
CLASSICAL TOPICS IN MEASURE-THEORETIC PROBABILITY

MAHNAV PETERSEN

Abstract. This expository paper rigorously develops a number of classical

topics in measure-theoretic probability. We first discuss some notions of con-

vergence for random variables and prove two versions of the Law of Large
Numbers. We then establish the basic properties of characteristic functions,

which we subsequently use to give a short proof of (one version of) the Central

Limit Theorem. In the final section, we establish the existence of Brownian
motion and prove some of its basic properties, including the striking result

that linear Brownian motion on [0, 1] is almost surely nowhere differentiable.
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1. Introduction

In this expository paper, we develop some classical topics in measure-theoretic
probability: convergence of random variables, characteristic functions, and the ba-
sics of Brownian motion. We assume that the reader knows measure theory, includ-
ing Dynkin’s π-λ theorem and the Fourier transform, and we also assume that the
reader has a strong understanding of basic probabilistic concepts like expectation
and independence.

We fix some notation that will be used throughout the paper. Let F ∈ {R,C}
and d ∈ N. (We choose the symbol F since both R and C are fields.) We let
N0 = N ∪ {0}, and we also let [n] = {1, 2, . . . , n} and [n]0 = {0, 1, 2, . . . , n} for all
n ∈ N0. In particular, [0] = Ø. If (Ω,F ,P) is a probability space, and if A ∈ F is an
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event, then we let 1A denote the indicator random variable associated with A. Also,
if X is a random variable, then we let µX denote its distribution, and, if X is real-
valued, then we let FX denote its distribution function (so FX(x) = µX((−∞, x])
for all x ∈ R).

We conclude this introduction with a few basic results that will be used frequently
in the paper.

Proposition 1.1. Let (Ω,F) be a measurable space, and let P1 and P2 be probability
measures on (Ω,F). Suppose that P is a π-system in Ω such that σ(P) = F (which,
in particular, implies P ⊂ F) and such that P1(A) = P2(A) for all A ∈ P. Then
P1 = P2.

Proof. Let L be the collection of all A ∈ F for which P1(A) = P2(A). It is easy
to check that L is a λ-system in Ω containing P, so, by Dynkin’s π-λ theorem,
F = σ(P) = L. QED

Proposition 1.2. Let (Γ,G) and (∆,H) be measurable spaces, and let f : Γ → ∆
be a measurable function. Suppose X and Y are Γ-valued random variables that
agree in distribution. Then f(X) and f(Y ) agree in distribution.

Proof. Let X be defined on the probability space (ΩX ,FX ,PX), and let Y be
defined on the probability space (ΩY ,FY ,PY ). If A ∈ H, then PX(f(X) ∈ A) =
PX(X ∈ f−1(A)) = PY (Y ∈ f−1(A)) = PY (f(Y ) ∈ A). QED

The following theorem is a well-known result about independent random vari-
ables, so we omit its proof.1

Theorem 1.3. For any collection of probability distributions {µα}α∈I (possibly
defined on different measurable spaces), there exist a probability space and a col-
lection of independent random variables {Xα}α∈I , all defined on that probability
space, such that each Xα has distribution µα (i.e., µXα = µα).

2. Convergence of Random Variables

Throughout this section, we fix a probability space (Ω,F ,P) and a topological
space X .

2.1. Modes of Convergence. Throughout this subsection, unless stated other-
wise, we let (Xn) be a sequence of Fd-valued random variables, all defined on
(Ω,F ,P), and we let X be another Fd-valued random variable on (Ω,F ,P).

Definition 2.1. Let E be the set of ω ∈ Ω for which the sequence (Xn(ω)) con-
verges. Then E =

⋂∞
k=1

⋃∞
N=1

⋂
(m,n)∈(N\[N ])2{ω ∈ Ω : |Xm(ω) − Xn(ω)| < 1

k},
so E is a measurable set in F . It follows that the set of ω ∈ Ω for which the
relation lim

n→∞
Xn(ω) = X(ω) holds is also a measurable set in F ; we will denote the

probability of this set by P(Xn → X). If P(Xn → X) = 1, then we say that (Xn)
converges to X almost surely (a.s.), and we write “Xn → X a.s. (as n→ ∞)”
to denote this convergence.

1This can be proven using the notion of the product probability measure for an arbitrary
product of probability spaces; we take the Xα as the coordinate projections from the product

space. See [1] for details regarding the construction of the product probability measure.
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Definition 2.2. We say that (Xn) converges toX in probability if lim
n→∞

P(|Xn−
X| > ϵ) = 0 for all ϵ > 0. We write “Xn → X in probability (as n→ ∞)” to denote
this convergence.

Convergence a.s. implies convergence in probability, in the sense if Xn → X a.s.,
thenXn → X in probability as well. The proof is immediate using the reverse Fatou
lemma (with the constant function 1 as the dominating function): lim sup

n→∞
P(|Xn −

X| > ϵ) = lim sup
n→∞

E(1(|Xn−X|−1)(ϵ,∞)) ≤ E(lim sup
n→∞

1(|Xn−X|−1)(ϵ,∞)) = 0 for all

ϵ > 0. However, the converse is not true in general, as we show in Example 2.3
below. Hence, convergence a.s. is strictly stronger than convergence in probability.

Example 2.3. Let (Ω,F ,P) be a probability space on which there exists an in-
dependent sequence of random variables (Xn) such that µXn

= (1 − 1
n )δ0 +

1
nδ1.

2

(The existence of such a probability space is guaranteed by Theorem 1.3.) Then
Xn → 0 in probability. However, for any N ∈ N, we have by independence that
P({ω ∈ Ω : |Xn(ω)| < 1

2 for all n ∈ N \ [N ]}) = lim
M→∞

P(XN+1 ∈ (− 1
2 ,

1
2 ), XN+2 ∈

(− 1
2 ,

1
2 ), . . . , XM ∈ (− 1

2 ,
1
2 )) = lim

M→∞

∏M
n=N+1(1 −

1
n ) ≤ lim sup

M→∞

∏M
n=N+1 e

−1
n = 0.

(Note that 1+x ≤ ex for all x ∈ R.) Thus, P(
⋃∞

N=1{ω ∈ Ω : |Xn(ω)| < 1
2 for all n ∈

N \ [N ]}) = 0, so (Xn) does not converge to X a.s..

Although convergence in probability does not imply convergence a.s., we do have
the following useful result:

Proposition 2.4. Xn → X in probability if and only if, for every subsequence
(Xnk

) of (Xn), there is a further subsequence (Xnkj
) such that Xnkj

→ X a.s. as

j → ∞.

Proof. Suppose that Xn → X in probability. Let (Xnk
) be a subsequence of (Xn).

Fix m ∈ N. Since P(|Xnk
− X| > 1

m ) → 0 as k → ∞, we can find a further

subsequence (Xnkj
) such that P(|Xnkj

− X| > 1
m ) < 1

2j for all j ∈ N. By the

Borel-Cantelli lemma, there exists Am ∈ F such that P(Am) = 1 and such that, for
all ω ∈ Am, there are at most finitely many j ∈ N for which |Xnkj

(ω)−X(ω)| > 1
m .

Then P(
⋂∞

m=1Am) = 1, and, if ω ∈
⋂∞

m=1Am, then Xnkj
(ω) → X(ω) as j → ∞.

Thus, Xnkj
→ X a.s. as j → ∞.

For the converse, fix ϵ > 0, and consider the sequence (P(|Xn − X| > ϵ)).
Since convergence a.s. implies convergence in probability, every subsequence of
this sequence has a further subsequence that converges to 0, which implies that
lim

n→∞
P(|Xn −X| > ϵ) = 0. QED

Corollary 2.5. If Xn → X in probability, then there is a subsequence (Xnk
) such

that Xnk
→ X a.s. as k → ∞.

Remark 2.6. For the proof of the converse of Proposition 2.4, we used the fact
that, if (xn) is a sequence in a topological space X , and if x ∈ X , then xn → x
as n → ∞ if and only if, for every subsequence (xnk

) of (xn), there is a further
subsequence (xnkj

) that converges to x (as j → ∞). Note that, despite this fact,

Proposition 2.4 does not show that convergence in probability implies convergence

2Note that δx denotes the Dirac measure concentrated at x ∈ R, so δx(B) = 1 for every Borel
set B ⊂ R containing x, while δx(B) = 0 for every Borel set B ⊂ R that does not contain x.
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a.s. (which we know to be false by Example 2.3). The key observation is that a
sequence has uncountably many subsequences, so convergence almost surely along
each subsequence does not imply convergence almost surely for the whole sequence.
If “a.s.” was replaced by “surely” in Proposition 2.4, then Proposition 2.4 would
imply that convergence in probability implies pointwise convergence (and hence
convergence a.s.).

We now discuss uniqueness of limits:

Proposition 2.7. Let Y be another Fd-valued random variable on (Ω,F ,P). If
Xn → X in probability and Xn → Y in probability, then X = Y a.s.. In particular,
if Xn → X a.s. and Xn → Y a.s., then X = Y a.s. (although this statement about
uniqueness of a.s. limits can easily be proven directly).

Proof. Fix m ∈ N. Then for n ∈ N, we have P(|X − Y | > 1
m ) ≤ P(|X − Xn| >

1
2m ) + P(|Xn − Y | > 1

2m ) → 0 as n → ∞, so P(|X − Y | > 1
m ) = 0. Hence,

P(|X − Y | > 0) = 0, so X = Y a.s.. QED

The significance of the following result will be apparent shortly:

Proposition 2.8. Let F1 = F, and let F2 ∈ {R,C} and k ∈ N. Let f : Fd
1 → Fk

2 be
continuous.

(a) If Xn → X a.s. as n→ ∞, then f(Xn) → f(X) a.s. as n→ ∞. Furthermore,
if f is bounded, then E(f(Xn)) → E(f(X)) as n→ ∞.

(b) If Xn → X in probability as n → ∞, then f(Xn) → f(X) in probability as
n→ ∞. Furthermore, if f is bounded, then E(f(Xn)) → E(f(X)) as n→ ∞.

Proof. For (a), the continuity of f implies that f(Xn) → f(X) a.s. as n→ ∞, and,
if f is bounded, we can apply the dominated convergence theorem to conclude that
E(f(Xn)) → E(f(X)) as n→ ∞.

For (b), let (Xnk
) be a subsequence of (Xn). By Proposition 2.4, we can choose

a further subsequence (Xnkj
) that converges a.s. to Xn as j → ∞. By (a), we

have f(Xnkj
) → f(X) a.s. as j → ∞, so, by Proposition 2.4 again, we have

f(Xn) → f(X) in probability as n→ ∞. If f is bounded, we can apply (a) again to
conclude E(f(Xnkj

)) → E(f(X)) as j → ∞. Since every subsequence of E(f(Xn))

has a further subsequence converging to E(f(X)), we have E(f(Xn)) → E(f(X))
as n→ ∞. QED

Definition 2.9. For this definition, let (Xn) be a sequence of X -valued random
variables (where X1, X2, . . . need not be defined on the same probability space), and
let X be another X -valued random variable. We say that (Xn) converges to X
in distribution if E(f(Xn)) → E(f(X)) as n→ ∞ for every bounded, continuous
function f : X → R. We write “Xn → X in distribution (as n → ∞)” to denote
this convergence.

