CLASSICAL TOPICS IN MEASURE-THEORETIC PROBABILITY

MAHNAV PETERSEN

ABSTRACT. This expository paper rigorously develops a number of classical
topics in measure-theoretic probability. We first discuss some notions of con-
vergence for random variables and prove two versions of the Law of Large
Numbers. We then establish the basic properties of characteristic functions,
which we subsequently use to give a short proof of (one version of) the Central
Limit Theorem. In the final section, we establish the existence of Brownian
motion and prove some of its basic properties, including the striking result
that linear Brownian motion on [0, 1] is almost surely nowhere differentiable.
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In this expository paper, we develop some classical topics in measure-theoretic
probability: convergence of random variables, characteristic functions, and the ba-
sics of Brownian motion. We assume that the reader knows measure theory, includ-
ing Dynkin’s -\ theorem and the Fourier transform, and we also assume that the
reader has a strong understanding of basic probabilistic concepts like expectation

and independence.

We fix some notation that will be used throughout the paper. Let F € {R,C}
and d € N. (We choose the symbol F since both R and C are fields.) We let
No = NU {0}, and we also let [n] = {1,2,...,n} and [n]o = {0,1,2,...,n} for all
n € Ny. In particular, [0] = O. If (2, F,P) is a probability space, and if A € F is an
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2 MAHNAV PETERSEN

event, then we let 14 denote the indicator random variable associated with A. Also,
if X is a random variable, then we let px denote its distribution, and, if X is real-
valued, then we let F'x denote its distribution function (so Fx(z) = px((—o0,z])
for all z € R).

We conclude this introduction with a few basic results that will be used frequently
in the paper.

Proposition 1.1. Let (2, F) be a measurable space, and let Py and P2 be probability
measures on (Q, F). Suppose that P is a w-system in Q such that o(P) = F (which,
in particular, implies P C F) and such that P1(A) = Py(A) for all A € P. Then
Py =Ps.

Proof. Let L be the collection of all A € F for which P1(A) = P2(A). It is easy
to check that £ is a A-system in 2 containing P, so, by Dynkin’s 7\ theorem,
F=0(P)=L. QED

Proposition 1.2. Let (T',G) and (A, H) be measurable spaces, and let f:T — A
be a measurable function. Suppose X and Y are I'-valued random wvariables that
agree in distribution. Then f(X) and f(Y) agree in distribution.

Proof. Let X be defined on the probability space (Qx,Fx,Px), and let Y be
defined on the probability space (Qy, Fy,Py). If A € H, then Px(f(X) € A) =
Px(X € f71(A)) =Py (Y € f71(A)) =Py (f(Y) € A). QED

The following theorem is a well-known result about independent random vari-
ables, so we omit its proof.

Theorem 1.3. For any collection of probability distributions {ia}tacs (possibly
defined on different measurable spaces), there exist a probability space and a col-
lection of independent random variables {X,}acr, all defined on that probability
space, such that each X, has distribution p, (i.e., ux, = tao)-

2. CONVERGENCE OF RANDOM VARIABLES

Throughout this section, we fix a probability space (2, F,P) and a topological
space X.

2.1. Modes of Convergence. Throughout this subsection, unless stated other-
wise, we let (X,) be a sequence of Fé-valued random variables, all defined on
(9, F,P), and we let X be another F-valued random variable on (2, F,P).

Definition 2.1. Let E be the set of w € Q for which the sequence (X, (w)) con-
verges. Then B = ;2 UN_1 Nimmepnvyziw € @ 1 [Xm(w) — Xa(w)] < 3},
so E is a measurable set in F. It follows that the set of w € Q for which the
relation ILm Xn(w) = X(w) holds is also a measurable set in F; we will denote the
probability of this set by P(X,, — X). If P(X,, — X) = 1, then we say that (X,,)
converges to X almost surely (a.s.), and we write “X,, — X a.s. (asn — 00)”
to denote this convergence.

LThis can be proven using the notion of the product probability measure for an arbitrary
product of probability spaces; we take the X, as the coordinate projections from the product
space. See [1] for details regarding the construction of the product probability measure.
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Definition 2.2. We say that (X,,) converges to X in probability if lim P(]X,,—
n—oo

X| > ¢) =0forall e >0. We write “X,, — X in probability (as n — c0)” to denote
this convergence.

Convergence a.s. implies convergence in probability, in the sense if X,, — X a.s.,
then X,, — X in probability as well. The proof is immediate using the reverse Fatou

lemma (with the constant function 1 as the dominating function): lim sup P(|X,, —
n— oo

X| > 6) = limsupE(1(|XWV_X‘71)(€7OO)) < E(limsup 1(\X,,/—X|*1)(e,oo)) = 0 for all
n—roo n—oo

€ > 0. However, the converse is not true in general, as we show in Example 2.3

below. Hence, convergence a.s. is strictly stronger than convergence in probability.

Example 2.3. Let (2, F,P) be a probability space on which there exists an in-
dependent sequence of random variables (X,,) such that px, = (1 — )5 + 14,2
(The existence of such a probability space is guaranteed by Theorem 1.3.) Then
X, — 0 in probability. However, for any N € N, we have by independence that
P({w € Q:|X,(w)| < 5 foralln € N\ [N]}) = thlOOP(XNH €(-3.3),Xnp2 €

1 1 1 1 _ . M 1 . 3 M =1 _
(=2:3)- X € (=3.3) = Jim Tl_yy (1= 5) < limsup [y e = 0.

(Note that 1+ < e” for all z € R.) Thus, P(Uy_;{w € Q: | X, (w)| < § for all n €
N\ [N]}) =0, so (X,,) does not converge to X a.s..

Although convergence in probability does not imply convergence a.s., we do have
the following useful result:

Proposition 2.4. X,, — X in probability if and only if, for every subsequence
(Xn,) of (X,), there is a further subsequence (Xnk_j) such that Xy, — X a.s. as
J — o0. '

Proof. Suppose that X,, — X in probability. Let (X, ) be a subsequence of (X,).
Fix m € N. Since P(|X,, — X| > L) — 0 as k — oo, we can find a further
subsequence (Xn,cj) such that P(\Xnkj - X|> L) < & forall j € N. By the
Borel-Cantelli lemma, there exists A, € F such that P(A4,,) = 1 and such that, for
all w € A,,, there are at most finitely many j € N for which |Xnk]_ (w)—X(w)| > L.
Then P((,_; Ap) =1, and, if w € (), _; Ay, then X, (w) = X (w) as j — oco.
Thus, X, — X a.s. as j — oo. '

For the converse, fix ¢ > 0, and consider the sequence (P(|X, — X| > ¢)).
Since convergence a.s. implies convergence in probability, every subsequence of
this sequence has a further subsequence that converges to 0, which implies that
nlgngo P(|X, — X| >¢) =0. QED

Corollary 2.5. If X,, — X in probability, then there is a subsequence (X,,) such
that X, —» X a.s. as k — oo.

Remark 2.6. For the proof of the converse of Proposition 2.4, we used the fact
that, if (z,) is a sequence in a topological space X, and if z € X, then z, —
as n — oo if and only if, for every subsequence (z,,) of (x,), there is a further
subsequence (xnkj) that converges to x (as j — oc). Note that, despite this fact,
Proposition 2.4 does not show that convergence in probability implies convergence

2Note that &, denotes the Dirac measure concentrated at = € R, so 85 (B) = 1 for every Borel
set B C R containing «, while §;(B) = 0 for every Borel set B C R that does not contain x.
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a.s. (which we know to be false by Example 2.3). The key observation is that a
sequence has uncountably many subsequences, so convergence almost surely along
each subsequence does not imply convergence almost surely for the whole sequence.
If “a.s.” was replaced by “surely” in Proposition 2.4, then Proposition 2.4 would
imply that convergence in probability implies pointwise convergence (and hence
convergence a.s.).

We now discuss uniqueness of limits:

Proposition 2.7. Let Y be another Fl-valued random variable on (0, F,P). If
X,, = X in probability and X,, — Y in probability, then X =Y a.s.. In particular,
if X, > X as. and X,, =Y a.s., then X =Y a.s. (although this statement about
uniqueness of a.s. limits can easily be proven directly).

Proof. Fix m € N. Then for n € N, we have P(|IX = Y| > 1) < P(|X — X,,| >
)+ P(X, Y] > 55) > 0asn — oo, so P((X — Y| > L) = 0. Hence,

P(IX-Y|>0)=0,s0 X =Y as.. QED
The significance of the following result will be apparent shortly:

Proposition 2.8. Let F; =F, and let F5 € {R,C} and k € N. Let f : F¢ — F5 be
continuous.

(a) If X, = X a.s. asn — oo, then f(X,) — f(X) a.s. asn — oco. Furthermore,
if f is bounded, then E(f(X,)) = E(f(X)) as n — oo.

(b) If X,, — X in probability as n — oo, then f(X,) — f(X) in probability as
n — oo. Furthermore, if f is bounded, then E(f(X,)) = E(f(X)) as n — oo.

Proof. For (a), the continuity of f implies that f(X,) — f(X) a.s. as n — 00, and,
if f is bounded, we can apply the dominated convergence theorem to conclude that
E(f(X,n) = E(f(X)) as n — oo.

For (b), let (X,,) be a subsequence of (X,). By Proposition 2.4, we can choose
a further subsequence (Xnkj) that converges a.s. to X,, as j — oo. By (a), we
have f(Xnkj) — f(X) as. as j — o0, so, by Proposition 2.4 again, we have
f(Xy) — f(X) in probability as n — oco. If f is bounded, we can apply (a) again to
conclude E(f(Xnkj )) = E(f(X)) as j — oo. Since every subsequence of E(f(X,,))
has a further subsequence converging to E(f(X)), we have E(f(X,)) — E(f(X))
as n — oo. QED

Definition 2.9. For this definition, let (X,,) be a sequence of X-valued random
variables (where X1, X, ... need not be defined on the same probability space), and
let X be another X-valued random variable. We say that (X, ) converges to X
in distribution if E(f(X,)) — E(f(X)) as n — oo for every bounded, continuous
function f : X — R. We write “X,, — X in distribution (as n — 00)” to denote
this convergence.

