
TOPOLOGICAL FIELD THEORY AND FINITE GAUGE THEORY

MICHAEL PANNER

Abstract. This paper provides an introduction to the ideas of topological field theory
including non-extended and fully extended theories. The classification of topological field
theories in 1 and 2 dimensions is discussed. Additionally, finite gauge theory is constructed
and used as the primary example of the ideas of topological field theory developed within.
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1. Introduction

The idea of a topological field theory first appeared in a paper by Witten [22]. The
mathematical formulation of topological field theories using bordism categories was then
laid out in a paper of Atiyah’s [1]. A topological field theory can be seen to have mo-
tivations from two different perspectives. The concept of a bordism group and bordisms
arose in the work of Thom [20], where he computed the unoriented bordism ring, in effect
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computing all of the unoriented cobordism groups. An interesting concept to study is then
bordism invariants. These are integers that are attached to a manifold that are the same
whenever two manifolds are bordant. If these invariants have other nice properties such as
additivity under disjoint union, then these then give a morphism from the bordism group
to Z. In general, any such morphism would give a bordism invariant, but they become
relevant primarily when there is some geometric interpretation of the number attached to a
manifold, i.e. when there is a method for computing the invariant given an arbitrary man-
ifold. This concept can then be categorified. Categorification is a concept that has arosen
recently where algebraic objects are lifted a categorical level in an attempt to learn more
about structures involved. In this case, categorifiying the bordism group then leads to the
bordism category. The proper categorical notion of an abelian group here is a symmetric
monoidal category. Bordism invariants then become symmetric monoidal functors from
this bordism category to another nice category which is typically complex vector spaces.

The other perspective from which these ideas arise is in an atempt to make sense of a
simplified model of physics. Atiyah’s definition of topological field theories was inspired
by Segal’s work on conformal field theories, defining them as a functor out of what is
roughly a geometric bordism category [18]. These ideas were then expanded on in the
general setting of a wick rotated quantum field theory in [12]. The limit in which a field
theory only depends on the topology of space and not the geometry then reduces to a func-
tor out of a topological bordism category. With inspiration coming from physics, it then
becomes natural to ask that such a theory should be completely local, which leads to the
idea of a fully extended topological field theory and the cobordism hypothesis originally
introduced by Baez and Dolan [2]. A sketch of a prooof of this theorem was then laid out
by Lurie in 2009.

This paper provides an overview of some of the basic ideas of topological field theo-
ries. Throughout, the primary example of a topological field theory is finite gauge theory.
Section 2 contains an introduction to the idea of bordisms and the bordism group. This is
first done in the unoriented case, but in the second half of this section the idea is expanded
to general G-tangential structures, with a particular emphasis on oriented and framed theo-
ries. Nevertheless, there is a brief discussion of general G-tangential structures. Section 3
then proceeds to define the notion of a topological field theory. This section also discusses
the classification of 1D and 2D oriented topological field theories, but is only explicit in
this demonstration in one direction. The section ends with a brief discussion of how ac-
tions of the mapping class group are seen to arise from a topological field theory. Section 4
then introduces a specific example of a topological field theory called finite gauge theory.
Machinery is built up that allows for the computation of the theory in any dimension, and
the details of the theory are given in dimensions 1 and 2.

Section 5 then introduces the concept of an extended topological field theory and the
notion of higher dualizability in n-categories. Higher categories are necessary in this dis-
cussion, but they are dealt with naively as they are not used that heavily or intricately.
This section is primarily intended to introduce the ideas necessary to understand the cobor-
dism hypothesis. Section 6 then applies these ideas to to construct a 2D fully extended
finite gauge theory. A certain 2-category is introduced to achieve this, and dualizability is
studied in this category.

Throughout the paper, manifold is used to mean smooth manifold. Some basic famil-
iarity with smooth manifolds is assumed as can be found in the course notes [7]. Besides
this, some familiarity with category theory is assumed as can be found in [14] and the first
chapter of [21]. Knowledge of symmetric monoidal categories and dualizability is also
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necessary, but the basic definitions and results needed are provided in the appendix 7. The
theory of higher categories will enter into the picture in the second half of the paper when
dealing with extended field theories. Minimal knowledge of these concepts is necessary,
and they will be dealt with informally at this point. Only an understanding of 2-categories
is necessary to understand end of the paper, and as such any mention of higher categories
can be restricted to that of 2-categories at little expense.