We observe that convergence in distribution depends only on the random vari-
ables’ distributions. By Proposition 2.8, convergence in probability implies con-
vergence in distribution, and hence convergence a.s. implies convergence in distri-
bution. The converse is not true in general, as we show in Example 2.10 below.
Therefore, convergence in distribution is strictly weaker than convergence in prob-
ability, which is itself strictly weaker than convergence a.s. (although the notion of
convergence in distribution applies to a wider class of random variables).
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Example 2.10. Let (Xn) be a sequence of real-valued, independent and iden-
tically distributed (i.i.d.) random variables, all defined on the same probability
space (Ω,F ,P), such that µX1 = 1

2δ0 + 1
2δ1. Clearly, Xn → X1 in distribution.

However, P(|Xn − X1| ≤ 1
2 ) ≤ P(X1 = 0, Xn = 0) + P(X1 = 1, Xn = 1) = 1

2 by
independence for all n ∈ N, so (Xn) does not converge to X1 in probability (and
hence (Xn) does not converge to X1 a.s.).

Example 2.11. Let (xn) be a sequence of real numbers converging to x ∈ R.
For each n ∈ N, let Xn be a real-valued random variable with distribution δxn

,
and let X be a real-valued random variable with distribution δx. Then Xn →
X in distribution, since if f : R → R is a (bounded) continuous function, then
E(f(Xn)) = f(xn) → f(x) = E(f(X)) as n→ ∞.

Uniqueness of limits is a more subtle topic for convergence in distribution. Since
this type of convergence depends only on the random variables’ distributions, the
strongest form of uniqueness that we can expect is that any two limits have the
same distribution. For Rd-valued random variables, this will follow from Corollary
2.16 below. We begin with some preliminary results.

Theorem 2.12. Let (Xn) be a sequence of Rd-valued random variables (where
X1, X2, . . . need not be defined on the same probability space), and let X be another
Rd-valued random variable. Suppose that E(f(Xn)) → E(f(X)) for every smooth
(i.e., infinitely differentiable), compactly supported function f : Rd → [0, 1]. (In
particular, this hypothesis holds if Xn → X in distribution.) Then µXn

(R) →
µX(R) as n → ∞ for every rectangle3 R in Rd such that µX(bd(R)) = 0, where
bd(R) denotes the topological boundary of R.

Proof. Let R = I1 × I2 × . . . × Id be a rectangle in Rd such that µX(bd(R)) = 0,
where I1, I2, . . . , Id ⊂ R are intervals. For j ∈ [d], let aj be the left endpoint of Ij
and bj be the right endpoint of Ij .

Fix k ∈ N. Let Rk = (a1 − 1
k , b1 + 1

k ) × (a2 − 1
k , b2 + 1

k ) × · · · × (ad −
1
k , bd + 1

k ). Let fk : Rd → [0, 1] be a smooth, compactly supported function

such that fk(x) = 1 for all x ∈ R and fk(x) = 0 for all x ∈ Rd \ Rk.
4 Then

µX(Rk) = E(1Rk
(X)) ≥ E(fk(X)), and E(fk(Xn)) ≥ E(1R(Xn)) = µXn

(R).
Thus, lim sup

n→∞
µXn(R) ≤ lim sup

n→∞
E(fk(Xn)) = E(fk(X)) ≤ µX(Rk). By the con-

tinuity of measure and the fact that µX(bd(R)) = 0, we have lim
k→∞

µX(Rk) =

µX(R ∪ bd(R)) = µX(R), so the relation lim sup
n→∞

µXn(R) ≤ µX(Rk) implies that

lim sup
n→∞

µXn
(R) ≤ µX(R). An analogous argument (by approximating R using rect-

angles of the form (a1 +
1
k , b1 −

1
k ) × (a2 +

1
k , b2 −

1
k ) × · · · × (ad + 1

k , bd − 1
k ) for

k ∈ N) yields that lim inf
n→∞

µXn
(R) ≥ µX(R). QED

Definition 2.13. Fix j ∈ [d] and a ∈ R. We define Hj,a ⊂ Rd as the hyperplane
obtained by fixing the jth coordinate at a. More formally, we let Hj,a be the set of
all (x1, x2, . . . , xd) ∈ Rd such that xj = a.

3By “rectangle,” we mean a subset of the form I1 × I2 × · · · × Id for bounded intervals
I1, I2, . . . , Id ⊂ R. The representation of a nonempty rectangle as a product of bounded intervals
is unique. Note that this is a different use of the word “rectangle” than in Section 4.3.

4The existence of such a function is a well-known result from analysis; see Chapter 8.2 of [5]
for details.
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Lemma 2.14. Fix j ∈ [d]. Let µ be a finite measure on (Rd,BRd). Then µ(Hj,a) >
0 for at most countably many a ∈ R.

Proof. This is immediate, since
∑

a∈R µ(Hj,a) ≤ µ(Rd) <∞.5 QED

Corollary 2.15. Let µ be a probability measure on (R,BRd). Let Pµ be the col-
lection of all nonempty, open rectangles R = I1 × I2 × · · · × Id in Rd such that
µ(Hj,aj

) = µ(Hj,bj ) = 0 for all j ∈ [d], where aj is the left endpoint of Ij and bj is
the right endpoint of Ij (and where I1, I2, . . . , Id ⊂ R are bounded intervals). Then
P ∪ {Ø} is a π-system in Rd such that σ(P) = BRd .

Proof. It is straightforward to check that P ∪ {Ø} is a π-system. To check that
σ(P) = BRd , note that, by Lemma 2.14, we can write any open rectangle in Rd

as a countable union of rectangles in P ∪ {Ø}, and that every open set in Rd is a
countable union of open rectangles. QED

Corollary 2.16. Two Rd-valued random variables X and Y (which need not be
defined on the same sample space) agree in distribution if and only if E(f(X)) =
E(f(Y )) for every smooth, compactly supported function f : Rd → [0, 1].

Proof. Let PµX
be as in Corollary 2.15. Suppose E(f(X)) = E(f(Y )) for every

smooth, compactly supported function f : Rd → [0, 1]. Then by Theorem 2.12, we
have µY (R) = µX(R) for every rectangle R in Rd such that µX(bd(R)) = 0. In
particular, we have µY (R) = µX(R) for every rectangle R in P ∪ {Ø}, so µY = µX

by Proposition 1.1 and Corollary 2.15. The converse is clear. QED

The definition for convergence in distribution is rather abstract, so it would be
nice to have a more concrete way to characterize this convergence. We will do this
for real-valued random variables in Theorem 2.23 below. Specifically, we will give
the concrete characterization that, if X1, X2, . . . are real-valued random variables,
and ifX is another real-valued random variable, thenXn → X in distribution if and
only if FXn(t) → FX(t) as n → ∞ for every t ∈ R at which FX is continuous. By
taking xn = 1

n for all n ∈ N in Example 2.11, we see that the continuity condition
is not superfluous. (Note that FX is increasing and hence has at most countably
many points of discontinuity.) However, we need to develop a little more machinery
before proving Theorem 2.23.

Definition 2.17. Let F : R → [0, 1] be an increasing, right-continuous function
satisfying lim

t→∞
F (t) = 1 and lim

t→−∞
F (t) = 0. (Thus, F is the distribution function

of its Lesbegue-Stieltjes measure.) We define the generalized inverse of F as the
function G : (0, 1) → R, given by G(x) = sup{t ∈ R : F (t) < x} for all x ∈ R. (Note
that the relations lim

t→∞
F (t) = 1 and lim

t→−∞
F (t) = 0 imply that G is well-defined.)

Observe that G is increasing and hence Borel-measurable.

Lemma 2.18. Let F : R → [0, 1] be an increasing, right-continuous function satis-
fying lim

t→∞
F (t) = 1 and lim

t→−∞
F (t) = 0. Let G be the generalized inverse of F . Fix

x ∈ (0, 1) and t ∈ R. Then x ≤ F (t) if and only if G(x) ≤ t.

5We are using the basic fact that, if an indexed sum of nonnegative numbers is finite, then
at most countably many of the terms in the sum are nonzero. See pages 83-84 of [2] and pages

xii-xiii of [4] for details.
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Proof. If x ≤ F (t), then the monotonicity of f implies that G(x) ≤ t. If x > F (t),
then, by right-continuity, x > F (t+ ϵ) for some ϵ > 0, so G(x) ≥ t+ ϵ > t. QED

Lemma 2.19. Let F : R → [0, 1] be an increasing, right-continuous function sat-
isfying lim

t→∞
F (t) = 1 and lim

t→−∞
F (t) = 0. Let Ω be the collection of all x ∈ (0, 1)

such that sup{t ∈ R : F (t) < x} = inf{t ∈ R : F (t) > x}. (Again, the relations
lim
t→∞

F (t) = 1 and lim
t→−∞

F (t) = 0 imply that Ω is well-defined.) Then (0, 1) \ Ω is

countable.

Proof. For each x ∈ (0, 1), let ax = sup{t ∈ R : F (t) < x} and bx = inf{t ∈ R :
F (t) > x}; note that ax ≤ bx. Suppose x1, x2 ∈ (0, 1) \ Ω satisfy x1 < x2. Then
bx1

≤ ax2
, so (ax1

, bx1
) and (ax2

, bx2
) are disjoint, nonempty intervals. Thus, we

can injectively associate each x ∈ (0, 1) \ Ω with a rational number, which implies
that (0, 1) \ Ω is countable. QED

Proposition 2.20. Let X1, X2, . . . be real-valued random variables, and let X be
another real-valued random variable. For each n ∈ N, let Yn be the generalized in-
verse of FXn

. Also, let Y be the generalized inverse of FX . Note that we can regard
each Yn as a real-valued random variable on the probability space ((0, 1),B(0,1),m);
similarly, we can regard Y as a real-valued random variable on ((0, 1),B(0,1),m).

(a) µXn
= µYn

for all n ∈ N, and µX = µY .
(b) Suppose FXn(t) → FX(t) as n→ ∞ for every t ∈ R at which FX is continuous.

Then Yn → Y a.s.. In fact, let Ω be the collection of all x ∈ (0, 1) such that
sup{t ∈ R : FX(t) < x} = inf{t ∈ R : FX(t) > x}. Then Yn(x) → Y (x) as
n→ ∞ for all x ∈ Ω, which implies that Yn → Y a.s. by Lemma 2.19.

Proof. For all n ∈ N, by Lemma 2.18, we have FYn
(t) = m(Yn ≤ t) = m({x ∈

(0, 1) : x ≤ FXn
(t)}) = FXn

(t) for all t ∈ R, so µYn
= µXn

. Similarly, µY = µX ,
which gives (a).

We now consider (b). Fix x ∈ Ω, and fix any s ∈ R at which FX is continuous.
Suppose s > Y (x). By Lemma 2.18, we have x ≤ FX(s). If x = FX(s), then
s > Y (x) = sup{t ∈ R : FX(t) < x} = inf{t ∈ R : FX(t) > x} ≥ s, which is absurd.
Hence, x < FX(s), so, whenever n ∈ N is sufficiently large, we have x ≤ FXn

(s)
and thus YXn

(x) ≤ s. Therefore, lim sup
n→∞

YXn
(x) ≤ s, so, by our choice of s, we

conclude lim sup
n→∞

YXn(x) ≤ Y (x).

