
FRACTAL INTERSECTIONS AND PRODUCTS VIA

TRADITIONAL AND ALGORITHMIC METHODS

JINGWEI (ARIANA) QIN

Abstract. Bounds on classical Hausdorff dimension can be proven through

traditional methods in geometric measure theory or through algorithmic di-
mension. Regarding the latter approach, for a point, the algorithmic dimension

describes its information density, defined through Kolmogorov complexity. The

point-to-set principle relates the Hausdorff dimension of a set to the algorith-
mic dimension of the points in the set. This allows bounding of set dimension,

a global property, through point dimension, a local property. The algorithmic

method extends results from Borel sets (as in traditional proofs) to arbitrary
sets. This paper applies methods in both geometric measure theory and algo-

rithmic to derive bounds for dimension of fractal intersections and Cartesian

products in Euclidean spaces.

Contents

1. Introduction 1
2. Fractal dimension of sets 2
2.1. Hausdorff dimension 2
2.2. Packing dimension 2
3. Algorithmic dimension of points 3
3.1. Preliminaries: Communication 3
3.2. Preliminaries: Computable function 4
3.3. Kolmogorov complexity 4
3.4. Algorithmic dimension 5
3.5. Conditional Dimension 6
3.6. Relative dimension and oracle 7
4. Point-to-set principle 7
5. Bounding fractal intersections and products 8
5.1. Bounding fractal intersection 8
5.2. Fractal product inequalities 11
Acknowledgments 14
References 14

1. Introduction

One of the central goals in classical geometric measure theory is to rigorously de-
fine dimension and measure the dimension of fractal sets. In 1918, Felix Hausdorff
introduced the Hausdorff dimension [1]. Yet, in general, calculating and bounding

Date: September 1st, 2023.

1

2 JINGWEI (ARIANA) QIN

fractal dimension remain difficult and the search for relevant techniques continues.
The development of a seemingly unrelated field, complexity theory, offers a new
perspective on proofs regarding fractal dimensions. In the mid 1960s, Kolmogorov
algorithmic complexity was invented to quantify the amount of information in indi-
vidual data objects [2]. By adopting the algorithmic perspective, results previously
restricted to Borel sets can be extended to arbitrary sets.

This paper contrasts the algorithmic perspective with the traditional methods.
Section 2 reviews the definition of the Hausdorff dimension and packing dimension.
Section 3 covers the definition of Kolmogorov complexity, allowing us to understand
algorithmic dimension of point objects. Section 4 looks at the point-to-set princi-
ple, the bridge between point-wise algorithmic dimension and set-wise dimension.
Section 5 introduces two theorems that bound the intersection and product of frac-
tal sets. For each theorem, we offer a traditional proof and an algorithmic proof,
illuminating the difference between the two approaches.

2. Fractal dimension of sets

This section introduces Hausdorff dimension and packing dimension, two clas-
sical concepts in fractal dimension. We may construct proofs directly from the
definitions, but the task is difficult. In the following sections, we introduce equiva-
lent algorithmic characterizations.

2.1. Hausdorff dimension. [3] First, we define the Hausdorff dimension. The
Hausdorff dimension is constructed through first defining an s-dimensional Haus-
dorff measure. The s-dimensional Hausdorff measure is an outer measure.

Definition 2.1. For E ⊆ Rn, let Uδ(E) be the collection of all countable covers of
E by sets of positive diameter at most δ. For all s ≥ 0, let

Hs
δ (E) = inf

{∑
i∈N

diam (Ui)
s
: {Ui}i∈N ∈ Uδ(E)

}
.

The s-dimensional Hausdorff (outer) measure of E is

Hs(E) = lim
δ→0+

Hs
δ (E),

The Hausdorff dimension of E is

dimH(E) = inf {s > 0 : Hs(E) = 0} .

Remark 2.2. Notice that for all s > dimH(E), Hs(E) = 0.

2.2. Packing dimension. [3] In addition to the Hausdorff dimension, the theo-
rems in Section 5 also concerns with packing dimension.

Definition 2.3. For all x ∈ Rn and ρ > 0, let Bρ(x) denote the open ball of radius
ρ and center x. For all E ⊆ Rn, let Vδ(E) be the class of all countable collections
of pairwise disjoint open balls with centers in E and diameters at most δ. That is,
for every i ∈ N, we have Vi = Bρi (xi) for some xi ∈ E and ρi ∈ [0, δ/2], and for
every j ̸= i, Vi ∩ Vj = ∅. For all s ≥ 0, define

P s
δ (E) = sup

{∑
i∈N

diam (Vi)
s
: {Vi}i∈N ∈ Vδ(E)

}
,

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS3

and let

P s
0 (E) = lim

δ→0+
P s
δ (E).

