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Abstract. The Weyl Integration Formula describes a procedure to integrate

over compact connected Lie groups. In this paper, we derive this formula.
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1. Introduction

In the paper, we will introduce the notions of (compact connected) Lie groups,
weight-space decomposition, maximal tori, differential forms on manifolds, Haar
measures, and integrations on compact connected Lie groups. All these concepts
culminate in the derivation of the Weyl Integration Formula (Theorem 10.20).

In Section 2 we introduce Lie groups as topological groups with the structure
of a manifold. We also discuss the special class of closed linear groups, which
are closed subgroups of the general linear groups over R and C. Each of these
groups admit a linear algebra in terms of the tangent space at the identity. In
Section 3, we discuss the correspondence between closed linear groups and their
linear Lie algebras through the matrix exponential map. In Section 4, we focus
on substructure of Lie algbras, namely subalgebras, ideals and their properties.
Some important results in this section pertain to semisimple Lie algebras and their
decompositions into simple ideals.

In Section 6, we give a brief background on finite representations of topological
groups. We introduce the definition of Radon measure on locally compact space and
prove the Hurwitz’s unitarian trick. Section 7 discusses the importance of maximal
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tori in compact connected Lie groups. The main result is that every element is
conjugate to an element in some maximal tori.

We lay the analytical foundation in Section 8 and 9. These two sections allow us
to talk about integrals over Lie groups as well-defined concepts. They also provide
tools to compute the Jacobian determinant in terms of Lie algebraic operations.
Everything comes together in Section 10 with the Weyl Integration Formula. We
first introduce a naive formula and derive the main result by fixing problems with
the former formula. This formula is the gateway into the analytic treatment of
representation theory of Lie groups through the Weyl Character Formula (Chapter
8 of Knapp [1]).

2. Closed Linear Groups and Linear Lie Algebras

Definition 2.1. A topological group G is a topological space with continuous
group operations, i.e.

· : G×G→ G, (x, y) → xy,

−1 : G→ G, x→ x−1

are continuous maps.

Definition 2.2. The real general linear group, denoted GL(n,R), is the group
of invertible n-by-n real matrices. The complex general linear group, denoted
GL(n,C), is defined analogously.

We can impose topologies on GL(n,R) and GL(n,C) by identifying them with

subsets of Rn2

and R2n2

, respectively. Multiplications and inversions in GL(n,R)
and GL(n,C) are continuous because these operations are given by polynomials in
the entries of the matrices.

Definition 2.3. A closed linear group is a topologically closed subgroup of
GL(n,C). Any closed linear group inherits a topology from GL(n,C) and becomes
a topological group. Some examples of closed linear groups are:

SO(n) = {x ∈ GL(n,R) | xxT = 1 and detx = 1},(2.4)

SU(n) = {x ∈ GL(n,C) | xx∗ = 1 and detx = 1},(2.5)

SL(n,R) = {x ∈ GL(n,R) |detx = 1},(2.6)

SL(n,C) = {x ∈ GL(n,C) |detx = 1}.(2.7)

These subgroups are closed because they are preimages of continuous functions
on closed sets.

We now turn our attention to defining general Lie groups, starting with a quick
review of manifolds.

Definition 2.8. A separable metric space is a space with a countable dense
subset.

Definition 2.9. Let M be a separable metric space, not necessarily connected,
with a well-specified dimension m. We specify a system of charts (U,ψ), where U
is an open subset of M and ψ is a homeomorphism of U onto an open subset ψ(U)
of Rm. These charts satisfy the following two properties:
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(a) each pair of charts (U1, ψ1) and (U2, ψ2) is smoothly compatible, mean-
ing

ψ2 ◦ ψ−1
1 : ψ1(U1 ∩ U2) → ψ2(U1 ∩ U2)

is diffeomorphic, and
(b) the system of compatible charts (U,ψ) is a C∞-atlas in that the sets U

together cover M .

The topological spaceM with a C∞-atlas as above is called a smooth manifold
of dimension n.

Definition 2.10. Let E be an open subset of a smooth n-manifold. Let {(Ui, ψi)}
be a subsystem of charts that covers E. A function f : E → R is called a smooth
function if f ◦ ψ−1

i : ψi(Ui) → R is C∞ for all charts in the subsystem.

Definition 2.11. A Lie group G is a topological group with an additional struc-
ture of a smooth manifold such that multiplication and inversion are smooth. An
analytic Lie group is a Lie group that is connected.

Remark 2.12. We can check that GL(n,R), GL(n,C) and the closed linear groups
in Definition 2.3 are Lie groups by verifying that the underlying topology is that of
a smooth manifold and that the group operations are smooth. However, the proof
for general closed linear groups is more involved. Theorem 0.15 of Knapp’s book [1]
states that each closed linear group becomes a Lie group “uniquely” under certain
conditions. Since G is a topological space, we can meaningfully discuss topological
properties of G such as closedness, compactness and connectedness.

Theorem 2.13 (Closed subgroup theorem). If G is a Lie group with a closed
subgroup H, then there exists a unique smooth manifold structure on H such that
H becomes a Lie group.

Proof. The proof for this theorem was published by Élie Cartan in 1930 [2]. □

Now that we have defined Lie groups, we turn our discussion to their Lie algebras.

Definition 2.14. A smooth curve in a Lie group G is a C∞ function c : R → G.
We say that c is a smooth curve at the identity if c(0) = I as well.

Definition 2.15. Let G be a closed linear group. The (linear) Lie algebra of G
is the set

(2.16) g = {c′(0) | c : R → G is a smooth curve with c(0) = I}.

Since G is a matrix group, members of g are also matrices of the same dimension,
although not necessarily invertible.

We refer the discussion of basic linear Lie algebras and its Lie brackets to section
0.1 of Knapp [1].

3. The Exponential Map and Lie Algebra Homomorphisms

In the last section, we see that the Lie algebra g of a closed linear group G is the
space spanned by tangent vectors of smooth curves at the identity. The exponential
map gives us the tool to go from g to G.
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Definition 3.1. If A is an n-by-n complex matrix, the exponential of A is given
by the Taylor series expansion

(3.2) exp(A) = eA =

∞∑
k=0

1

k!
Ak.

Proposition 3.3. For any n-by-n matrix A, eA converges (entry-wise) to an n-
by-n matrix.

Proof. We evaluate the operator norm on the Cauchy sequence of partial sums.
Then the convergence of the matrix exponentiation is bounded above by the con-
vergence of exponentiation in R. For proof, see Proposition 0.11a of Knapp [1] □

We now discuss some properties of the matrix exponential.

Proposition 3.4. For n-by-n matrices X and Y , we have the following set of
properties:

(a) eXeY = eX+Y if X and Y commute,
(b) eX is invertible,
(c) d

dt (e
tX) = XetX ,

(d) t 7→ etX is a smooth curve at the identity into GL(n,C),
(e) det eX = eTr(X).
(f) X 7→ eX is a C∞ map from the space of n-by-n matrices to itself.

Proof. See Proposition 0.11 of Knapp [1]. □

We now demonstrate the connection between the linear Lie algebra g and the
closed linear group G through the exponential map.

Proposition 3.5. If G is a closed linear group and X is an element of its linear
Lie algebra g, then expX is an element of G and

g = {X ∈ gl(n,C) | exp tX is in G for all real t}.
Proof. See Proposition 0.14 of Knapp [1]. □

Proposition 3.6. If G is a closed linear group with its linear Lie algebra g, then
exp g generates the identity component G0.