Now suppose s < Y (x). By Lemma 2.18, FX(s) < x, so, whenever n ∈ N is
sufficiently large, FXn

(s) < x and hence s < Yn(x). Thus, lim inf
n→∞

Yn(s) ≥ s, so, by

our choice of s, we conclude lim inf
n→∞

Yn(s) ≥ Y (x). QED

Lemma 2.21. Let (X , d) be a metric space. For each m,n ∈ N, let amn ∈ X . Fix
L ∈ X . Suppose that, for every ϵ > 0. there exists N ∈ N such that d(amn, L) < ϵ
whenever m,n ≥ N . Suppose also that lim

n→∞
amn exists for all m ∈ N. Then

lim
m→∞

lim
n→∞

amn exists and equals L.

Proof. Fix ϵ > 0. Choose N ∈ N such that d(amn, L) < ϵ whenever m,n ≥ N . Fix
m ≥ N . Choose nm ∈ N such that nm ≥ N and d( lim

n→∞
amn, amnm

) < ϵ. Then

d( lim
n→∞

amn, L) ≤ d( lim
n→∞

amn, amnm
) + d(amnm

, L) < 2ϵ. QED
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Corollary 2.22. Let (X , d) be a metric space. For each m,n ∈ N, let amn ∈
X . Fix L ∈ X . Suppose that, for every ϵ > 0. there exists N ∈ N such that
d(amn, L) < ϵ whenever m,n ≥ N . Suppose also that lim

n→∞
amn and lim

m→∞
amn exist

for all m,n ∈ N. Then lim
m→∞

lim
n→∞

amn = lim
n→∞

lim
m→∞

amn = L (so, in particular, we

can switch the order of the limits).

Theorem 2.23. Let X1, X2, . . . be real-valued random variables, and let X be an-
other real-valued random variable. The following are equivalent:

(a) Xn → X in distribution (i.e., E(f(Xn)) → E(f(X)) as n → ∞ for every
bounded, continuous function f : R → R).

(b) E(f(Xn)) → E(f(X)) as n → ∞ for every smooth, compactly supported func-
tion f : R → [0, 1].

(c) µXn([a, b]) → µX([a, b]) as n → ∞ for every a, b ∈ R such that a ≤ b and
µX({a, b}) = 0.

(d) FXn
(t) → FX(t) as n→ ∞ for every t ∈ R at which FX is continuous.

Proof. Clearly, (a) implies (b). By Theorem 2.12, (b) implies (c).
Suppose (c) holds. Fix any t ∈ R at which FX is continuous. Since FX has at

most countably many discontinuities, we can choose a sequence of strictly decreasing
real numbers (ak) with a1 < t such that lim

k→∞
ak = −∞ and such that FX is

continuous at each ak. By continuity, µX({ak, t}) = 0 for all k ∈ N.
We first check that the hypotheses of Corollary 2.22 hold for the “double se-

quence” (µXn
([ak, t]))n,k∈N, with L = µX((−∞, t]). Clearly, lim

k→∞
µXn

([ak, t]) and

lim
n→∞

µXn
([ak, t]) exist for all n, k ∈ N. Now fix ϵ > 0. Choose c, d ∈ R with

c ≤ t and c ≤ d such that µX([c, d]) ≥ 1 − ϵ and such that FX is continuous at
c and d. Choose N ∈ N such that, if n ≥ N , then |µXn

([c, t]) − µX([c, t])| ≤ ϵ
and |µXn([c, d]) − µX([c, d])| ≤ ϵ (and hence µXn([c, d]) ≥ 1 − 2ϵ), and such that
ak ≤ c for k ≥ N . Then if n, k ≥ N , we have |µXn([ak, t]) − µX((−∞, t])| =
|(µXn

([ak, c))+µXn
([c, t]))−(µX((−∞, c))+µX([c, t]))| ≤ |µXn

([c, t])−µX([c, t])|+
|µXn

([ak, c))|+|µX((−∞, c))| ≤ 4ϵ, which completes the verification of the hypothe-
ses of Corollary 2.22.

Then we have FX(t) = µX((−∞, t]) = lim
k→∞

µX([ak, t]) = lim
k→∞

lim
n→∞

µXn([ak, t]) =

lim
n→∞

lim
k→∞

µXn
([ak, t]) = lim

n→∞
µXn

((−∞, t]) = lim
n→∞

FXn
(t), which gives (d).

Suppose (d) holds. Define Y and Y1, Y2, . . . as in Proposition 2.20. Then for
any bounded, continuous function f : R → R, we have E(f(Xn)) = E(f(Yn)) →
E(f(Y )) = E(f(X)) as n→ ∞ by Proposition 2.8, so (a) holds. QED

2.2. Law of Large Numbers. We now arrive at one of the most important the-
orems in probability: the Law of Large Numbers. Technically, the Law of Large
Numbers is not a single theorem but rather a collection of theorems, all of which
have slightly different hypotheses and conclusions but express the same general
principle. We will prove two of these theorems (Theorems 2.24 and 2.25 below).

To get some intuition for the Law of Large Numbers, consider a physics student
who is measuring the time it takes for a ball to drop from a particular height. Sup-
pose that the student performs the same ball-drop experiment n times (where n ∈
N), obtaining n measurements X1, X2, . . . , Xn, each of which is a real-valued ran-
dom variable. We assume that the ball drops are performed independently of each
other; then it is reasonable to assume that the random variables X1, X2, . . . , Xn
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are independent. It is also reasonable to assume that X1, X2, . . . , Xn have the
same distribution (and hence the same mean), since the ball drops are meant to
be performed in the same way. From experience, we expect that, when n is large,
the average 1

n (X1 +X2 + · · · +Xn) is a good estimate for the “true value” of the
ball-drop time, since a couple outlier measurements would not skew the average
1
n (X1+X2+ · · ·+Xn) too much for large n. (This intuition is reflected in the proof
of Theorem 2.24.) The Law of Large Numbers essentially formalizes this empirical
principle that averaging together more data points gives a better estimate for the
true value of a quantity (where we will model the “true value” as the expected
value), provided that the data points are collected independently of each other.

Theorem 2.24. (Weak Law of Large Numbers) Let X1, X2, . . . be a sequence
of real-valued, pairwise uncorrelated random variables, all defined on the same
probability space (Ω,F ,P), with the same mean µ. Suppose that E(|Xn|2) < ∞
for all n ∈ N and that the sequence of variances (Var(Xn)) is bounded. Then
1
n (X1 +X2 + · · ·+Xn) → µ in probability as n→ ∞.

Proof. Choose σ > 0 such that Var(Xn) ≤ σ2 for all n ∈ N. Fix ϵ > 0. Then by
Chebyshev’s inequality, we have P(| 1n (X1+X2+· · ·+Xn)−µ| > ϵ) ≤ 1

ϵ2 Var(
1
n (X1+

X2 + · · ·+Xn)) =
1

n2ϵ2

∑n
j=1 Var(Xj) ≤ nσ2

n2ϵ2 → 0 as n→ ∞. QED

Theorem 2.25. (Strong Law of Large Numbers) Let X1, X2, . . . be a sequence
of real-valued, 4-wise independent random variables, all defined on the same proba-
bility space (Ω,F ,P), with the same mean µ. Suppose that E(|Xn|4) = E(X4

n) <∞
for all n ∈ N and that the sequence of ordinary 4th moments (E(X4)) is bounded.
Then 1

n (X1 +X2 + · · ·+Xn) → µ a.s. as n→ ∞. (Thus, the Strong Law of Large
Numbers has a more robust conclusion than the Weak Law of Large Numbers, at
the cost of more stringent hypotheses.)

Proof. Choose C > 0 such that E(X4
n) < C for all n ∈ N. We may assume without

loss of generality that µ = 0, since, once the µ = 0 case is proven, the general case
follows easily by considering the sequence X1 − µ,X2 − µ, . . ..

Fix n ∈ N. We assert that E((X1 + X2 + · · · + Xn)
4) ≤ 3Cn2. For proof,

first observe that E((X1 + X2 + · · · + Xn)
4) =

∑
i,j,k,l∈[n] E(XiXjXkXl). Since

µ = 0, we observe that, by 4-wise independence, the only nonzero terms in the sum∑
i,j,k,l∈[n] E(XiXjXkXl) occur when i = j = k = l or when we can pair up the

four indices into two pairs of two indices, such that two indices in the same pair are
the same number in [n] whereas two indices in different pairs are different numbers
in [n]. There are n terms of the first kind, and each of these terms is bounded by C.
There are 3n(n−1) terms of the second kind, and each of these terms is bounded by
C (by Hölder’s inequality). Thus,

∑
i,j,k,l∈[n] E(XiXjXkXl) ≤ nC + 3n(n− 1)C ≤

3n2C, which proves the asserion.
Let An = { 1

n |X1 + X2 + · · · + Xn| ≥ n−1/8} = {|X1 + X2 + · · · + Xn| ≥
n7/8}. Let {An i.o.} be the collection of ω ∈ Ω that are in infinitely many of
the An. (Indeed, “i.o.” stands for “infinitely often.”) Choose any ω ∈ Ω such that
1
n (X1(ω)+X2(ω)+· · ·+Xn(ω)) does not converge to 0 as n→ ∞. Then there exists

ϵ > 0 such that 1
n |X1(ω)+X2(ω)+· · ·+Xn(ω)| ≥ ϵ for infinitely many n ∈ N, which

implies that ω ∈ {An i.o.}. Thus, it suffices to show that P(An i.o.) = 0. By the
Borel-Cantelli lemma, it suffices to show that

∑∞
n=1 P(An) <∞, which is indeed the
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case by Markov’s inequality and the preceding paragraph since P(An) = P((X1 +

X2 + · · ·+Xn)
4 ≥ n7/2) ≤ 1

n7/2E((X1 +X2 + · · ·+Xn)
4) ≤ 3Cn2

n7/2 = 3C
n3/2 . QED

3. Characteristic Functions

3.1. Basic Properties of Characteristic Functions. We assume that the reader
is familiar with the basic theory of the Fourier transform. However, because there
are many conventions for the Fourier transform, we state our convention here:

Definition 3.1. Let µ be a complex measure on (Rd,BRd). We define the Fourier-
Stieltjes transform of µ as the function µ̂ : Rd → C given by µ̂(ζ) =

∫
Rd e

ix·ζ dµ(x)

for all ζ ∈ Rd. Also, if f ∈ L1((Rd,BRd ,m),C), then we define the Fourier trans-

form of f as the function f̂ : Rd → C given by f̂(ζ) =
∫
Rd f(x)e

ix·ζ dx for all

ζ ∈ Rd. By identifying f ∈ L1((Rd,BRd ,m),C) with the complex measure on
(Rd,BRd) defined by mapping A ∈ BRd to

∫
A
f(x) dx, we can view the Fourier

transform as a special case of the Fourier-Stieltjes transform.