2. Bordisms

In subsection 2.1 the basic ideas of a bordism of manifolds is introduced. It is then
shown that this gives an equivalence relation on all closed manifolds of a specified dimen-
sion, and furthermore that these equivalence classes form a group. In subsection 2.2, the
concept of G-tangential structure is introduced. This allows me to define more general bor-
disms, specifically those between framed manifolds and oriented manifolds. The primary
examples presented throughout the paper will all be oriented theories, so this notion is par-
ticularly useful. A reference for basic information on bordisms and bordism groups can
be found [5]. More information on ideas similar to G-tangential structures can be found in
section 2.4 of [13] and section 2.5 of [10].

2.1. Unoriented Bordisms. The basis of all that is to follow is the concept of a bordism
between smooth manifolds. This notion provides a notion of a manifold smoothly changing
topology over time. This notion is captured by the following definition.

Definition 2.1. Given two closed n − 1 manifolds M and N, a bordism from M to N is
the data (X, p, i0, i1), where X is an n-manifold with boundary ∂X, p : ∂X → {0, 1} is a
continuous map, and diffeomorphisms

i0 : M × [0, 1)→ X

i1 : N × (0, 1]→ X,

such that i0(0) = p−1(0) and i1(1) = p−1(1). Two manifolds M and N are called bordant if
there exists a bordism from M to N.

Remark 2.1. Moralistically, a bordism is really a manifold such that its boundary can be
identified with the two manifolds M and N. However, the data includes a diffeomorphism
onto collar neighborhoods of the boundary for technical reasons in order to make gluing
easier and later to make identifying tangential structures easier. It is a theorem that there
exists such a collar neighborhood of the boundary of any smooth manifold, see theorem
1.14 and exercise 1.15 in [5]. As such, when the information of a bordism is considered up
to equivalence in this case, the choice of collar neighborhood will be irrelevant.

In view of a bordism being a change in topology of some manifold over time, gives an
interpretation of the manifold M being the incoming manifold, and N being the outgoing
manifold. Bordisms will often be drawn in the following way, where time is moving from
left to right in the picture.
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Figure 1. A depiction of a bordism X from M and N. The flow of “time”
is shown at the bottom. The incoming manifold will always be depicted
in blue and the outgoing one in red.

In order for this to be a useful notion in what follows, it is necessary that being bordant
defines an equivalence relation on manifolds. This allows the construction of a set and
eventually a category out of this data.

Theorem 2.2. The condition of being bordant forms an equivalence relation on smooth
n-dimensional manifolds.

Proof. First, note that M is bordant to itself via the n + 1 dimensional manifold M × I.
Additionally, the condition is symmetric as well. To see this, note that if M is bordant
to N, then there exists the data (X, p, i0, i1) of a bordism from M to N. This equivalently
defines the notion of a bordism from N to M by interchanging the roles of i0 and i1 and
composing p with the automorphism of {0, 1} switching 0 and 1.

Figure 2. The picture on the left depicts the bordism giving reflexivity,
and the one on the right depicts the symmetric property of the bordant
relation.
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The final condition of associativity is slightly more technical to verify. Suppose that M
is bordant N via a bordism (X, px, i0,x, i1,x) and N is bordant to K via a bordism (Y, py, i0,y, i1,y).
The goal is then to construct a bordism from M to K. Roughly, the idea is to glue the two
bordisms, X and Y , along the component of the boundaries of X and Y diffeomorphic to N.

Figure 3. A depiction of the gluing giving transitivity. The intermediate
manifolds will always be depicted in purple.

First take N × (−1, 1) and glue this to X via the diffeomorphism data from the bor-
dism, and likewise glue this to Y . The conditions for this to be locally euclidean can then
be checked locally on either X, Y , or N × (−1, 1). The conditions of Hausdorff, second
countable, and compact also easily follow. □

Thus, it follows naturally that the set of equivalence classes of n-dimensional closed
manifolds under bordisms from a set, called Ωn. In a way these equivalence classes can be
viewed as containing all the possible topologies reachable from the evolution of a specific
space. As such, each equivalence class represents different sectors of a theory inaccessible
to each other. It will turn out that this set naturally carries the structure of a group. Note that
disjoint union of manifolds gives a natural way to get a new closed n-dimensional manifold
from two old ones. Additionally, this operation is well-defined on bordism classes, by
taking the disjoint union of the manifolds defining the bordisms. This operation can be
seen as taking two different systems or spaces and allowing them to interact.