We observe that convergence in distribution depends only on the random vari-
ables’ distributions. By Proposition 2.8, convergence in probability implies con-
vergence in distribution, and hence convergence a.s. implies convergence in distri-
bution. The converse is not true in general, as we show in Example 2.10 below.
Therefore, convergence in distribution is strictly weaker than convergence in prob-
ability, which is itself strictly weaker than convergence a.s. (although the notion of
convergence in distribution applies to a wider class of random variables).
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Example 2.10. Let (X,,) be a sequence of real-valued, independent and iden-
tically distributed (i.i.d.) random variables, all defined on the same probability
space (2, F,P), such that ux, = %50 + %(51. Clearly, X,, — X3 in distribution.
However, P(|X, — X1| < 3) < P(X1 =0,X, =0)+P(X; =1, X, =1) = § by
independence for all n € N, so (X,,) does not converge to X; in probability (and
hence (X,,) does not converge to X; a.s.).

Example 2.11. Let (x,) be a sequence of real numbers converging to z € R.
For each n € N, let X,, be a real-valued random variable with distribution d,,,
and let X be a real-valued random variable with distribution §,. Then X, —
X in distribution, since if f : R — R is a (bounded) continuous function, then

E(f(X,)) = f(zn) — f(x) = B(f(X)) as n — oo.

Uniqueness of limits is a more subtle topic for convergence in distribution. Since
this type of convergence depends only on the random variables’ distributions, the
strongest form of uniqueness that we can expect is that any two limits have the
same distribution. For R?-valued random variables, this will follow from Corollary
2.16 below. We begin with some preliminary results.

Theorem 2.12. Let (X,,) be a sequence of R¥-valued random wvariables (where
X1, Xs, ... need not be defined on the same probability space), and let X be another
R9-valued random variable. Suppose that E(f(X,)) — E(f(X)) for every smooth
(i.e., infinitely differentiable), compactly supported function f : R® — [0,1]. (In
particular, this hypothesis holds if X, — X in distribution.) Then px, (R) —
px(R) as n — oo for every rectangle’ R in R? such that ux (bd(R)) = 0, where
bd(R) denotes the topological boundary of R.

Proof. Let R = I x Iy x ... x I be a rectangle in R? such that px(bd(R)) = 0,
where I, I, ..., I; C R are intervals. For j € [d], let a; be the left endpoint of I;
and b; be the right endpoint of I;.

Fix £ € N. Let Rk = (CL1 — %,bl + %) X (CLQ — %,bg + %) X oo X (ad —
%,bd + %) Let fr : RY — [0,1] be a smooth, compactly supported function
such that fi(z) = 1 for all € R and fi(z) = 0 for all x € RY\ R;.? Then
px(Re) = E(1g, (X)) > E(fr(X)), and E(fp(Xyn)) > E(1r(Xn)) = px, (R).
Thus, limsup px, (R) < limsupE(fx(X,)) = E(fx(X)) < pux(Rk). By the con-

n—oo n—oo

tinuity of measure and the fact that px(bd(R)) = 0, we have klim px(RE) =
— 00
ux(RUDbA(R)) = ux(R), so the relation limsup pux, (R) < px(Ry) implies that

n—oo

limsup px, (R) < px(R). An analogous argument (by approximating R using rect-
n—oo

angles of the form (a1 + ¢,b1 — £) X (a2 + £,b2 — £) x -+ x (ag + ,bq — 3) for

k € N) yields that liminf px, (R) > px(R). QED
n— oo

Definition 2.13. Fix j € [d] and a € R. We define H; , C R? as the hyperplane
obtained by fixing the j*" coordinate at a. More formally, we let H j,a be the set of
all (21,22, ...,74) € R? such that z; = a.

3By “rectangle,” we mean a subset of the form I; X Iz X --- x I; for bounded intervals
I1,1a,...,15 C R. The representation of a nonempty rectangle as a product of bounded intervals
is unique. Note that this is a different use of the word “rectangle” than in Section 4.3.

4The existence of such a function is a well-known result from analysis; see Chapter 8.2 of [5]
for details.
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Lemma 2.14. Fiz j € [d]. Let u be a finite measure on (RY, Bga). Then u(H; ,) >
0 for at most countably many a € R.

Proof. This is immediate, since Y, cp p1(Hj0) < p(R?) < 00. QED

Corollary 2.15. Let p be a probability measure on (R, Bga). Let P, be the col-
lection of all nonempty, open rectangles R = I x Iy x --- x I in R* such that
w(Hja;) = p(Hjyp,) =0 for all j € [d], where aj is the left endpoint of I; and b; is
the right endpoint of I; (and where I, Is,...,I; C R are bounded intervals). Then
P U{Q} is a w-system in R? such that o(P) = Bga.

Proof. Tt is straightforward to check that P U {@} is a m-system. To check that
o(P) = Bga, note that, by Lemma 2.14, we can write any open rectangle in R?
as a countable union of rectangles in P U {@}, and that every open set in R? is a
countable union of open rectangles. QED

Corollary 2.16. Two R¥-valued random variables X and Y (which need not be
defined on the same sample space) agree in distribution if and only if E(f(X)) =
E(f(Y)) for every smooth, compactly supported function f : R — [0,1].

Proof. Let P, be as in Corollary 2.15. Suppose E(f(X)) = E(f(Y)) for every
smooth, compactly supported function f : R — [0,1]. Then by Theorem 2.12, we
have uy (R) = pux(R) for every rectangle R in RY such that px(bd(R)) = 0. In
particular, we have py (R) = px (R) for every rectangle R in PU{0}, so puy = ux
by Proposition 1.1 and Corollary 2.15. The converse is clear. QED

The definition for convergence in distribution is rather abstract, so it would be
nice to have a more concrete way to characterize this convergence. We will do this
for real-valued random variables in Theorem 2.23 below. Specifically, we will give
the concrete characterization that, if X7, Xo,... are real-valued random variables,
and if X is another real-valued random variable, then X,, — X in distribution if and
only if Fx (t) = Fx(t) as n — oo for every t € R at which Flx is continuous. By
taking x,, = % for all n € N in Example 2.11, we see that the continuity condition
is not superfluous. (Note that F'x is increasing and hence has at most countably
many points of discontinuity.) However, we need to develop a little more machinery
before proving Theorem 2.23.

Definition 2.17. Let F' : R — [0, 1] be an increasing, right-continuous function
satisfying tlim F(t) =1 and , lim F(t) = 0. (Thus, F is the distribution function
—00 ——00

of its Lesbegue-Stieltjes measure.) We define the generalized inverse of F as the

function G : (0,1) — R, given by G(z) = sup{t € R: F(t) < z} for all x € R. (Note

that the relations tlim F(t) =1 and . lim F(t) = 0 imply that G is well-defined.)
—00 ——o00

Observe that G is increasing and hence Borel-measurable.
Lemma 2.18. Let F': R — [0,1] be an increasing, right-continuous function satis-
fying lim F(t) =1 and lim F(t) =0. Let G be the generalized inverse of F. Fix
t—o0 t——o0
x € (0,1) and t € R. Then x < F(t) if and only if G(z) < t.
5We are using the basic fact that, if an indexed sum of nonnegative numbers is finite, then

at most countably many of the terms in the sum are nonzero. See pages 83-84 of [2] and pages
xii-xiii of [4] for details.
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Proof. It x < F(t), then the monotonicity of f implies that G(z) < ¢. If x > F(¢t),
then, by right-continuity, > F(t + €) for some € > 0, so G(z) >t+e¢>t. QED

Lemma 2.19. Let F : R — [0,1] be an increasing, right-continuous function sat-
isfying tlim F(t) =1 and . lim F(t) =0. Let Q be the collection of all x € (0,1)
—00 ——00

such that sup{t € R : F(t) < 2} = inf{t € R : F(t) > z}. (Again, the relations
tli}m F(t)=1 and tl}m F(t) = 0 imply that Q is well-defined.) Then (0,1) \ Q is
o0 — o0

countable.

Proof. For each x € (0,1), let a; = sup{t € R: F(t) < z} and b, = inf{t € R :
F(t) > x}; note that a, < b,. Suppose x1,z2 € (0,1) \ Q satisfy x; < z3. Then
br, < Gy, 80 (Gg,, by, ) and (ag,,bs,) are disjoint, nonempty intervals. Thus, we
can injectively associate each z € (0,1) \ Q with a rational number, which implies
that (0,1) \ © is countable. QED

Proposition 2.20. Let X1, X5, ... be real-valued random variables, and let X be
another real-valued random variable. For each n € N, let Y,, be the generalized in-
verse of Fx, . Also, letY be the generalized inverse of Fx . Note that we can regard
each Y, as a real-valued random variable on the probability space ((0,1), B(o.1), m);
similarly, we can regard Y as a real-valued random variable on ((0,1), B,1),m).

(a) px, = py, for alln € N, and px = py .

(b) Suppose Fx, (t) = Fx(t) asn — oo for every t € R at which Fx is continuous.
Then Y, =Y a.s.. In fact, let Q be the collection of all x € (0,1) such that
sup{t € R: Fx(t) < z} = inf{t € R: Fx(t) > z}. Then Y,(z) = Y(x) as
n — oo for all x € Q, which implies that'Y, — Y a.s. by Lemma 2.19.

Proof. For all n € N, by Lemma 2.18, we have Fy (t) = m(Y,, < t) = m({z €
(0,1) : 2 < Fx,(t)}) = Fx, (t) for all t € R, so py, = px,. Similarly, uy = px,
which gives (a).