Proof. Since exp is continuous, exp g is a connected subset of G. Then exp g ⊆ G0.
To show equality, we need to use Theorem 0.15 from Knapp’s book [1], which
states that exp g contains a nonempty neighborhood of the identity in G0. This
neighborhood, being an open subgroup, is also closed. Since G0 is a connected
component, the only nonempty clopen subset of G0 is G0 itself. □

Until further notice, let G and H be closed linear groups and let g and h be their
respective Lie algebras. Suppose π : G→ H is a smooth homomorphism between G
and H. We want to explore the differential map dπ : g → h between these tangent
spaces.

Definition 3.7. For a given X ∈ g, let c(t) be a smooth curve at the identity in
G such that c′(0) = X. Then π(c(t)) is a smooth curve at the identity in H. We
define the differential on the tangent vector X as

dπ(X) = (π ◦ c)′(0).
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In fact, this definition is independent of the choice of smooth curve c (see pg. 16
of Knapp’s book [1]). The differential has two important properties, namely it is a
linear map and furthermore a Lie algebra homomorphism. We refer discussion of
these properties to section 0.5 of Knapp [1]. The following theorem relates π, dπ
and the exponential map.

Theorem 3.8. If π : G → H is a smooth homomorphism between closed linear
groups, then π ◦ exp = exp ◦dπ.
Proof. See Theorem 0.23 of Knapp [1]. □

For the special case of Ad and ad, we have

(3.9) exp(adX) = Ad(expX).

4. Ideals, Solvability, Nilpotency and Semisimplicity

Building off the construction of linear Lie algebras in Section 2, we now give
more abstract and general definitions of Lie algebras and their homomorphisms.

Definition 4.1. Let k be a field. A Lie algebra g is a vector space over k with a
billinear form called the Lie bracket that also satisfies

(a) [X,X] = 0 for all X ∈ g (and thus [X,Y ] = −[Y,X]) and
(b) the Jacobi identity

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

Remark 4.2. We denote EndkV as the associative algebra of all k linear maps
from the k vector space V itself. If we define a bracket by [X,Y ] = XY −Y X then
g becomes a Lie algebra.

Definition 4.3. For a Lie algebra g, we have the linear map ad : g → Endkg such
that

(adX)(Y ) = [X,Y ].

Definition 4.4. Since the Lie bracket is linear, we can show that ad g is a subspace
of Endkg. If we define the Lie bracket on ad g as

(4.5) [ad X, ad Y ] = ad[X,Y ],

then ad g is also a Lie algebra.

Definition 4.6. If k = R, we call g a real Lie algebra. Otherwise if k = C, we
call g a complex Lie algebra.

Remark 4.7. The linear Lie algebras of Definition 2.15 are Lie algebra under
Definition 4.1

Definition 4.8. A Lie algebra homomorphism is a linear map ψ : g → h such
that

ψ([X,Y ]) = [ψ(X), ψ(Y )].

for all elements X and Y of g. A Lie algebra isomorphism is a bijective homo-
morphism between Lie algebras.
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Definition 4.9. If a and b are subsets of g, then we define

[a, b] = span{[X,Y ] | X ∈ a, Y ∈ b}.

Definition 4.10. A Lie subalgebra h of g is a subspace that is closed under the
Lie bracket, that is [h, h] ⊆ h. An ideal h in g is a special subalgebra in that it
satisfies [h, g] ⊆ h. A Lie algebra is abelian if [g, g] = 0.

Proposition 4.11. If a, b are ideals of a Lie algebra, then [a, b] is also an ideal.

Proof. This result follows from the Jacobi identity. □

Definition 4.12. Let g denotes a finite-dimensional Lie algebra. Recursively define

g0 = g, g1 = [g, g], gi+1 = [gi, gi].

Each gi is an ideal in g by applying induction to Proposition 4.11. This allows
us to put these ideals in a decreasing sequence

g0 ⊇ g1 ⊇ g2 ⊇ ...

called the commutator series of g. A Lie algebra g is called solvable if its
commutator series contains a gi = 0 for some i.

Proposition 4.13. For every finite-dimensional Lie algebra g, there exists a unique
maximally solvable ideal s that contains all other solvable ideals of g. We call s the
radical of g, denoted rad g.

Proof. See Proposition 1.12 of Knapp’s book [1]. First, we prove that the sum of
two solvable ideals h = a + b is solvable. Then, we use a variant of the Second
Isomorphism Theorem for Lie algebra to arrive at a solvable quotient of Lie algebra
h/a. We now show that since a is solvable, h must also be solvable. □

Definition 4.14. Similarly, we can recursively define

g0 = g, g1 = [g, g], gi+1 = [g, gi].

Once again, each gi is an ideal in g by applying induction to Proposition 4.11.
This allows us to put these ideals in another decreasing sequence

g0 ⊇ g1 ⊇ g2 ⊇ ...

called the lower central series for g. A Lie algebra g is called nilpotent if its
lower central series contains a gi = 0 for some i.

Remark 4.15. For a nonzero nilpotent g, the last nonzero gi is an abelian ideal
and thus a subset of the center.

Proposition 4.16. Nilpotent Lie algebras are solvable.

Proof. Let g be a nilpotent Lie algbera. Obviously, g0 ⊆ g0. Inductively, suppose
gi ⊆ gi, then

gi+1 = [gi, gi] ⊆ [gi, gi] ⊆ [gi, g] = gi+1.

Suppose gj = 0 for some j, then gj = 0 as well and thus g is solvable. □
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Proposition 4.17. The Lie algebra g is nilpotent if and only if the associated Lie
algebra ad g is nilpotent

Proof. See Proposition 1.32 of Knapp [1]. □

Definition 4.18. A finite-dimensional Lie algebra g is simple if g is nonabelian
and g has no proper nonzero ideals. In other words, [g, g] ̸= 0 and [h, g] ⊆ h imply
that h = 0 or h = g.

This definition is reminiscent of that of simple groups. Just as finite groups
are built from simple groups, some finite-dimensional Lie algebra are built from
simple Lie algebras. These are called semisimple Lie algebras. There also exists a
classification of these simple components, discussed further in Section 2.8 of Knapp’s
book [1].

Definition 4.19. A finite-dimensional Lie algebra g is semisimple if g has no
nonzero solvable ideals, that is if rad g = 0.

Theorem 4.20. A Lie algebra g is semisimple if and only if it can be written as a
unique direct sum of simple Lie algebras g = g1 ⊕ ...⊕ gm.

Proof. See Theorem 1.54 of Knapp’s book [1]. □

Lemma 4.21. If a and b are ideals such that a ∩ b = 0, then [a, b] = 0.

Proof. Since a and b are ideals, we have [a, b] ⊆ a and [a, b] ⊆ b. Thus

[a, b] ⊆ a ∩ b = 0.

□

Lemma 4.22. In a simple Lie algebra, [g, g] = g.

Proof. For simple g, the commutator [g, g] is an ideal so it is 0 or g. However, it is
not 0 because g is nonabelian, so it is g. □

Corollary 4.23. A semisimple Lie algebra g is such that [g, g] = g.

Proof. Recall that g =
⊕

gi, where each gi is simple. We have

[g, g] = [
⊕

gi,
⊕

gj ] =
⊕
i,j

[gi, gj ]

=
⊕
i,j

δij [gi, gj ] =
⊕

[gi, gi]

=
⊕

gi = g.

The third equality follows from Lemma 4.21 and the fifth equality comes from
Lemma 4.22. □

Proposition 4.24. Let g0 be a real Lie algebra with its complexification being g.
Then g0 is semisimple if and only if g is semisimple.

Proof. See Corollary 1.53 of Knapp’s book. □

Definition 4.25. A Lie algebra g is reductive if for each ideal a in g, we have
that g = a⊕ b for some ideal b in g.
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Corollary 4.26. The Lie algebra g is reductive if and only if g = [g, g]⊕ Zg with
[g, g] semisimple and Zg being the center of g.

