distribution PX|Y to solve the estimation problem of minimizing
E[H(X − f(Y))] for an arbitrary loss function H.

Lemma 3.1.3. Let H : R → [0,∞) be a loss function, X be a real-valued random variable such
that E[H(X)] <∞, and Y be a (C,C)-valued random variable. Suppose there exists a C-measurable
function g : C→ R such that

g(y) = argmin
x̂∈R

∫
H(x− x̂)PX|Y (y, dx) for all y ∈ C ′

where C ′ ∈ C such that P[Y ∈ B′] = 1. Then, g minimizes f 7→ E[H(X − f(Y))].

Proof. Note that by construction, we have∫
H(x− g(Y))PX|Y (Y, dx) ≤

∫
H(x− f(Y))PX|Y (Y, dx) almost surely

for any C-measurable function f . It follows from Definition 3.1.2 that

E[H(X − g(Y))] = E

[∫
H(x− g(Y))PX|Y (Y, dx)

]
≤ E

[∫
H(x− f(Y))PX|Y (Y, dx)

]
= E[H(X − f(Y))]

To complete the proof, we verify that our expectation is finite: if we let f(Y) = 0, then we have
E[H(X − g(Y))] ≤ E[H(X)] <∞. Therefore, g minimizes f 7→ E[H(X − f(Y))], as desired. □

We now consider an example that is of great interest in the field of statistical learning.

Example 3.1.4. Let X be a random variable that takes a finite number of values {x1, . . . , xn} and
define the loss function

H(x) =

{
0 x = 0

1 x ̸= 0

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 11

We wish to choose an estimator g that minimizes f 7→ E[H(X − f(Y))], i.e., one that maximizes
the probability P[X = f(Y)]. Thus, by Lemma 3.1.3, we should define g by

g(y) = argmax
x1,...,xn

PX|Y (y, {xi}).

We call g the maximum a posteriori (MAP) estimate of X given Y .

Thus, once we compute the conditional distribution for X given Y , the solution to the optimal
estimation problem for an arbitrary loss function H becomes a deterministic minimization problem.
This fact allows us to narrow our focus to computing the conditional distribution PX|Y .

3.2. Conditional Distributions. Given two random variables X and Y , how do we compute
the conditional distribution PX|Y ? Fortunately, this problem is straighforward if the law of Y is
nondegenerate (one of the many instances in which we see the importance of nondegeneracy). The
solution is a cornerstone of modern probability and statistics: Bayes’ Theorem. Although we will
use the following result extensively, it is so well known that we will omit a proof (see Theorem 2.7
of [8]).

Proposition 3.2.1 (Bayes’ Theorem). Let X be a (B,B)-valued random variable and let Y be
a (C,C)-valued random variable on the probability space (Ω,F,P). Suppose there exists a B ⊗ C-
measurable function γ : B×C→ (0,∞), a probability measure µX on B, and a probability measure
µY on C such that

E[f(X,Y)] =

∫∫
X×Y

f(x, y)γ(x, y)µX(dx)µY (dy)

for every bounded B⊗ C-measurable function f . Then,

PX|Y (y,A) =

∫
IA(x)γ(x, y)µX(dx)∫

γ(x, y)µX(dx)
for all A ∈ B, y ∈ C

is the conditional distribution of X given Y .

Remark. This measure-theoretic form of Bayes’ Theorem may look alien compared to the form that
is more commonly used, so let us attempt to establish a relation between the two. To start, let
us use the notation PX|Y (A|y) and γ(y|x) instead of PX|Y (y,A) and γ(x, y), since the former is
better aligned with the standard way of writing conditional probability, whereas the latter matches
the notation we have used for transition kernels. This notation allows us to better see that we can
intepret γ(y|x) as P[Y = y|X = x]. Now, suppose that B is finite, that is, B = x1, . . . , xd. Then,
for some k ∈ [d], the more familiar version of the generalized Bayes’ Theorem gives us

PX|Y (xk|y) = P[X = xk|Y = y] =
P[Y = y|X = xk]P[X = xk]∑d
i=1P[Y = y|X = xi]P[X = xi]

.

Circling back to an arbitrary set B, we are trying to find the probability that X is in a set of points
A ⊂ B given that Y = y. Since B is not necessarily finite, the statement X = xk becomes X ∈ dx,
the sum in the denominator becomes an integral over B, and the numerator becomes an integral
over A. Thus, our expression becomes

PX|Y (A|y) = P[X ∈ A|Y = y] =

∫
IA(x)P[Y = y|X ∈ dx]P[X ∈ dx]∫

P[Y = y|X ∈ dx]P[X ∈ dx]

=

∫
IA(x)γ(y|x)µX(dx)∫

γ(y|x)µX(dx)
,

12 OTTO REED

which is precisely the version presented in the proposition above.

Returning to hidden Markov models, for the remainder of this section, we will consider a given
hidden Markov model (Xk, Yk)k≥0 with signal state space (X,X), observation state space (Y,Y),
transition kernel P , observation kernel Φ, and initial measure µ. We will assume that the observa-
tions are nondegenerate, that is, Φ has a strictly positive observation density Υ with respect to a
reference (Lebesgue) measure ν.

Our goal is to solve the filtering, smoothing, and prediction estimation problems. That is, com-
pute the conditional expectation E[f(Xn)|Y0:k] for any function f and any n and k, which equivalent
to finding the conditional distributions

ϕk|n = PXk|Y0:n
for k, n ≥ 0.

Recall that the goal of the filtering problem is to compute the filtering distributions ϕk := ϕk|k for
k ≥ 0. Similarly, the goal of the smoothing problem is to compute the smoothing distributions ϕk|n
for k < n, and likewise the goal of the prediction problem is to compute the prediction distributions
ϕk|n for k > n. The fact that the filtering, smoothing, and prediction problems arise from the
choice of times to consider the signal and observation processes is made even more apparent by the
conditional distributions. We will now explore how each of the three problems can be computed
recursively, as previously promised.

3.3. Filtering. We know from Lemma 2.2.2 that the finite-dimensional distributions of (Xk, Yk)k≥0

are given by

(3.1) E[f(X0:k, Y0:k)] =

∫
· · ·

∫
f(x0:k, y0:k)

k∏
i=0

Υ(xi, yi)ν(dyi)× µ(dx0)

k∏
i=1

P (xi−1, dxi)

Using this expression, we can obtain the filtering distribution with Bayes’ Theorem.

Definition 3.3.1 (Unnormalized Filtering Distribution). Let k ≥ 0. The unnormalized filtering
distribution αk is the kernel αk : Yk+1 × X→ R+ defined by

αk(y0:k, A) =

∫
· · ·

∫
IA(xk)µ(dx0)Υ(x0, y0)

k∏
i=1

Υ(xi, yi)P (xi−1, dxi)

for all y0, . . . , yk ∈ Y and A ∈ X.

Note that the kernel αk is not a transition kernel; typically, αk(y0:k,X) ̸= 1 (compare to defini-
tion 2.1.1). We will see that the normalization of αk (i.e., constructing a transition kernel from αk)
results in exactly the filtering distribution ϕk.

Theorem 3.3.2 (Unnormalized Filtering Recursion). The filtering distribution ϕk can be computed
as

(3.2) ϕk(y0:k, A) =
αk(y0:k, A)

αk(y0:k,X)

for every A ∈ X and y0, . . . , yk ∈ Y. Moreover, the unnormalized filtering distribution αk can be
computed recursively according to

αk(y0:k, A) =

∫∫
IA(x)Υ(x, yk)P (x′, dx)αk−1(y0:k−1, dx

′)

with the initial condition

(3.3) α0(y0, A) =

∫
IA(x)Υ(x, y0)µ(dx).

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 13

Proof. To apply Bayes, we must first define the probability measures µY and µX on Yk+1 and Xk+1,
respectively. Let µY be the product measure

µY (dy0:k) = ν(dy0) · · · ν(dyk).
Similarly, define µX as

µX(dx0:k) = P (xk−1, dxk) · · ·P (x0, dx1)µ(dx0)

and define the function γ : Xk+1 ×Yk+1 → (0,∞) by

γ(x0:k, y0:k) = Υ(x0, y0) · · ·Υ(xk, yk).