We now consider (b). Fix z € 2, and fix any s € R at which Fx is continuous.
Suppose s > Y(x). By Lemma 2.18, we have © < Fx(s). If x = Fx(s), then
s>Y(z) =sup{t e R: Fx(t) <z} =inf{t € R: Fx(t) > «} > s, which is absurd.
Hence, z < Fx(s), so, whenever n € N is sufficiently large, we have x < Fx, (s)

and thus Yx, (x) < s. Therefore, limsup Yx, () < s, so, by our choice of s, we
n—oo

conclude limsup Yx, (z) < Y (z).

n—oo

Now suppose s < Y(z). By Lemma 2.18, Fx(s) < x, so, whenever n € N is
sufficiently large, Fx, (s) < z and hence s < Y,,(z). Thus, liminf Y;,(s) > s, so, by
n—oo

our choice of s, we conclude liminf Y, (s) > Y (x). QED
n— oo

Lemma 2.21. Let (X,d) be a metric space. For each m,n € N, let ap, € X. Fiz

L € X. Suppose that, for every e > 0. there exists N € N such that d(amn, L) < €

whenever m,n > N. Suppose also that lim a,, exists for all m € N. Then
n—oo

lim lim a,,, erists and equals L.
m—00 N—r00

Proof. Fix € > 0. Choose N € N such that d(a,n,, L) < € whenever m,n > N. Fix
m > N. Choose n,, € N such that n,, > N and d( im amn, @mn,, ) < €. Then
— 00

d(nh—{%o Amn, L) < d(y}i_}n;o Amns Amn, ) + A(Gmn,, » L) < 2€. QED
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Corollary 2.22. Let (X,d) be a metric space. For each m,n € N, let ap, €
X. Fix L € X. Suppose that, for every ¢ > 0. there exists N € N such that
d(amn, L) < € whenever m,n > N. Suppose also that lim @, and lim a,, exist

n—oo m—0o0
for allm,n € N. Then lim lim a,,, = lim lim a.,, = L (so, in particular, we
m—00 N—00 n—oo Mm—»0o0
can switch the order of the limits).
Theorem 2.23. Let X1, Xo,... be real-valued random variables, and let X be an-

other real-valued random variable. The following are equivalent:

(a) X,, — X in distribution (i.e., E(f(X,)) = E(f(X)) as n — oo for every
bounded, continuous function f: R — R).

(b) E(f(Xn)) = E(f(X)) as n — oo for every smooth, compactly supported func-
tion f: R —[0,1].

(c) ux, ([a,b]) = ux([a,b]) as n — oo for every a,b € R such that a < b and
px ({a,b}) = 0.

(d) Fx, (t) — Fx(t) as n — oo for every t € R at which Fx is continuous.

Proof. Clearly, (a) implies (b). By Theorem 2.12, (b) implies (c).
Suppose (c) holds. Fix any ¢ € R at which Fx is continuous. Since Fx has at
most countably many discontinuities, we can choose a sequence of strictly decreasing

real numbers (ai) with a; < t such that klim ar = —oo and such that Fy is
— 00

continuous at each ay. By continuity, ux ({ax,t}) =0 for all £ € N.
We first check that the hypotheses of Corollary 2.22 hold for the “double se-

quence” (ux, ([ak,t]))n.ken, with L = px((—o0,t]). Clearly, klim wx, ([ak,t]) and
—00
li_>m px, ([ax,t]) exist for all n,k € N. Now fix ¢ > 0. Choose ¢,d € R with

¢ < tand ¢ < d such that px([c,d]) > 1 — € and such that Fx is continuous at
c and d. Choose N € N such that, if n > N, then |ux, ([¢,t]) — px([c,t])] < €
and |px, ([¢,d]) — px([e,d])] < € (and hence px, ([e,d]) > 1 — 2¢), and such that
ap < cfor k > N. Then if n,k > N, we have |ux, ([ak,t]) — px((—o0,t])| =
G, ([ )+ 113, (fes 1)) — (i (=00, )+ axc (e, )< g (e ) — o (fes )|+
lux, ([ak, ¢))|+|px (=00, ¢))| < 4e, which completes the verification of the hypothe-
ses of Corollary 2.22.

Then we have Fx (t) = ux((—o0,t]) = kli_}rgo px(lag,t]) = lim lim px, ([ak,t]) =

k—o00 n—00

nh%rrgo kl;rlgo ux, (lag, t]) = 711;11;O ux, ((—oo,t]) = nl;néo Fx, (t), which gives (d).

Suppose (d) holds. Define Y and Y7,Y2,... as in Proposition 2.20. Then for
any bounded, continuous function f : R — R, we have E(f(X,)) = E(f(Y,)) —
E(f(Y)) =E(f(X)) as n — oo by Proposition 2.8, so (a) holds. QED

2.2. Law of Large Numbers. We now arrive at one of the most important the-
orems in probability: the Law of Large Numbers. Technically, the Law of Large
Numbers is not a single theorem but rather a collection of theorems, all of which
have slightly different hypotheses and conclusions but express the same general
principle. We will prove two of these theorems (Theorems 2.24 and 2.25 below).
To get some intuition for the Law of Large Numbers, consider a physics student
who is measuring the time it takes for a ball to drop from a particular height. Sup-
pose that the student performs the same ball-drop experiment n times (where n €
N), obtaining n measurements X1, Xs, ..., X,,, each of which is a real-valued ran-
dom variable. We assume that the ball drops are performed independently of each
other; then it is reasonable to assume that the random variables Xi, Xs,..., X,
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are independent. It is also reasonable to assume that X, Xs,...,X,, have the
same distribution (and hence the same mean), since the ball drops are meant to
be performed in the same way. From experience, we expect that, when n is large,
the average %(Xl + X5+ -+ X,,) is a good estimate for the “true value” of the
ball-drop time, since a couple outlier measurements would not skew the average
L(X14+ X2+ +X,) too much for large n. (This intuition is reflected in the proof
of Theorem 2.24.) The Law of Large Numbers essentially formalizes this empirical
principle that averaging together more data points gives a better estimate for the
true value of a quantity (where we will model the “true value” as the expected
value), provided that the data points are collected independently of each other.

Theorem 2.24. (Weak Law of Large Numbers) Let X1, X5, ... be a sequence
of real-valued, pairwise uncorrelated random wvariables, all defined on the same
probability space (Q, F,P), with the same mean u. Suppose that E(|X,|?) < oo
for all n € N and that the sequence of variances (Var(X,)) is bounded. Then
%(Xl + Xo+ -+ X,,) — pin probability as n — oo.

Proof. Choose o > 0 such that Var(X,,) < o2 for all n € N. Fix € > 0. Then by
Chebyshev’s inequality, we have P(| 2 (X1 +Xo+- - +X,,)—p| > €) < & Var(L (X, +
X2+..-+Xn)):#Zyzl\/ar(){j)g%%Oasn%oo. QED

Theorem 2.25. (Strong Law of Large Numbers) Let X1, X5, ... be a sequence
of real-valued, 4-wise independent random variables, all defined on the same proba-
bility space (Q, F,P), with the same mean p. Suppose that E(|X,|*) = E(X2) < oo
for all n € N and that the sequence of ordinary 4™ moments (E(X?)) is bounded.
Then %(Xl +Xo+ -+ X,) = poas. asn — oo. (Thus, the Strong Law of Large
Numbers has a more robust conclusion than the Weak Law of Large Numbers, at
the cost of more stringent hypotheses.)

Proof. Choose C' > 0 such that E(X2) < C for all n € N. We may assume without
loss of generality that p = 0, since, once the p = 0 case is proven, the general case
follows easily by considering the sequence X7 — pu, Xo — i, .. ..

Fix n € N. We assert that E((X; + X2 + --- + X,,)*) < 3Cn?. For proof,
first observe that E((X; + X2 + -+ + X,,)%) = Di e B(XiX; Xp Xy). Since
= 0, we observe that, by 4-wise independence, the orﬂy nonzero terms in the sum
Zi,j,k,le[n] E(X;X;XyX;) occur when ¢ = j = k = [ or when we can pair up the
four indices into two pairs of two indices, such that two indices in the same pair are
the same number in [n] whereas two indices in different pairs are different numbers
in [n]. There are n terms of the first kind, and each of these terms is bounded by C.
There are 3n(n—1) terms of the second kind, and each of these terms is bounded by
C' (by Holder’s inequality). Thus, Y i) E(Xi X3 X Xi) <nC +3n(n—1)C <
3n2C, which proves the asserion.

Let 4, = {(2X1+ Xo 4+ + Xp| 207V = {|X1+ Xo+ -+ X,,| >
n"/8}. Let {A, i.0.} be the collection of w € Q that are in infinitely many of
the A,. (Indeed, “i.0.” stands for “infinitely often.”) Choose any w € € such that
L(X1(w)+X2(w)+ - -+ Xn(w)) does not converge to 0 as n — oo. Then there exists
€ > 0 such that 2| X (w)+ X2 (w)+- -+ X, (w)| > € for infinitely many n € N, which
implies that w € {A,, i.0.}. Thus, it suffices to show that P(4,, i.0.) = 0. By the
Borel-Cantelli lemma, it suffices to show that > | P(A,,) < co, which is indeed the

i,5,k,l€
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case by Markov’s inequality and the preceding paragraph since P(4,,) = P((X; +
Xo o+ X))t > n™2) < LE((X) 4+ Xo -+ X,)Y) <398 = 36 QED

— n n3/2

3. CHARACTERISTIC FUNCTIONS

3.1. Basic Properties of Characteristic Functions. We assume that the reader
is familiar with the basic theory of the Fourier transform. However, because there
are many conventions for the Fourier transform, we state our convention here:

Definition 3.1. Let u be a complex measure on (R?, Bra). We define the Fourier-

Stieltjes transform of p as the function /i : R — C given by () = [pa € du(x)
for all ¢ € R?%. Also, if f € L'((RY, Bga,m),C), then we define the Fourier trans-

form of f as the function f : RY — C given by f(() = g f(z)e™ < dx for all

¢ € R% By identifying f € L'((R? Bga,m),C) with the complex measure on

(R?, Bga) defined by mapping A € Bga to J4 f(x)dx, we can view the Fourier

transform as a special case of the Fourier-Stieltjes transform.