Proof. See Corollary 1.56 of Knapp’s book [1]. □

Definition 4.27. A Lie group is said to be solvable, nilpotent, or semisim-
ple if it is connected and if its Lie algebra is solvable, nilpotent, or semisimple,
respectively.

5. Weight-Space Decomposition and Cartan Subalgebras

Definition 5.1. Let h be a finite-dimensional complex Lie algebra. A represen-
tation π of h on a complex vector space V is a complex-linear Lie algebra homo-
morphism of h into EndC(V ). Given π and V , let α ∈ h∗ be a linear functional on
h. We define

Vα = {v ∈ V | (π(H)− α(H)I)nv = 0 for all H ∈ h and n = dim V }
If Vα ̸= 0, then Vα is the generalized weight space of the weight α. Elements
of Vα are called generalized weight vectors. From the theory of Jordan normal
form, Vα is maximal when n = dim V . When π is a

Proposition 5.2. Let g be a finite-dimensional Lie algebra over C. If h is a
nilpotent Lie subalgebra, then generalized weight spaces of g relative to adgh satisfy

(a) g =
⊕

gα, with

gα = {X ∈ g | (ad H − α(H)I)nX = 0 for all H ∈ h and n ∈ N},
(b) h ⊆ g0,
(c) [gα, gβ ] ⊆ gα+β
(d) g0 is a subalgebra,

Proof. (a) See Proposition 2.4 of Knapp’s book [1]. This gives the weight-space
decomposition for any finite dimensional representations.

(b) Since h is nilpotent, ad h is nilpotent by Proposition 4.17. Then h ⊆ g0.
(c) Let X ∈ gα, Y ∈ gβ , and H ∈ h. Then

(ad H − (α(H) + β(H))I)[X,Y ] = [H, [X,Y ]]− α(H)[X,Y ]− β(H)[X,Y ]

= [(ad H − α(H)I)X,Y ] + [X, (ad H − β(H)I)Y ].

The last line follows from expanding [H, [X,Y ]] using the Jacobi identity.
By induction, we can then show that

(ad H − (α(H) + β(H))I)n[X,Y ]

=

n∑
k=0

(
n

k

)
[(ad H − α(H)I)kX, (ad H − β(H)I)n−kY ].

For n ≥ 2 dim g, we have k ≥ dim g or n − k ≥ dim g, which means
that nilpotency applies and the right hand side vanishes.

(d) From part (c), we can have that [g0, g0] = g0.
□
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Definition 5.3. We say g0 is the Cartan subalgebra of g.

6. Finite Representations of Topological Groups

Definition 6.1. A finite-dimensional representation of a topological group G is
a continuous homomorphism

Φ : G→ GLC(V ),

whereGLC(V ) is the group of complex invertible linear maps on the finite-dimensional
complex vector space V .

Definition 6.2. An invariant subspace of Φ is a vector subspace U of V such
that Φ(g)U ⊆ U for all g ∈ G.

Definition 6.3. Given a finite-dimensional complex vector space V , we can specify
a Hermitian inner product ⟨·, ·⟩. A representation Φ on V is unitary if

⟨Φ(g)u,Φ(g)v⟩ = ⟨u, v⟩
for all g ∈ G and u, v ∈ V .

Proposition 6.4. For a unitary representation, the orthogonal complement U⊥ of
the invariant subspace U is an invariant subspace.

Proof. Observe that

⟨Φ(g)u⊥, u⟩ = ⟨Φ(g−1)Φ(g)u⊥,Φ(g−1)u⟩ = ⟨u⊥,Φ(g−1)u⟩ ∈ ⟨u⊥, U⟩ = 0(6.5)

for all u⊥ ∈ U⊥, u ∈ U .
□

Definition 6.6. A topological space X is locally compact if for all x ∈ X, there
exists an open set U containing x and a compact set K such that U ⊆ K.

Definition 6.7. Let m be a measure on the σ-algebra of Borel sets of a locally
compact Haussdorff space X.

(a) The measure m is inner regular if for any open set U ,

m(U) = sup
K⊆U

K compact

m(K).

(b) The measure m is outer regular if for any Borel set B,

m(B) = inf
U⊆B
U open

m(U).

(c) The measure m is regular if it is both inner regular and outer regular.

Definition 6.8. The measure m is a Radon measure if it is regular and finite
on compact sets.

Definition 6.9. Suppose G is a compact topological group. A left Haar mea-
sure dµl is a nonzero Radon measure that is invariant under left translation, i.e.,
dµl(gS) = dµl(S) for all Borel sets S. A right Haar measure is defined similarly
with right translation invariance.
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Remark 6.10. A result from representation theory is that every compact topologi-
cal group admits a unique normalized two-sided invariant Haar measure. Therefore
whenever G is compact, we can write integrals with respect to this normalized Haar
measure by the expression

∫
G
f(x)dx without denoting the measure.

Proposition 6.11 (Hurwitz’s Unitarian Trick). If Φ is a representation of G on
a finite-dimensional V , then V admits a Hermitian inner product such that Φ is
unitary.

Proof. Let ⟨·, ·⟩ be any Hermitian inner product on V . Define

(u, v) =

∫
G

⟨Φ(x)u,Φ(x)v⟩dx.

Verify that

(Φ(g)u,Φ(g)v) =

∫
G

⟨Φ(x)Φ(g)u,Φ(x)Φ(g)v⟩ dx

=

∫
G

⟨Φ(xg)u,Φ(xg)v⟩ dx

=

∫
G

⟨Φ(x)u,Φ(x)v⟩ dx

= (u, v).

The third equality follows from the right-invariance of the Haar measure.
□

7. Tori of Compact Connected Lie Groups

We start this section with a summary of some important results about compact
Lie groups.

Proposition 7.1. Let G be a compact Lie group, and let g be its Lie algebra.
Then the real vector space g admits an inner product (·, ·) that is invariant under
Ad(G) : (Ad(g)u,Ad(g)v) = (u, v). Relative to this inner product the members of
Ad(G) act by orthogonal transformations, and the members of ad g act by skew-
symmetric transformations.

Proof. See Proposition 4.24 of Knapp [1]. □

Corollary 7.2. Let G be a compact Lie group, and let g be its Lie algebra. Then g is
reductive, and hence g = Zg⊕ [g, g], where Zg is the center and [g, g] is semisimple.

Proof. Define the inner product (·, ·) as Proposition 7.1. Observe that the ideals
of g are invariant subspaces of ad g. Let a be an ideal. By Proposition 6.4, a⊥ is
also an invariant subspace, and thus is an ideal in g. With (·, ·) a definite inner
product, g becomes a Hilbert space with g = a ⊕ a⊥. Thus g is reductive and the
decomposition of g into semisimple and abelian components follows from Corollary
4.26. □

To employ previous sections of the paper, we use a corollary of the powerful
Peter-Weyl theorem. The proof of Peter Weyl’s theorem combines fundamental
results in representation theory, operator theory and analysis of the L2(G) function
space.
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Theorem 7.3 (Compact Lie groups - closed linear group correspondence). Any
compact Lie group G has a faithful finite-dimensional representation and thus is
isomorphic to a closed linear group.

Proof. See Corollary 4.22 of Knapp’s book [1]. □

Remark 7.4. With the previous theorem, all the results about closed linear groups
from Section 2 now apply to our discussion of compact Lie groups.

Definition 7.5. Let g0 be a real Lie algebra. The complexification of g0 is a
complex Lie algebra (g0)

C that is the tensor product

(g0)
C = g0 ⊗R C.