The s-dimensional packing (outer) measure of E is

P s(E) = inf

{∑
i∈N

P s
0 (Ei) : E ⊆

⋃
i∈N

Ei

}
and the packing dimension of E is

dimP(E) = inf {s : P s(E) = 0} .

Remark 2.4. The packing dimension and the Hausdorff dimension are similar in
that they involve two steps: first, defining the s-dimensional outer measure; then,
the dimension is the infimum of s such that the s-dimensional outer measure is
zero.

However, constructing the s-dimensional packing measure requires one more
step, where a premeasure is explicitly defined. In generating s-dimensional Haus-
dorff measure, the premeasure µ0 is defined implicitly:

µ0 = diam(Ui)
s.

In generating s-dimensional packing measure, the premeasure µ0 is defined ex-
plicitly:

µ0 = P s
0 .

(From the premeasures, the outer measure µs is generated:

µs(E) = inf{
∑
i∈N

µ0(Ei) : E ⊆
⋃
i∈N

Ei}.)

Why is there this difference between the two measures? Hausdorff measure is
generated through covers, while the packing measure is created by fitting disjoint
balls. Hence, in generating packing measure, there is an additional step to extend
the premeasure to outer measure through covers. (The difference is clear on the
surface too: limδ→0+ Hs

δ is a measure, limδ→0+ P s
δ is a premeasure.)

3. Algorithmic dimension of points

The goal of this section is to introduce point-wise algorithmic dimension, both
in terms of intuition and rigorous formulation. This serves as preparation for un-
derstanding set-wise fractal dimension from an algorithmic perspective.

Section 3.1 and 3.2 introduce some background and concepts in complexity the-
ory and computability theory that help us understand algorithmic dimension.

3.1. Preliminaries: Communication. To understand the proceeding section on
algorithm complexity, it is helpful to first familiarize ourselves with the scenario of
communication [2].

Imagine the following scenario of communication: Sender (A) wants to com-
municate some information, say an element x ∈ X, to receiver (B). A encodes the
information as a binary string, known as the message. Upon receiving this message,
B wants to decode the message and reconstruct the element x.

This process of communication requires an agreed coding/description method
beforehand, namely a mapping between source words and code words known to

4 JINGWEI (ARIANA) QIN

both A and B. This mapping is the decoding function D : {0, 1}∗ → X, where
{0, 1}∗ is the set of binary codes, namely the set of finite strings over {0, 1}. The
domain of the function is the source words and the range of the function is the code
words.

Hence, the inverse of D can be seen as the encoding E of the function:

E := D−1, whereD−1(x) = {y : D(y) = x}

although E is not necessarily a function, namely that there might be multiple ways
of encoding the source code.

One issue emerges: we cannot uniquely recover source words x and y from their
encoding E(xy). To illustrate, for example, if E is the identity mapping, then
E(00)E(00) = 0000 = E(0)(000). To resolve this issue, we introduce prefix codes.

Definition 3.1. [2] A binary string x is a proper prefix of a binary string y if we
can write y = xz for z ̸= ϵ where ϵ is the empty word.

A set x, y, ... ⊆ {0, 1}∗ is prefix-free is for any pair of distinct elements in the set
neither is a proper prefix of the other.

A function D : {0, 1}∗ → X is a prefix-code if its domain is prefix free.

All prefix codes are uniquely decodable, namely that the source words can be
uniquely reconstructed from the encoding. This is because we can decode the
message word by word. There is no ambiguity of when a previous word ends and
when the next word begins, since no code word is the prefix of another code word.
In the next section discussing Kolmogorov complexity, we require the encoding to
be prefix-free.

3.2. Preliminaries: Computable function. This section introduces the concept
of computable functions. In later sections, we will limit our concern to computable
functions. Informally, a function is computable if there exists a Turing machine
that executes this function. (For readers who are unfamiliar, a Turing machine can
be thought of as an algorithm written in a general purpose language.)

Definition 3.2. [2] A function f : N → N is computable if there exists a Turing
Machine T that implements f . This means that for all input x, T outputs f(x)
and halts.

Definition 3.3. [2] We call a given function f : N → R computable if there exists
a Turing machine that, when input < x, y > with x ∈ N and y ∈ N, outputs f(x)
to precision 1/y. In other words, the Turing machine outputs a pair < p, q > such
that |p/q − |f(x)|| < 1/y, and an additional bit to indicate whether f(x) is larger
or smaller than 0.