We also recall the well-known inversion theorem from analysis:

Theorem 3.2. (Fourier inversion theorem.) Let f € L'((RY, Bga,m),C).
Suppose that f € L*((R?, Bga,m),C) as well. Then f(z) = @ Jga F(Qe™ ¢ d¢
for almost all x € R (with respect to the Lesbeque measure). Furthermore, if f is
continuous, then the relation f(z) = ﬁ Jga F(Q)e™® d¢ holds for every x € RY.

Corollary 3.3. Let f : R? — C be a Schwartz function. Then we have f(z) =
(23&')‘1 Jga F(Qe™ " d( for every x € R%.

Let X be an R%-valued random variable. We define the characteristic function
of X by ¢x = iy (i-e., ¢x is the Fourier-Stieltjes transform of the distribution of
X). Explicitly, ¢x(¢) = E(e?X¢) € C for all ¢ € R% Note that ¢x depends only
on the distribution of X.

We now list some basic properties about characteristic functions.

(a) If X has a density f, then ¢px = f is the Fourier transform of the density. Note,
however, that ¢x always exists, even if X does not have a density.

(b) ¢x(0) =1, and |px(¢)] < E(]e*¢|) = 1 for all ¢ € R%. In particular, ¢x is
bounded.

(c) If X1, Xo,... is a sequence of R%valued random variables converging to X in
distribution, then the characteristic functions ¢x, converge pointwise to ¢x
(since €'**¢ is a bounded, continuous function of x € R? for any fixed ¢ € R%).

(d) Fix n € N, and let X1, Xs,...,X,, be independent, R%valued random vari-
ables (all defined on the same probability space (2, F,P)). We assert that
DX 4 Xot ot X, = Ox,0x, - dx, (i.e., the characteristic function of a finite
sum of independent R%valued random variables is the product of their charac-
teristic functions). Indeed, we have

OX14 Xatrrt X, () = B! (KrFXat4Xn)C
= E(eX1¢eiX2 0. giXnC)

_ ]E(einC)E(ein-C) . ]E(eiX”'C)
= ¢x,(Q)¢x,(¢) -+ dx, (¢)
for all ¢ € RY.
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() If a € R and b € R?, then ¢ox,5(¢) = E(e!eX+0)¢) = E(X (a0)¢ib¢) —
e Cpx (al) for all ¢ € RY,

Proposition 3.4. Let X = (X1, Xa,...,Xy) be an R¥-valued random variable.
Fiz k € Ng and (j1,ja,---,jx) € [d]F, where we interpret (ji,72,-..,j1) as the
empty list when k = 0. Suppose E(|X,, --- X;,X;,|) < oo, where we interpret
the empty product as 1 (so that this hypothesis is trivially satisfied when k = 0).
Then mg@(@) = *E(Xj, -+ Xj, X, €5 for all ¢ € RY, where we
interpret a 0-order partial derivative as the original function, and, furthermore,
méx is uniformly continuous. In particular, if E(|X|¥) < oo, then
dx € CF(RY,C) (i.e., all the k™-order partial derivatives of ¢px exist on R? and
are continuous).

Proof. We prove differentiability by induction on k. The k = 0 case is trivial. Now
suppose that k£ € N and that the result holds for k — 1. Since E(| X, --- X;,X,,|) <
XX R S _
oo, we have E(|X;, , ‘XJ2X]1|) < oo. Hence, we have aijka,l"'aCjzaCn dx ()
ikil]E(Xj N 'XjQleelX.C) for all C € Rd. Let '(/J = WQSX Let Uy,
be the standard basis vector in R? with a 1 in the ji® coordinate and zeroes in
the other coordinates. Then for h € R\ {0}, we have +(¢(¢ + huj,) — ¥(¢)) =
PFIE(X, ~--Xj2leeiX‘<(%)). Since | — 1| < |t| for any t € R, we
get |Xjk—1 "'ijXﬁeZX((%” < |Xijjk71 "'ijXj1|a so taking h — 0
and using the dominated convergence theorem gives (¢(¢ + huj,) — ¥(¢)) —
PFE(X, X, X, X[, e70), as desired.
For uniform continuity, fix s € R%. Let v = W@(' We define ,(¢) =
Ik J275I1

k—1

(¢ + s) for all ¢ € R We must show that ||ys — ¥||lsup — 0 as s — 0 (where
|| - ||sup indicates the supremum norm). For each ¢ € R%, we have |y(¢ + s) — 7| <
]E(lXJk e XjQle |(|61X.S_1D)’ 80 ||’YS_7‘|SUP < E(IXjk B 'ijle ‘(|€ZX.S_1|)) -0
as s — 0 by the dominated convergence theorem. QED

Corollary 3.5. ¢x is uniformly continuous for any R%-valued random variable X .

We have already seen that the distribution of an R%-valued random variable X
determines the characteristic function ¢x. We now show that the (highly nontriv-
ial) converse holds in the special case that X is real-valued; i.e., the characteristic
function of a real-valued random variable completely determines its distribution.
This will follow from Theorem 3.6 below, which allows us to reduce questions about
convergence in distribution into questions about convergence of characteristic func-
tions (and also adds to the list of equivalences in Theorem 2.23):

Theorem 3.6. Let X1, Xo,... be real-valued random variables, and let X be an-

other real-valued random variable. The following are equivalent:

(a) X, = X in distribution as n — oo.

(b) The sequence of characteristic functions (¢px,) converges pointwise to ¢x.

(c) The sequence of characteristic functions (¢x,) converges to ¢x a.e. (with
respect to Lesbegue measure).

Proof. Clearly, (a) implies (b), and (b) implies (¢). Now suppose that (¢) holds. To
show that (a) holds, it suffices by Theorem 2.23 to prove that E(f(X,,)) — E(f(X))
for every smooth, compactly supported function f : R — [0, 1]. Note that any such
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fis Schwartz S0, by Corollary 3.3 and Fubini s theorem we have E(f(X,)) =

f]R dMX,L = 5r Jo Jo F(Qe™ ™" dCdpx, (x) = 57 [p Jo F(Qe ™" dpx, (x)d¢ =
fR C )dC (Note the importance of the fact that the relation f(x) =
fR *ZC”” dx holds for every x € R? not just almost every x.) Similarly,

]E( = 5 fR —¢)d¢. Thus, E(f(X,)) — E(f(X)) as n — oo by the

dormnated convergence theorern. QED

Corollary 3.7. Two real-valued random variables agree in distribution if and only
if their characteristic functions are equal (which, by Corollary 3.5, occurs if and only
if their characteristic functions are equal a.e. with respect to Lesbeque measure).

3.2. Normal Random Variables. We now consider normal random variables,
which are of fundamental importance to probability theory.

Definition 3.8. Let u € R and o € R\ {0}. We define N(u,0?) as the probability
distribution on (R, Br) with density f : R — R given by f(z) = ﬁe*“*“ﬁ/(%z)
for x € R. (Using the famous identity ffooo e dy = 1, it is easy to show that
7 f(x)dz =1, so N(u,0?) is well-defined.)

Proposition 3.9. Let p € R and o € R\ {0}. Also, let a € R\ {0} and b € R, and
let X be a real-valued random variable with distribution N (u,o?). Then aX +b has
distribution N(ap + b, (ac)?).

Proof. Tt suffices to show that aX has distribution N(au, (ac)?) and that X + b
has distribution N(u + b, o ) Fix ¢,d € R with ¢ < d. Then px4p((c,d]) =

px ((c—b,d—b)) = \/ﬁf— (z=p)*/(20)% gp — \/7] e~ (@=(0+m)?/(20)* g0 —

(N(u+b,0%))((c,d]), so px+b = N(u+b,0?) by Proposition 1.1 (since the collection
of half-open intervals of the form (¢, d] with ¢ < d form a 7-system).

We observe that u_x((c,d]) = ux([—d,—c)) = ﬁf:dc e~ (@=m?/(20%) 4o —
L e e iy = (N(—p,0%)((e,d]), 50 px = N(—p,02), again
by Proposition 1.1. Thus, to prove that aX has distribution N(au, (ac)?), we may

assume without loss of generality that a > 0, since the general case follows from
this special case and the preceding sentence. Then we observe that Ha x((¢,d]) =

d/ T— o? —(z—a ao)?
px((c/a,d/a)) \/ﬁf ¢ e (e—p)?/(2 )dx—Wf (z—an)®/(2(a0)®) gp —
(N(au, (a0)?))((c,d]), 0 pax = N(ap, (ac)?), yet again by Proposition 1.1 QED

We call N(0,1) the standard normal distribution, so N(0,1) has density
f iR = R given by f(z) = \/%6_12/2 for © € R. Let X be a standard normal
random variable (i.e., a real-valued random variable with ux = N(0,1)). Since
the characteristic function of X is the Fourier transform of f, we have ¢x(t) =
e /2 for all t € R.S Thus, if X is a real-valued random variable with distribution
N(p,02) for p € R and o € R\ {0}, then ¢x(t) = e#=(D*/2 for all ¢ € R,
because, by Proposition 3.9, %X — £ is a standard normal random variable, so
Px(t) = dgrx_nypu(t) = ei“tng%X_%(at) = eite=(o0%/2 for all ¢ € R.