Theorem 2.3. The operation of disjoint union ⊔ endows the set Ωn with the structure of
a group where the inverse of a manifold is itself, and unit ∅ the empty set viewed as an
n-dimensional manifold.

Proof. First note that given any closed n-dimensional manifold M, it follows that M ⊔ ∅ =
M, and so ∅ is a unit on this set. Now to see that M ⊔ M is null-bordant, i.e. bordant to
the empty set, take the cylinder M × I. The function p in the definition of the bordism then
just maps the entire boundary to 0, and the boundary is then isomorphism to M ⊔ M. □

These groups can be easily computed in low dimensions. The zero dimensional case
gives Ω0 = Z/2 with the only non-trivial bordism class being a point. Two points are
then null-bordant, or bordant to the empty set, via an arc as shown in figure 2.1. This is
reminiscent of physics where particles must be created or annihilated in pairs.
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Figure 4. A depiction of the arcs that annihilate and create pairs of points.

The one dimensional case gives Ω1 = 0 as the circle is the only connected closed 1-
manifold and it is null-bordant via a disk. The two dimensional case gives Ω2 = Z/2
with generator RP2 as it does not bound a compact 3-manifold. For a proof of this see
proposition 1.32 in [5].

2.2. G-Tangential Structures and Bordisms. The above discussion is more specifically
called unoriented bordism and the unoriented bordism group. By modifying this dimension
to include different tangential structure allows for a much richer theory. In order to define
a tangential structure, recall that the classifying space BO(n) classifies n-dimensional vec-
tor spaces. There is a universal vector bundle V B EO(n) ×On R

n where EO(n) is the
contractible space such that BO(n) is the quotient of this space by O(n). Given any n-
dimensional vector bundle V over M, there is a map f : M → BO(n) such that V ≃ f ∗V.
Additionally, given any map of groups G → O(n), this induces a map BG → BO(n). This
then gives the technology to define a G-tangential structure on a manifold M.

Definition 2.4. Let M be an n-dimensional manifold, and let t : M → BO(n) be a map such
that t∗V ≃ TM. Additionally, let G → O(n) be a group homorphism, and BG → BO(n)
be the associated map of classifying spaces. A G-tangential structure on M is then a map
f : M → BG such that the following diagram commutes.

BG

M BO(n)

f

t

Example 2.5. (1) Take G to be SO(n), and the map SO(n) → O(n) to be the natural
inclusion. The notion of G-tangential structure in this case reduces to an orien-
tation of the manifold. This follows as BSO(n) classifies oriented n-dimensional
vector bundles.

(2) Take G to be the trivial group {∗}, and the map G → O(n) is the unique one.
In this case the tangential structure is called a framing of the manifold, and it is
an isomorphism of TM with the trivial vector bundle Rn × M. This follows as
pulling back the universal bundleV to the space B{∗} = {∗}, gives Rn, which then
pulls back to the constant bundle along a map M → {∗}. This pullback must be
isomorphic to t∗V = TM if the diagram commutes.

(3) For a third example, take G = Spin(n) to be the spin group, and the map Spin(n)→
O(n) the natural map. In this case a G-tangential structure is a spin structure on
the manifold.

The first two of the above examples will be the most relevant throughout the rest of this
paper. The definition of a bordism can now be modified to the case where all the manifolds
involved have some G-tangential structure, but first it is necessary to know how to restrict
and compare G-tangential structures on open submanifolds.
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Definition 2.6. Let M be an n-dimensional manifold with G-tangential structure f : M →
BG, and ι : U ↪→ M an open submanifold of M. Then the restriction of the G-tangential
structure to U is the composition f ◦ ι : U → BG.

Remark 2.2. Note that in this case ι∗(T M) ≃ TU, so that if t : M → BO(n) classifies the
tangent bundle of M, then t◦ ι classifies that of U. This means that the map in the definition
above does indeed give a G-tangential structure.

Definition 2.7. A G-bordism between two closed n − 1 dimensional manifolds M and N
with G-tangential structures on their product with the intervals is the same data (X, p, i0, i1)
as for a regular bordism given in definition 2.1. The only difference now is that the n-
dimensional manifold is now required to carry a G-tangential structure such that it restricts
to the induced G-tangential structures on the images of i0 and i1.