3.3. Kolmogorov complexity. Complexity theory studies the amount of resources
(time and storage) required to solve different kinds of problems. The theory of Kol-
mogorov complexity is concerned with understanding the computational resources
needed to specify an object, such as a piece of string. Kolmogorov complexity is
also known as algorithmic complexity because here the computational resource is
studied as the length of the shortest algorithm that generates the object.

Definition 3.4. [4] The (prefix-free) conditional Kolmogorov complexity K(σ|τ) of
a string σ ∈ {0, 1}∗ given another string τ ∈ {0, 1}∗ is the length of the shortest

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS5

binary program that outputs σ when given τ as an input.

K(σ|τ) = min
π∈{0,1}∗

{|π| : U(π, τ) = σ}

where U is a fixed universal Turing machine that is prefix-free in its first input and
|π| denotes the length of the binary program π.

Definition 3.5. The Kolmogorov complexity of σ ∈ {0, 1}∗ is conditional Kol-
mogorov complexity of σ ∈ {0, 1}∗ given λ, where λ is the empty string:

K(σ) = K(σ|λ)

We introduce the chain rule of Kolmogorov complexity, which decomposes the
complexity of a long string into two shorter constituent strings through conditional
complexity. The right hand side of the equation describes a process where τ is first
produced, and then σ is produced given τ .

Lemma 3.6. [5] For all σ, τ ∈ {0, 1}∗,
K(στ) = K(σ|τ) +K(τ) +O(log|στ |)

3.4. Algorithmic dimension. The algorithmic dimension is closely related to
the information density of a point, which requires us to define the Kolmogorov
complexity at a precision.

Definition 3.7. For x ∈ Rn and r ∈ N, the Kolmogorov complexity of x at
precision r is

Kr(x) = min{K(q) : q ∈ Qn ∩B2−r (x)}

In other words, the Kolmogorov complexity of x at precision r gives a rational
point that is in the 2−r neighborhood of x. The base of the power is 2 because the
string is binary.

Definition 3.8. Kr(x)
r is the algorithmic information density of x at precision r.

The limits of algorithmic information density are used to define algorithmic
dimensions.

Definition 3.9. 1. The lower algorithmic dimension of x is

dim(x) = lim inf
r→∞

Kr(x)

r

2. The upper algorithmic dimension of x is

Dim(x) = lim sup
r→∞

Kr(x)

r

One established result is that these dimensions are preserved by well-behaved
functions (bi-Lipschitz computable functions).

Definition 3.10. A function f : U → Rm, U ∈ Rn is bi-Liptchitz if it is Lipchitz,
injective and its inverse function is also Lipchitz.

In other words, the function is bi-Lipchitz if there exists a constant K ≥ 1 such
that for all x1, x2 ∈ U ,

1

K
|x1 − x2| ≤ |f(x1)− f(x2)| ≤ K|x1 − x2|

.

6 JINGWEI (ARIANA) QIN

Lemma 3.11. If f : Rm → Rn is computable and bi-Lipschitz, then dim(x) =
dim(f(x)) and Dim(x) = Dim(f(x)) for all x ∈ Rm.

An example implication is that dim(x, x− z) = dim(x, z) for x, z ∈ Rn because
the mapping f : (x, x − z) → (x, z) is bi-lipchitz and computable. This result will
be directly used in bounding product sets.

3.5. Conditional Dimension. Recall we have previously introduced the concept
of conditional Kolmogorov complexity. Now, we introduce conditional Kolmogorov
complexity at a precision. This is defined via two steps.

Definition 3.12. For x ∈ Rm and q ∈ Qn and r ∈ N, the conditional Kolmogorov
complexity of x at precision r given q is

K̂r(x|q) = min{K(p|q) : p ∈ Qn ∩B2−r (x)}

In other words, K̂r(x|q) gives the Kolmogorov complexity of the point in the
neighborhood of x that can be most easily described when given the q ∈ Q. This
can be seen as a minimizing process. The second step is a maximizing process that
seeks the least helpful rational point in a neighborhood of a real point.

Definition 3.13. For x ∈ Rm and y ∈ Rn and r, s ∈ N, the conditional Kolmogorov
complexity of x at precision r given y at precision s is

Kr,s(x|y) = max{K̂r(x|q) : q ∈ Qn ∩B2−s(y)}

Combining the two steps, we looked at the rational point in the neighborhood of
y that gives the least information about some rational point in the neighborhood
of x.

Finally, we introduce a notation.

Notation 3.14. Let Kr(x|y) denote Kr,r(x|y).

Defining the conditional Kolmogorov complexity allows us to define the condi-
tional dimension of points.

Definition 3.15. Let x ∈ Rm and y ∈ Rn. The lower and upper conditional
dimensions of x given y are

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

and

Dim(x|y) = lim sup
r→∞

Kr(x|y)
r

Now, we introduce the chain rule for conditional dimension, which links the
dimension of a tuple of points to the dimension of its constituents points via con-
ditional dimension. This theorem results from Lemma 3.6.