Then, by (3.1), we have

E[f(X0:k, Y0:k)] =

∫
· · ·

∫
f(x0:k, y0:k)γ(x0:k, y0:k)µX(dx0:k)µY (dy0:k).

Hence, we can now apply Bayes’ Theorem (Proposition 3.2.1), which gives us∫
· · ·

∫
f(x0:k)PX0:k|Y0:k

(y0:k, dx0:k) =

∫
· · ·

∫
f(x0:k)γ(x0:k, y0:k)µX(dx0:k)∫
· · ·

∫
γ(x0:k, y0:k)µX(dx0:k)

.

It follows that ∫
f(x)ϕk(y0:k, dx) =

∫
f(xk)PXk|Y0:k

(y0:k, dxk)

=

∫
· · ·

∫
f(xk)γ(x0:k, y0:k)µX(dx0:k)∫
· · ·

∫
γ(x0:k, y0:k)µX(dx0:k)

=

∫
f(xk)αk(y0:k, dxk)∫

αk(y0:k, dxk)

by Definition 3.3.1. Thus, we obtain the filtering distribution:

ϕk(y0:k, A) =
αk(y0:k, A)

αk(y0:k,X)
.

Furthermore, by construction, α(y0, A) =

∫
IA(x)Υ(x, y0)µ(dx). Therefore, the recursion for αk

follows from the fact that

αk(y0:k, A) =

∫
· · ·

∫
IA(xk)γ(x0:k, y0:k)µX(dx0:k)

=

∫∫
IA(x)Υ(x, yk)P (x′, dx)αk−1(y0:k−1, dx

′),

completing the proof. □

By combining the expression for the filtering distribution (3.2) with the recursive formula for the
unnormalized filtering distribution (3.3), we immediately obtain an expression for computing the
former directly–the normalized filtering recursion. It is normalized in the sense that each step of
the recursion involves a rescaling, as opposed to the unnormalized recursion in which the expression
is normalized only after the recursion has terminated.

Corollary 3.3.3 (Filtering Recursion). The filtering distribution ϕk can be computed recursively
according to

ϕk(y0:k, A) =

∫∫
IA(x)Υ(x, yk)P (x′, dx)ϕk−1(y0:k−1, dx

′)∫∫
Υ(x, yk)P (x′, dx)ϕk−1(y0:k−1, dx′)

14 OTTO REED

with the initial condition

(3.4) ϕ0(y0, A) =

∫
IA(x)Υ(x, y0)µ(dx)∫

Υ(x, y0)µ(dx)
.

Proof. Note that by Theorem 3.3.2,

ϕ0(y0, A) =
α0(y0, A)

α0(y0,X)
=

∫
IA(x)Υ(x, y0)µ(dx)∫

Υ(x, y0)µ(dx)
.

The recursion can be read from (3.2) and (3.3). □

Thus, instead of first computing αk and then normalizing to obtain ϕk, we can compute ϕk

directly. The fact that this computation is recursive makes writing an algorithm to compute the
filtering recursion ϕk efficiently a straighforward exercise.

3.4. Smoothing. The smoothing distributions ϕk|n (k < n), just like the filtering distributions,
can be found with Bayes’ Theorem. However, the computation will be divided into two parts, since
the “past” observations Y0, . . . , Yk and the “future” observations Yk+1, . . . , Yn will be considered
differently (that is, “past” and “future” relative to the time k at which we wish to find the conditional
distribution of the signal Xk).

Definition 3.4.1 (Unnormalized Smoothing Density). Let 0 ≤ k < n. The unnormalized smoothing
density βk|n is the function βk|n : X×Yn−k → (0,∞) defined as

βk|n(xk, yk+1:n) =

∫
· · ·

∫ n∏
i=k+1

Υ(xi, yi)P (xi−1, dxi)

for all yk+1, . . . , yn ∈ Y and xk ∈ X.

There are two important things to note about the definition of the unnormalized smoothing
density βk|n. Firstly, βk|n is a density and not a distribution as opposed to the unnormalized
smoothing distribution αk (compare with Definition 3.3.1). Furthermore, the domain of βn is
X×Yn−k, since βk|n is a function of the observations yk+1, . . . , yn, i.e., all “future” observations.

Remark. The fact that βk|n is a density means that it is not a kernel, which is clear from the fact
that, by definition, βk|n is not a function of X (compare with Definition 2.1.1).

Following in the same vein as the filtering problem, we will again use Bayes to show that the
unnormalized smoothing density can be computed recursively.

Theorem 3.4.2 (Unnormalized Smoothing Recursion). The smoothing distribution ϕk|n, (k < n)
can be computed as

(3.5) ϕk|n(y0:n, A) =

∫
IA(x)βk|n(x, yk+1:n)αk(y0:k, dx)∫

βk|n(x, yk+1:n)αk(y0:k, dx)

for every A ∈ X and y0, . . . , yn ∈ Y. Moreover, the unnormalized smoothing densities βk|n can be
computed with the backward recursion

(3.6) βk|n(x, yk+1:n) =

∫∫
βk+1|n(x

′, yk+2:n)Υ(x′, yk+1)P (x, dx′)

with the terminal condition βn|n = 1.

The proof of this theorem will follow in the spirit of the proof for Theorem 3.3.2.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 15

Proof. Using the same notation as in the proof of Theorem 3.4.2, we have∫
f(x)ϕk|n(y0:n, dx) =

∫
f(xk)PXk|Y0:n

(y0:n, dxk)

=

∫
· · ·

∫
f(xk)PX0:n|Y0:n

(y0:n, dx0:n)

=

∫
· · ·

∫
f(xk)γ(x0:n, y0:n)µX(dx0:n)∫
· · ·

∫
γ(x0:n, y0:n)µX(dx0:n)

.(Proposition 3.2.1)

Now, we can split our expression into functions of the observations y0, . . . , yk and yk+1, . . . , yn, i.e.,
βk|n and αk. Note that∫

· · ·
∫
f(xk)γ(x0:n, y0:n)µX(dx0:n)∫
· · ·

∫
γ(x0:n, y0:n)µX(dx0:n)

=

∫
· · ·

∫ (
f(xk)µ(dx0)Υ(x0, y0)

∏k
i=1Υ(xi, yi)P (xi−1, dxi)

) (∏n
i=k+1Υ(xi, yi)P (xi−1, dxi)

)
∫
· · ·

∫ (∏k
i=1Υ(xi, yi)P (xi−1, dxi)

) (∏n
i=k+1Υ(xi, yi)P (xi−1, dxi)

)
=

∫
f(xk)βk|n(xk, yk+1:n)αk(y0:k, dxk)∫

βk|n(xk, yk+1:n)αk(y0:k, dxk)
.

Thus, we obtain the smoothing distribution

ϕk|n(y0:n, A) =

∫
IA(x)βk|n(x, yk+1:n)αk(y0:k, dx)∫

βk|n(x, yk+1:n)αk(y0:k, dx)
.

Furthermore, by convention, we set the empty product
∏

∅ = 1, so by construction, βn|n = 1.
Therefore, the backward recursion for βk|n follows from the fact that

βk|n(x, yk+1:n) =

∫
· · ·

∫
γ(xk+1:n, yk+1:n)µX(dxk+1:n)

=

∫∫
βk+1|n(x

′, yk+2:n)Υ(x′yk+1)P (x, dx′),

completing the proof. □

We can again obtain a normalized recursion for the smoothing distribution with an argument
similar to the normalized filtering recursion. However, note that both the unnormalized smoothing
densities βk|n and filtering distributions αk appear in (3.5). Thus, we must first make a forward
pass in time through the observations to compute the filtering distributions and then a backward
pass to compute the smoothing densities. This procedure leads to the well-known forward-backward
algorithm which we explore further in later sections. It is also for this reason that αk is often called
the forward kernel and βk|n the backward function.