We also recall the well-known inversion theorem from analysis:

Theorem 3.2. (Fourier inversion theorem.) Let f ∈ L1((Rd,BRd ,m),C).
Suppose that f̂ ∈ L1((Rd,BRd ,m),C) as well. Then f(x) = 1

(2π)d

∫
Rd f̂(ζ)e

−iζ·x dζ

for almost all x ∈ Rd (with respect to the Lesbegue measure). Furthermore, if f is

continuous, then the relation f(x) = 1
(2π)d

∫
Rd f̂(ζ)e

−iζ·x dζ holds for every x ∈ Rd.

Corollary 3.3. Let f : Rd → C be a Schwartz function. Then we have f(x) =
1

(2π)d

∫
Rd f̂(ζ)e

−iζ·x dζ for every x ∈ Rd.

LetX be an Rd-valued random variable. We define the characteristic function
of X by ϕX =”µX (i.e., ϕX is the Fourier-Stieltjes transform of the distribution of
X). Explicitly, ϕX(ζ) = E(eiX·ζ) ∈ C for all ζ ∈ Rd. Note that ϕX depends only
on the distribution of X.

We now list some basic properties about characteristic functions.

(a) If X has a density f , then ϕX = f̂ is the Fourier transform of the density. Note,
however, that ϕX always exists, even if X does not have a density.

(b) ϕX(0) = 1, and |ϕX(ζ)| ≤ E(|eiX·ζ |) = 1 for all ζ ∈ Rd. In particular, ϕX is
bounded.

(c) If X1, X2, . . . is a sequence of Rd-valued random variables converging to X in
distribution, then the characteristic functions ϕXn converge pointwise to ϕX
(since eix·ζ is a bounded, continuous function of x ∈ Rd for any fixed ζ ∈ Rd).

(d) Fix n ∈ N, and let X1, X2, . . . , Xn be independent, Rd-valued random vari-
ables (all defined on the same probability space (Ω,F ,P)). We assert that
ϕX1+X2+···+Xn

= ϕX1
ϕX2

· · ·ϕXn
(i.e., the characteristic function of a finite

sum of independent Rd-valued random variables is the product of their charac-
teristic functions). Indeed, we have

ϕX1+X2+···+Xn(ζ) = E(ei(X1+X2+···+Xn)·ζ)

= E(eiX1·ζeiX2·ζ · · · eiXn·ζ)

= E(eiX1·ζ)E(eiX2·ζ) · · ·E(eiXn·ζ)

= ϕX1
(ζ)ϕX2

(ζ) · · ·ϕXn
(ζ)

for all ζ ∈ Rd.
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(e) If a ∈ R and b ∈ Rd, then ϕaX+b(ζ) = E(ei(aX+b)·ζ) = E(eiX·(aζ)eib·ζ) =
eib·ζϕX(aζ) for all ζ ∈ Rd.

Proposition 3.4. Let X = (X1, X2, . . . , Xd) be an Rd-valued random variable.
Fix k ∈ N0 and (j1, j2, . . . , jk) ∈ [d]k, where we interpret (j1, j2, . . . , jk) as the
empty list when k = 0. Suppose E(|Xjk · · ·Xj2Xj1 |) < ∞, where we interpret
the empty product as 1 (so that this hypothesis is trivially satisfied when k = 0).
Then ∂

∂ζjk ···∂ζj2∂ζj1
ϕX(ζ) = ikE(Xjk · · ·Xj2Xj1e

iX·ζ) for all ζ ∈ Rd, where we

interpret a 0th-order partial derivative as the original function, and, furthermore,
∂

∂ζjk ···∂ζj2∂ζj1
ϕX is uniformly continuous. In particular, if E(|X|k) < ∞, then

ϕX ∈ Ck(Rd,C) (i.e., all the kth-order partial derivatives of ϕX exist on Rd and
are continuous).

Proof. We prove differentiability by induction on k. The k = 0 case is trivial. Now
suppose that k ∈ N and that the result holds for k−1. Since E(|Xjk · · ·Xj2Xj1 |) <
∞, we have E(|Xjk−1

· · ·Xj2Xj1 |) < ∞. Hence, we have ∂
∂ζjk−1

···∂ζj2∂ζj1
ϕX(ζ) =

ik−1E(Xjk−1
· · ·Xj2Xj1e

iX·ζ) for all ζ ∈ Rd. Let ψ = ∂
∂ζjk−1

···∂ζj2∂ζj1
ϕX . Let ujk

be the standard basis vector in Rd with a 1 in the jthk coordinate and zeroes in
the other coordinates. Then for h ∈ R \ {0}, we have 1

h (ψ(ζ + hujk) − ψ(ζ)) =

ik−1E(Xjk−1
· · ·Xj2Xj1e

iX·ζ( e
iXjk

h−1
h )). Since |eit − 1| ≤ |t| for any t ∈ R, we

get |Xjk−1
· · ·Xj2Xj1e

iX·ζ( e
iXjk

h−1
h )| ≤ |XjkXjk−1

· · ·Xj2Xj1 |, so taking h → 0

and using the dominated convergence theorem gives 1
h (ψ(ζ + hujk) − ψ(ζ)) →

ikE(XjkXjk−1
· · ·Xj2Xj1e

iX·ζ), as desired.

For uniform continuity, fix s ∈ Rd. Let γ = ∂
∂ζjk ···∂ζj2∂ζj1

ϕX . We define γs(ζ) =

γ(ζ + s) for all ζ ∈ Rd. We must show that ||γs − γ||sup → 0 as s → 0 (where
|| · ||sup indicates the supremum norm). For each ζ ∈ Rd, we have |γ(ζ + s)− γ| ≤
E(|Xjk · · ·Xj2Xj1 |(|eiX·s−1|)), so ||γs−γ||sup ≤ E(|Xjk · · ·Xj2Xj1 |(|eiX·s−1|)) → 0
as s→ 0 by the dominated convergence theorem. QED

Corollary 3.5. ϕX is uniformly continuous for any Rd-valued random variable X.

We have already seen that the distribution of an Rd-valued random variable X
determines the characteristic function ϕX . We now show that the (highly nontriv-
ial) converse holds in the special case that X is real-valued; i.e., the characteristic
function of a real-valued random variable completely determines its distribution.
This will follow from Theorem 3.6 below, which allows us to reduce questions about
convergence in distribution into questions about convergence of characteristic func-
tions (and also adds to the list of equivalences in Theorem 2.23):

Theorem 3.6. Let X1, X2, . . . be real-valued random variables, and let X be an-
other real-valued random variable. The following are equivalent:

(a) Xn → X in distribution as n→ ∞.
(b) The sequence of characteristic functions (ϕXn

) converges pointwise to ϕX .
(c) The sequence of characteristic functions (ϕXn

) converges to ϕX a.e. (with
respect to Lesbegue measure).

Proof. Clearly, (a) implies (b), and (b) implies (c). Now suppose that (c) holds. To
show that (a) holds, it suffices by Theorem 2.23 to prove that E(f(Xn)) → E(f(X))
for every smooth, compactly supported function f : R → [0, 1]. Note that any such
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f is Schwartz, so, by Corollary 3.3 and Fubini’s theorem, we have E(f(Xn)) =∫
R f(x) dµXn

(x) = 1
2π

∫
R
∫
R f̂(ζ)e

−iζx dζdµXn
(x) = 1

2π

∫
R
∫
R f̂(ζ)e

−iζx dµXn
(x)dζ =

1
2π

∫
R f̂(ζ)ϕXn

(−ζ)dζ. (Note the importance of the fact that the relation f(x) =
1
2π

∫
R f̂(ζ)e

−iζx dx holds for every x ∈ Rd, not just almost every x.) Similarly,

E(f(X)) = 1
2π

∫
R f̂(ζ)ϕX(−ζ)dζ. Thus, E(f(Xn)) → E(f(X)) as n → ∞ by the

dominated convergence theorem. QED

Corollary 3.7. Two real-valued random variables agree in distribution if and only
if their characteristic functions are equal (which, by Corollary 3.5, occurs if and only
if their characteristic functions are equal a.e. with respect to Lesbegue measure).

3.2. Normal Random Variables. We now consider normal random variables,
which are of fundamental importance to probability theory.

Definition 3.8. Let µ ∈ R and σ ∈ R \ {0}. We define N(µ, σ2) as the probability

distribution on (R,BR) with density f : R → R given by f(x) = 1√
2πσ2

e−(x−µ)2/(2σ2)

for x ∈ R. (Using the famous identity
∫∞
−∞ e−πx2

dx = 1, it is easy to show that∫∞
−∞ f(x) dx = 1, so N(µ, σ2) is well-defined.)

Proposition 3.9. Let µ ∈ R and σ ∈ R\{0}. Also, let a ∈ R\{0} and b ∈ R, and
let X be a real-valued random variable with distribution N(µ, σ2). Then aX+ b has
distribution N(aµ+ b, (aσ)2).

Proof. It suffices to show that aX has distribution N(aµ, (aσ)2) and that X + b
has distribution N(µ + b, σ2). Fix c, d ∈ R with c ≤ d. Then µX+b((c, d]) =

µX((c−b, d−b]) = 1√
2πσ2

∫ d−b

c−b
e−(x−µ)2/(2σ)2 dx = 1√

2πσ2

∫ d

c
e−(x−(b+µ))2/(2σ)2 dx =

(N(µ+b, σ2))((c, d]), so µX+b = N(µ+b, σ2) by Proposition 1.1 (since the collection
of half-open intervals of the form (c, d] with c ≤ d form a π-system).

We observe that µ−X((c, d]) = µX([−d,−c)) = 1√
2πσ2

∫ −c

−d
e−(x−µ)2/(2σ2) dx =

1√
2πσ2

∫ d

c
e−(x−(−µ))2/(2σ2) dx = (N(−µ, σ2))((c, d]), so µ−X = N(−µ, σ2), again

by Proposition 1.1. Thus, to prove that aX has distribution N(aµ, (aσ)2), we may
assume without loss of generality that a > 0, since the general case follows from
this special case and the preceding sentence. Then we observe that µaX((c, d]) =

µX((c/a, d/a]) = 1√
2πσ2

∫ d/a

c/a
e−(x−µ)2/(2σ2) dx = 1√

2π(aσ)2

∫ d

c
e−(x−aµ)2/(2(aσ)2) dx =

(N(aµ, (aσ)2))((c, d]), so µaX = N(aµ, (aσ)2), yet again by Proposition 1.1 QED

We call N(0, 1) the standard normal distribution, so N(0, 1) has density

f : R → R given by f(x) = 1√
2π
e−x2/2 for x ∈ R. Let X be a standard normal

random variable (i.e., a real-valued random variable with µX = N(0, 1)). Since
the characteristic function of X is the Fourier transform of f , we have ϕX(t) =

e−t2/2 for all t ∈ R.6 Thus, if X is a real-valued random variable with distribution

N(µ, σ2) for µ ∈ R and σ ∈ R \ {0}, then ϕX(t) = eiµt−(σt)2/2 for all t ∈ R,
because, by Proposition 3.9, 1

σX − µ
σ is a standard normal random variable, so

ϕX(t) = ϕσ( 1
σX−µ

σ )+µ(t) = eiµtϕ 1
σX−µ

σ
(σt) = eiµte−(σt)2/2 for all t ∈ R.