Theorem 3.16. (Chain rule for conditional dimension) For all x ∈ Rm and y ∈
Rn,

dim(x|y) + dim(y) ≤ dim(x, y)

≤ Dim(x|y) + dim(y)

≤ Dim(x, y)

≤ Dim(x) +Dim(x|y)

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS7

3.6. Relative dimension and oracle. The concept of relativization (through an
oracle) closely resembles the concept of conditioning. In conditioning, say Kr(x|y),
the Turing machine has access to finite information – a finite amount of digits
that resembles y (bounded-precision access). In relativization, the Turing machine
is given access to an oracle A ⊆ N, which gives countably infinite information
(arbitrary access).

For example, we might define an oracle Ay ∈ N that gives the information of
y ∈ Rn to arbitrary precision. Consider the binary expansion of y, ẏ, which is a
sequence of {0, 1}. We let i ∈ Ay iff the ith digit of ẏ is 1. This way, the oracle Ay

encodes the countable information of y.
We can hence define the complexity and dimension of points relative to an oracle

A. The definition ofKA(σ),KA(σ|τ),KA
r (x),KA

r (x|y), dimA(x), DimA(x), dimA(x|y)
and DimA(x|y) are the same as their unrelativized counterpart, except that the
Turing machine U can access A.

Now, we introduce an established lemma that describes the relationship between
relativization and conditioning in terms of Kolmogorov complexity and dimension.

Lemma 3.17. [3] If x ∈ Rm, y ∈ Rn and r ∈ N, then Ky
r (x) ≤ Kr(x|y)+O(logn),

and therefore dimy(x) ≤ dim(x|y) and Dimy(x) ≤ Dim(x|y).

This lemma intuitively makes sense. If we are given countably infinite informa-
tion of y in the oracle, one possible program is to access y up to a bounded precision
r and ignore y beyond this precision. The Kolmogorov complexity to access the
y up to precision r is Kr(x|y) and the complexity of the instruction to ignore is
O(logn). This gives an upper bound of Ky

r (x), since it is the length of the shortest
program with arbitrary access to y. Dividing by r and taking lim inf

r→∞
and lim sup

r→∞
, we

get the conclusion regarding lower and upper algorithmic dimension respectively.
We can generalize this intuition to other applications too. Since given more

information cannot increase the dimension, adding oracles and conditioning to a
point cannot increase its dimension. This is a useful technique used in proofs in
Section 5.

4. Point-to-set principle

Proving bounds on fractal intersections and products using algorithmic dimen-
sion can be seen as a process of concluding set-wise results from point-wise knowl-
edge. Hence, we need a theorem that connects dimension of sets to dimension of
its constituent points. This is given by the point-to-set principle.

Theorem 4.1. (Point-to-set principle) [3] For every E ⊆ Rn, the Hausdorff and
Packing dimension of E are

1.dimH(E) = min
A⊆N

sup
x∈E

dimA(x)

2.dimP (E) = min
A⊆N

sup
x∈E

DimA(x)

In other words, the dimension of E is determined by the point in E with the
largest algorithmic dimension under relativization.

The point-to-set principle can be applied as the following collorary:

Corollary 4.2. 1. There exists an oracle A s.t. dimH(E) = supx∈E dimA(x)

8 JINGWEI (ARIANA) QIN

2. For every A ⊆ N and every ϵ > 0, there is a point x ∈ E such that dimA(x) >
dimH(E)− ϵ.

3. There exists an oracle A s.t. dimP (E) = supx∈E DimA(x)
4. For every A ⊆ N and every ϵ > 0, there is a point x ∈ E such that DimA(x) >

dimP (E)− ϵ.

Corollary 4.2.1 and 4.2.3 hold because the theorem is over the minimum of all
oracles, not just the infimum. Corollary 4.2.2 and 4.2.4 hold by the approximation
characterization of supremum.

These corollaries are helpful because they allow us to apply known point-wise
theorems in proving set-wise results. Corollary 4.2.1 and 4.2.3 allows us to work
with points rather than sets, where we can apply known results of algorithmic
dimension of points. After getting the desired results with points, Corollary 4.2.2
and 4.2.4 allows us to convert these point-wise results set-wise. This process can
be seen in the proofs in Section 5.

5. Bounding fractal intersections and products

5.1. Bounding fractal intersection. In this section, we bound the dimension
of fractal intersection with two methods. We first prove the inequality for Borel
sets using traditional methods from geometric measure theory. Then, we prove the
theorem for arbitrary sets through an algorithmic perspective.