Remark. A helpful mneumonic for remembering the direction of the filtering and smoothing recur-
sions is to note that the computation for αk starts at α0, with each step of the recursion computing
the expression that comes after (in time) the expression in the previous step, whereas the compu-
tation of βk|n starts at βn|n, with each step of the recursion computing the expression that comes
before the previous step; that is, “αk after, βk|n before.”

16 OTTO REED

Corollary 3.4.3 (Smoothing Recursion). For k < n, define the function β̄k|n : X×Yn+1 → (0,∞)
by the backward recursion

(3.7) β̄k|n(x, y0:n) =

∫
β̄k+1|n(x

′, y0:n)Υ(x′, yk+1)P (x, dx′)∫∫
Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx)

with the terminal condition β̄n|n = 1. Then, for any k < n,

(3.8) ϕk|n(y0:n, A) =

∫
IA(x)β̄k|n(x, y0:n)ϕk(y0:k, dx)

for every A ∈ X and y0, . . . , yn ∈ Y.

Let us compare β̄k|n with βk|n (Definition 3.4.1). The most significant difference between the two

functions is that the domain of β̄k|n is now X × Yn+1, as opposed to the domain of βk|n, which

is X × Yn−k. This difference tells us that β̄k|n is a function of all observations, whereas βk|n is a
function of only the “future” observations.

Proof. From the unnormalized smoothing recursion, we immediately obtain

β̄k|n =

∫∫
β̄k+1|n(x

′, y0:n)Υ(x′, yk+1)P (x, dx′)∫∫
β̄k+1|n(x′, y0:n)Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx)

with β̄n|n = 1. Thus, we wish to show that for k < n∫∫
β̄k+1|n(x

′, y0:n)Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx) =

∫∫
Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx).

By the normalized filtering recursion (Corollary 3.3.3), we have∫∫
β̄k+1|n(x

′, y0:n)Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx)∫∫
Υ(x′, yk+1)P (x, dx′)ϕk(y0:k, dx)

=

∫
β̄k+1|n(x

′, y0:n)ϕk+1(y0:k+1, dx
′) = 1

by construction, completing the proof. □

Thus, we have both normalized and unnormalized recursions for the filtering and smoothing
distributions. We now turn to prediction.

3.5. Prediction. Fortunately, the prediction problem, i.e., computing ϕk|n for k > n, is the simplest
of our three estimation problems. We obtain a single, normalized, form of the prediction recursion.

Theorem 3.5.1 (Prediction Recursion). The prediction distribution ϕk|n (k > n) can be computed
recursively according to

(3.9) ϕk|n(y0:n, A) =

∫∫
IA(x)P (x′, dx)ϕk−1|n(y0:n, dx

′)

for every A ∈ X and y0, . . . , yn ∈ Y, with the initial condition ϕn|n = ϕn.

Remark. The expression ϕn|n = ϕn is mild abuse of notation; we are setting the starting value of the
prediction recursion equal to the filtering distribution ϕn, where we have also defined the notation
ϕn := ϕn|n.

Instead of using Bayes’ Theorem (which can certainly be applied), we opt for the instructive proof
of Theorem 2.14 in [8] that utilizes some of the fundamental properties of hidden Markov models.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 17

Proof. By the tower property of conditional expectation, we have

E[f(Xk)|Y0:n] = E[E[f(Xk)|X0:n, Y0:n]|Y0:n]]
for k > n. Furthermore, by the Markov property of the signal (Xk)k≥0,

E[f(Xk)|X0:n, Y0:n] = P k−nf(Xn).

Thus, E[f(Xk)|Y0:n] = E[P k−nf(Xn)|Y0:n], which is equivalent to∫
f(x)ϕk|n(y0:n, dx) =

∫
P k−nf(x)ϕn(y0:n, dx),

for every bounded X-measurable function f . Note that∫
P k−nf(x)ϕn(y0:n, dx) =

∫
PP k−n−1f(x)ϕn(y0:n, dx) =

∫
Pf(x)ϕk−1|n(y0:n, dx).

Therefore,

ϕk|n(y0:n, A) =

∫∫
IA(x)P (x′, dx)ϕk−1|n(y0:n, dx

′),

as desired. □

A simple consequence of this theorem is that

ϕk+1|k(y0:k, A) =

∫∫
IA(x)P (x′, dx)ϕk(y0:k, dx

′),

so by Corollary 3.3.3, we have

ϕk+1(y0:k+1, A) =

∫
IA(x)Υ(x, yk+1)ϕk+1|k(y0:k, dx)∫

Υ(x, yk+1)ϕk+1|k(y0:k, dx)
.

Hence, the filtering distribution ϕk+1 can be expressed in terms of the one-step predictor ϕk+1|k.
As a result, the filtering recursion is often interpreted as a two-step procedure:

ϕk
prediction−−−−−−→ ϕk+1|k

correction−−−−−−→ ϕk+1.

Of course, to fully appreciate the power of this elegant theory we need to consider some specific
scenarios of state space. One of the most natural cases to study is finite state space, where, as we
will now see, our general theory can be adopted easily to yield several notable algorithms.

4. Finite State Space Models

The setting in which the signal state space X is finite has been integral to the study of hidden
Markov models since their inception. Not only do finite nodels emerge naturally in numerous
practical applications from telecommunications to DNA sequencing, but finite state space is also
a particularly convenient setting for computation. In a finite setting, all of the techniques we
developed in the previous section become matrix computations, and can thus be implemented
both precisely and efficiently on a computer. Throughout this section, we will consider a hidden
Markov model (Xk, Yk)k≥0 on the state space X × Y with the restriction that the signal state
space is X = {1, . . . , d} (without loss of generality).2 We follow the same notation as before for
the transition kernel, obervation kernel, and initial measure, and will again adopt the assumption
that the observations are nondegenerate. However, since the signal state space X is now finite, it
is convenient to think of functions and measures as vectors and kernels as matrices: any function

2Technically, we can only label the elements of X without loss of generality. However, for the sake of convenience,
we set X equal to the set of integers 1, . . . , d, which is truly just a semantic difference.

18 OTTO REED

f : X → R is entirely described by the vector f = (f(1), . . . , f(d))⊤ ∈ Rd,3 and any measure µ on
X is entirely described by the vector µ = (µ({1}), . . . , µ({d}))⊤. Furthermore, the transition kernel
P is naturally represented by a d× d matrix P where Pij = P (i, {j}) for i, j ∈ X. Just as before,

Pf(i) =

d∑
j=1

P (i, {j})f(j) = (Pf)i,

and

µP ({j}) =
d∑

i=1

µ({i})P (i, {j}) = (µ⊤P)j = (P⊤µ)j .

Lastly, we will represent the observation density Υ using matrices, but in a somewhat unique
manner: for each observation y ∈ Y, we define the matrix Υ(y) where

(Υ(y))ij = Υ(i, y)δij

for i, j ∈ X. That is, Υ(y) is the d× d diagonal matrix with nonzero elements (Υ(y))ii = Υ(i, y).

Remark. In much of the stastical literature, finite signal state space hidden Markov models are
also assumed to have finite observation space. In this case, the observation kernel Φ is represented
by a d × e matrix where (Φ)ij = Φ(i, {j}). Of course, if the observation state space is not finite,
then this representation is clunky, since the matrix will not be of finite size. Our definition uses
the observation density Υ instead, allowing us to make no assumptions about the structure of Y.
The tradeoff is that we must assume nondegeneracy, but, as we established, any “practical” model
should be nondegenerate.

In the finite setting, we can interpret the initial measure µ as the probability distribution of the
signal process at time 0, that is, µi = P[X0 = i]. Furthermore, we can interpret the elements of the
transition matrix P as conditional probability, where

(P)ij = P[Xk+1 = j|Xk = i].

Thus, the transition matrix gives the probability of “transitioning” to the next state given the
current state. Similarly, we can think of the elements of the observation density matrix Υ(y) as the
probability of making the observation y ∈ Y if the signal is in the state i ∈ X:

(Υ(y))ii = P[Yk = y|Xk = i].