6The Fourier transform of f (where f(x) = 1√
2π

e−x2/2 for x ∈ R) is a well-known result from

analysis; see Proposition 16.5 of [3] for details.
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We now ask a seemingly simple question: if X is a real-valued random variable
with distribution N(µ, σ2) for µ ∈ R and σ ∈ R \ {0}, then what is the mean and
variance of X? (It is not hard to show that E(|X|n) < ∞ for all n ∈ N0, so the
mean and variance of X exist.) It is not too difficult to directly compute that
E(X) = µ and Var(X) = σ2; for this reason, N(µ, σ2) is often called the normal
distribution with mean µ and variance σ2. However, the direct proof of these
facts is somewhat messy, so we give a more slick proof using Proposition 3.4. For

t ∈ R, since ϕX(t) = eiµt−(σt)2/2, we compute ϕ′(t) = (iµ − σ2t)eiµt−(σt)2/2 and

ϕ′′X(t) = (iµ − σ2t)2eiµt−(σt)2/2 − σ2eiµt−(σt)2/2. Then by evaluating at t = 0 and
using Proposition 3.4, we immediately obtain E(X) = µ and Var(X) = σ2.

The preceding paragraph demonstrates some of the power of characteristic func-
tions. The next result further demonstrates their efficacy.

Theorem 3.10. Fix n ∈ N, and let X1, X2, . . . , Xn be independent, real-valued
random variables (all defined on the same probability space (Ω,F ,P)). For each
j ∈ [n], suppose that Xj has distribution N(µj , σ

2
j ) for some µj ∈ R and σ ∈ R\{0}.

Then X1+X2+ · · ·+Xn has distribution N(µ1+µ2+ · · ·+µn, σ
2
1 +σ

2
2 + · · ·+σ2

n).

Proof. For t ∈ R, we observe that ϕX1+X2+···+Xn
(t) = ϕX1

(t)ϕX2
(t) · · ·ϕXn

(t) =

eiµ1t−(σ1t)
2/2eiµ2t−(σ2t)

2/2 · · · eiµnt−(σnt)
2/2 = ei(µ1+µ2+···+µn)t−(σ2

1+σ2
2+···+σ2

n)t
2/2, so

the result follows from Corollary 3.7. QED

The following result is a simple but helpful estimate.

Proposition 3.11. Let X be a standard normal random variable. Then for all

a > 0, we have µX([a,∞)) ≤ 1
a

1√
2π
e−a2/2.

Proof. Since x
a ≥ 1 whenever x ≥ a, we have µX([a,∞)) = 1√

2π

∫∞
a
e−x2/2 dx ≤

1√
2π

∫∞
a

x
ae

−x2/2 dx = 1
a

1√
2π

∫∞
a2/2

e−xdx = 1
a

1√
2π
e−a2/2. QED

Next, we discuss normal distributions in higher dimensions.

Definition 3.12. We define the d-dimensional standard normal distribution
as the probability distribution on (Rd,BRd) with density f : Rd → R given by

f(x) = 1
(2π)d/2

e−|x|2/2 =
∏d

j=1
1√
2π
e−x2

j/2 for x = (x1, x2, . . . , xd) ∈ Rd. (Using

Tonelli’s theorem, it is easy to show that
∫
Rd f(x) dx = 1, so this definition makes

sense.) Note that the 1-dimensional standard normal distribution is N(0, 1), so
this definition is consistent with our prior terminology. Also note that, if we say
“standard normal distribution” (without specifying the dimension), we always mean
“1-dimensional standard normal distribution.”

Definition 3.13. A d-dimensional standard normal random variable is an
Rd-valued random variable X whose distribution µX is the d-dimensional standard
normal distribution. Note that, if we say “standard normal random variable,” then
we mean “1-dimensional standard normal random variable.”

The next result (3.14) is quite useful; its proof is easy and hence omitted.

Proposition 3.14. An Rd-valued random variable X = (X1, X2, . . . , Xd) is a d-
dimensional standard normal random variable if and only if X1, X2, . . . , Xd are
independent, standard normal random variables.
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Proposition 3.15. Let X be a d-dimensional standard normal random variable,
and let T : Rd → Rd be a linear isometry (i.e., T : Rd → Rd is a linear map such
that |Tx| = |x| for all x ∈ Rd). Then TX is a d-dimensional standard normal
random variable.

Proof. We know from linear algebra that T is invertible, that T−1 is a linear isome-
try, and that |det(T−1)| = 1. Thus, if V is an open set in Rd, we see (by the change

of variables theorem) that µTX(V ) = µX(T−1(V )) = 1
(2π)d/2

∫
T−1(V )

e−|x|2/2 dx =

1
(2π)d/2

∫
V
e|T

−1(x)|2/2 dx = 1
(2π)d/2

∫
V
e|x|

2/2 dx. Since the map sending B ∈ BRd to

1
(2π)d/2

∫
B
e|x|

2/2 dx is a probability measure on (Rd,BRd), we conclude using Propo-

sition 1.1 that the function f : Rd → R given by f(x) = 1
(2π)d/2

e−|x|2/2 for x ∈ Rd

is a density of TX. QED

Corollary 3.16. Let X and Y be independent real-valued random variables (defined
on the same probability space (Ω,F ,P)) such that µX = µY = N(0, σ2) for some
σ ∈ R \ {0}. Then X +Y and X −Y are independent real-valued random variables
such that µX+Y = µX−Y = N(0, 2σ2).

Proof. By Propositions 3.9 and 3.14, it suffices to show that (X+Y√
2σ
, X−Y√

2σ
) is a 2-

dimensional standard normal random variable. Since (Xσ ,
Y
σ ) is a 2-dimensional

standard normal random variable, and since the map sending (x, y) ∈ R2 to
(x+y√

2
, x−y√

2
) is a linear isometry, Proposition 3.15 gives the result. QED

Definition 3.17. Let X = (X1, X2, . . . , Xd) be an Rd-valued random variable.
Suppose that E(|X|2) < ∞ (or, equivalently, E(|Xj |2) < ∞ for all j ∈ [d]). We
define the covariance matrix of X as the d-by-d matrix whose entry in row i,
column j is Cov(Xi, Xj), where i, j ∈ [d]. We let Cov(X) denote the covariance
matrix of X.

Let Y be an Rd-valued random variable defined on the probability space (Ω,F ,P).
We say that Y is a d-dimensional normal random variable if, for some k ∈ N,
we have Y = AX + b for some k-dimensional standard normal random variable
X (defined on (Ω,F ,P)), some linear map A : Rk → Rd (which we can view as a
d-by-k matrix with respect to the standard bases of Rk and Rd), and some constant
vector b ∈ Rd. In this case, we have E(|Y |2) < ∞, and it is not hard to show that
E(Y ) = b and Cov(Y ) = AAT . Also, any d-dimensional standard normal random
variable is a d-dimensional normal random variable, and, if Y is a real-valued ran-
dom variable with µY = N(µ, σ2) for some µ ∈ R and σ ∈ R \ {0}, then Y is a
1-dimensional normal random variable.

We next show (in Theorem 3.19) that the distribution of a d-dimensional normal
random variable is uniquely determined by its expectation and covariance matrix.
We first state a lemma.

Lemma 3.18. Let Y be a d-dimensional normal random variable with E(Y ) = 0,
which means we can choose k ∈ N such that Y = AX for some k-dimensional
standard normal random variable X (defined on the same probability space as Y )
and some linear map A : Rk → Rd. Fix l ∈ N with l ≥ k. Let (Ω,F ,P) be a
probability space such that there exists an l-dimensional standard normal random
variable Z on (Ω,F ,P). Then µY = µBZ for some linear map B : Rl → Rd.
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Proof. Define B as the matrix obtained from A by adjoining l−k columns of zeroes
to the end of it. The result then follows easily by checking equality on measurable
rectangles and using Proposition 1.1. QED

Theorem 3.19. Let X and Y be independent d-dimensional normal random vari-
ables (not necessarily defined on the same sample space) such that E(X) = E(Y )
and Cov(X) = Cov(Y ). Then µX = µY .

Proof. It suffices to prove this when E(X) = E(Y ) = 0, since the general case
follows easily from this special case. Also, by Lemma 3.18, we can assume without
loss of generality that X and Y are defined on the same probability space (Ω,F ,P),
that X = B1Z for some k-dimensional standard normal random variable Z (where
k ∈ N) and linear map B1 : Rk → Rd, and that Y = B2Z for some linear map
B2 : Rk → Rd. Since Cov(X) = Cov(Y ), we have B1B

T
1 = B2B

T
2 . Also, by

Propositions 1.2 and 3.15, we just need to show that B1 = B2U for some linear
isometry U : Rk → Rk.

Let V1 be the row space of B1, and let V2 be the row space of B2. Also, let
v1, v2, . . . , vd ∈ Rk be the rows of B1, and let w1, w2, . . . , wd ∈ Rk be the rows
of B2. Finally, let vj1 , vj2 , . . . , vjt , where t ∈ [d] and j1 < j2 < · · · < jt, be
a basis of V1. Define a linear map U : V1 → V2 by U(vji) = wji for all i ∈
[l]. The relation B1B

T
1 = B2B

T
2 implies that U preserves inner products between

the basis vectors vj1 , vj2 , . . . , vjt , which implies that U preserves inner products
between any vectors in V1 and hence is a linear isometry. In particular, U is
injective, so dim(V1) ≤ dim(V2). A symmetric argument yields dim(V2) ≥ dim(V1),
so dim(V1) = dim(V2) = t.

Let e1, e2, . . . , ek−t be an orthonormal basis of V ⊥
1 (the orthogonal complement

of V1), and let f1, f2, . . . , fk−t be an orthonormal basis of V ⊥
2 . Linearly extend U

to have domain Rk by setting U(ei) = fi for each i ∈ [k − t]. Then U : Rk → Rk

is still a linear isometry. Note that V ⊥
1 = ker(B1) and V

⊥
2 = ker(B2). Using these

facts along with the relation B1B
T
1 = B2B

T
2 yields the relation B1 = B2U (which

can be proven by checking equality on the basis vj1 , vj2 , . . . , vjt , e1, e2, . . . , ek−t),
thus completing the proof. QED

Corollary 3.20. Let Y = (Y1, Y2, . . . , Yd) be a d-dimensional normal random vari-
able. Then Y1, Y2, . . . , Yd are independent if and only if they are pairwise uncorre-
lated (i.e., Cov(Y ) is a diagonal matrix).

Proof. One implication is immediate. For the converse, letX = (X1, X2, . . . , Xd) be
a d-dimensional standard normal random variable. Let W = (W1,W2, . . . ,Wd) =

(
√
Var(Y1)X1,

√
Var(Y2)X2, . . . ,

√
Var(Yd)Xd)+E(Y ). We have E(W ) = E(Y ) and

Cov(W ) = Cov(Y ), so, by Theorem 3.19, we have µY = µW = µW1 × µW2 × · · · ×
µWd

= µY1 × µY2 × · · · × µYd
(where the last equality uses Proposition 1.2). QED

3.3. Central Limit Theorem. We now arrive at another one of the most impor-
tant theorems in probability: the Central Limit Theorem. Like the Law of Large
Numbers, the Central Limit Theorem is technically not a single theorem but rather
a collection of similar theorems that vary slightly in their hypotheses and conclu-
sions but express the same general principle. We will prove one of these theorems
(Theorem 3.21).