Elements of (g0)
C has the form (X1, X2) where X1, X2 ∈ g0. We define Lie

algebraic operations on (g0)
C by the formulas:

(a) (X1, X2) + (Y1, Y2) = (X1 + Y1, X2 + Y2)
(b) (α+ iβ) · (X,Y ) = (αX − βY, αY + βX) for all α, β ∈ R.
(c) [(X1, X2), (Y1, Y2)] = ([X1, Y1]− [X2, Y2], [X1, Y2] + [X2, Y1])

From this point on on, let G be a compact connected Lie group, with its Lie
algebra being g0, and let (g0)

C denotes its complexification.

Definition 7.6. A torus is a product of circle groups S1.

Remark 7.7. As a result of Theorem 2.13, every Lie subgroup of G is closed
and thus is compact. By Corollary 1.103 of Knapp’s book [1], we have that every
compact connected abelian Lie group is a torus. The tori within G are ordered
by inclusion. Since G is finite dimensional, every torus is contained in a maximal
torus.

Proposition 7.8. The maximal tori in G are exactly the analytic groups corre-
sponding to the maximal abelian subalgebras g0.

Proof. See Proposition 4.30 of Knapp [1]. □

Remark 7.9. Let T be a maximal torus in G, and let t0 be its Lie algebra. By
Corollary 7.2, g0 is reductive, so g0 = Zg0 ⊕ [g0, g0] with [g0, g0] semisimple. By
Proposition 7.8, t0 is maximal abelian in g0, and t0 is of the form t0 = Zg0 ⊕ t′0,
where t′0 is maximal abelian in [g0, g0]. Since complexification distributes over direct
sum, we get g = Zg ⊕ [g, g], with [g, g] semisimple following from Proposition 4.24.

Remark 7.10. The complexification t of t0 has the direct sum decomposition
t = Zg ⊕ t′ with t′ maximal abelian in [g, g].

Notation 7.11. We write adgX instead of ad X to denote that X ∈ g and ad X
acts on members of g.

Recall from Proposition 7.1 that elements of adg0(t0) are real skew-symmetric
linear maps. Mapping to matrices using Theorem 7.3, we see that these elements
are diagonalizable over C. Repeating the proof of Proposition 7.1 for the complex
vector space g, we find that adg(t) is isomorphic to some space of skew-Hermitian
matrices, which are also diagonalizable over C. It follows that elements of ad[g,g](t

′)
are also diagonalizable. By Proposition 2.13 of Knapp’s book [1], t′ is a Cartan
subalgebra of the complex semisimple Lie algebra [g, g]. Using the weight-space
decomposition described in Proposition 5.2(a) on [g, g], we can decompose
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g = Zg ⊕ t′ ⊕
⊕

α∈∆([g,g],t′)

[g, g]α.

Observing the decomposition and recalling definition of Cartan subalgebra, we
can see that t is a Cartan subalgebra of g. Extending the weights α in ∆([g, g], t′)
to t by defining them to be 0 on Zg, we have the new weight-space decomposition
of g relative to ad t

(7.12) g = t⊕
⊕

α∈∆(g,t)

gα.

Here, gα is simply the eigen-weight space

gα = {X ∈ g | [H,X] = α(H)X for all H ∈ t}.

Definition 7.13. Referring to (7.12), we say that α is a root if gα ̸= 0 and α ̸= 0.
Members of gα are called root vectors of α, ∆(g, t) is called the root system of
g relative to t and (7.12) is the root-space decomposition of g relative to t.

Definition 7.14. We can introduce a notion of positivity on the root system
∆(g, t) such that:

(i) For any nonzero α ∈ ∆(g, t), exactly one of α or −α is positive.
(ii) The sum of positive elements is positive, and positive multiple of a positive

element is positive.

We call the set of positive elements of ∆ a positive root system, denoted ∆+.

Remark 7.15. It is also possible to introduce the notion of positivity on a root
system. One way that this is done is by means of a lexicographic ordering.
Further discussion of this is given in Chapter 2 of Knapp’s book [1].

Definition 7.16. For a real reductive Lie algebra g′0, we call a Lie subalgebra of
g′0 a Cartan subalgebra if its complexification is a Cartan subalgebra of g′. The
dimension of the Cartan subalgebra is called the rank of g′0 and of the corresponding
analytic group.

Remark 7.17. The Lie algebra t0 of the maximal torus T of the compact connected
Lie group G is a Cartan subalgebra of g0, and the rank of g0 and of G is the
dimension of t0.

Definition 7.18. Extending the inner product on g0 in Proposition 7.1 to a Her-
mitian inner product on g, we see that Ad(T ) is unitary on g. As such, the simul-
taneous eigenspace decomposition is given by (7.12). The action of Ad(T ) on the
1-dimensional gα is a 1-dimensional representation of T of the form.

(7.19) Ad(t)X = ξα(t)X for t ∈ T.

where ξα : T → S1 is a continuous homomorphism of T into the circle group. This
homomorphism is called the multiplicative character. Taking the differential of
both sides, we get

ad(H)X = α(H)X for H ∈ t0.



WEYL INTEGRATION FORMULA 13

Since t0 is skew-symmetric, α(t0) is imaginary valued and thus the roots are real
valued on it0.

Notation 7.20. We introduce the following notation when talking about group
conjugation:

yx = xyx−1,

T g = {tg | t ∈ T},

TG =
⋃
g∈G

T g.

We now state without proof the two theorems that describe the importance of
maximal tori in the context of compact connected Lie groups. Then, we will give
some useful corollaries.

Lemma 7.21. For a compact connected Lie group, any two maximal tori are con-
jugate.

Notation 7.22. Let M be a smooth manifold. For p ∈ M , we denote Tp(M) as
the tangent space at p.

Theorem 7.23. If G is a compact connected Lie group and T is a maximal torus,
then each element of G is conjugate to a member of T . Following the notation
above, the theorem claims that TG = G.

Proof. We omit the full proof (Lemma 4.35 and Theorem 4.36 [1]) of these two
theorems as they require other unproven lemmas. However, we note one important
equation that comes up in the argument. Let ψ : G×T → G be given by ψ(y, x) =
xy. Then the differential is

(7.24) dψ(Y,X) = Ad(y)((Ad(x−1)− 1)Y +X),

where Y ∈ Ty(G) and X ∈ Tx(T ). □

Corollary 7.25. Every element of a compact connected Lie group G lies in some
maximal torus.

Proof. Let T be a maximal torus. For g ∈ G, we have g = xyx−1 for x ∈ G and
y ∈ T by Theorem 7.23. Then g is in T x, which is a maximal torus by Lemma
7.21. □

We note one other useful proposition without proof.

Proposition 7.26. In a compact connected Lie group G, a maximal torus T is its
own centralizer. In other words, ZG(T ) = T .

Proof. See Corollary 4.52 of Knapp’s book [1] □

8. Differential Forms and Measure Zero

For this section, let M be an m-dimensional manifold as in Definition 2.9.
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Definition 8.1. The manifold M is oriented if for an atlas of compatible charts
(Uα, ψα), the m-by-m derivative matrices of all coordinate changes

(8.2) ψβ ◦ ψ−1
α : ψα(Uα ∩ Uβ) → ψβ(Uα ∩ Uβ)

have everywhere positive determinants.

Definition 8.3. LetM be oriented. A compatible chart (U,ψ) is positive relative
to the atlas (Uα, ψα) if the derivative matrix of ψ ◦ ψ−1

α has everywhere positive
determinant for all α.

Remark 8.4. Adjoining compatible charts (U,ψ) that are positive relative to
(Uα, ψα) will keep M oriented. Integration over smooth m forms is well-defined
on an oriented manifold M using the notion of pullbacks of differential forms.