6The Fourier transform of f (where f(z) = \/%E’IQ/Q for z € R) is a well-known result from

analysis; see Proposition 16.5 of [3] for details.
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We now ask a seemingly simple question: if X is a real-valued random variable
with distribution N(u,0?) for 4 € R and o € R\ {0}, then what is the mean and
variance of X7 (It is not hard to show that E(|X|") < oo for all n € Ny, so the
mean and variance of X exist.) It is not too difficult to directly compute that
E(X) = p and Var(X) = o?; for this reason, N(u,0?) is often called the normal
distribution with mean p and variance o2. However, the direct proof of these
facts is somewhat messy, so we give a more slick proof using Proposition 3.4. For
t € R, since ¢x(t) = e=(@D*/2 e compute ¢/(t) = (ip — o2t)e=(@0*/2 and

(t) = (ip — o2t)2eit=(00*/2 _ 526int=(01)"/2  Then by evaluating at ¢ = 0 and
using Proposition 3.4, we immediately obtain E(X) = p and Var(X) = o2.

The preceding paragraph demonstrates some of the power of characteristic func-

tions. The next result further demonstrates their efficacy.

Theorem 3.10. Fiz n € N, and let X1, X5,...,X,, be independent, real-valued
random variables (all defined on the same probability space (Q, F,P)). For each
J € [n], suppose that X; has distribution N (u;, O'JQ») for some p1; € R and o € R\{0}.
Then X1+ Xo+ -+ X,, has distribution N(p1 +pio+ -+ fin, 05 + 05+ +02).

Proof. For t € R, we observe that ¢x,+x,+..+x, () = ¢x, )ox,(t) - - ¢x, (t) =
it (10 /2 gitat—(0307/2 ... gitint=(oat)? /2 _ il bz bpan) i (o7 03+ +0R)/2 o

the result follows from Corollary 3.7. QED

The following result is a simple but helpful estimate.

Proposition 3.11. Let X be a standard normal random wvariable. Then for all
a >0, we have px([a,00)) < 1.1 —a®/2

a /27
Proof. Since ¥ > 1 whenever x > a, we have ux([a,00)) = \/1271;00 e 24y <
1 (®z —z?/2 7. _1_1 (> gz 1 1 ,—a%/2
ﬁfa %6 :L’/ dxfaﬁfa2/2e xdm—aﬁe a/. QED

Next, we discuss normal distributions in higher dimensions.

Definition 3.12. We define the d-dimensional standard normal distribution
as the probability distribution on (R%, Bga) with density f : R? — R given by
f(l’) = (27r§d/2 ei‘w‘2/2 = H?=1 \/%671?/2 for z = (xla‘r%'- '7xd) € R%. (USlng
Tonelli’s theorem, it is easy to show that [, f(x)dx = 1, so this definition makes
sense.) Note that the 1-dimensional standard normal distribution is N(0,1), so
this definition is consistent with our prior terminology. Also note that, if we say
“standard normal distribution” (without specifying the dimension), we always mean
“l-dimensional standard normal distribution.”

Definition 3.13. A d-dimensional standard normal random variable is an
R%-valued random variable X whose distribution wx is the d-dimensional standard
normal distribution. Note that, if we say “standard normal random variable,” then
we mean “l-dimensional standard normal random variable.”

The next result (3.14) is quite useful; its proof is easy and hence omitted.

Proposition 3.14. An R?-valued random variable X = (X1, Xo,...,Xq) is a d-
dimensional standard normal random variable if and only if X1, Xo,..., X4 are
independent, standard normal random variables.
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Proposition 3.15. Let X be a d-dimensional standard normal random variable,
and let T : R4 — R? be a linear isometry (i.e., T : R* — RY is a linear map such
that |Tz| = |x| for all x € R?). Then TX is a d-dimensional standard normal
random variable.

Proof. We know from linear algebra that 7T is invertible, that T—! is a linear isome-

try, and that |det(7~1)| = 1. Thus, if V is an open set in R%, we see (by the change
. _ _ 2

of variables theorem) that purx (V) = pux(T~1(V)) = WIT*WV) e P72 dy =

W Iy T @F/2 gy = (2754/2 I el#’/2 4z, Since the map sending B € Bga to

W fB el*’/2 4y is a probability measure on (R?, Bra), we conclude using Propo-

sition 1.1 that the function f : R? — R given by f(x) = We"zwz for z € R4

is a density of T X. QED

Corollary 3.16. Let X andY be independent real-valued random variables (defined
on the same probability space (0, F,P)) such that px = py = N(0,02) for some
o € R\{0}. Then X +Y and X =Y are independent real-valued random variables
such that pux+y = pux—y = N(0,20?).

Proof. By Propositions 3.9 and 3.14, it suffices to show that (%, %) is a 2-
XYy

dimensional standard normal random variable. Since (=-, <) is a 2-dimensional
standard normal random variable, and since the map sending (z,y) € R? to
(l'\'g’, "L\;Ey) is a linear isometry, Proposition 3.15 gives the result. QED
Definition 3.17. Let X = (X1, Xs,...,X4) be an R%valued random variable.
Suppose that E(|X|?) < oo (or, equivalently, E(|X;|?) < oo for all j € [d]). We
define the covariance matrix of X as the d-by-d matrix whose entry in row i,
column j is Cov(X;, X;), where ¢, € [d]. We let Cov(X) denote the covariance
matrix of X.

Let Y be an R%-valued random variable defined on the probability space (2, F,P).
We say that Y is a d-dimensional normal random variable if, for some k£ € N,
we have Y = AX + b for some k-dimensional standard normal random variable
X (defined on (2, F,P)), some linear map A : R¥ — R? (which we can view as a
d-by-k matrix with respect to the standard bases of R* and R?), and some constant
vector b € R In this case, we have E(|Y|?) < oo, and it is not hard to show that
E(Y) = b and Cov(Y) = AAT. Also, any d-dimensional standard normal random
variable is a d-dimensional normal random variable, and, if Y is a real-valued ran-
dom variable with py = N(p,0?) for some g € R and o0 € R\ {0}, then Y is a
1-dimensional normal random variable.

We next show (in Theorem 3.19) that the distribution of a d-dimensional normal
random variable is uniquely determined by its expectation and covariance matrix.
We first state a lemma.

Lemma 3.18. Let Y be a d-dimensional normal random variable with E(Y') = 0,
which means we can choose k € N such that Y = AX for some k-dimensional
standard normal random variable X (defined on the same probability space as'Y)
and some linear map A : R¥ — R, Fiz | € N with | > k. Let (0, F,P) be a
probability space such that there exists an l-dimensional standard normal random
variable Z on (Q, F,P). Then uy = pupz for some linear map B : Rt — RY,
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Proof. Define B as the matrix obtained from A by adjoining [ — k columns of zeroes
to the end of it. The result then follows easily by checking equality on measurable
rectangles and using Proposition 1.1. QED

Theorem 3.19. Let X and Y be independent d-dimensional normal random vari-
ables (not necessarily defined on the same sample space) such that E(X) = E(Y)
and Cov(X) = Cov(Y). Then ux = piy.

Proof. Tt suffices to prove this when E(X) = E(Y) = 0, since the general case
follows easily from this special case. Also, by Lemma 3.18, we can assume without
loss of generality that X and Y are defined on the same probability space (€2, F,P),
that X = B1Z for some k-dimensional standard normal random variable Z (where
k € N) and linear map B; : R*¥ — R? and that Y = B,Z for some linear map
By : R¥ — RZ Since Cov(X) = Cov(Y), we have BiBf = ByBI. Also, by
Propositions 1.2 and 3.15, we just need to show that By = ByU for some linear
isometry U : RF — RF.

Let Vi be the row space of Bi, and let V5 be the row space of By. Also, let
V1,V2,...,0q € R* be the rows of By, and let Wi, Wa, ..., Wq € R* be the rows
of By. Finally, let vj,,vj,,...,v;, where t € [d] and j; < jo < --- < js, be
a basis of V;. Define a linecar map U : Vi — V5 by U(v,,) = wj, for all i €
[I]. The relation B; BT = ByBI implies that U preserves inner products between
the basis vectors vj,,vj,,...,v;,, which implies that U preserves inner products
between any vectors in V) and hence is a linear isometry. In particular, U is
injective, so dim(V;) < dim(Vs). A symmetric argument yields dim(V2) > dim(V;),
so dim(V;) = dim(Vs) = t.

Let eq,e0,...,er_¢ be an orthonormal basis of VlL (the orthogonal complement
of V1), and let f1, fo,..., fu_¢ be an orthonormal basis of V5-. Linearly extend U
to have domain R* by setting U(e;) = f; for each i € [k —t]. Then U : R¥ — R¥
is still a linear isometry. Note that V;* = ker(B;) and V;- = ker(Bz). Using these
facts along with the relation BlB}F = BQBQT yields the relation By = BoU (which
can be proven by checking equality on the basis vj,,vj,,...,v;,,€1,€2,...,€x_¢),
thus completing the proof. QED

Corollary 3.20. LetY = (Y1,Ys,...,Yy) be a d-dimensional normal random vari-
able. Then Y1,Ys,..., Yy are independent if and only if they are pairwise uncorre-
lated (i.e., Cov(Y) is a diagonal matriz).

Proof. One implication is immediate. For the converse, let X = (X1, Xa,...,X4) be
a d-dimensional standard normal random variable. Let W = (Wq, Wy, ..., Wy) =
(v/Var(Y1) X1, /Var(Ya) Xo, ..., /Var(Yq) Xa) +E(Y). We have E(W) = E(Y) and
Cov(W) = Cov(Y'), so, by Theorem 3.19, we have py = pw = pw, X piw, X -+ X
Hw, = [y, X fy, X -+ X py, (where the last equality uses Proposition 1.2). QED

3.3. Central Limit Theorem. We now arrive at another one of the most impor-
tant theorems in probability: the Central Limit Theorem. Like the Law of Large
Numbers, the Central Limit Theorem is technically not a single theorem but rather
a collection of similar theorems that vary slightly in their hypotheses and conclu-
sions but express the same general principle. We will prove one of these theorems
(Theorem 3.21).