To give some intuition for the Central Limit Theorem, recall the physics student
who is measuring the time it takes for a ball to drop from a particular height. We
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again suppose that the student performs the same ball-drop experiment n times
(where n ∈ N), obtaining n independent measurements X1, X2, . . . , Xn, each of
which is a real-valued random variable, and all of which have the same distribution.
By normalizing the random variables appropriately, we can assume without losing
much generality that X1, X2, . . . , Xn all have mean zero and variance one. By
the Law of Large Numbers, we know that 1

n (X1 + X2 + · · · + Xn) converges in
probability, and hence in distribution, to the mean 0. However, one may wonder
about the “shape” of the distribution of 1

n (X1 + X2 + · · · + Xn) for large n. If

we do not scale 1
n (X1 +X2 + · · · +Xn) at all, then the distribution will just look

like that of δ0, so we have to scale 1
n (X1 +X2 + · · ·+Xn) by some (nonconstant)

function of n to obtain any new insight into the shape. It turns out that, if we scale
1
n (X1 + X2 + · · · + Xn) by

√
n (so that we are considering the random variables

1√
n
(X1+X2+· · ·+Xn)), then, amazingly, the distribution of 1√

n
(X1+X2+· · ·+Xn)

will look like a standard normal distribution when n is large! (In particular, there
is no dependence on the distributions of the µXj

, besides the requirements that
X1, X2, . . . , Xn are independent and that µX1

= µX2
= · · · = µXn

.) This is the
essence of the Central Limit Theorem, which we now prove using the machinery of
characteristic functions (and hence using the machinery of Fourier analysis, since
Theorem 3.6 was proven using Corollary 3.3):

Theorem 3.21. (Central Limit Theorem.) Let X1, X2, . . . be a sequence of
i.i.d. random variables with mean 0 and variance 1. Then 1√

n
(X1+X2+ · · ·+Xn)

converges in distribution to a standard normal random variable as n→ ∞.

Proof. Fix t ∈ R. Let ϕ = ϕX1
= ϕX2

= · · · . By Theorem 3.6, it suffices to show

that ϕ 1√
n
(X1+X2+···+Xn)(t) → e−t2/2 as n→ ∞. Note that ϕ 1√

n
(X1+X2+···+Xn)(t) =

ϕX1+X2+···+Xn
( t√

n
) = ϕ( t√

n
)n. By Taylor’s theorem (which is justified by Propo-

sition 3.4), ϕ(t) = 1 − t2

2 + R(t), where R(t) is the remainder satisfying R(t)
t2 →

0 as t → 0. In particular, 1
t2 (nR(

t√
n
)) = R(t/

√
n)

(t/
√
n)2

→ 0 as n → ∞. Thus,

ϕ 1√
n
(X1+X2+···+Xn)(t) = ϕ( t√

n
)n = (1− (t/

√
n)2

2 +R( t√
n
))n = (1+−t2/2+nR(t/

√
n)

n )n →

e−t2/2 as n→ ∞.7 QED

4. Brownian Motion

Throughout this section, fix T ⊂ [0,∞) such that 0 ∈ T , and fix x0 ∈ Rd,
µ ∈ R and σ ∈ R \ {0}. We let C(T ,Rd) denote the collection of continuous
functions with domain T and codomain Rd. For t ∈ R and B ∈ BRd , we call
Ct,B = {f ∈ C(T ,Rd) : f(t) ∈ B} the cylinder set associated with t and B,
and we let C(T ,Rd)x0

= C0,{x0}. We also let CT ,Rd be the σ-algebra in C(T ,Rd)
generated by all cylinder sets (i.e., CT ,R is generated by {Ct,B : t ∈ T , B ∈ BRd}).
(This is analogous to the definition of the product σ-algebra.) Henceforth, we think
of C(T ,Rd) as a measurable space equipped with the σ-algebra CT ,Rd .

Let X be a C(T ,Rd)-valued random variable defined on the probability space
(Ω,F ,P). For each t ∈ T , let Xt(ω) = (X(ω))(t) for all ω ∈ Ω. Observe that Xt

is an Rd-valued measurable function on (Ω,F ,P) (and hence an Rd-valued random

7We have used the well-known fact that, if (cn) is a sequence of complex numbers converging
to c ∈ C, then (1 + cn

n
)n → ec as n → ∞. See Theorem 3.4.2 of [6] for a proof of this fact.
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variable). In this way, we can represent the random variable X as a collection of
Rd-valued random variables (Xt)t∈T , such that the map sending t ∈ T to Xt(ω)
is continuous for all ω ∈ Ω. Conversely, if (Xt)t∈T is a collection of Rd-valued
random variables, all defined on the same probability space (Ω,F ,P), and if the map
sending t ∈ T to Xt(ω) is continuous for all ω ∈ Ω, then we can consider (Xt)t∈T
as a (CT ,Rd -measurable) C(T ,Rd)-valued random variable, where (Xt)t∈T (ω) is the
continuous function sending t ∈ T to Xt(ω) for all ω ∈ Ω. Thus, it is common
to represent C(T ,Rd)-valued random variables as collections of Rd-valued random
variables (Xt)t∈T , all defined on the same probability space, satisfying the above
continuity condition (i.e., that the map sending t ∈ T to Xt(ω) is continuous for
all ω ∈ Ω).

Note that d = 1 for the first two subsections.

4.1. Existence of Brownian Motion. We say that a C(T ,R)x0
-valued random

variable (Xt)t∈T is a (one-dimensional) Wiener process on the set of times
T with starting point x0, drift µ, and variance σ2 if the following hold:

(a) (Normally distributed increments) If s, t ∈ T and s < t, then Xt − Xs

has distribution N(µ(t − s), σ2(t − s)). (In particular, Xt has distribution
N(tµ+ x0, σ

2t) for all t ∈ T \ {0}.)
(b) (Independent increments) If n ∈ N, and if t0, t1, . . . , tn ∈ T satisfy t0 <

t1 < · · · < tn, then Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent.
(Hence, if n ∈ N, and if t0, t1, . . . , tn ∈ T satisfy t0 ≤ t1 ≤ · · · ≤ tn, then
Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.)

In the case that x0 = 0, that µ = 0, and that σ2 = 1, we say that this Wiener
process (Xt)t∈T is standard. In the case that T is an interval I, we say that this
Wiener process (Xt)t∈I is a (one-dimensional) Brownian motion on I (with
starting point x0, drift µ, and variance σ2). Brownian motion models random
continuous motion, and it is an important concept both in mathematics and in
many fields that use mathematics, like physics (for, e.g., modeling the motion of a
particle in a cloud of dust) and finance (for, e.g., modeling the fluctuations of stock
prices).

Let (Xt)t∈T be a Wiener process with starting point x0, drift µ, and variance
σ2. The following facts are easy to prove:

(a) If 0 ∈ S ⊂ T , then (Xt)t∈S is a Wiener process with starting point x0, drift µ,
and variance σ2.

(b) If a ∈ R \ {0}, then (aXt)t∈T is a Wiener process with starting point ax0, drift
aµ, and variance (aσ)2.

(c) If b ∈ R, then (Xt + b)t∈T is a Wiener process with starting point x0 + b, drift
µ, and variance σ2.

(d) If d ∈ R, then (Xt + dt)t∈T is a Wiener process with starting point x0, drift
µ+ d, and variance σ2.

Hence, if (Bt)t∈[0,∞) is a standard Brownian motion on [0,∞), then (σBt + µt +

x0)t∈T is a Wiener process with starting point x0, drift µ, and variance σ2.
We now show that there exists a Wiener process (Xt)t∈T with starting point x0,

drift µ, and variance σ2. By the preceding paragraph, it suffices to establish the
existence of a standard Brownian motion (Bt)t∈[0,∞) on [0,∞).

For each n ∈ N0, let Dn = { k
2n : k ∈ N0}. Note that N0 = D0 ⊂ D1 ⊂ D2 ⊂ · · · .

The union D =
⋃∞

n=0 Dn is known as the set of (nonnegative) dyadic rationals;
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observe thatD is a countable dense subset of [0,∞). Let (Ω,F ,P) be any probability
space such that there exists a countable collection {Zt}t∈D of independent standard
normal random variables, all defined on (Ω,F ,P). (Such a probability space exists
by Theorem 1.3.) We now inductively define a collection of real-valued random
variables (Bt)t∈D by defining Bt first for t ∈ D0, then for t ∈ D1 \ D0, then for
t ∈ D2 \ D1, and so forth, such that, for each n ∈ N0, the C(Dn,R)-valued random
variable (Bt)t∈Dn

is a standard Wiener process.

For k ∈ N0, define Bk =
∑k

j=1 Zj . (Hence, B0 = 0, because the empty sum

is zero.) Then it is easy to check using Theorem 3.10 that (Bt)t∈D0
is a standard

Wiener process.
Now fix n ∈ N, and suppose that we have defined (Bt)t∈Dn−1 such that, when

viewed as a C(Dn−1,R)-valued random variable, (Bt)t∈Dn−1
is a standard Wiener

process. For t ∈ Dn \ Dn−1, we observe that t − 2−n, t + 2−n ∈ Dn−1, so we can

define Bt =
Bt−2−n+Bt+2−n

2 +2−(n+1)/2Zt. (Thus, we are linearly interpolating the

values of Bt−2−n and Bt+2−n , and then adding in 2−(n+1)/2Zt, so that, informally
speaking, the interpolation itself has some randomness associated with it that is
independent of the randomness from Bt−2−n and Bt+2−n .) We now show that
(Bt)t∈Dn

is a standard Wiener process. (Note that the continuity condition here is
trivial since Dn has the discrete topology.)

Fix m ∈ N. Consider the random vector (Bt−Bt−2−n : t ∈ [m2n]). Using induc-
tion on n, we observe that each entry in this random vector is a linear combination
of the entries of (Zt : t ∈ Dn), so (Bt −Bt−2−n : t ∈ [m2n]) is a (m2n)-dimensional
normal random variable. Thus, by Corollary 3.20, to show that the collection
{Bt − Bt−2−n : t ∈ [m2n]} is independent, it suffices to show that it is pairwise
independent.8

Fix t ∈ Dn \ Dn−1. It is easy to show that Bt − Bt−2−n =
Bt+2−n−Bt−2−n

2 +

2−(n+1)/2Zt and Bt+2−n − Bt =
Bt+2−n−Bt−2−n

2 − 2−(n+1)/2Zt. Using Proposition
3.9 and Corollary 3.16, we see that Bt −Bt−2−n and Bt+2−n −Bt are independent
random variables such that µBt−Bt−2−n = µBt+2−n−Bt

= N(0, 2−n).

Fix j, j′ ∈ [m2n], with j < j′. Suppose that j is even or that j′ ̸= j + 1 (or

both). Then there exists s, s′ ∈ Dn−1 ∩ (0,m) with s ≤ s′ such that [ j−1
2n ,

j
2k
] ⊂

[s − 2−(n−1), s] and [ j
′−1
2n , j′

2n ] ⊂ [s′, s′ + 2−(n−1)]. Using the increment relations
from the preceding paragraph, we observe that B j

2k
− B j−1

2n
can be written as

a linear combination of Bs − Bs−2−(n−1) and Zs−2−n . Similarly, we observe that
B j′

2n
−B j′−1

2n
can be written as a linear combination of Bs′+2−(n−1)−Bs′ and Zs′+2−n .