Definition 8.5. Let N also be an oriented k-dimensional manifold and let Φ :
M → N be a smooth map between manifolds. If ω is a smooth k form on N , then
the pullback Φ∗ω is the smooth k form on M given by

(8.6) (Φ∗ω)p(ξ1, ..., ξk) = ωΦ(p)(dΦp(ξ1), ...dΦp(ξk))

with p in M , ξ1, ..., ξk in the tangent space Tp(M) and dΦp the differential of Φ
at p. In the case that M and N are open subsets of Rm with the smooth m form
F (y1, ..., ym)dy1 ∧ · · · ∧ dym on N , the pullback Φ∗ω on M is

(8.7) Φ∗ω = (F ◦ Φ)(x1, ..., xm) det(Φ′(x1, ..., xm))dx1 ∧ · · · ∧ dxm,
where Φ has m components depending on x1, ..., xm and Φ′ denotes the Jacobian
matrix

(
∂yi
∂xj

)
.

Definition 8.8. Suppose we have a smooth m form ω on M , then the integration∫
M
fω is well-defined for all f in the space Ccom(M) of continuous functions of

compact support on M. First, suppose that f is compactly supported in the coor-
dinate neighborhood Uα. The pullback of ω under ψ−1

α in ψα(Uα) is given by the
smooth m form

(8.9) (ψ−1
α )∗ω = Fα(x1, ..., xm)dx1 ∧ · · · ∧ dxm

where Fα : ψα(Uα) → R is smooth. With (f ◦ψ−1
α ) compactly supported in ψα(Uα),

we can define

(8.10)

∫
M

fω =

∫
ψα(Uα)

(f ◦ ψ−1
α )(x1, ..., xm)Fα(x1, ..., xm)dx1 · · · dxm.

Proposition 8.11. Suppose that f is also compactly supported in the intersection
Uα ∩ Uβ, then∫

M

fω =

∫
ψα(Uα)

(f ◦ ψ−1
α )(x1, ..., xm)Fα(x1, ..., xm)dx1 · · · dxm(8.12)

=

∫
ψβ(Uβ)

(f ◦ ψ−1
β )(y1, ..., ym)Fβ(y1, ..., ym)dy1 · · · dym.(8.13)
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Proof. See page 525 of Knapp [1]. □

Remark 8.14. Recall the change of variables formula in multivariable calculus

(8.15) Fβ(y1, ...ym) = Fα(x1, ..., xm) det

(
∂yi
∂xj

)−1

.

Before, we can discuss integration for general continuous functions of compact
support, we need to introduce the notion of partition of unity.

Definition 8.16. Let X be a topological space. A partition of unity is the set
P of continuous functions from M to [0, 1] such that for every point x ∈M :

(a) there is a neighbourhood of x where only a finite number of functions ρ of
P are nonzero, and

(b)
∑
ρ∈P ρ(x) = 1.

Proposition 8.17. The notion of integration
∫
M
fω for general f in Ccom(M) is

well-defined.

Proof. Using the atlas (Uα, ψα), we can create an open cover of supp f which we
can reduce to a finite subcover {Ui}i∈I . Recall that a manifold is locally compact.
Additionally, sinceM is a metric space, it is also Hausdorff. We generate a partition
of unity {ρi}i∈I . Then f =

∑
i∈I ρif is a finite sum, so we can define

(8.18)

∫
M

fω =
∑
i∈I

∫
M

(ρif)ω.

Observe that (ρif) is locally compact on the coordinate neighborhood Ui and thus
integration is well-defined by Definition 8.8.

□

Definition 8.19. We call a smooth m form ω positive relative to the given atlas
if each local expression in (8.9) has Fα everywhere positive on ψα(Uα).

The next two propositions outline a method for creating and recognizing positive
k forms.

Proposition 8.20. For an m-dimensional manifold M that admits an everywhere
nonzero m form ω, M can be oriented so that ω is positive.

Proof. Let {(Uα, ψα)} be an atlas for M . Each Uα is possibly made up of several
components Uαβ , each of which is open. To each open set Uαβ , we associate the

restricted homeomorphism ψαβ = ψα|Uα
β
. Then {(Uαβ , ψαβ )} is another atlas of M .

Without loss of generality, we can work with this new atlas. For each Uαβ , let F
α
β be

the function in (8.9) in the local expression of ω in ψαβ (U
α
β ). Since ω is everywhere

nonzero and Uαβ is connected, Fαβ has the same sign throughout by the intermediate
value theorem.

Let us define the map ϕ : (x1, ..., x2, ..., xm) 7→ (−x1, ..., x2, ..., xm). For a nega-
tive Fαβ , we redefine ψαβ to ϕ ◦ ψαβ . Then the associated Fαβ is everywhere positive.
Following this process, we can make all the Fαβ positive on their respective do-

mains. By (8.15), this forces det
(
∂yi
∂xj

)
to be positive for all pairs of compatible

charts. This makes M an oriented manifold of Definition 8.3. Since Fαβ are all
positive, ω is positive. □
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Proposition 8.21. Let M be an oriented and connected manifold. If ω is a every-
where nonzero smooth m form on M , then either ω is positive or −ω is positive.

Proof. See Proposition 8.10 of Knapp’s book [1]. Let S be a set such that at each
point p ofM , all the functions Fa representing ω locally are positive. We show that
S is a nonempty clopen set. Since M is connected, S =M. □

Definition 8.22. Fixing a smooth m form ω, from (8.10) and (8.18) we see that
the map f 7→

∫
M
fω is a linear functional on Ccom(M). Then f ≥ 0 implies that∫

M
fω ≥ 0. In this case we say that the linear functional f 7→

∫
M
fω is positive.

Remark 8.23. By Riesz–Markov–Kakutani Representation Theorem, for a posi-
tive linear functional in Ccom(M), there exists a Radon measure dµω on M such
that

∫
M
fω =

∫
M
f(x)dµω(x) for all f ∈ Ccom(M). Propositions 8.20 and 8.21 al-

low us to use everywhere nonzero smooth m forms to define measures on manifolds.
However, there is an equivalent way of defining sets of measure zero independent
of smooth m forms and orientation.

Proposition 8.24. Suppose that M is an oriented manifold with a postive m form
ω. Let dµω be the associated Radon measure from Remark 8.23 . For a subset S
of M , S has measure zero with respect to dµω(S) if and only if ψα(S ∩ Uα) has
m-dimensional Lebesgue measure zero for all α.

Proof. From (8.9) and (8.10), we have

(8.25) dµω(S ∩ Uα) =
∫
S∩Uα

dµω =

∫
ψα(S∩Uα)

Fα(x1, ..., xm)dx1 · · · dxm.

In the forward direction dµω(S) = 0 implies that dµω(S ∩ Uα) = 0. Since ω is
positive, Fα is positive. However, we have that the left side of (8.25) is zero but the
integrand of the right side is positive everywhere. Thus ψα(S ∩ Uα) has Lebesgue
measure zero.

Conversely, let S ∩ Uα have Lebesgue measure zero for all α. Consequently,
the integral on the right hand side is zero and so is dµω(S ∩ Uα). Since M is a
separable metric space, S has a countable open cover. Therefore, S can be covered
with countably many Uα. Then

dµω(S) = dµω

(⋃
α

(S ∩ Uα)
)

≤
∑
α

dµω(S ∩ Uα) = 0.

□

Definition 8.26. Let Φ : M → N be a smooth map between m-dimensional
manifolds. A critical point p of Φ is a point where dΦp has rank < m. We call
Φ(p) a critical value.

We introduce an important theorem related to measure zero sets of smooth maps
between manifolds.

Theorem 8.27 (Sard’s Theorem). If Φ : M → N is a smooth map between m-
dimensional manifolds, then the set of critical values of Φ has measure zero in
N .