Following this interpretation, it is intuitive that the non-diagonal elements of Υ(y) are zero, since
the signal cannot be in two states at once.

Using this matrix-vector notation, we will now reformulate the results of the estimation problems
in the general setting, leading us to several important computational algorithms.

4.1. Finite State Filtering, Smoothing, and Prediction.

Remark. For the following, we fix an observation sequence (yk)k≥0, allowing us to omit the depen-
dence of e.g., ϕk|n on the observed trajectory y0, . . . , yk. Thus, we will write expressions such as
αk(y0:k, dx) as αk(dx), with the dependence on y0, . . . , yk being implicit. We will further simplify
our notation by writing singleton sets as elements. For example, we will write P (i, j) for P (i, {j})
and µ(1) for µ({1}).

3We will adopt the convention to use column vectors instead of row vectors, as is standard in most linear algebra
settings. Notably, in the context of Markov processes, row vectors are typically used–this difference will be noted
whenever there is possible ambiguity.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 19

We begin with the unnormalized filtering recursion. Since the unnormalized filter αk is a measure,
we can represent it as a vector αk = (αk(1), . . . , αk(d))

⊤. Then, from Theorem 3.3.2, we have

α0 = Υ(y0)µ, αk = Υ(yk)P
⊤αk−1 (k ≥ 1).(4.1)

Note that we have P⊤αk−1 in the second expression; this is because the transition matrix is typically
applied to a row vector, in which case we would have α⊤

k−1P . However, since αk−1 is a column

vector, we have (α⊤
k−1P)⊤ = P⊤αk−1.

Letting 1 = (1, . . . , 1)⊤ ∈ Rd, we see that the vector form of the normalized filter ϕk is ϕk =
αk

1⊤αk
. Although this form of ϕk is simple, it is still in terms of the unnormalized filter α. By

Corollary 3.3.3, the normalized filter can be computed directly through the normalized recursion

ϕ0 =
Υ(y0)µ0

1⊤Υ(y0)µ
, ϕk =

Υ(yk)P
⊤ϕk−1

1⊤Υ(yk)P⊤ϕk−1
(k ≥ 1).(4.2)

We now consider the smoothing problem. Similar to the unnormalized filters, the unnormalized
smoothing densities βk|n can be represented as vectors βk|n = (βk|n(1), . . . , βk|n(d))

⊤ (where we
have again omitted the dependence on the observations). Then, by Theorem 3.4.2,

βn|n = 1, βk|n = PΥ(yk+1)βk+1|n (k < n).(4.3)

The smoothing distributions can be computed from the unnormalized smoothing densities βk|n
according to Theorem 3.4.2:

(4.4) ϕk|n =
diag(βk|n)αk

β⊤
k|nαk

=
diag(βk|n)ϕk

β⊤
k|nϕk

,

where diag(β)k|n is the d×d diagonal matrix with the entries of βk|n along the diagonal. We can also

compute the smoothing distributions from the normalized smoothing densities β̄k|n, represented as

vectors β̄k|n, where

β̄n|n = 1, β̄k|n =
PΥ(yk+1)β̄k+1|n

1⊤Υ(yk+1)P⊤ϕk
(k < n).(4.5)

Then, by Corollary 3.4.3, the smoothing distributions are given by

(4.6) ϕk|n = diag(β̄k|n)ϕk.

Lastly, prediction is again our simplest case–the vector form of the prediction recursion follows
directly from Theorem 3.5.1:

ϕn|n = ϕn, ϕk+1|n = P⊤ϕk|n (k ≥ n).(4.7)

All of the recursions we have obtained in the finite state space setting involve only matrix com-
putations. Thus, they can be implemented efficiently on a computer. We will now consider one
such implementation to compute the filtering and smoothing distributions: the forward-backward
algorithm.

4.2. The Forward-Backward Algorithm. As previously discussed, both the normalized and
unnormalized smoothing recursions involve a forward pass (in time) to compute the filtering dis-
tributions and subsequently a backward pass to compute the smoothing densities (compare with
Theorem 3.4.2 and Corollary 3.4.3). Based on our results in the finite state setting, we can sketch
an outline for what such a “forward-backward” algorithm might look like. We can read directly

20 OTTO REED

from (4.2) to obtain the forward pass, but for the backward pass, we have two options: the normal-
ized and unnormalized smoothing recursions. In general, the normalized recursion is preferable for
computational purposes. The unnormalized recursion tends to change in magnitude significantly
over time, resulting in catastrophic effects when it approaches or exceeds the upper and lower limits
of machine precision. In contrast, the computations of the normalized recursion stay within a rel-
atively stable range, which typically mitigates the risk of floating-point errors and the like. Thus,
(4.5) and (4.6) give the backward pass.

Notice that the denominator of β̄k|n is just the denominator of ϕk+1; thus, the valuesΥ(yk)P
⊤ϕk−1,

(k > 1) should be stored to make the algorithm more efficient. Hence, we obtain the forward-
backward algorithm:

Algorithm 4.1: Forward-Backward Algorithm

ϕ0 ← Υ(y0)µ/1
⊤Υ(y0)µ;

for k = 1 , . . . ,n do

forward ϕ̃k ← Υ(yk)P
⊤ϕk−1;

ck ← 1⊤ϕ̃k;

ϕk ← ϕ̃k/ck;

end

β̄n|n ← 1;

for k = 1 , . . . ,n do
backward β̄n−k|n ← PΥ(yn−k+1)β̄n−k+1|n/cn−k+1;

ϕn−k|n ← diag(β̄n−k|n)ϕn−k;

end

4.3. The Viterbi Algorithm. Let us now consider a new type of problem in the finite state space
setting: decoding a finite state signal path x0, . . . , xn from an observation trajectory y0, . . . , yn. That
is, we wish to do our best to determine the true value of the signal using only our observations.
For example, perhaps a friend is shouting something across a crowded cafeteria, or we are making
a phone call in an area with poor cellular reception and can only understand one out of every few
words through the static. In both cases, we have a finite alphabet message (each word is composed
from an alphabet of 26 letters) being transmitted through a noisy channel. In other words, the
medium (air in the cafeteria, the atmosphere, etc.) through which the signal (sound, radio waves,
etc.) is sent tends to alter or corrupt the message.

Then, the signal state space X is the signal alphabet, the signal (Xk)0≤k≤n is the message, and
the observation trajectory (Yk)0≤k≤n is the likely corrupted received message transmitted through
the channel. Our goal is to determine, to the best of our ability, what the transmitted message was
from the message we received. Hence, we wish to construct random variables X̂0, . . . , X̂n that are
functions of the observed sequence, X̂k = fk(Y0:n), such that the estimate (X̂k)0≤k≤n is “as close
as possible” to the original signal (Xk)0≤k≤n. Of course, the problem boils down to what “as close

as possible” means. Perhaps we wish to construct X̂0, . . . , X̂n so that the most expected number of
individual symbols (bits, letters, etc.) are decoded correctly. In other words,

Choose (X̂k)k≤n such that E[#{k ≤ n : Xk = X̂k}] is maximized.

This approach seems perfectly reasonable, but it has a significant flaw. We will illustrate this with
the following simple example.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 21

Example 4.3.1. Let (Xk, Yk)k≥0 be a hidden Markov model with signal state space X = {0, 1}
and transition probabilities P (0, 1) = P (1, 0) = 1, i.e., the signal alternates between 0 and 1.
Furthermore, let the initial measure be µ(0) = µ(1) = 1/2. For simplicity, suppose we have made
no observations. Then, ϕk|n(i) = P[Xk = i] = 1/2 for every i, k, n.

We now wish to estimate the signal. Since all of the individual probabilities are 1/2, any estimate

X̂0:n has the same expected number of correctly decoded symbols. So, we may reasonably choose
X̂k = 0, k = 1, . . . , n as the optimal estimator. However, by definition of the transition probabilities,
the signal path Xk = 0 for all k has probability zero: P (0, 0) = 0. Thus, our estimation method
has resulted in an impossible message!