5.1.1. Geometric measure theoretic method.

Theorem 5.1. [1] If E, F are Borel subsets of Rn then,

dimH(E ∩ (F + x)) ≤ max{0, dimH(E × F)− n}
for almost all x ∈ Rn

The intuition for the theorem is that, for a set of x of measure zero, E and F +x
would not intersect at all. When they do intersect, they intersect at a dimension
max{0, dimH(E × F) − n}. For example, consider two planes in R3. For a set of
measure 0, namely when they are parallel, the sets do not intersect. When they do
intersect, they form a line. The dimension is 1, which is equal to dimH(E×F)−3.

For simplicity, we limit our proof to E,F ⊂ R. But the proof can be generalized
to higher dimensions.

First, we prove a lemma relating the dimension of a set to the total dimensions of
its parallel sections. We work in the (x, y) plane and let Lx denote the line parallel
to the y-axis through (x, 0).

Lemma 5.2. Let F be a Borel subset of R2. If 1 ≤ s ≤ 2 then,∫ ∞

−∞
Hs−1(F ∩ Lx)dx ≤ Hs(F)

Proof: Given ϵ > 0, let {Ui} be a δ-cover of F such that∑
i

|Ui|s ≤ Hs
δ (F) + ϵ

We know such a cover exists because the Hs
δ is an infimum. Hence,

∑
i |Ui|s can

get arbitrarily close to it.
Each Ui is contained in a square Si of side-length |Ui| parallel to the coordinate

axes.

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS9

Let χi be the indicator function of Si. (In other words, χi(x, y) = 1 if (x, y) ∈ Si.
χi(x, y) = 0 if (x, y) /∈ Si.)

Since {Si} is also a cover of F , for each x, the sets {Si ∩ Lx} form a δ-cover of
F ∩ Lx. Hence,

Hs−1
δ (F ∩ Lx) ≤

∑
|Si ∩ Lx|s−1

=
∑

|Ui|s−2|Si ∩ Lx|(because|Ui| = |Si|at any vertical cross section)

=
∑
i

|Ui|s−2

∫
χi(x, y)dy

Hence, by integrating with respect to x,∫
Hs−1

δ (F ∩ Lx)dx ≤
∑
i

|Ui|s−2

∫ ∫
χi(x, y)dxdy

=
∑
i

|Ui|s

≤ Hs
δ (F) + ϵ

Since the choice of ϵ is arbitrary, we have∫
Hs−1

δ (F ∩ Lx)dx ≤ Hs
δ (F)

Taking δ → 0, we have the desired result. ■
This leads to the following lemma:

Lemma 5.3. Let F be a Borel subset of R2. Then, for L1-almost all x,

dimH(F ∩ Lx) ≤ max{0, dimH(F)− 1}.

Proof: Take s > dimH(F). Hence, Hs(F) = 0. By Lemma 5.2, Hs−1
δ (F ∩Lx) =

0 for Lebesgue almost all x. Hence, if s > 1, dimH(F ∩ Lx) ≤ s − 1 for Lebesgue
almost all x. ■

Now, we are ready to prove Theorem 5.1, by constructing a line and applying
Lemma 5.3:

Proof: We prove the theorem for when n = 1.
Let Lc be the line in the (x, y)-plane with the equation x = y + c. Assuming

dimH(E × F) > 1, we may apply Lemma 5.3:

(5.4) dimH((E × F) ∩ Lx) ≤ dim(E × F − 1)

(Although here the line in Lemma 5.3 is rotated by 45 degrees, the same principle
holds.)

Now, we show that dimH((E × F) ∩ Lx) = dimH(E ∩ (F + x)). If we see E
as points on the x-axis and F as points on the y-axis, then points in E × F lie on
the (x, y) plane. The projection of (E × F) ∩ Lx onto the x-axis is E ∩ (F + c).
Intuitively, the process of constructing the former can be thought of as projecting E
and F both onto Lx and measuring the dimension of their intersection. We get the
same dimension by projecting F onto Lc, then onto the x-axis and finally taking
the dimension of intersection with E. Hence, by constructing Lc and projecting
twice, we are able to shift F by c and take its intersection with E. It follows from
(5.4) that our desired result holds.

10 JINGWEI (ARIANA) QIN

We proved the theorem for when n = 1 and the proof for higher dimensions
is similar, using an higher-dimensional analogue for Lemma 5.3 resulting from an
analogue for Lemma 5.2. ■

5.1.2. Algorithmic method. In this section, we extend the bound on fractal inter-
section to arbitrary sets.

Theorem 5.5. [4] If E, F are arbitrary subsets of Rn then,

dimH(E ∩ (F + x)) ≤ max{0, dimH(E × F)− n}

for almost all x ∈ Rn.