Proof. See Theorem 8.12 of Knapp’s book. □
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Corollary 8.28. If Φ :M → N is a smooth map between manifolds with dim M <
dim N , then the image of Φ has measure zero in N .

Proof. Let dim M = m < n = dim N . Let (Uα, ψα) and (Vβ , ϕβ) be atlases for M
and N respectively. Let dµN be the measure on N . For each pair of Uα and Vβ
such that Vβ ∩ Φ(Uα) ̸= ∅, consider the following composition of maps

Ψα,β : Rn proj−−→ Rm
ψ−1

α−−−→ Uα ∩ Φ−1(Vβ)
Φ−→ Vβ

ϕβ−−→ Rn

where proj is the projection of Rn onto Rm. The differential dΨ is a compo-
sition of linear maps from Rn to Rm and Rm to Rn. Recall that rank(AB) ≤
min(rank(A), rank(B)) for any two compatible matrices A andB. Then rank(dΨ) ≤
m < n everywhere on the domain. Then every point in the domain is a critical point,
and therefore every point in the image is a critical value. By Sard’s Theorem, this
set of critical values has measure zero. In other words, the set ϕβ(Φ(Uα∩Φ−1(Vβ)))
has Lebesgue measure zero. By Proposition 8.24, Φ(Uα ∩ Φ−1(Vβ)) has measure
zero relative to dµN . Since countable Vβ covers Φ(Uα), we have

dµN (Φ(Uα)) = dµN
(⋃

Φ(Uα ∩ Φ−1(Vβ))
)
≤

∑
dµN (Φ(Uα ∩ Φ−1(Vβ))) = 0

We also have that a countable collection of Uα covers M . Then

dµN (Φ(M)) = dµN
(⋃

Φ(Uα)
)
≤

∑
dµN (Φ(Uα)) = 0

□

Definition 8.29. A lower-dimensional set in N is a set that is contained in the
countable union of smooth images of manifolds M with dim M < dim N .

Remark 8.30. By Corollary 8.28, lower-dimensional sets in N have measure zero.

Definition 8.31. Let M and N be oriented m-dimensional manifolds and let Φ :
M → N be a diffeomorphism. The map Φ is orientation preserving if, for every
chart (Uα, ψα) in the atlas of M , the chart (Φ(Uα), ψα ◦Φ−1) is positive relative to
the atlas of N .

Remark 8.32. We can take {(Φ(Uα), ψα ◦Φ−1)} to be the atlas for N . Then, the
change of variables formula for multiple integrals can be expressed using pullbacks.

Proposition 8.33. Let M and N be oriented m-dimensional manifolds with an
orientation-preserving diffeomorphism Φ : M → N . If ω is a smooth m form on
N , then ∫

N

fω =

∫
M

(f ◦ Φ)Φ∗ω

for all f in Ccom(N).

Proof. Let the atlases for M and N be {(Uα, ψα)} and {(Φ(Uα), ψα ◦ Φ−1)} re-
spectively. It suffices to prove the proposition for f of compact support in Φ(Uα).
Then, we can apply the method of partition of unity to extend integration to the
rest of N . On N , (8.10) gives
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(8.34)

∫
N

fω =

∫
(ψα◦Φ−1(Φ(Uα))

f ◦ (Φ ◦ ψ−1
α )(x1, .., xm)Fα(x1, ..., xm)dx1 · · · dxm,

where Fα is the smooth function in the pullback

((ψα ◦ Φ−1)−1)∗ω = Fα(x1, ..., xm)dx1 ∧ · · · ∧ dxm.
Incidentally,

((ψα ◦ Φ−1)−1)∗ω = (ψ−1
α )∗Φ∗ω.

Since f ◦ Φ has compact support in Uα, we also have by (8.10) that

(8.35)

∫
M

(f ◦Φ)Φ∗ω =

∫
ψα(Uα)

(f ◦Φ) ◦ψ−1
α (x1, ..., xm)Fα(x1, ..., xm)dx1 · · · dxm.

With right sides of (8.34) and (8.35) being equal, we proved our proposition. □

9. Haar Measure on Lie Groups

To be consistent with the material from previous sections, let G be a closed linear
group with g its Lie algebra. However, the theory in this section works with some
modifications for general Lie groups and Lie algebras.

Definition 9.1. For g ∈ G, define Lg : G → G and Rg : G → G to be the left
translation and right translation Lg(x) = gx and Rg(x) = xg.

Definition 9.2. A vector field X̃ on G is left invariant if (dLg)x(X̃x) = X̃gx.

Similarly, X̃ is right invariant if (dRg)x(X̃x) = X̃xg

Proposition 9.3. A left-invariant vector field is uniquely determined by its tangent
vector at the identity.

Proof. Let X̃ be a left-invariant vector field and let X̃e be its tangent vector at the

identity. Then (dLg)e(X̃e) = X̃g gives the value of the vector field for all g ∈ G. □

Definition 9.4. A smooth k form ω on G is left invariant if L∗
gω = ω for all

g ∈ G. Similarly, it is right invariant if R∗
gω = ω for all g ∈ G.

Remark 9.5. We can identify g with the tangent space at the identity of G. Let
X1, ..., Xm be a basis of g. These tangent vectors correspond uniquely to left-

invariant vector fields X̃1, ..., X̃m on G by Proposition 9.3. We can define smooth

1 forms ω1, ..., ωm on G such that (ωi)p
(
(X̃j)p

)
= δij for all p ∈ G.

Proposition 9.6. The smooth 1 forms ω1, ..., ωm on G are left invariant and they
form a basis of the dual of the tangent space at each point of G.

Proof. To show left invariance, we have that

(L∗
gωi)p

(
(X̃j)p

)
= (ωi)Lg(p)

(
(dLg)p((X̃j)p)

)
= (ωi)Lg(p)

(
(X̃j)Lg(p)

)
= δij = (ωi)p((X̃j)p).

The first equality comes from the definition of pullbacks (8.6) and the second comes
from the definition of left-invariant vector fields (Definition 9.2). Since (L∗

gωi)p and
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(ωi)p are both linear maps and equal on all basis tangent vector for each point
p ∈ G, it must be that (L∗

gωi)p and (ωi)p are equal as 1 forms. Thus ωi is left
invariant.

Now, we show that these 1 forms form a basis of the dual. At each point p ∈ G,

by construction (ωi)p
(
(X̃j)p

)
= δij . So the (ωi)p’s are linearly independent. Since

the number of dual vectors (ωi)p coincides with the number of basis vectors (X̃j)p,
(ωi)p form a basis of the dual of the tangent space at p. □

Remark 9.7. Taking the wedge product, we can construct a smooth m form
ω = ω1 ∧ · · · ∧ωm that is everywhere nonzero on G. Since pullback commutes with
the wedge product, we have

L∗
g

(∧
ωi
)
=

∧
(L∗

gωi) =
∧
ωi.

And thus ω is left invariant as well.

Theorem 9.8. If G is a Lie group of dimension m, then G admits an everywhere
nonzero left-invariant smooth m form ω. We can orient G so that ω is positive,
and ω defines a nontrivial Radon measure dµl on G such that dµl(LgE) = dµl(E)
for all g ∈ G and for every Borel set E in G.