We can now clearly see the drawback of this method for estimation: an estimate of the signal
path which maximizes the number of correctly decoded symbols does not necessarily maximize the
probability that the entire signal path is decoded correctly, and, in extreme cases, can even result
in an estimate that is not a possible signal path.

Let us now try an alternative estimation approach that directly addresses this issue: construct
X̂0, . . . , X̂n so that the probability of the entire signal path being decoded correctly is maximized.
That is,

Choose (X̂k)k≤n such that P[Xk = X̂k for all k ≤ n] is maximized.

Once again, the solution to the maximum probability path estimate can be found recursively. This
solution leads to the famous Viterbi algorithm. Fortunately, we already know what it means to
estimate a random variable–this is precisely Lemma 3.1.3. In this scenario, our loss function is
constructed from the indicator of whether our estimate matches the original signal: I0(x − x̂).
Thus, to find the maximum probability path estimate, we choose the functions fk such that

(4.8) (f0(y0:n), . . . , fn(y0:n)) = argmax
(x̂0:n)

∫ n∏
k=0

I0(xk − x̂k)PX0:n|Y0:n
(y0:n, dx0:n).

Remark. Note that we have argmax instead of argmin in this expression because we are maximizing
the probability of our estimate instead of minimizing a loss function. Trivially, Lemma 3.1.3 still
applies.

We can now apply Bayes Theorem (Proposition 3.2.1), which gives us
(4.9)∫ n∏

k=0

I0(xk − x̂k)PX0:n|Y0:n
(y0:n, dx0:n) =

µ(x̂0)Υ(x̂0, y0)
∏n

k=1Υ(x̂k, yk)P (x̂k−1, x̂k)∫
· · ·

∫
µ(dx0)Υ(x0, y0)

∏n
k=1Υ(xk, yk)P (xk−1, dxk)

.

However, since we are maximizing in terms of (x̂0, . . . , x̂n), the denominator can be ignored. Thus,

(f0(y0:n), . . . , fn(y0:n)) = argmax
(x̂0:n)

µ(x̂0)Υ(x̂0, y0)

n∏
k=1

Υ(x̂k, yk)P (x̂k−1, x̂k).

Furthermore, since log x is increasing, argmax
x

f(x) = argmax
x

log f(x), and thus

(f0(y0:n), . . . , fn(y0:n)) =

argmax
(x̂0:n)

[
log(µ(x̂0)Υ(x̂0, y0)) +

n∑
k=1

(logP (x̂k−1, x̂k) + logΥ(x̂k, yk))

]
.

22 OTTO REED

We have chosen to write our expression in this form in order to introduce the “Viterbi functions”

vℓ(x̂ℓ) = max
x̂0:ℓ−1

[
log(µ(x̂0)Υ(x̂0, y0)) +

ℓ∑
k=1

(logP (x̂k−1, x̂k) + logΥ(x̂k, yk))

]
(0 ≤ ℓ ≤ n)

which are central to the Viterbi algorithm. The key feature of the Viterbi functions is that they
can be compute recursively, as shown by the next theorem. The purpose of these functions–and the
main idea of the Viterbi algorithm–is to compute the estimating functions {fk(y0:n)}k≥0 recursively.

Theorem 4.3.2 (Viterbi Recursion). The functions vℓ satisfy the forward recursion

vℓ(x̂ℓ) = max
x̂ℓ−1

{vℓ−1(x̂ℓ−1) + logP (x̂ℓ−1, x̂ℓ)}+ logΥ(x̂ℓ, yℓ)

with the initial condition v0(x̂0) = log(µ(x̂0)Υ(x̂0, y0)). Moreover, the estimating functions fℓ(y0:n),
ℓ = 1, . . . , n for the maximum probability path estimate given Y0, . . . , Yn satisfy the backward recur-
sion

fℓ = argmax
x̂ℓ

{vℓ(x̂ℓ) + logP (x̂ℓ, fℓ+1)}

with the terminal condition fn = argmax
x̂n

vn(x̂n).

Proof. The recursions for vℓ and fℓ are quickly verified by inspection. □

Remark. The backward recursion can be interpreted as repeatedly eliminating potential signal paths
until only the most probable path remains. The first step is to find the most probable final state of
the true signal and remove all possible paths whose final state differs from this state. Then, of the
paths with the corresponding final state, the second-to-last state which maximizes the probability
of these paths is found. The third-to-last state is considered next, and the process is repeated until
the recursion reaches the first state, leaving only one signal path remaining. If multiple states are
equally optimal at any stage of the recursion, then one can be chosen arbitrarily.

To summarize, we wish to find the maximum probability sequence (x̂0, . . . , x̂n), which we know
is given by the estimator functions (f0(y0:n), . . . , fn(y0:n)). Since these functions give the maximum
arguments of (4.8), we can express them more conveniently in terms of functions v0, . . . , vn with
arguments of the maxima identical to (4.9). As it turns out, both sets of functions can be computed
recursively, which allows us to implement the computation as an algorithm. Furthermore, since we
are in the finite state space setting, this algorithm will be entirely composed of matrix computations,
and can therefore be implemented efficiently on a computer.

Once again, the algorithm consists of a forward and a backward pass. However, unlike the
forward-backward algorithm, the observation path y0, . . . , yn is not directly used in the backward
pass of the Viterbi algorithm, and therefore it does not need to be stored in memory. Of course,
the values vℓ(i) must be stored for all ℓ, i. The Viterbi algorithm is summarized in Algorithm 4.2.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 23

Algorithm 4.2: Viterbi Algorithm

v0(i)← logµi + logΥ(i, y0), i = 1, . . . , d;

for k = 1 , . . . ,n do
forward bk(i)← argmax

j=1,...,d
{vk−1(j) + logPji}, i = 1, . . . , d;

vk(i)← vk−1(bk(i)) + logPbk(i)i + logΥ(i, yk), i = 1, . . . , d;

end

fn ← argmax
j=1,...,d

vn(j);

for k = 1 , . . . ,n do
backward fn−k ← bn−k+1(fn−k+1);

end

5. Linear Gaussian State Space Models

We now consider the second scenario in which the general estimation results we obtained can be
computed precisely: the linear Gaussian setting i.e., the setting where the state space of our hidden
Markov model is governed by a linear system of equations. However, we have already covered
a lot of ground in the study of estimation in hidden Markov models–the general theory gives us
the underlying recursion behind computing the filtering, smoothing, and prediction distributions
and the case of finite state space yields several of the most important algorithms for computing
these distributions. These algorithms are almost identical in the linear Gaussian case (aside from
perhaps some different notation) and the general recursions naturally hold as well, since it is just
a specific scenario of the general theory. Instead of re-deriving all of the estimation distributions
with new notation, we will focus on the most famous result in the linear Gaussian setting: the
Stratonovich-Kalman-Bucy, or simply Kalman, filter.4

We will consider a hidden Markov model (Xk, Yk)k≥0 with signal state space X = Rd and ob-
servation state space Y = RdY . Thus, the signal state and observation state will be represented
by d-dimensional and dY -dimensional vectors, respectively. Our state space is governed by two
equations:

Xk = Fk−1(Xk−1, ξk), Yk = Gk(Xk, ηk),

where Fk−1 and Gk are vector-valued functions, ξk is random “system noise” and ηk is random
“observation noise.” To complete our model, we assume that X0 = a for some a ∈ Rd. It is
immediately clear that this is a hidden Markov model in spirit; we have a signal whose evolution
depends only on the previous state and an observation that is a “noisy functional” of our signal.
However, as it stands, the signal state space is continuous, so it seems like estimation is still infinite-
dimensional.

The key to making this model computationally tractable is to assume that both the state and
observation equations are linear (i.e., that the function Fk−1 and Gk are linear) and that the signal
and observation states Xk and Yk, as well as the noise terms ξk and ηk, are jointly Gaussian.
As proved in [4], the conditional distribution of a Gaussian variable is a Gaussian (i.e., normal)
distribution, so the filtering, smoothing, and prediction distributions will all be Gaussian.