Beforehand, we prove a relevant lemma.

Lemma 5.6. Let A be an oracle and s ∈ N. Let E = {z ∈ Rn : dimA(z) < s}.
Then Hs(E) = 0.

Proof: Let

Ei = {x : dimA(x) < s− 1

i
}

Then, E =
⋃∞

i=1 Ei. We show that Hs(Ei) = 0 for all i. (Hence, Hs of the
countable union would also be 0.)

For an arbitrary i, consider x ∈ Ei. Since dim
A(x) ≤ s− 1

i , we know KA
r (x) ≤ k,

where k = r(s− 1
i), for selected large r. There exists a program π whose length is

less than k. There are 2k many such binary programs.
For a point x0 ∈ Ei, consider its neighborhood B2−r (x0). All points y ∈

B2−r (x0) ∩ Ei are generated by the same program to precision r, since the first
r digits of all these points coincide.

We can construct a cover for Ei. We cover Ei with balls of radius 2−r. Each
ball corresponds to a program, so there are at-most 2k many balls.

Hence,

H
s− 1

i
−r (Ei) = 2−r(s− 1

i) · 2r(s− 1
i) = 1.

This implies Hs(Ei) = 0. We take countable union on Ei: H
s(E) = 0. ■

Lemma 5.7. Let E be as defined in Lemma 5.6. Then, Ln(E) = 0, where Ln is
the n-dimensional Lebesgue measure.

Proof: Because Ln(E) = Hn(E), we have Ln(E) = 0. ■
Now we are ready to prove Theorem 5.5. In proving the theorem, we first use

Corollary 4.2.1 to establish lower bound for dimH(E × F). This also allows us to
work with points rather than sets, where we can apply point-wise results such as
Lemma 3.11 and Lemma 3.17. Afterwards, we apply Corollary 4.2.2 to convert
point-wise result to the desired set-wise result.

Proof: Let E,F ⊆ Rn and z ∈ Rn. If E ∩ (F + z) = ∅, then the inequality holds
trivially as dimH(E ∩ F) = 0. Hence, we assume that E ∩ F is non-empty. We
apply Corollary 4.2.1: There exists an oracle A ⊆ N such that

dimH(E × F) = sup
(x,y)∈E×F

dimA(x, y)

Since E ∩ F is non-empty, there exists a point (x, x− z) ∈ E × F .

dimH(E × F) ≥ dimA(x, x− z)

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS11

By Lemma 3.11 on computable and bi-Lipchitz mapping,

dimA(x, x− z) = dimA(x, z)

By (3.16) in the chain rule for conditional dimension,

dimA(x, z) ≥ dimA(x|z) + dimA(z)

By Lemma 3.17,

dimA(x|z) + dimA(z) ≥ dimA,z(x) + dimA(z)

By Corollary 4.2.2,

dimA,z(x) + dimA(z) ≥ dimA(z) + dimH(E ∩ (F + z))− ϵ

Let ϵ → 0, we have

dimH(E ∩ (F + z)) ≤ dimH(E × F)− dimA(z)

Thus, Theorem 5.5 holds whenever dimA(z) = n. By Lemma 5.7, it holds for
Lebesgue almost all z. ■

The algorithmic approach allow us to quickly conclude the corresponding theo-
rem for packing dimension, since the proof is similar.

Theorem 5.8. For all E,F ⊆ Rn, and for (Lebesgue) almost all z ∈ Rn

dimP (E ∩ (F + z)) ≤ max{0, dimP (E × F − n)}
where F + z = {x+ z : x ∈ F}

In the proof, we apply Corollary 4.2.3, Lemma 3.11 on bi-Lipchitz and com-
putable mapping, (3.16) in the chain rule for conditional dimension, Lemma 3.17
and Corollary 4.2.4.

5.2. Fractal product inequalities. In this section, we prove the fractal product
inequalities using two methods. First, the traditional method from geometric mea-
sure theory is used to prove the inequalities for Borel sets. Then, the algorithmic
method offers an alternative proof that extends the inequalities to arbitrary sets.

5.2.1. Geometric measure theoretic proof. We first prove a lower bound on fractal
products for Borel sets:

Theorem 5.9. [1] For E ⊆ Rm, F ⊆ Rn Borel,

dimH(E) + dimH(F) ≤ dimH(E × F)

The proof requires established technical results in geometric measure theory. We
introduce three lemmas:

Lemma 5.10. Let µ be a measure on Rn. Let F ⊂ Rn be Borel and let 0 < c < ∞
be a constant.

If for all x ∈ F , lim sup
r→0

µ(B(x,r))
rs < c, then Hs(F) ≥ µ(F)/c.