Proof. With Remark 9.5 and Proposition 9.6, we can construct an everywhere
nonzero left-invariant smooth m form ω. From Proposition 8.20, ω can be oriented
positively. Now let dµl be the associated measure from Remark 8.23 such that∫
G
fω =

∫
G
f(x)dµl(x) for all f ∈ Ccom(G). From Proposition 8.33 and L∗

gω = ω,
we have

∫
G

f(x)dµl(x) =

∫
G

fω

=

∫
G

(f ◦ Lg)(L∗
gω)

=

∫
G

(f ◦ Lg)ω

=

∫
G

f(gx)dµl(x)(9.9)

for all f ∈ Ccom(G). For a compact set K in G, consider all the functions f that
are bounded from below by the characteristic function IK of K. We have

dµl(K) = inff≥IK

∫
G

f(x)dµl(x).(9.10)

Similarly, since the set Lg−1K is also compact, we can use (9.10) to get that

dµl(Lg−1K) = inff≥IK

∫
G

f(gx)dµ(x)(9.11)

since f(x) ≥ IK(x) implies f(gx) ≥ IK(gx) = ILg−1K(x). Applying (9.9) to the

right side of (9.10) and (9.11), we get dµl(K) = dµl(Lg−1K). Since dµl is a Radon
measure, we have dµl(E) = dµl(Lg−1E) for all Borel sets E. □
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Definition 9.12. A nonzero Radon measure on G that is invariant under left
translation is called a left Haar measure on G.

Remark 9.13. By Theorem 9.8, a left Haar measure exists for any Lie group G.
This left Haar measure is a special case of the left Haar measure of Definition 6.9
for topological groups.

Theorem 9.14. If G is a Lie group, then any two left Haar measures on G are
proportional.

Proof. See Theorem 8.23 of Knapp’s book [1] □

Definition 9.15. A nonzero Radon measure on G invariant under right translation
is called a right Haar measure on G.

Remark 9.16. Similarly to a left Haar measure, we can construct a right Haar
measure from right-invariant 1 forms and thenm forms. Analogously, any two right
Haar measures are proportional.

Notation 9.17. We simplify the notation for left and right Haar measure on G by
writing dlx and drx.

Proposition 9.18. Left and right Haar measures have a few important properties:

(a) Any nonempty open set has nonzero Haar measure .
(b) Any lower-dimensional set in G has Haar measure zero .

Proof. For part (a), let S be a nonempty open set and K be a nonempty compact
set. Pick a point s ∈ S. For each point k ∈ K, a left translation by ks−1 overlays
S onto K. Then {Lks−1S}k∈K is an open cover of K. By compactness of K, we
can reduce this to a finite subcover {Lkis−1S}ni=1. We have that

dl(K) ≤ dl
( n⋃
i=1

Lkis−1S
)
≤ n · dl(Lkis−1S) = n · dl(S).

Then 1
ndl(K) ≤ dl(S). Since dl(K) is nonzero, so is dl(S).

For part (b), Theorem 9.8 establishes that both the left and right Haar measures
satisfy the conditions of Proposition 8.24. Then the notion of measure zero under
the Haar measure is equivalent to that of Definition 8.29. Thus, our proposition
follows from Remark 8.30.

□

Notation 9.19. For t ∈ G, we define the measure dl(·t) on x ∈ G which is given
by dl(xt). Similarly, dr(t·) on x ∈ G is given by dr(tx).

Proposition 9.20. Let dl(·) be an arbitrary left Haar measure. Then d̃l = dl(·t)
is also a left Haar measure.

Proof. We have d̃l(LgE) = dl(Lg(Et)) = dl(Et) = d̃l(E). □

Definition 9.21. By Theorem 9.14, any two left Haar measures are proportional.
Consider dl and dl(·t). Observe that the proportionality constants of these two
measures only depend on t. We define the modular function ∆ : G → R+ of G
by

(9.22) dl(·t) = ∆(t)−1dl(·)
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As we will see later, the modular function gives us the Jacobian determinant for
when we integrate over the maximal torus.

Proposition 9.23. If G is a Lie group, then the modular function for G is given
by ∆(t) = |detAd(t)|.
Proof. See Proposition 8.27 of Knapp’s book [1]. □

Lemma 9.24. The only compact subgroup of R+ under multiplication is {1}.
Proof. Let S be a nontrivial compact subgroup. There is an x ∈ S such that x ̸= 1.
Without loss of generalization, let x > 1. If this is not the case, we consider x−1.
Then {xk}∞k=1 is a monotonically increasing sequence and is also a subset of S.
However, since this sequence is unbounded, S cannot be compact. It must be that
{1} is the only compact subgroup of R+. □

Lemma 9.25. All 1-dimensional representations of a semisimple Lie algebra are
trivial. Thus all 1-dimensional representations of a semisimple Lie group are trivial.

Proof. Let g be a Lie algebra. Let ϕ : g → C be a 1-dimensional representation
of g into the abelian real Lie algebra C. By Corollary 4.23, ϕ(g) = ϕ([g, g]) =
[ϕ(g), ϕ(g)] = 0. For simplicity, we only give the second part of the lemma for
closed linear group G. From Proposition 3.6, exp g = G since G is connected. Let
ψ : G→ C be a 1-dimensional representation of G. Then dψ is a 1-dimensional Lie
algebra representation on g. By Theorem 3.8,

(9.26) ψ(G) = ψ ◦ exp(g) = exp ◦dψ(g) = exp(0) = 1.

For general Lie group, we have a similar formula to Theorem 3.8 constructed by
lifting of homomorphisms (Section I.10 of Knapp’s book [1]). Using this formula,
we can rederive the analogue of (9.26). □

Corollary 9.27. The modular function ∆ for G has the following properties:

(a) ∆ : G→ R+ is a smooth homomorphism,
(b) ∆(t) = 1 for all t in any compact subgroup of G or in any semisimple

analytic subgroup of G,
(c) dl(x

−1) and ∆(x)dlx are equal as right Haar measures,
(d) dr(x

−1) and ∆(x)−1drx are equal as left Haar measures,
(e) dr(t·) = ∆(t)dt(·) for any right Haar measure on G.

Proof. Proposition 9.23 gives an explicit formula for ∆ in terms of composition
of smooth homomorphisms. From this, we get part (a). For (b), the image of a
compact subgroup ofG under ∆ is a compact subgroupK of R+. From Lemma 9.24,
∆(K) = {1}. The statement for semisimple Lie groups follows from Lemma 9.25.
For (c), define dµ(x) = ∆(x)dlx. Under this new measure, continuous functions
are still measurable since ∆ is continuous (from (a)). We have∫

G

f(xt)dµ(x) =

∫
G

f(xt)∆(x)dlx =

∫
G

f(x)∆(xt−1)dl(xt
−1)

=

∫
G

f(x)∆(x)∆(t−1)∆(t)dlx

=

∫
G

f(x)∆(x)dlx =

∫
G

f(x)dµ(x)
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The second equality comes from the substitution x 7→ xt−1. The third equality
is the result of ∆ being a homomorphism. Hence dµ(x) is a right Haar measure.
We also have that dl(x

−1) is a right Haar measure since dl((xt)
−1) = dl(t

−1x−1) =
dl(x

−1). By Theorem 9.14, dl(x
−1) = c∆(x)dlx for some constant c > 0. Perform-

ing a change of variable x 7→ x−1, we get

dlx = c∆(x−1)dl(x
−1) = c2∆(x−1)∆(x)dlx = c2dlx.

Thus we have c = 1, proving (c). The proof for (d) is similar so we omit the details.
Finally, for (e), without loss of generalization, let drx = dl(x

−1) = ∆(x)dlx. Then,∫
G

f(x)dr(tx) =

∫
G

f(t−1x)drx =

∫
G

f(t−1x)∆(x)dl(x)

=

∫
G

f(x)∆(tx)dlx

= ∆(t)

∫
G

f(x)∆(x)dlx = ∆(t)

∫
G

f(x)drx,

so we conclude that dr(t·) = ∆(t)dt(·). □

Definition 9.28. We call a Lie group G unimodular if every left Haar measure
on G is also a right Haar measure (and vice versa). Then, we can speak of a single
Haar measure on G. By (9.22), G is unimodular if and only if ∆(t) = 1 for all
t ∈ G.