To give some intuition for the Central Limit Theorem, recall the physics student
who is measuring the time it takes for a ball to drop from a particular height. We
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again suppose that the student performs the same ball-drop experiment n times
(where n € N), obtaining n independent measurements Xi, Xs,..., X, each of
which is a real-valued random variable, and all of which have the same distribution.
By normalizing the random variables appropriately, we can assume without losing
much generality that X7, Xs,..., X,, all have mean zero and variance one. By
the Law of Large Numbers, we know that 1(X; 4+ X5 + -+ + X,,) converges in
probability, and hence in distribution, to the mean 0. However, one may wonder
about the “shape” of the distribution of %(Xl + Xy + -+ X,) for large n. If
we do not scale %(Xl + X5+ -+ X,,) at all, then the distribution will just look
like that of 0y, so we have to scale 2(X; + X5 + --- + X,,) by some (nonconstant)
function of n to obtain any new insight into the shape. It turns out that, if we scale
L(X1+ X2+ -+ X,,) by y/n (so that we are considering the random variables
ﬁ(X1+X2+~ --4X,,)), then, amazingly, the distribution of ﬁ(X1+X2+~ X))
will look like a standard normal distribution when n is large! (In particular, there
is no dependence on the distributions of the ux,, besides the requirements that
X1,Xs,..., X, are independent and that px, = ux, = --- = ux,.) This is the
essence of the Central Limit Theorem, which we now prove using the machinery of
characteristic functions (and hence using the machinery of Fourier analysis, since
Theorem 3.6 was proven using Corollary 3.3):

Theorem 3.21. (Central Limit Theorem.) Let X1,Xs,... be a sequence of
1.5.d. random variables with mean 0 and variance 1. Then ﬁ(Xl +Xo+--+X,)

converges in distribution to a standard normal random variable as n — oco.

Proof. Fixt € R. Let ¢ = ¢x, = ¢x, = ---. By Theorem 3.6, it suffices to show
2

tha,t ¢ﬁ(x1+x2++Xﬂ)(t) — 67t /2 as n — o0. NOte that ¢%(X1+X2++Xn)(t) =

¢’X1+X2+~-+Xn(ﬁ) = ¢(ﬁ)” By Taylor’s theorem (which is justified by Propo-

sition 3.4), ¢(t) = 1 — % + R(t), where R(t) is the remainder satisfying E()

12
0 as t — 0. In particular, t%(nR(ﬁ)) = I(i(;\//\ﬁ/;z’) — 0 as n — oo. Thus,

%

2
2
e /2 asn — 00.” QED

n)? n —t2 n n)\n
O 1 Xyt Xt ) (8) = B )" = (L= R(JE))" = (14 =R

4. BROWNIAN MOTION

Throughout this section, fix 7 C [0,00) such that 0 € T, and fix zg € R,
p € Rand o € R\ {0}. We let C(T,R%) denote the collection of continuous
functions with domain 7" and codomain RY. For t € R and B € Bga, we call
Cip = {f € C(T,RY) : f(t) € B} the cylinder set associated with ¢ and B,
and we let C(7,R%),, = Co{zo}- We also let Cy ra be the o-algebra in C(T, R%)
generated by all cylinder sets (i.e., Cr g is generated by {C, g :t € T,B € Bra}).
(This is analogous to the definition of the product o-algebra.) Henceforth, we think
of C(T,R%) as a measurable space equipped with the o-algebra Crra-

Let X be a C(T,R%)-valued random variable defined on the probability space
(Q,F,P). For each t € T, let X;(w) = (X(w))(¢t) for all w € Q. Observe that X;
is an R?-valued measurable function on (€2, F,P) (and hence an R%valued random

7We have used the well-known fact that, if (en) is a sequence of complex numbers converging
to c € C, then (1 + °2)" — e as n — oo. See Theorem 3.4.2 of [6] for a proof of this fact.
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variable). In this way, we can represent the random variable X as a collection of
R?-valued random variables (X;);e7, such that the map sending t € T to X;(w)
is continuous for all w € Q. Conversely, if (X;);e7 is a collection of R%-valued
random variables, all defined on the same probability space (£2, F,P), and if the map
sending t € T to X;(w) is continuous for all w € Q, then we can consider (X;)ie7
as a (Cr ge-measurable) C(T,R?)-valued random variable, where (X;);c7(w) is the
continuous function sending ¢t € T to X¢(w) for all w € Q. Thus, it is common
to represent C(7,R%)-valued random variables as collections of R-valued random
variables (X¢)ie7, all defined on the same probability space, satisfying the above
continuity condition (i.e., that the map sending ¢ € T to X;(w) is continuous for
all w e Q).
Note that d = 1 for the first two subsections.

4.1. Existence of Brownian Motion. We say that a C(T,R),,-valued random
variable (Xi)te7 is a (one-dimensional) Wiener process on the set of times
T with starting point x¢, drift u, and variance o2 if the following hold:

(a) (Normally distributed increments) If s,¢ € 7 and s < ¢, then X; — X
has distribution N(u(t — s),02(t — s)). (In particular, X; has distribution
N(tp + zo,0°t) for all t € T\ {0}.)

(b) (Independent increments) If n € N, and if tg,¢1,...,t, € T satisfy ¢ <
] < oo < tp, then Xy, — X4, X3, — X,,..., Xy, — Xy, , are independent.
(Hence, if n € N, and if tg,t1,...,t, € T satisfy to < ¢t; < -+ < t,, then
Xy, — X, Xpy — Xtyy .., Xy, — X4, are independent.)

In the case that g = 0, that u = 0, and that 0? = 1, we say that this Wiener
process (X¢)te7 is standard. In the case that 7 is an interval I, we say that this
Wiener process (Xi):cs is a (one-dimensional) Brownian motion on I (with
starting point zg, drift p, and variance o?). Brownian motion models random
continuous motion, and it is an important concept both in mathematics and in
many fields that use mathematics, like physics (for, e.g., modeling the motion of a
particle in a cloud of dust) and finance (for, e.g., modeling the fluctuations of stock
prices).
Let (X¢)te7 be a Wiener process with starting point xg, drift u, and variance
o2. The following facts are easy to prove:
(a) If0 € S C T, then (X;)ics is a Wiener process with starting point xg, drift u,
and variance o2.
(b) If a € R\ {0}, then (aX:)ie7 is a Wiener process with starting point azg, drift
ap, and variance (ac)?.
(¢) If b € R, then (X; + b)ie7 is a Wiener process with starting point ¢ + b, drift
u, and variance o2.
(d) If d € R, then (X; + dt)ic7 is a Wiener process with starting point xg, drift

i+ d, and variance o2.

Hence, if (Bt)ie[0,00) is @ standard Brownian motion on [0, 00), then (0B; + ut +
20)ter is a Wiener process with starting point xg, drift u, and variance 2.

We now show that there exists a Wiener process (X;):e7 with starting point xg,
drift p, and variance o2. By the preceding paragraph, it suffices to establish the
existence of a standard Brownian motion (B;)se[0,00) O [0, 00).

For each n € Ny, let Dn:{z% : k € No}. Note that Ng =Dy CD; CDy C ---.
The union D = J,~, D), is known as the set of (nonnegative) dyadic rationals;
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observe that D is a countable dense subset of [0, 00). Let (€2, F,P) be any probability
space such that there exists a countable collection {Z;};cp of independent standard
normal random variables, all defined on (€2, F,P). (Such a probability space exists
by Theorem 1.3.) We now inductively define a collection of real-valued random
variables (Bi):ep by defining B; first for ¢ € Dy, then for ¢ € Dy \ Dy, then for
t € Dy \ D1, and so forth, such that, for each n € Ny, the C(D,,, R)-valued random
variable (B¢)tep, is a standard Wiener process.

For k € Ny, define By = Z?Zl Z;. (Hence, By = 0, because the empty sum
is zero.) Then it is easy to check using Theorem 3.10 that (Bi):ep, is a standard
Wiener process.

Now fix n € N, and suppose that we have defined (B;)iep, _, such that, when
viewed as a C(D,,—1,R)-valued random variable, (Bi)tcp,_, is a standard Wiener
process. For t € D, \ D,_1, we observe that t — 27"t + 27" € D,,_1, so we can
define B; = M +2-(+1/2 7, (Thus, we are linearly interpolating the
values of B, _5» and By, ,n, and then adding in 2~ ("*1)/27, 5o that, informally
speaking, the interpolation itself has some randomness associated with it that is
independent of the randomness from B; s-» and B;ys-».) We now show that
(Bt)tep,, is a standard Wiener process. (Note that the continuity condition here is
trivial since D,, has the discrete topology.)

Fix m € N. Consider the random vector (B; — B;_g-» : t € [m2"]). Using induc-
tion on n, we observe that each entry in this random vector is a linear combination
of the entries of (Z; : t € D), so (By — By_y—n : t € [m2"]) is a (m2")-dimensional
normal random variable. Thus, by Corollary 3.20, to show that the collection
{B; — Bi_9-n : t € [m2"]} is independent, it suffices to show that it is pairwise
independent.® . -

Fix t € D, \ Dy—1. It is easy to show that By — By_5-n = —2—"5—1=2" 4

2-(+t0/27, and Byyg-n — By = w —2-(n+1)/2 7, Using Proposition
3.9 and Corollary 3.16, we see that By — B;_5-» and By,5-» — B; are independent
random variables such that up,—p, , , =mps, , .- =N(0,27").