4Over time, the filter has become known as the Kalman Filter, after Rudolf E. Kalman, despite critical work on
the technique being completed earlier by Richard S. Bucy and the filter being a special case of a more general filtering
method developed prior by Ruslan Stratonovich.

24 OTTO REED

Since every Gaussian variable is entirely determined by its mean vector and covariance ma-
trix–which are d-dimensional and d×d dimensional, respectively, for Xk and ξk and dY -dimensional
and dY ×d dimensional, respectively, for Yk and ηk–our computations will exclusively be with finite-
dimensional matrices. Thus, although our state space is infinite, our estimation recursions are once
again finite-dimensional!

Formally, our assumptions imply that our state space is given by the following system of equations:

Xk = Fk−1Xk−1 + ξk, Yk = GkXk + ηk,(5.1)

where ξk
5 is a random d-dimensional vector, ηk is a random dY -dimensional vector, Fk−1 is a d× d

matrix, and Gk is a dY × d matrix. It is evident that Fk−1 and Gk are the transition kernel and
observation kernel, respectively. We will once again assume that both kernels are time homogeneous
and refer to them as F and G.

The linear Gaussian assumption also implies that the signal noise ξk, k ≥ 0 are i.i.d. N(0,Σξ)
and the observation noise ηk, k ≥ 0 are i.i.d N(0,Ση), where Σξ and Ση are the covariance matrices

of the corresponding noise variables. We also assume that X0 ∼ N(µ0,ΣX0) for some µ0 ∈ Rd and
that ξk are independent of ηk.

We will further prescribe the structure of our model conditional on the available information at
time k, i.e., the observations y0, . . . , yk−1. For k ≥ 0, define the Borel set Fk by

Fk = σ(y0, . . . , yk),

that is, the sigma algebra generated by the observations y0:k. Then, we assume the following:

(i) Conditional on the available information, the observation noise terms have mean zero:

E[ηk|Fk−1] = 0.

(ii) The covariance matrix for the observation noise is time homogeneous:

var[ηk|Fk−1] = Ση.

And lastly,
(iii) The observation noise ηk and the signal Xk are uncorrelated:

E[Xkη
⊤
k |Fk−1] = 0.

Together, these assumptions guarentee that the observation noise (ηk)k≥0 is white noise, that is,
observations generated from an i.i.d. sequence of random variables with mean zero.

Now that we have the foundation for our model, we can derive the Kalman estimation for linear
Gaussian state space models. However, we will take a slightly different approach from the finite
state space setting, opting for an emphasis on information.

5.1. One-Step Prediction and Kalman Filtering. In contrast to the approach we took earlier
to derive the general filtering recursion in Theorem 3.3.2, in the linear Gaussian setting we follow the
derivation in [2] and compute the Kalman filter from the one-step prediction, i.e., estimating Xk+1

given Fk. However, since we are in the linear Gaussian setting, we have the additional restriction
that our best estimator X̂ must be linear, i.e.,

X̂ = argmin
f

E[(X − f(Y))2].

5It may seem strange to write ξk instead of ξk−1, but the purpose of using the former is to emphasize that ξk is
independent of Xn for n < k, an assumption we will make explicit below.

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 25

Fortunately, we know by Lemma 3.1.1 that this is precisely E[X|Y]! Thus, the best estimator for
Xk+1 given Fk is E[Xk+1|Fk].

Remark. We will differ slightly from the previous sections in our notation and write

X̂k|n = E[Xk|Fn], k, n ≥ 0

instead of ϕk|n = PXk|Y0:n
, since our estimator is now the conditional expectation instead of the

conditional probability. However, we keep the tradition of defining X̂k = X̂k|k.

From L2-theory, we know that the best linear one-step predictor X̂k+1|k can be interpreted
geometrically as the orthogonal projection of Xk+1 onto the span of Y0, . . . , Yk. We will define

Ek(X) = E[X|Fk], k ≥ 0

to reflect this fact; note that Ek(Xk+1) = X̂k+1|k. We will also want to keep track of the covariance
matrix of our estimate, so we define

(5.2) Ωk+1|k = E[(Xk+1 − X̂k+1|k)(Xk+1 − X̂k+1|k)
⊤], k ≥ 0.

The theme for calculating the prediction X̂k+1|k will again be recursion, this time with an additional
sprinkle of information theory. On that note, we define the innovation by

Ik = Yk − Ek−1(Yk), k > 0, I0 = Y0

that is, Ik is the “new information” contained in the observation Yk. Note that the innovations are
mean 0:

E[Ik] = E[Yk]−E[Ek−1(Yk)] = E[Yk]−E[E[Yk|Y0:k−1]] = E[Yk]−E[Yk] = 0,

where the second-to-last equality follows from the law of total expectation.
Since Ek−1(Yk) gives the orthogonal projection of Yk onto the span of Y0, . . . , Yk−1 and Ik is

equal to precisely Yk minus this component, Ik is orthogonal to the span of Y0, . . . , Yk−1. Thus, Ik
is orthogonal to Ik for all n < k, so Ik, k ≥ 0 are i.i.d., and can also be thought of as white noise.

The critical nondegeneracy assumption manifests here in the form of assuming that the covariance
matrix for the innovation, ΣIk , is invertible. Note that, unlike the covariance matrices for the
observation and signal noise, ΣIk is not time homegeneous.

Remark. The intuition behind introducing the innovation Ik comes from the general theory, which
tells us that prediction can be performed recursively–that is, if the prediction X̂k|k−1 of Xk is found

using the observations Y0, . . . , Yk−1, then the prediction X̂k+1|k can be found using only the new

observation Yk and the previous prediction X̂k−1|k (and the covariance matrix Ωk+1|k). However,

only the new information contained in Yk matters for computing X̂k+1|k, since the old information

will already be incorporated in X̂k|k−1. Thus, we use the innovation Ik (see [1] for further reading
on the innovation approach).

We now obtain an expression for the one-step-ahead prediction, that is, a method of computing
X̂k+1|k from X̂k|k−1.

Theorem 5.1.1 (One-Step Prediction). The best linear estimate X̂k+1|k is given by

X̂k+1|k = FX̂k|k−1 +Θk∆
−1
k (Yk −GX̂k|k−1),

where ∆k = GΩk|k−1G
⊤ +Ση and Θk = FΩk|k−1G

⊤ for k > 0.

26 OTTO REED

Proof. By our assumptions of the model, the observation noise ηk is independent from the observa-
tions Y0, . . . , Yk−1. Thus,

Ek−1(Yk) = Ek−1(GXk + ηk)

= Ek−1(GXk) + Ek−1(ηk)(linearity)

= Ek−1(GXk)(Ek−1(ηk) = 0)

= GEk−1(Xk) = GX̂k|k−1(linearity)

=⇒ Ik = GXk + ηk −GX̂k|k−1 = G(Xk − X̂k|k−1) + ηk.

Since we also assume ηk and the signal Xk are independent, it follows that ηk is independent from
the estimation X̂k|k−1, which is a linear function of Xk and the observations Y0:n−1. Thus, ηk is also

independent from G(Xk − X̂k|k−1), so the covariance matrix ΣIk of the innovation Ik is the sum of

the covariance matrices for the error Xk − X̂k|k−1 and ηk:

ΣIk = ΣXk−X̂k|k−1
+Σηk

= E[(G(Xk − X̂k|k−1)−E[G(Xk − X̂k|k−1)])(G(Xk − X̂k|k−1)−E[G(Xk − X̂k|k−1)])
⊤] + Ση

(Ση is time homogeneous)

= GE[(Xk − X̂k|k−1)(Xk − X̂k|k−1)
⊤]G⊤ +Ση

(E[Xk − X̂k|k−1] = 0)

= GΩk|k−1G
⊤ +Ση.

Furthermore, since the span of the observations Y0, . . . , Yk is equal to the span of the observations
Y0, . . . , Yk−1 and the innovation Ik,

X̂k+1|k = Ek(Xk+1) = Ek−1(Xk+1) +E[Xk+1|Ik].