Lemma 5.10 provides a lower bound for Hs(F). We may construct appropriate
µ for results of interest in subsequent proofs.

Lemma 5.11. Let F ⊂ Rn and 0 < Hs(F) < ∞. Then, for Hs-almost all x ∈ F ,

D̄s(F, x) ≤ 1.

where D̄s(F, x) = lim sup
r→0

Hs(F∩B(x,r))
(2r)s is called the upper density of F at x.

12 JINGWEI (ARIANA) QIN

Lemma 5.12. Let F be a Borel subset of Rn with 0 < Hs(F) ≤ ∞. Then, there
is a subset E ⊂ F such that 0 < Hs(E) < ∞.

To conclude the result on Hausdorff dimension, we first establish a proposition
on Hausdorff measure.

Proposition 5.13. If E ⊆ Rm, F ⊆ Rn are Borel sets with Hs(E), Ht(F) < ∞,
then

Hs+t(E × F) ≥ cHs(E)Ht(F),

where c > 0 depends only on s and t.

Proof: For simplicity, assume that E,F ⊂ R, so that E × F ⊂ R2.
If Hs(E) or Ht(F) = 0, then the inequality is trivial. Hence, we may assume

that 0 < Hs(E), Ht(F).
For I, J ⊂ R, we define a measure µ:

µ(I × J) = Hs(E ∩ I)Ht(F ∩ J)

Indeed, µ satisfies the properties of a measure.
Notice that µ resembles the right hand side of the desired inequality. Hence,

we now seek to bound µ(E × F) with the desired Hausdorff measure. We do so
using Lemma 5.10, which connects the local properties of a constructed measure to
Hausdorff measure. But first, we establish a local property regarding µ(B(x, y), r)
using Lemma 5.11.

Apply Lemma 5.11 to E and F . For Hs-almost all x,

(5.14) D̄s(E, x) = lim sup
r→0

Hs(E ∩B(x, r))

(2r)s
≤ 1.

For Ht-almost all y,

(5.15) D̄s(F, y) = lim sup
r→0

Ht(F ∩B(y, r))

(2r)t
≤ 1.

(5.14) and (5.15) hold for µ-almost all (x, y) ∈ E × F . Consider the set E′ ⊂ R
for which (5.14) fails to hold. Since Hs(E′) = 0, we have Hs(E′ ∩ I) = 0. The
same idea applies for (5.15).

Since B((x, y), r) ⊆ B(x, r)×B(y, r), we have, by definition of µ,

µ(B((x, y), r)) ≤ µ(B(x, r)×B(y, r)) = Hs(E ∩B(x, r))Ht(F ∩B(y, r)),

Divide by (2r)s+t,

µ(B((x, y), r))

(2r)s+t
≤ Hs(E ∩B(x, r))

(2r)s
Ht(F ∩B(y, r))

(2r)t

By (5.14) and (5.15), for µ-almost all (x, y) ⊆ E × F ,

lim sup
r→0

µ(B((x, y), r))

(2r)s+t
≤ 1

By Lemma 5.10,

Hs+t(E × F) ≥ 2−(s+t)µ(E × F) = 2−(s+t)Hs(E)Ht(F)■

We are now ready to prove Theorem 5.9.
Proof: Suppose s and t are arbitrary numbers such that s < dimH(E) and

t < dimH(F). To prove the desired result, since the choice of s and t is arbitrary,

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS13

it is sufficient to show Hs+t(E × F) > 0, as the k-dimensional Hausdorff measure
is greater than 0 for any k that is too small.

We apply Lemma 5.12 to E×F . Since s < dimH(E) and t < dimH(F), we have
Hs(E) = Ht(F) = ∞. Hence, by lemma, there exists E0 ⊂ E and F0 ⊂ F such
that 0 < Hs(E0), H

t(F0) < ∞.
By Proposition 5.13, we have that

Hs+t(E0 × F0) ≥ cHs(E0)H
t(F0) > 0

Since E0 × F0 ⊂ E × F ,

Hs+t(E × F) > Hs+t(E0 × F0) > 0

We can conclude that dimH(E × F) ≥ s+ t. By choosing s arbitrarily close to
dimH(E) and t arbitrarily close to dimH(F), we get the desired result. ■

5.2.2. Algorithmic proof. Using an algorithmic approach, the same bound may be
proven for arbitrary sets.

Theorem 5.16. [4] For any E ⊆ Rm, F ⊆ Rn,

dimH(E) + dimH(F) ≤ dimH(E × F)

Notice that the theorem formally resembles 3.16. Indeed, we use 3.16 to prove
the result.

Proof: We want to show

dimH(E × F) ≥ dimH(E) + dimH(F).