Fix j,j' € [m2"], with j < j'. Suppose that j is even or that j’ # j +1 (or

both). Then there exists s,s" € D,_1 N (0,m) with s < s’ such that [Z5 72Jk] C
[s — 27 (=1 5] and [ 2,11, 5;] C [¢/,8' + 27 (V] Using the increment relations

from the preceding paragraph, we observe that B R B iz1 can be written as

e
a linear combination of By — B;_g9-(n-1) and Z,_,-». Similarly, we observe that
B le,l can be written as a linear combination of B,/ 5—(n-1) =By and Zg 9.

n

Because B — B, 5-(n-1) and B,/ 9--1) — By are themselves linear combinations
of random variables in (Z; : t € D,,_1 U[0,m]), and because (B;)ep, _, is a discrete
Wiener process, we see that B, — B, _o-(n-1), By yo-(n-1) — Bs/, Zgy9-n, Zs_9-n are
pairwise independent. By Corollary 3.20, we see that these four random variables
are independent, so we conclude that B 4 —B i and B —B -1 are independent.

Therefore, we have established that the entrles of (Bt B;_9-n 1t € [m2"]) are
independent and have the desired distribution of N(0,27"). By writing arbitrary
increments as sums of increments of the form By — B;_o—n for ¢t € D, \ {0} (and

8By “pairwise independent,” we mean that, for any distinct ¢1,t2 € [m2™], the random variables
B, — Btl_Q—n and By, — Bt2_2—n are independent.
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recalling that m € N was arbitrary), we easily conclude using Theorem 3.10 that
(Bt)tep,, is a standard Wiener process, as desired.

Now that we have defined (B;):ep in the desired fashion, we examine the regu-
larity of (B;)tep. For the remainder of the subsection, fix any a € (0,1/2). Also,
let 5,;m € N and k € Ny satisfy 2]7 < m. Since B# — Bg;kl has distribution

N(0,27%) (and hence 2k/2(B% — Bj-1) is a standard normal random variable),
v 2

a simple computation using f’foposition 3.11 (and the fact that 2ux([a,00)) =
px ((—o0, —alU[a, 00)) for any a > 0 and any standard normal random variable X)

yields that IP’(\BQ% — sz;kl| > 27ke) < Cexp(—c2F(1-2%) for constants C' = \/%

and ¢ = 1. Note that C exp(—c2*172%)) is summable as (j, k) runs over all pairs

satisfying &= < m, so, by the Borel-Cantelli lemma, there is an event Qg € F with

P(Qf") = 1 such that, for all w € Qf, we have |B%(w) — Bj;kl(w)| < 27 for
2 2

all but finitely many pairs (j, k) satisfying Qi < m. Hence, for all w € QF*, there

k
exists K, (w) > 0 such that |B;T(w) - Bg;kl (W)] € Kp(w)27% for all pairs (j, k)
satisfying £ < m. Let Qo = NX_; Q% note that P(Qy) = 1. (Note also that Qg
depends on «, but this dependence does not matter.)

Let Fo = FNP(p) and Py = P|£,. Henceforth, we restrict our attention to the
probability space (Qg, Fo,Pp), and we consider the domain of each random variable
on (92, F,P) to now be restricted to . (For example, if ¢ € D, we consider the
domain of B; to be €y instead of 2, even though we are still using the symbol B,
instead of Bi|g,. Note that this does not affect the measurability of any of the
random variables, and (Bi):ep, is still a Wiener process for each n € Ny.)

Fix w € Qp and a € D. We now show that the map sending ¢t € DN [a,a + 1)
to By(w) is a-Holder continuous.” Choose m € N such that a + 2 < m. Fix
s,t € [a,a+ 1) with s < t. For each k € Ny, let s; be the smallest element of
Dy N [s,00), and let ¢ be the largest element of Dy N [0,¢]. Choose the unique
n € N such that t —s € [27",27"*1). Note that [s,t] contains either one or two
elements of D,,. In the former case, s, = t, is the unique element of D, N [s,t]; in
the latter case, sp_1 = t,—1 is the unique element of D,,_; N [s,t]. Thus, we can
always choose [ € {n—1,n} such that s;, = ¢;. Note that t —s > 27" > 2—(+1)  For
each k € Ny, we observe that s; and s;y; are either equal or consecutive elements

9f (X,dx) and (Y, dy) are metric spaces, then recall that a function f: X — Y is said to be
a-Holder continuous if there exists a constant C' > 0 such that dy (f(z), f(y)) < C(dx (z,y)%) for
all z,y € X. It is easy to show that, if f is a-Holder continuous, then f is uniformly continuous.
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in Di41, and similarly for ¢; and tx41, so

( Y (Bulw) - Btkl(W))> - ( Y (Bs(w) Bs“(W))>

| Bi(w) = Bs(w)]

k=l+1 k=141
< < Z |Btk( Btk 1 > ( Z |BS;v - Sk—l (w)|>
k=l+1 k=l+1
< 2K Z 92— ka _ 2K ( )2—a(l+1) (Z(Q-Ot)k)
k=Il+1 k=0

< <2Km(w) <Z(2a)k>> (t—1s)",
k=0

which yields the desired a-Holder continuity.
This a-Holder continuity allows us to extend this map (i.e., the map sending
t € D to Bi(w)) to have domain [0, c0) instead of D, such that this extension is con-
tinuous.'” We now show that the C/([0, 00), R)o-valued random variable (By);e[o,00)
is a standard Brownian motion on [0,00). Let n € N, and let tg,t1,...,¢, €
[0,00) satisfy tg < t; < --- < t,. By Proposition 3.14, it suffices to show that
By, —B, Bi,—B: Bt,,—Bt,, 4
( 1 0 2 1
t1—to ’ to—t, 77777 \/f —tn—1
variable. For j € [n], let (¢; ) ken be a sequence of numbers in DN (t;_1,t;] converg-
ing to t; as k — co. Also, let (tox)ren be a sequence of numbers in DN [0, t] con-
tixBtox Btap—Bti, Btpn=Btn_ 1
\/tl,k—to,k ’ \/tz.k—h,k R \/tn,k_tn—l,k
dimensional standard normal random variable for each k € N (because (By)iep, is a
( ‘lk Bfok B‘z,k_Btl,k Btn,k_Btn—l,k

\/tl k—to,k \/t2,k*t1,k, e \/tn,k*tn—l,k

verges in distribution to an n—dimensmnal standard normal random variable as k —
f1 K Bfo K Btz,k _B"I,k Bt =Bt
\/t1 k—to,k \/t2,k_t1,k e \/tn,k tn—l,k
Biy —Bty, Bi,— By, Btn*Btn,l )
Vii—to ' Via—t1 7777 In—tn1
as k — oo. By the uniqueness of limits for convergence in distribution for R™-valued
By, —Bi, Biy—Bi, By, —Bt,, _
Viti—to 7 ta—t; 77 7? \/tn—tn
n-dimensional standard normal random variable, which completes the proof of the
existence of a standard Brownian motion (Bt):e[o,00)-

) is an n-dimensional standard normal random

verging to tg as k — 0o. Then ( ) is an n-

Wiener process for each | € Ny), so ) con-

0o. Furthermore, by continuity, ( >) con-

verges pointwise, and hence in distribution, to (

random variables, we conclude that ( L) is indeed an

4.2. Wiener Measure. The following two results establish that Wiener processes
are unique with respect to distribution.

Theorem 4.1. Let (X¢)ie7 and (Yi)ieT be Wiener processes (not necessarily de-
fined on the same probability space) on the set of times T with starting point xg,
drift u, and variance 0. Then (X;)ieT and (Yy)ieT agree in distribution. (This
distribution on C(T,R)4, is called the (one-dimensional) Wiener measure as-
sociated with T ,xq, 1, and o2, and we will denote this probability distribution

by wr(wo, p,02).)

10Here, we are using the following basic result from analysis: if (X,dx) and (Y, dy ) are metric
spaces, if A is a dense subset of X, if Y is complete (i.e., every Cauchy sequence in Y converges),
and if f : A — Y is uniformly continuous, then f can be extended to a continuous map f X =Y.
(In fact, f is uniformly continuous.) Also, note that a continuous function f : X — Y is uniquely
determined by its values on a dense subset A, so the extension f is unique.
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Proof. We can consider (X¢)ie7 and (Y:)ier to be C(T,R)-valued random vari-
ables (without affecting the measurability of the random variables), and it suf-
fices to prove that they induce the same probability distribution on C(7,R). Let
n € N, and let tg,t1,...,t, € T satisfy 0 = tg < t;1 < -+ < t,. Also, let
By, B1,Ba, ..., B, € Br. The collection of all sets of the form Ci, g, N Cy, B, N
---NCy, B, is a m-system in C(7T,R),, that generates Cy g, so, by Proposition 1.1,
it suffices to show that u(x,),., and p(y,),., agree on Cy, g, NCy, B, N---NCy, B, .

For each j € [n], let dX; = Xy, — X4, _,, and let dY; = Y;, —VY;, . Thus, pax, =
N(u(t; —tj—1),02(t; —tj_1)) = pay,, so, by the independence of the increments,
we have f(ax, dx,,..dx,) = HdX, X HdXy X X fdX, = Hdy; X fdy, X - X
HdY, = IdY:,dYs,...,dY,)- Using Proposition 1.2, we deduce that (X 1y Xty 0 X o) =
I(Yig Yoy oY ) which implies that p(x,),., and p(y,),., indeed agree on Cy, g, N
Cy.B,N---NC, B, QED

Theorem 4.2. Let (X)ie7 be a C(T,R)y,-valued random variable with px,),., =
wr(wo, 1, 02). Then (Xy)ieT is a Wiener process on the set of times T with starting

point xg, drift u, and variance o2.

Proof. Let (Y:)ie7 be a Wiener process on the set of times 7 with starting point z,
drift g, and variance 0. (We established the existence of (V;)ie7 in the preceding
subsection.) Then p(x,),c; = f(vi)ier- Fix n € N, and let to,t1,...,t, € T satisfy
to <ty < --- < t,. Foreach j € [n], let dX; = X;, — Xy, , and dY; = Y;, —
Y, . It suffices to show that jax, dx,,....dx,) = H(dYi,dYs,...dy,) (DY taking n =1
for normally distributed increments and using product measures for independent
increments), and this follows immediately from Proposition 1.2. QED

4.3. Multidimensional Brownian Motion. We now briefly discuss Wiener pro-
cesses in higher dimensions. For simplicity (and with very little loss of generality),
we only consider standard Wiener processes.