Define X̃k+1 = E[Xk+1|Ik]. Since E[Xk+1|Ik] is a linear function of Ik, X̃k+1 = AIk for some matrix
A. Recall that E[Xk+1|Ik] can be interpreted geometrically as the orthogonal projection of Xk+1

onto the span of Ik, so Xk+1 − X̃k+1 is orthogonal to Ik. Hence,

E[Xk+1 − X̃k+1]I
⊤
k = E[⟨(Xk+1 − X̃k+1), Ik⟩] = 0.

Furthermore, Xk+1 − X̃k+1 = Xk+1 −AIk. We wish to solve for A, so we have

0 = E[Xk+1 −AIk]I
⊤
k = E[Xk+1I

⊤
k]−E[AIkI

⊤
k]

=⇒ E[Xk+1I
⊤
k] = AE[IkI

⊤
k].(linearity)

Note that since the innovation is mean zero,

ΣIk = E[(Ik −E[Ik])(Ik −E[Ik])
⊤] = E[IkI

⊤
k] =⇒ A = E[Xk+1I

⊤
k]Σ−1

Ik
,

where ΣIk is invertible by the nondegeneracy assumption. Hence,

X̃k+1 = E[Xk+1I
⊤
k]Σ−1

Ik

=⇒ X̂k+1|k = Ek−1(FX + ξk+1) +E[Xk+1I
⊤
k]Σ−1

Ik
Ik

= FEk−1(Xk) + Ek−1(ξk+1) +E[Xk+1I
⊤
k]ΣIkIk(linearity)

= FX̂k|k−1 +E[Xk+1I
⊤
k]Σ−1

Ik
Ik.(ξk+1 is independent from Y1:n−1)

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 27

Furthermore,
E[Xk+1I

⊤
k] = E[(FXk + ξk+1)((Xk − X̂k|k−1)

⊤G⊤ + ξ⊤k)].

Since ξk+1 is independent from Xk, X̂k|k−1, and ηk, the expectation of ξk+1(Xk − X̂k|k−1) and

ξk+1η
⊤
k vanishes. Additionally, note that E[X̂k|k−1(Xk − X̂k|k−1)

⊤] = 0. Together, these facts give
us

E[(FXk + ξk+1)((Xk − X̂k|k−1)
⊤G⊤ + ξ⊤k)] = E[FXk(Xk − X̂k|k−1)G

⊤]

= FE[(Xk − X̂k|k−1)(Xk − X̂k|k−1)
⊤]G⊤

= FΩk|k−1G
⊤.

Therefore,

X̂k+1|k = FX̂k|k−1+FΩk|k−1G
⊤Σ−1

Ik
Ik = FX̂k|k−1+Θk∆

−1
k Ik = FX̂k|k−1+Θk∆

−1
k (Yk−GX̂k|k−1),

as desired. □

Remark. The matrix Θk∆
−1
k is often called the Kalman gain matrix, since it scales the contribution

of the innovation Ik to the estimate X̂k+1|k. We will see the power of this matrix later when we
explore an application of Kalman filtering. Additionally, note that ∆k is the covariance matrix of
Ik.

Since the Kalman gain matrix contains the quadratic error Ωk|k−1, we cannot compute the one-

step prediction X̂k+1|k without finding a corresponding recursive update for Ωk|k−1 as well. The
following theorem is just that.

Theorem 5.1.2 (One-Step Error Prediction). The quadratic error Ωk+1|k can be updated according
to

Ωk+1|k = FΩk|k−1F
⊤ +Σξ +Θk∆

−1
k Θ⊤

k

for k > 0.

Proof. By definition,

Ωk+1|k = E[(Xk+1 − X̂k+1|k)(Xk+1 − X̂k+1|k)
⊤]

= E[Xk+1X
⊤
k+1]−E[Xk+1X̂

⊤
k+1|k]−E[X̂k+1|kXk+1] +E[X̂k+1|kX̂

⊤
k+1|k],

by linearity. However, note that

E[Xk+1X̂
⊤
k+1|k] = E[X̂k+1|kX

⊤
k+1] = E[X̂k+1|kX̂

⊤
k+1|k],

so

Ωk+1|k = E[Xk+1X
⊤
k+1]−E[X̂k+1|kX̂

⊤
k+1|k]

= E[(FXk + ξk+1)(FXk + ξk+1)
⊤]−E[(FX̂k+1|k +Θk∆

−1
n In)(FX̂k+1|k +Θk∆

−1
n In)

⊤]

(ξk+1 and Xk are independent)

= FE[XkX
⊤
k]F⊤ +E[ξk+1ξ

⊤
k+1]− FE[X̂k|k−1X̂

⊤
k|k−1]F

⊤ +Θk∆
−1
k E[IkI

⊤
k]∆−1

k Θ⊤
k

(X̂k|k−1 is orthogonal to Ik)

= F (E[XkX
⊤
k]−E[X̂k|k−1X̂k|k−1])F

⊤ − Σξ +Θk∆
−1
k Θ−1

k

(Σξ is time homogenous, ∆k is symmetric, and ΣIk = ∆k)

= FΩk|k−1F
⊤ +Σξ +Θk∆

−1
k Θ⊤,

as desired. □

28 OTTO REED

We now have all the tools we need to derive the Kalman filter, i.e., the recursion for (X̂k,Ωk)k≥0.
Recall from Theorem 3.5.1 that the filtering recursion can be interpreted as a two-step procedure:
compute the one-step prediction X̂k|k−1 and then perform a correction to obtain the filter X̂k.

Fortunately, in finding the recursion for the one-step predictor X̂k|k−1 and error Ωk|k−1, we have

done most of the heavy lifting in finding the filter X̂k. All that remains is to add a correction term
to the result of Theorem 5.1.1, which comes in the form of the error covariance matrix Ωk|k−1.

Theorem 5.1.3 (Linear Gaussian Filtering Recursion). The filter X̂k, k ≥ 0, is given by

X̂k = X̂k|k−1 +Ωk|k−1G
⊤∆−1

k (Yk −GX̂k|k−1).

Proof. Repeating the same innovation argument used to derive the one-step predictor, we have

X̂k = Ek(Xk) = Ek−1(Xk) +E[Xk|Ik]

= X̂k|k−1 +E[XkI
⊤
k]E[IkI

⊤
k]−1Ik

= X̂k|k−1 +E[XkI
⊤
k]Σ−1

Ik
Ik

= X̂k|k−1 +E[Xk(G(Xk − X̂k|k−1) + ξk)
⊤]∆−1

k Ik

= X̂k|k−1 +Ωk|k−1G
⊤∆−1

k Ik

= X̂k|k−1 +Ωk|k−1G
⊤∆−1

k (Yk −GX̂k|k−1),

as desired. □

Just as the derivation for the filtering recursion follows in the footsteps of the the one-step
predictor, the derivation of the filtering covariance matrix Ωk follows in the spirit of the one-step
error prediction (Theorem 5.1.2).

Theorem 5.1.4 (Filtering Error Recursion). The covariance matrix Ωk = Ωk|k, k > 0 for the filter

X̂k is given by

Ωk = Ωk|k−1 − Ωk|k−1G
⊤∆−1

k GΩ⊤
k|k−1.

Proof. Following the same argument as before, we have

Ωk = E[(Xk − X̂k)(Xk − X̂k)
⊤]

= E[XkX
⊤
k]E[X̂kX̂

⊤
k]

= E[XkX
⊤
k]−E[(X̂k|k−1 +Ωk|k−1G

⊤∆−1
k Ik)(X̂k|k−1 +Ωk|k−1G

⊤∆−1
k Ik)

⊤](Theorem 5.1.3)

= E[XkX
⊤
k − X̂k|k−1X̂

⊤
k|k−1]− Ωk|k−1G

⊤∆−1
k E[IkI

⊤
k]∆−1

k GΩ⊤
k|k−1

= Ωk|k−1 − Ωk|k−1G
⊤∆−1

k GΩ⊤
k|k−1,

as desired. □

Now that we have derived the recursion for the Kalman filter, we can explore a beautiful and
valuable application: generalizing linear models as state space models.