By Corollary 4.2.1, there exists an oracle A such that

(5.17) dimH(E × F) = sup
(x,y)∈E×F

dimA(x, y)

For all ϵ, there exists Corollary 4.2.2 gives points x ∈ E and y ∈ F such that

(5.18) dimA(x) ≥ dimH(E)− ϵ

and

(5.19) dimA(y) ≥ dimH(F)− ϵ

Hence, by (5.17)

dimH(E × F) ≥ dimA(x, y)

By the chain rule for conditional dimension,

dimA(x, y) ≥ dimA(x) + dimA(y|x)

By Lemma 3.17,

dimA(x) + dimA(y|x) ≥ dimA(x) + dimA,x(y)

By (5.18) and (5.19),

dimA(x) + dimA,x(y) ≥ dimH(E) + dimH(F)− 2ϵ

Take ϵ → 0, we conclude desired result. ■
In addition, we want to prove an upper bound for dimH(E × F). The upper

bound for fractal product also allows us to bound fractal intersection (5.5).
Notice that the theorem formally resembles 3.16. Indeed, we use 3.16 to prove

the result.

14 JINGWEI (ARIANA) QIN

Theorem 5.20. [4] If E, F are arbitrary subsets of Rn, then

dimH(E × F) ≤ dimP (E) + dimH(F).

Proof: By Corollary 4.2.3, there exists an oracle B such that

(5.21) dimP (E) = sup
z∈E

DimB(z)

By Corollary 4.2.1, there exists an oracle C such that

(5.22) dimH(F) = sup
z∈F

dimC(z)

By Corollary 4.2.2, for arbitrarily ϵ ≥ 0, there exists (u, v) ∈ E × F such that

(5.23) dimB,C(u, v) ≥ dimH(E × F)− ϵ

Hence, for the point (u, v), by (5.21) and (5.22),

dimP (E) + dimH(F) ≥ DimB(u) + dimC(v)

Because relativization and conditioning cannot increase dimension,

DimB(u) + dimC(v) ≥ DimB,C(u) + dimB,C(v) ≥ DimB,C(u|v) + dimB,C(v)

By (3.16) in the chain rule for conditional dimension,

DimB,C(u|v) + dimB,C(v) ≥ dimB,C(u, v)

By (5.23),

dimB,C(u, v) ≥ dimH(E × F)− ϵ

Take ϵ → 0, we proved the desired result. ■
The idea of the proofs is as follows: We start with the set on the greater side of

the inequality. For the dimension of this set, we use the point-to-set principle to
establish a point-wise lower bound. Since we can now shift our attention to points,
we can apply point wise results, as well as construct appropriate relativizations and
conditioning. This allows us to establish inequality between sum of dimensions of
individual points and the dimension of a corresponding point of a product set. As
we have the desired point-wise inequality, finally, we apply the point-to-set principle
to the point(s) to land on the desired set-wise lower bound, concluding the proof.

Acknowledgments

I would like to thank my mentor Iqra Altaf for introducing me to this fascinating
interdisciplinary field between geometric measure theory and complexity theory, as
well as her support and guidance along the process. I am grateful for Professor
May for organizing the REU and giving me helpful feedback on the paper. I am
also thankful for the opportunity to participate in the REU.

References

[1] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Application. John Wiley
& Sons, Ltd. 2003.

[2] Peter Grünwald and Paul Vitányi. Shannon Information and Kolmogorov Complexity. CoRR,

cs.IT/0410002. 2004.
[3] Jack H. Lutz and Neil Lutz. Algorithmic information and plane Kakeya sets. Association for

Computing Machinery, 10.1145/3201783. 2018.
[4] Neil Lutz. Fractal Intersections and Products via Algorithmic Dimension. Association for Com-

puting Machinery, 10.1145/3460948. 2021.

FRACTAL INTERSECTIONS AND PRODUCTS VIA TRADITIONAL AND ALGORITHMIC METHODS15

[5] A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development of

the concepts of information and randomness by means of the theory of algorithms. Russian

Mathematical Surveys, 25:83–124, 1970.

	1. Introduction
	2. Fractal dimension of sets
	2.1. Hausdorff dimension
	2.2. Packing dimension

	3. Algorithmic dimension of points
	3.1. Preliminaries: Communication
	3.2. Preliminaries: Computable function
	3.3. Kolmogorov complexity
	3.4. Algorithmic dimension
	3.5. Conditional Dimension
	3.6. Relative dimension and oracle

	4. Point-to-set principle
	5. Bounding fractal intersections and products
	5.1. Bounding fractal intersection
	5.2. Fractal product inequalities

	Acknowledgments
	References