Because Bs −Bs−2−(n−1) and Bs′+2−(n−1) −Bs′ are themselves linear combinations
of random variables in (Zt : t ∈ Dn−1∪ [0,m]), and because (Bt)t∈Dn−1

is a discrete
Wiener process, we see that Bs−Bs−2−(n−1) , Bs′+2−(n−1) −Bs′ , Zs+2−n , Zs−2−n are
pairwise independent. By Corollary 3.20, we see that these four random variables
are independent, so we conclude that B j

2k
−B j−1

2n
and B j′

2n
−B j′−1

2n
are independent.

Therefore, we have established that the entries of (Bt −Bt−2−n : t ∈ [m2n]) are
independent and have the desired distribution of N(0, 2−n). By writing arbitrary
increments as sums of increments of the form Bt − Bt−2−n for t ∈ Dn \ {0} (and

8By “pairwise independent,” we mean that, for any distinct t1, t2 ∈ [m2n], the random variables
Bt1 −Bt1−2−n and Bt2 −Bt2−2−n are independent.
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recalling that m ∈ N was arbitrary), we easily conclude using Theorem 3.10 that
(Bt)t∈Dn is a standard Wiener process, as desired.

Now that we have defined (Bt)t∈D in the desired fashion, we examine the regu-
larity of (Bt)t∈D. For the remainder of the subsection, fix any α ∈ (0, 1/2). Also,

let j,m ∈ N and k ∈ N0 satisfy j
2k

≤ m. Since B j

2k
− B j−1

2k
has distribution

N(0, 2−k) (and hence 2k/2(B j

2k
− B j−1

2k
) is a standard normal random variable),

a simple computation using Proposition 3.11 (and the fact that 2µX([a,∞)) =
µX((−∞,−a]∪ [a,∞)) for any a > 0 and any standard normal random variable X)
yields that P(|B j

2k
− B j−1

2k
| ≥ 2−kα) ≤ C exp(−c2k(1−2α)) for constants C = 2√

2π

and c = 1
2 . Note that C exp(−c2k(1−2α)) is summable as (j, k) runs over all pairs

satisfying j
2k

≤ m, so, by the Borel-Cantelli lemma, there is an event Ωm
0 ∈ F with

P(Ωm
0 ) = 1 such that, for all ω ∈ Ωm

0 , we have |B j

2k
(ω) − B j−1

2k
(ω)| < 2−kα for

all but finitely many pairs (j, k) satisfying j
2k

≤ m. Hence, for all ω ∈ Ωm
0 , there

exists Km(ω) > 0 such that |B j

2k
(ω) − B j−1

2k
(ω)| ≤ Km(ω)2−kα for all pairs (j, k)

satisfying j
2k

≤ m. Let Ω0 = ∩∞
m=1Ω

m
0 ; note that P(Ω0) = 1. (Note also that Ω0

depends on α, but this dependence does not matter.)
Let F0 = F ∩P(Ω0) and P0 = P|F0 . Henceforth, we restrict our attention to the

probability space (Ω0,F0,P0), and we consider the domain of each random variable
on (Ω,F ,P) to now be restricted to Ω0. (For example, if t ∈ D, we consider the
domain of Bt to be Ω0 instead of Ω, even though we are still using the symbol Bt

instead of Bt|Ω0
. Note that this does not affect the measurability of any of the

random variables, and (Bt)t∈Dn is still a Wiener process for each n ∈ N0.)
Fix ω ∈ Ω0 and a ∈ D. We now show that the map sending t ∈ D ∩ [a, a + 1)

to Bt(ω) is α-Hölder continuous.9 Choose m ∈ N such that a + 2 ≤ m. Fix
s, t ∈ [a, a + 1) with s < t. For each k ∈ N0, let sk be the smallest element of
Dk ∩ [s,∞), and let tk be the largest element of Dk ∩ [0, t]. Choose the unique
n ∈ N such that t − s ∈ [2−n, 2−n+1). Note that [s, t] contains either one or two
elements of Dn. In the former case, sn = tn is the unique element of Dn ∩ [s, t]; in
the latter case, sn−1 = tn−1 is the unique element of Dn−1 ∩ [s, t]. Thus, we can
always choose l ∈ {n−1, n} such that sl = tl. Note that t−s ≥ 2−n ≥ 2−(l+1). For
each k ∈ N0, we observe that sk and sk+1 are either equal or consecutive elements

9If (X, dX) and (Y, dY ) are metric spaces, then recall that a function f : X → Y is said to be
α-Hölder continuous if there exists a constant C > 0 such that dY (f(x), f(y)) ≤ C(dX(x, y)α) for

all x, y ∈ X. It is easy to show that, if f is α-Hölder continuous, then f is uniformly continuous.
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in Dk+1, and similarly for tk and tk+1, so

|Bt(ω)−Bs(ω)| =

∣∣∣∣∣∣
( ∞∑

k=l+1

(Btk(ω)−Btk−1
(ω))

)
−

( ∞∑
k=l+1

(Bsk(ω)−Bsk−1
(ω))

)∣∣∣∣∣∣
≤

( ∞∑
k=l+1

|Btk(ω)−Btk−1
(ω)|

)
+

( ∞∑
k=l+1

|Bsk(ω)−Bsk−1
(ω)|

)

≤ 2Km(ω)

∞∑
k=l+1

2−kα = 2Km(ω)2−α(l+1)

( ∞∑
k=0

(2−α)k

)

≤

(
2Km(ω)

( ∞∑
k=0

(2−α)k

))
(t− s)α,

which yields the desired α-Hölder continuity.
This α-Hölder continuity allows us to extend this map (i.e., the map sending

t ∈ D to Bt(ω)) to have domain [0,∞) instead of D, such that this extension is con-
tinuous.10 We now show that the C([0,∞),R)0-valued random variable (Bt)t∈[0,∞)

is a standard Brownian motion on [0,∞). Let n ∈ N, and let t0, t1, . . . , tn ∈
[0,∞) satisfy t0 < t1 < · · · < tn. By Proposition 3.14, it suffices to show that

(
Bt1

−Bt0√
t1−t0

,
Bt2

−Bt1√
t2−t1

, . . . ,
Btn−Btn−1√

tn−tn−1
) is an n-dimensional standard normal random

variable. For j ∈ [n], let (tj,k)k∈N be a sequence of numbers in D∩(tj−1, tj ] converg-
ing to tj as k → ∞. Also, let (t0,k)k∈N be a sequence of numbers in D ∩ [0, t0] con-

verging to t0 as k → ∞. Then (
Bt1,k

−Bt0,k√
t1,k−t0,k

,
Bt2,k

−Bt1,k√
t2,k−t1,k

, . . . ,
Btn,k

−Btn−1,k√
tn,k−tn−1,k

) is an n-

dimensional standard normal random variable for each k ∈ N (because (Bt)t∈Dl
is a

Wiener process for each l ∈ N0), so (
Bt1,k

−Bt0,k√
t1,k−t0,k

,
Bt2,k

−Bt1,k√
t2,k−t1,k

, . . . ,
Btn,k

−Btn−1,k√
tn,k−tn−1,k

) con-

verges in distribution to an n-dimensional standard normal random variable as k →
∞. Furthermore, by continuity, (

Bt1,k
−Bt0,k√

t1,k−t0,k
,
Bt2,k

−Bt1,k√
t2,k−t1,k

, . . . ,
Btn,k

−Btn−1,k√
tn,k−tn−1,k

) con-

verges pointwise, and hence in distribution, to (
Bt1−Bt0√

t1−t0
,
Bt2−Bt1√

t2−t1
, . . . ,

Btn−Btn−1√
tn−tn−1

)

as k → ∞. By the uniqueness of limits for convergence in distribution for Rn-valued

random variables, we conclude that (
Bt1

−Bt0√
t1−t0

,
Bt2

−Bt1√
t2−t1

, . . . ,
Btn−Btn−1√

tn−tn−1
) is indeed an

n-dimensional standard normal random variable, which completes the proof of the
existence of a standard Brownian motion (Bt)t∈[0,∞).

4.2. Wiener Measure. The following two results establish that Wiener processes
are unique with respect to distribution.

Theorem 4.1. Let (Xt)t∈T and (Yt)t∈T be Wiener processes (not necessarily de-
fined on the same probability space) on the set of times T with starting point x0,
drift µ, and variance σ2. Then (Xt)t∈T and (Yt)t∈T agree in distribution. (This
distribution on C(T ,R)x0 is called the (one-dimensional) Wiener measure as-
sociated with T , x0, µ, and σ2, and we will denote this probability distribution
by wT (x0, µ, σ

2).)

10Here, we are using the following basic result from analysis: if (X, dX) and (Y, dY ) are metric
spaces, if A is a dense subset of X, if Y is complete (i.e., every Cauchy sequence in Y converges),

and if f : A → Y is uniformly continuous, then f can be extended to a continuous map f̃ : X → Y .

(In fact, f̃ is uniformly continuous.) Also, note that a continuous function f : X → Y is uniquely

determined by its values on a dense subset A, so the extension f̃ is unique.
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Proof. We can consider (Xt)t∈T and (Yt)t∈T to be C(T ,R)-valued random vari-
ables (without affecting the measurability of the random variables), and it suf-
fices to prove that they induce the same probability distribution on C(T ,R). Let
n ∈ N, and let t0, t1, . . . , tn ∈ T satisfy 0 = t0 < t1 < · · · < tn. Also, let
B0, B1, B2, . . . , Bn ∈ BR. The collection of all sets of the form Ct0,B0

∩ Ct1,B1
∩

· · · ∩Ctn,Bn
is a π-system in C(T ,R)x0

that generates CT ,R, so, by Proposition 1.1,
it suffices to show that µ(Xt)t∈T and µ(Yt)t∈T agree on Ct0,B0 ∩Ct1,B1 ∩· · ·∩Ctn,Bn .

For each j ∈ [n], let dXj = Xtj −Xtj−1
, and let dYj = Ytj −Ytj−1

. Thus, µdXj
=

N(µ(tj − tj−1), σ
2(tj − tj−1)) = µdYj

, so, by the independence of the increments,
we have µ(dX1,dX2,...,dXn) = µdX1

× µdX2
× · · · × µdXn

= µdY1
× µdY2

× · · · ×
µdYn = µ(dY1,dY2,...,dYn). Using Proposition 1.2, we deduce that µ(Xt0

,Xt1
,...,Xtn ) =

µ(Yt0 ,Yt1 ,...,Ytn ), which implies that µ(Xt)t∈T and µ(Yt)t∈T indeed agree on Ct0,B0
∩

Ct1,B1
∩ · · · ∩ Ctn,Bn

. QED

Theorem 4.2. Let (Xt)t∈T be a C(T ,R)x0
-valued random variable with µ(Xt)t∈T =

wT (x0, µ, σ
2). Then (Xt)t∈T is a Wiener process on the set of times T with starting

point x0, drift µ, and variance σ2.