5.2. Kalman Filtering in Multiple Linear Regression. To say that linear models are ubiqui-
tous in statistical literature would be a vast understatement. The widespread use of linear models
is easily explained by their simpicity to implement and incredible power. In this section we consider
a standard linear model

yk = Zkβ + ϵk,

RECURSIVE ESTIMATION IN HIDDEN MARKOV MODELS 29

where ϵk, k ≥ 0 is white noise in the same sense as before, Zk = (z1,k, . . . , zd,k) is a d = p+ 1-
dimensional vector of explanatory variables (the expected causes, e.g., smoking, eating grapefruit,
being under the age of 20, etc.), and β = (β1, . . . , βd)

⊤ is a d-dimensional time homogeneous
vector of unknown parameters (variable features of a family of functions, e.g., slope or y-intercept).

The goal of linear models is to perform regression, i.e., compute the estimate β̂ of the vector of
parameters β that minimizes a given loss function H(y,Zβ). We wish to perform least squares
regression, in which case our loss function is

E[(y −Zβ)2],

as the name implies. This is precisely the estimation problem that we dealt with in deriving results
for estimation in the linear Gaussian setting, so it seems reasonable to attempt to recast this linear
model as a state space model and apply the Kalman filter. The key to accomplishing this task is
to set the signal Xk = β for k ≥ 0, which gives us the remarkably simple signal state equation
Xk = Xk−1, k > 0. Hence, the state matrix Fk is time homogeneous and given by F = Id×d (the
d × d identity matrix) and the signal noise is zero. To complete our rewriting of the linear model,
we set the observation matrix Gk = Zk and the observation noise ηk = ϵk for k ≥ 0, in agreement
with (5.1). To summarize, our state space is given by

Xk = Xk−1 Yk = ZkXk + ϵk.(5.3)

The Kalman gain matrix Kk = Θk∆
−1
k is now given by

Kk = (FΩk|k−1G
⊤
k)(GkΩk|k−1G

⊤
k +Ση)

1̄ = (Ωk|k−1Z
⊤
k)(ZkΩk|k−1Z

⊤
k)−1.

We further define β̂k = X̂k|k as the least squares estimate of βk = β given the observations
(z1, y1), . . . , (zk, yk). Applying the Kalman filter (Theorem 5.1.3), we obtain a recursive expression

for computing the least squares estimate β̂k+1, k ≥ 0 from the estimate β̂k and the new observation
(zk+1, yk+1):

β̂k+1 = X̂k+1|k +Ωk+1|kG
⊤
k+1∆

−1
k+1(Yk+1 −Gk+1X̂k+1|k)

= β̂k +Ωk+1|kZ
⊤
k+1(Zk+1Ωk+1|kZ

⊤
k+1)

−1(Yk+1 −Zk+1β̂k)

= β̂k +Kk+1(Yk+1 −Zk+1β̂k).(5.4)

Note that β̂k = X̂k+1|k in the second equality since β is time homogeneous. Furthermore, since the
observations matrix G now have a time dependence, we have used Gk+1 in the first line–revisiting
Theorem 5.1.3, it is clear that the result still holds. The corresponding recursion for the covariance
of the estimate is given by

Ωk+1 = Ωk|k−1 − Ωk|k−1G
⊤
k+1∆

−1
k+1Gk+1Ω

⊤
k|k−1

= Ωk|k−1 − Ωk|k−1Z
⊤
k+1(Zk+1Ωk+1|kZ

⊤
k+1)

−1Zk+1Ω
⊤
k|k−1

= (Id×d −Kk+1Zk+1)Ωk|k−1.(5.5)

Acknowledgements

Two months before I wrote this paper, I did not so much as know what a stochastic process
was; with the help of my mentor Mark Cerenzia, I was able to study the theory of Markov chains
and hidden Markov models at a level far beyond what I could have hoped for. I am grateful to
Mark for his continuous support and guidance and to Professor Peter May for organizing the REU
program which provided me with an invaluable opportunity to continue my math research journey.

30 OTTO REED

I would also like to thank Robert Tunney, with whom I began this journey in my high school
years, Professor Beniada Shabani for reigniting my passion for math this year, and lastly Warren
Fernandes for encouraging me to always strive for greater challenges.

References

[1] Oliver Cappé, Eric Moulines, and Tobias Rydén. Inference in Hidden Markov Models. Springer Series in Statistics.
Springer, New York, 2005.

[2] René Carmona. Statistical Analysis of Financial Data in R. Springer Texts in Statistics. Springer, New York, 2013.
[3] Charles J. Geyer. Lecture Notes for Stat 8112 - Markov Chains. https://www.stat.umn.edu/geyer/8112/notes/

markov.pdf, April 2012.
[4] JoramSoch. The Book of Statistical Proofs, Proof 88: conditional distributions of the multivariate normal distri-

bution. https://statproofbook.github.io/P/mvn-cond, March 2020.
[5] Zakhar Kabluchko. Lecture Notes for Stochastic Processes (Stochastik II). https://www.uni-ulm.de/fileadmin/

website_uni_ulm/mawi.inst.110/lehre/ws13/Stochastik_II/Skript_Stochastik_II.pdf, April 2014.
[6] Steve Lalley. Background Reading for Statistics 305 - Brownian Motion and Stochastic Calculus. https://galton.

uchicago.edu/~lalley/Courses/385/ConditionalExpectation.pdf, September 2016.
[7] Cosma Shalizi. Lecture Notes for Stat 36-754 - Stochastic Processes (Advanced Probability II) Chapter 2. https:

//www.stat.cmu.edu/~cshalizi/754/notes/lecture-02.pdf, January 2007.
[8] Ramon van Handel. Lecture Notes for ORF 557 - Hidden Markov Models. https://web.math.princeton.edu/

~rvan/orf557/hmm080728.pdf, July 2008.
[9] Daniel Yew Mao Lim. Lecture Notes for API-208 - Program Evaluation: Estimating Program Effectiveness with

Empirical Analysis. https://scholar.harvard.edu/files/danielyewmaolim/files/api-208section1.pdf, Feb-
ruary 2013.

https://www.stat.umn.edu/geyer/8112/notes/markov.pdf
https://www.stat.umn.edu/geyer/8112/notes/markov.pdf
https://statproofbook.github.io/P/mvn-cond
https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/ws13/Stochastik_II/Skript_Stochastik_II.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/ws13/Stochastik_II/Skript_Stochastik_II.pdf
https://galton.uchicago.edu/~lalley/Courses/385/ConditionalExpectation.pdf
https://galton.uchicago.edu/~lalley/Courses/385/ConditionalExpectation.pdf
https://www.stat.cmu.edu/~cshalizi/754/notes/lecture-02.pdf
https://www.stat.cmu.edu/~cshalizi/754/notes/lecture-02.pdf
https://web.math.princeton.edu/~rvan/orf557/hmm080728.pdf
https://web.math.princeton.edu/~rvan/orf557/hmm080728.pdf
https://scholar.harvard.edu/files/danielyewmaolim/files/api-208section1.pdf

	1. Introduction
	2. Foundations of Hidden Markov Models
	2.1. Markov Processes
	2.2. Hidden Markov Models
	2.3. Nondegeneracy
	2.4. Two Essential Questions

	3. Filtering, Smoothing, and Prediction
	3.1. Estimation
	3.2. Conditional Distributions
	3.3. Filtering
	3.4. Smoothing
	3.5. Prediction

	4. Finite State Space Models
	4.1. Finite State Filtering, Smoothing, and Prediction
	4.2. The Forward-Backward Algorithm
	4.3. The Viterbi Algorithm

	5. Linear Gaussian State Space Models
	5.1. One-Step Prediction and Kalman Filtering
	5.2. Kalman Filtering in Multiple Linear Regression

	Acknowledgements
	References