Definition 4.3. A (standard) d-dimensional Wiener process on the set
of times T is a C(T,R%)o-valued random variable of the form (X1, Xo, ..., Xq),
where X1, Xs, ..., X, are independent standard one-dimensional Wiener processes
on the set of times 7. (Note that, if X1, Xs,..., X are measurable C(7, R)-valued
functions, then (X1, Xs,..., X4) is a measurable C(7, R%)-valued function.)

Definition 4.4. Let T be an interval I. Then a d-dimensional Wiener process on
the set of times I is called a d-dimensional Brownian motion on I. If d =1,
we sometimes refer to this as a linear Brownian motion on I; if d = 2, we
sometimes refer to this as a planar Brownian motion on I.

We have already established the existence of a (standard) one-dimensional Wiener
process on the set of times 7. Hence, we have established the existence of the asso-
ciated Wiener measure w7 (0,0, 1). Thus, Theorems 1.3 and 4.2 imply the existence
of a (standard) d-dimensional Wiener process on the set of times 7.

Lemma 4.5. Let (X;)ieT be a (standard) d-dimensional Wiener process on the set
of times T. Then the following hold:

(a) (Normally distributed increments) If s,t € T and s < t, then \/%(Xt -

X;) is a d-dimensional standard normal random variable.
(b) (Independent increments) If n € N, and if to,t1,...,t, € T satisfy to <
< s <y, then Xy, — Xy, Xy, — Xy, X, — X are independent.

n—1
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(Hence, if n € N, and if to,t1,...,tn € T satisfy to < t1 < -+ < t,, then
th — Xtoa Xt2 — th yoo ,th - th_ are mdependent)

Proof. For each t € T, write X, = (X;1,X;2,...,Xq) for real-valued random
variables X 1, X¢2,..., X¢ 4.

The proof of the first condition (normally distributed increments) is easy. For the
second condition (independent increments), independence implies that the joint dis-
tribution of (Xthl - Xt0,17 th,l _Xt1,17 ce ath,l —th7171), (th)g —)(750727 Xt272 —
Xt1,27 . ,thg — th7172), ey (th,d - th,da th,d - th,d7 ‘e 7th7d - Xt71717d) is
the product of the d marginal distributions, and that each of these marginal distri-
butions p(x, ;—Xu, ;. X0, =Xt jrsXen ;—Xe. ;) Where j € [d], is itself equal to the
product fix, ;—x,,; X HX,, —Xe, ; X XHX,, j—X,, _, ;- Using the associativity of
the product measure, we see that { Xy, ; — X¢,_, j }(i.j)en]x[q is independent, which
implies the result. QED

Proposition 4.6. Let (X;)ier and (Yy)ier be C(T,R%)g-valued random variables
satisfying the two conditions stated in Lemma 4.5 (i.e., normally distributed incre-
ments and independent increments). (In particular, (Xi)ieT and (Yi)ieT could be
standard d-dimensional Wiener processes on the set of times T.) Then (Xi)teT
and (Yy)ier agree in distribution. (This distribution on C(T,R%)y is called the
d-dimensional Wiener measure associated with T, and we will denote this
probability distribution by wr(R?). Note that wr(R) = wr(0,0,1).)

1

Proof. This follows by essentially the exact same argument as in the proof of The-
orem 4.1. QED

Theorem 4.7. Let (X;);e7 be a C(T,R%)g-valued random variable with pi(x,),., =
wr(RY). Then (Xi)ieT is a (standard) d-dimensional Wiener process on the set of
times T .

Proof. Fix j € [d]. Consider the map sending f = (fi, fa, ..., fa) € C(T,R?) to
fi € C(T,R). It is not hard to check that the preimage of a cylinder set Cy p
(for t € T and B € B) is measurable in C(7,R%), so this map is measurable. It
follows (by comparing (X;):c7 to a standard d-dimensional Wiener process and
using Proposition 1.2) that the one-dimensional (random) component functions of
(Xt)ter all have w(R) as their distribution, so, by Theorem 4.2, the component
functions of (X¢)ie7 are Wiener processes on the set of times 7.

Now consider the map sending f = (f1, fa,..., f4) € C(T,R%) to the tuple of
functions (fi, f2,..., fa) € C(T,R) x C(T,R) x --- x C(T,R). (Note that the
notation (f1, fa,..., f4) is being used in two different ways here.) We first note
that the collection of all sets of the form Ci, g, x Cy, B, X -+ x Ct, B,, Where
ty,to,...,tq € T and By, Bs,...,By € Bg, generates the product o-algebra in
C(T,R)yxC(T,R) x---xC(T,R). (To prove this, use induction on j to show that,
for all j € [d]o, the generated o-algebra contains all sets of the form Dy x Dg X - - - X
Dj X Cthrl’BjJrl X CthrZ’BjJrz X X CthaH where Dl,DQ, - ,Dj S C’T,]R-) It is not
hard to show that the preimage of any such set Cy, g, X Ct, B, X -+ X Ct, B, is
measurable in C(7,R9), so this map is measurable. Thus, by comparing (X;)ser
to a standard d-dimensional Wiener process and using Proposition 1.2, it follows
that the joint distribution of the one-dimensional (random) component functions
of (X¢)ter on C(T,R) x C(T,R) x --- x C(T,R) is the product of the marginal
distributions, which gives the desired independence. QED
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Corollary 4.8. Let (X;)ieT be a C(T,R%)g-valued random variable. Then (Xi)ieT
is a (standard) d-dimensional Wiener process on the set of times T if and only if
(Xt)teT satisfies the two conditions stated in Lemma 4.5 (i.e., normally distributed
increments and independent increments).

Proof. One implication is directly given by Lemma 4.5. The other implication
follows from Proposition 4.6, and Theorem 4.7. QED

Proposition 4.9. (Scaling invariance) Fiz a > 0. Suppose (Bi)ieT is a (stan-
dard) d-dimensional Wiener process on the set of times T. Then (ﬁBat)teT/a isa

(standard) d-dimensional Wiener process on the set of times T /a = {t/a:t € T}.
Proof. This is straightforward using Corollary 4.8. QED

Proposition 4.10. Let T : R? — R? be a linear isometry, and let (X;)ieT be a
(standard) d-dimensional Wiener process on the set of times T. Then (T Xt)ieT is
a (standard) d-dimensional Wiener process on the set of times T .

Proof. This is straightforward using Proposition 3.15 and Corollary 4.8. QED

4.4. Differentiability of Brownian Motion. We first recall the Weierstrass Ap-
proximation Theorem from analysis, which states that any continuous function
f € C([0,1],R) can be uniformly approximated arbitrarily closely by a polynomial,
in the sense that, for any € > 0, there exists a polynomial p : [0,1] — R such that
|f(z) — p(z)| < e for all € [0,1]."" Thus, we see that all continuous functions in
C(]0,1],R) are quite “well-behaved” in the sense that they are very close (in the
supremum norm) to being a polynomial (and polynomials are well-behaved in the
sense that they are smooth).

We now establish a striking result (Theorem 4.11) that contrasts with the com-
ments in the preceding paragraph. Informally speaking, Theorem 4.11 says that,
if we randomly choose a continuous function in C([0,1],R) in some reasonably
uniform manner, then, almost surely, our chosen function will be nowhere differen-
tiable! (Thus, almost all continuous functions from [0, 1] to R are like the famous
Weierstrass function, in the sense that they are continuous everywhere but differ-
entiable nowhere.) Since shifting a function does not affect differentiability, we can
assume without loss of generality that our randomly chosen function f € C([0, 1], R)
satisfies f(0) = 0. Thus, it is reasonable to model our randomly chosen function in
C(]0,1],R) as a (one-dimensional) standard Brownian motion on [0, 1].

We now formally state and prove the theorem:

Theorem 4.11. Let (By)icjo,1) be a (one-dimensional) standard Brownian motion
on [0,1], defined on the probability space (2, F,P). Forw € £, consider the function
sending t € [0,1] to Bi(w) € R. Then this function is a.s. nowhere Lipschitz
continuous'? and hence a.s. nowhere differentiable.

Proof. Fixm,n € N. Let A,,, , = {w € Q : there exists s € [0, 1] such that |B(w)—
By(w)| < m|t — s| whenever ¢ € [0,1] satisfies |t — s| < 2}. It suffices to show that
Ay, n is contained within an event of probability zero, since then the union of the
Ay, n over all m,n is contained within an event of probability zero.

HFor a proof of this, see Theorem 7.26 in [7].

L2rf (X,dx) and (Y, dy) are metric spaces, and if x € X, then recall that a function f: X —» Y
is said to be Lipschitz continuous at z if there exist C' > 0 and e > 0 such that dy (f(z), f(y)) <
Cdx (z,y) for all y € X satisfying dx (z,y) < €.
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For k € [n—2], let Xy, ,, = max{|Bi+; —Brtj-1|:j € [2]o}. Let B,y = {w e Q:
Xin(w) < 577” for some k € [n—2]} € F. It is not hard to show that A, ,, C Epp
and that A,,1 C Ao C Ay g C ---. Hence, we have Ay, ;. C (o, Em ks S0 it
suffices to show that P(E,, ) — 0 as n — oo.

Using the union bound and the properties of the increments of Brownian motion,
we see that P(Ep, ) < (n—2)(|P(BL| < 22))3 < n(P(|B1| < 22))3. By scaling
invariance (4.9) with a = v/n, we have P(E,, ) < n(P(|B1| < 22))3 = n(P(|B;| <
577%))3 Sn(ﬁmﬁ)?’%()asn%oo. QED
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