Proof. Let (Yt)t∈T be a Wiener process on the set of times T with starting point x0,
drift µ, and variance σ2. (We established the existence of (Yt)t∈T in the preceding
subsection.) Then µ(Xt)t∈T = µ(Yt)t∈T . Fix n ∈ N, and let t0, t1, . . . , tn ∈ T satisfy
t0 < t1 < · · · < tn. For each j ∈ [n], let dXj = Xtj − Xtj−1

and dYj = Ytj −
Ytj−1

. It suffices to show that µ(dX1,dX2,...,dXn) = µ(dY1,dY2,...,dYn) (by taking n = 1
for normally distributed increments and using product measures for independent
increments), and this follows immediately from Proposition 1.2. QED

4.3. Multidimensional Brownian Motion. We now briefly discuss Wiener pro-
cesses in higher dimensions. For simplicity (and with very little loss of generality),
we only consider standard Wiener processes.

Definition 4.3. A (standard) d-dimensional Wiener process on the set
of times T is a C(T ,Rd)0-valued random variable of the form (X1, X2, . . . , Xd),
where X1, X2, . . . , Xd are independent standard one-dimensional Wiener processes
on the set of times T . (Note that, if X1, X2, . . . , Xd are measurable C(T ,R)-valued
functions, then (X1, X2, . . . , Xd) is a measurable C(T ,Rd)-valued function.)

Definition 4.4. Let T be an interval I. Then a d-dimensional Wiener process on
the set of times I is called a d-dimensional Brownian motion on I. If d = 1,
we sometimes refer to this as a linear Brownian motion on I; if d = 2, we
sometimes refer to this as a planar Brownian motion on I.

We have already established the existence of a (standard) one-dimensional Wiener
process on the set of times T . Hence, we have established the existence of the asso-
ciated Wiener measure wT (0, 0, 1). Thus, Theorems 1.3 and 4.2 imply the existence
of a (standard) d-dimensional Wiener process on the set of times T .

Lemma 4.5. Let (Xt)t∈T be a (standard) d-dimensional Wiener process on the set
of times T . Then the following hold:

(a) (Normally distributed increments) If s, t ∈ T and s < t, then 1√
t−s

(Xt −
Xs) is a d-dimensional standard normal random variable.

(b) (Independent increments) If n ∈ N, and if t0, t1, . . . , tn ∈ T satisfy t0 <
t1 < · · · < tn, then Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1

are independent.
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(Hence, if n ∈ N, and if t0, t1, . . . , tn ∈ T satisfy t0 ≤ t1 ≤ · · · ≤ tn, then
Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.)

Proof. For each t ∈ T , write Xt = (Xt,1, Xt,2, . . . , Xt,d) for real-valued random
variables Xt,1, Xt,2, . . . , Xt,d.

The proof of the first condition (normally distributed increments) is easy. For the
second condition (independent increments), independence implies that the joint dis-
tribution of (Xt1,1−Xt0,1, Xt2,1−Xt1,1, . . . , Xtn,1−Xtn−1,1), (Xt1,2−Xt0,2, Xt2,2−
Xt1,2, . . . , Xtn,2 −Xtn−1,2), . . . , (Xt1,d −Xt0,d, Xt2,d −Xt1,d, . . . , Xtn,d −Xtn−1,d) is
the product of the d marginal distributions, and that each of these marginal distri-
butions µ(Xt1,j−Xt0,j ,Xt2,j−Xt1,j ,...,Xtn,j−Xtn−1,j), where j ∈ [d], is itself equal to the

product µXt1,j−Xt0,j
×µXt2,j−Xt1,j

×· · ·×µXtn,j−Xtn−1,j
. Using the associativity of

the product measure, we see that {Xti,j −Xti−1,j}(i,j)∈[n]×[d] is independent, which
implies the result. QED

Proposition 4.6. Let (Xt)t∈T and (Yt)t∈T be C(T ,Rd)0-valued random variables
satisfying the two conditions stated in Lemma 4.5 (i.e., normally distributed incre-
ments and independent increments). (In particular, (Xt)t∈T and (Yt)t∈T could be
standard d-dimensional Wiener processes on the set of times T .) Then (Xt)t∈T
and (Yt)t∈T agree in distribution. (This distribution on C(T ,Rd)0 is called the
d-dimensional Wiener measure associated with T , and we will denote this
probability distribution by wT (Rd). Note that wT (R) = wT (0, 0, 1).)

Proof. This follows by essentially the exact same argument as in the proof of The-
orem 4.1. QED

Theorem 4.7. Let (Xt)t∈T be a C(T ,Rd)0-valued random variable with µ(Xt)t∈T =

wT (Rd). Then (Xt)t∈T is a (standard) d-dimensional Wiener process on the set of
times T .

Proof. Fix j ∈ [d]. Consider the map sending f = (f1, f2, . . . , fd) ∈ C(T ,Rd) to
fj ∈ C(T ,R). It is not hard to check that the preimage of a cylinder set Ct,B

(for t ∈ T and B ∈ B) is measurable in C(T ,Rd), so this map is measurable. It
follows (by comparing (Xt)t∈T to a standard d-dimensional Wiener process and
using Proposition 1.2) that the one-dimensional (random) component functions of
(Xt)t∈T all have w(R) as their distribution, so, by Theorem 4.2, the component
functions of (Xt)t∈T are Wiener processes on the set of times T .

Now consider the map sending f = (f1, f2, . . . , fd) ∈ C(T ,Rd) to the tuple of
functions (f1, f2, . . . , fd) ∈ C(T ,R) × C(T ,R) × · · · × C(T ,R). (Note that the
notation (f1, f2, . . . , fd) is being used in two different ways here.) We first note
that the collection of all sets of the form Ct1,B1 × Ct2,B2 × · · · × Ctd,Bd

, where
t1, t2, . . . , td ∈ T and B1, B2, . . . , Bd ∈ BR, generates the product σ-algebra in
C(T ,R)×C(T ,R)×· · ·×C(T ,R). (To prove this, use induction on j to show that,
for all j ∈ [d]0, the generated σ-algebra contains all sets of the form D1×D2×· · ·×
Dj ×Ctj+1,Bj+1

×Ctj+2,Bj+2
× · · ·×Ctd,Bd

, where D1, D2, . . . , Dj ∈ CT ,R.) It is not
hard to show that the preimage of any such set Ct1,B1 × Ct2,B2 × · · · × Ctd,Bd

is
measurable in C(T ,Rd), so this map is measurable. Thus, by comparing (Xt)t∈T
to a standard d-dimensional Wiener process and using Proposition 1.2, it follows
that the joint distribution of the one-dimensional (random) component functions
of (Xt)t∈T on C(T ,R) × C(T ,R) × · · · × C(T ,R) is the product of the marginal
distributions, which gives the desired independence. QED
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Corollary 4.8. Let (Xt)t∈T be a C(T ,Rd)0-valued random variable. Then (Xt)t∈T
is a (standard) d-dimensional Wiener process on the set of times T if and only if
(Xt)t∈T satisfies the two conditions stated in Lemma 4.5 (i.e., normally distributed
increments and independent increments).

Proof. One implication is directly given by Lemma 4.5. The other implication
follows from Proposition 4.6, and Theorem 4.7. QED

Proposition 4.9. (Scaling invariance) Fix a > 0. Suppose (Bt)t∈T is a (stan-
dard) d-dimensional Wiener process on the set of times T . Then ( 1√

a
Bat)t∈T /a is a

(standard) d-dimensional Wiener process on the set of times T /a = {t/a : t ∈ T }.
Proof. This is straightforward using Corollary 4.8. QED

Proposition 4.10. Let T : Rd → Rd be a linear isometry, and let (Xt)t∈T be a
(standard) d-dimensional Wiener process on the set of times T . Then (TXt)t∈T is
a (standard) d-dimensional Wiener process on the set of times T .

Proof. This is straightforward using Proposition 3.15 and Corollary 4.8. QED

4.4. Differentiability of Brownian Motion. We first recall the Weierstrass Ap-
proximation Theorem from analysis, which states that any continuous function
f ∈ C([0, 1],R) can be uniformly approximated arbitrarily closely by a polynomial,
in the sense that, for any ϵ > 0, there exists a polynomial p : [0, 1] → R such that
|f(x) − p(x)| < ϵ for all x ∈ [0, 1].11 Thus, we see that all continuous functions in
C([0, 1],R) are quite “well-behaved” in the sense that they are very close (in the
supremum norm) to being a polynomial (and polynomials are well-behaved in the
sense that they are smooth).

We now establish a striking result (Theorem 4.11) that contrasts with the com-
ments in the preceding paragraph. Informally speaking, Theorem 4.11 says that,
if we randomly choose a continuous function in C([0, 1],R) in some reasonably
uniform manner, then, almost surely, our chosen function will be nowhere differen-
tiable! (Thus, almost all continuous functions from [0, 1] to R are like the famous
Weierstrass function, in the sense that they are continuous everywhere but differ-
entiable nowhere.) Since shifting a function does not affect differentiability, we can
assume without loss of generality that our randomly chosen function f ∈ C([0, 1],R)
satisfies f(0) = 0. Thus, it is reasonable to model our randomly chosen function in
C([0, 1],R) as a (one-dimensional) standard Brownian motion on [0, 1].

We now formally state and prove the theorem:

Theorem 4.11. Let (Bt)t∈[0,1] be a (one-dimensional) standard Brownian motion
on [0, 1], defined on the probability space (Ω,F ,P). For ω ∈ Ω, consider the function
sending t ∈ [0, 1] to Bt(ω) ∈ R. Then this function is a.s. nowhere Lipschitz
continuous12 and hence a.s. nowhere differentiable.

Proof. Fixm,n ∈ N. Let Am,n = {ω ∈ Ω : there exists s ∈ [0, 1] such that |Bt(ω)−
Bs(ω)| ≤ m|t− s| whenever t ∈ [0, 1] satisfies |t− s| ≤ 3

n}. It suffices to show that
Am,n is contained within an event of probability zero, since then the union of the
Am,n over all m,n is contained within an event of probability zero.

11For a proof of this, see Theorem 7.26 in [7].
12If (X, dX) and (Y, dY ) are metric spaces, and if x ∈ X, then recall that a function f : X → Y

is said to be Lipschitz continuous at x if there exist C > 0 and ϵ > 0 such that dY (f(x), f(y)) ≤
CdX(x, y) for all y ∈ X satisfying dX(x, y) < ϵ.
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For k ∈ [n−2], let Xk,n = max{|B k+j
n

−B k+j−1
n

| : j ∈ [2]0}. Let Em,n = {ω ∈ Ω :

Xk,n(ω) ≤ 5m
n for some k ∈ [n− 2]} ∈ F . It is not hard to show that Am,n ⊂ Em,n

and that Am,1 ⊂ Am,2 ⊂ Am,3 ⊂ · · · . Hence, we have Am,n ⊂
⋂∞

k=nEm,k, so it
suffices to show that P(Em,n) → 0 as n→ ∞.

Using the union bound and the properties of the increments of Brownian motion,
we see that P(Em,n) ≤ (n − 2)(|P(B 1

n
| ≤ 5m

n ))3 ≤ n(P(|B 1
n
| ≤ 5m

n ))3. By scaling

invariance (4.9) with a =
√
n, we have P(Em,n) ≤ n(P(|B 1

n
| ≤ 5m

n ))3 = n(P(|B1| ≤
5m√
n
))3 ≤ n( 1√

2π
10m√

n
)3 → 0 as n→ ∞. QED
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