Corollary 9.29. The following types of Lie groups are unimodular:

(a) abelian Lie groups,
(b) compact Lie groups,
(c) semisimple Lie groups,

Proof. Part (a) follows directly from (9.22), that is

dl(xt) = dl(tx) = dl(x) = ∆(x)−1dl(x).

So ∆(t) = 1. Parts (b) and (c) follow from Corollary 9.27(b). □

10. Weyl Integration Formula

The Weyl Integration Formula outlines a method to integrate over compact con-
nected Lie groups by first integrating over each conjugacy class, then integrating
over the set of conjugacy classes. In this section, let G be a compact connected
Lie group, let T be a maximal torus in G, and let g0 and t0 be the respective Lie
algebras. Set m = dim G and l = dim T .

Definition 10.1. An element g of G is called regular if the eigenspace of Ad(g)
for eigenvalue 1 has dimension l.

Remark 10.2. For g ∈ G, we can consider the set of velocity vectors at g

gg0 = {d′(0) | d : R → G is a smooth curve with d(0) = g}
We can identify gg0 with the tangent space at g. There is a natural isomorphism
between gg0 and g0 given by the map d→ g−1d. In fact, we can show that this is a
Lie algebra homomorphism. Then, we can identity g0 itself with the tangent space
at g.
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Remark 10.3. From Theorem 7.23, the map G × T → G by ψ(g, t) = gtg−1 is
surjective. For fixed g ∈ G and t ∈ T , we can identity the tangent spaces at g,
t, and gtg−1 with g0, t0 and g0 respectively by Remark 10.2. The formula (7.24)
computes the differential of ψ at (g, t) as

(10.4) dψ(X,H) = Ad(g)((Ad(t−1)− I)X +H),

where X ∈ g0 and H ∈ t0.
We can define the descended map of ψ restricted to G/T ×T → G by ψ(gT, t) =

gtg−1. This new map is well-defined since T is abelian. By abuse of notation, we
also call this descended map ψ. We may identify the tangent space G/T with the
orthogonal complement t⊥0 to t0 in g0 (relative to the invariant inner product in
Proposition 7.1). We can modify (10.4) for the descended map

(10.5) dψ(X,H) = Ad(g)((Ad(t−1)− I)X +H),

where X ∈ t⊥0 and H ∈ t0. Now, we can rewrite the differential dψ at (g, t) as the
matrix

(dψ)(g,t) = Ad(g)

(
1 0
0 Ad(t−1)− I

)
.

The first column of (dψ)(g,t) describes the action on t0 and the second column

describes that on t⊥0 .

Proposition 10.6. We have detAd(g) = 1 for all g ∈ G.

Proof. Since G is compact, by Corollary 9.27 (b), ∆(g) = |detAd(g)| = 1. This
implies that detAd(g) is either 1 or −1. From Corollary 9.27(a), it follows that
detAd is continuous. With detAd(I) = 1 and G being connected, we use the
intermediate value property to conclude that detAd(g) = 1 for all g ∈ G. □

Corollary 10.7. From Proposition 10.6, we have that

(10.8) det(dψ)(g,t) = det((Ad(t−1)− I)|t⊥0 ).

Remark 10.9. Following the process in Remark 9.5 and 9.7, we can build a left-
invariant (m− l) form on G/T from the duals of elements in t⊥0 and a left-invariant
l form on T from the duals of the elements in t0. A left-invariant m form on G is
then the wedge product of these two forms. Each left-invariant differential m form
on G defines a left Haar measure by Theorem 9.8. To integrate over the group G,
it is reasonable to first integrate over T , then over G/T .
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∫
G

f(g)dg =

∫
G

f(x)dµGl (x)

=

∫
G

fω

=

∫
G/T×T

(f ◦ ψ)ψ∗ω

=

∫
G/T×T

(f ◦ ψ)(gT, t)|det(dψ)(g,t)|d(gT )dt

=

∫
T

[ ∫
G/T

f(gtg−1)d(gT )

]∣∣det((Ad(t−1)− I)|t⊥0 )
∣∣dt(10.10)

The third equality follows from Proposition 8.33. The fourth equality uses (8.15)
with Fa = 1. And the fifth equality is a result of 10.8. However, the application of
Proposition 8.33 fails in two ways:

(1) the Jacobian of ψ : G/T × T → G has determinant 0 at some points in the
domain,

(2) ψ is not one-one even if we exclude points of Jacobian determinant 0.

Remark 10.11. To fix the first issue, we consider the possibility of excluding the
problematic points from the integral. Since dim(G) = dim(G/T ×T ), the points of
determinant 0 are exactly the critical points of ψ. By Sard’s Theorem (Theorem
8.27) and Proposition 8.24, this set of critical values has Haar measure zero in G.
By (10.8), we can exclude these points if we restrict ψ to a map ψ : G/T ×T ′ → G′.

Remark 10.12. To demonstrate the extent of the second issue, let w be in the
normalizer of T in G, denoted NG(T ). Then

(10.13) ψ(gwT,w−1tw) = (gw)(w−1tw)(w−1g−1) = gtg−1 = ψ(gT, t)

When w is not in ZG(T ) = T (Proposition 7.26), we have gwT ̸= gT . Then each
member of G′ has at least |NG(T )/ZG(T )| preimages. In fact, this bound is strict
for all elements of G′.

Definition 10.14. We define the analytic Weyl group W (G,T ) as the quotient
group of the normalizer and centralizer

W (G,T ) = NG(T )/ZG(T )

In fact, W (G,T ) is a finite group.

Lemma 10.15. Each member of G′ has exactly |W (G,T )| preimages under the
map ψ : G/T × T ′ → G′.

Proof. See Lemma 8.57 of Knapp’s book [1]. □

Remark 10.16. We revisit Proposition 8.33. Instead of Φ : M → N being an
orientation-preserving diffeomorphism, we let Φ be an everywhere regular (nonzero
Jacobian determinant) n-to-1 map of M onto N with equal dimension. To account
for the double-counting, we have the modification
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(10.17) n

∫
N

fω =

∫
M

(f ◦ Φ)Φ∗ω.

Remark 10.18. For t ∈ T ′, consider Ad(t−1) − I as an endomorphism of g =
(g0)

C. From the definition of regular elements, Ad(t−1) − I is diagonalizable with
eigenvalues 0 with multiplicity l. If ∆ = ∆(g, t) is the set of roots, then ξα(t

−1)− 1
are eigenvalues each with multiplicity 1. These are the multiplicative characters
described in (7.19). Then we have

∣∣ det(Ad(t−1) − I)|t⊥0
∣∣ = ∣∣Πα∈∆(ξα(t

−1) − 1)
∣∣.

Fixing a positive root system ∆+ and recognizing that ξα(t
−1) = ξ−α(t

−1), we see
that

(10.19)
∣∣det(Ad(t−1)− I)|t⊥0

∣∣ = ∣∣Πα∈∆+(ξα(t
−1)− 1)

∣∣2
Theorem 10.20 (Weyl Integration Formula). Let G be a compact connected Lie
group with a maximal torus T . For every Haar measurable function F ≥ 0 on G,
we have

(10.21)∫
G

F (x)dx =
1

|W (G,T )|

∫
T

[ ∫
G/T

F (gtg−1)d(gT )

]∣∣Πα∈∆+(ξα(t
−1)− 1)

∣∣2dt.
Proof. We fix the two problems of the naive formula in (10.10) with using the
modified formula in (10.17). In addition, we express the Jacobian determinant as
products of multiplicative characters by (10.19). Then, we get (10.21). □
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