This definition will again lead to an equivalence relation by a similar argument as given
for the unoriented case. It is also a fact that the equivalence classes will form a group un-
der disjoint union, but the inverse of a manifold with G-tangential structure (M, f ), might
correspond to a M with a different G-tangential structure on M× I. For example, in the ori-
ented case, the inverse will be the manifold with opposite orientation. The corresponding
group is denoted by ΩG

n .

Remark 2.3. There exists a more general notion of a bordism that can be found in [13].
This notion is useful in sketching the proof of a theorem in the paper, but the most important
examples of bordisms are those arising from tangential structures.

There is another way of approaching extra structures on bordism groups, especially
relevant to the ideas of physics, as this approach can also be used in the construction of
geometric ideas of bordism. This approach defines fields, F , on n-dimensional manifolds
to be sheafs

F : Mann → sSet
from the category of n-dimensional manifolds with morphisms local diffeomorphisms to
that of simplicial sets. The theory of bordisms can be defined in relation to any such sheaf.
A topological theory of bordisms arises when these fields are actually locally constant
sheaves. For more details see [11] and [8].

The rest of this section will be focused on working out some details in the oriented and
framed cases.

To do so, first note that a G-tangential structure on M× I can be simplified to come from
something intrinsic to M in both of these cases. In the framed case, this is an isomorphism
TM ⊕R ≃ Rn, which is also called an n-framing of M. This follows by tracing through the
definitions and using the fact that fiber-wise the tangent bundle of a product is the direct
sum of the tangent spaces of the factors along with the fact that I has no non-trivial vector
bundles. The oriented case corresponds to choosing an orientation on the manifold M.
This is a lot a less transparent than in the framed case and so deserves more details as to
how this works.

Recall that given a submanifold N of another manifold M, there exists a short exact
sequence of vector bundles over N.

0→ T N → T M|N → ν→ 0
Here ν denotes the normal bundle to the submanifold N. From this it follows that

choosing an orientation on any two of these bundles will determine an orientation on the
third. There is already an orientation on T M|N coming from the orientation on M, so that
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giving an orientation of the normal bundle ν is then enough to specific an orientation on
T N and hence on the manifold N.

Here the relevant case arises from considering M × [0, 1) or M × (0, 1] for some n − 1
dimensional manifold M. In this case, M has codimension 1 and so orienting the normal
bundle amounts to choosing a direction in the interval. A natural choice is to choose
the direction from 0 to 1, or the direction of ”time”. Note that the typical orientation on
the incoming boundary as the boundary of an oriented manifold would be opposite this
orientation. Some sources will use this convention and then take the opposite orientation
of the incoming manifold when constructing the bordism. See lecture 24 of [7] and lecture
2 of [5] for more details.

Figure 5. A depiction of how the orientation on the bordism and that
coming from the ”time” induce an orientation on the boundary mani-
folds. The induced orientation on the circles is depicted as a direction on
them.

As an example of how this changes the theory, the oriented bordism groups can be de-
fined by taking equivalence classes of oriented manifolds under oriented bordism. These
groups are then different from the unoriented bordism groups. In dimension 0, ΩSO

0 = Z
where each class is determined by the number of positive points minus the number of neg-
ative points. The arcs that killed off pairs of points in the unoriented case can only annihi-
late or create two points if one is positive and one is negative. In the one-dimensional case
ΩSO

1 = 0 is unchanged as the circle and the disk are both oriented, and in two dimensions,
ΩSO

2 = 0 now since RP2 is not orientable.

3. Topological Field Theories

In subsection 3.1, the notion of a topological field theory is introduced. First, the bor-
dism group must be enhanced to a symmetric monoidal category of bordisms. See appen-
dix A for a review of the theory of symmetric monoidal categories. In this way, not just the
possible sectors of the theory are being remembered, but the different ways spaces within a
sector can deform into one another. It is then possible to define a topological field theory as
a symmetric monoidal functor out of this bordism category. This subsection then ends with
a brief explanation of the data contained in an oriented 1-D topological field theory. The
theory in this dimension is sometimes referred to as topological quantum mechanics. The
next subsection 3.2 contains the case of an oriented 2-D topological field theory, where it
is shown how the theory then gives a vector space attached to the circle the structure of a
commutative Frobenius algebra. Finally, in subsection 3.2 the action of the mapping class
group on the vector spaces in the theory is introduced.
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3.1. The Definition of a Topological Field Theory. There is a categorified version of the
bordism group Ωn. This follows a general pattern in mathematics where instead of just
viewing equivalence classes of objects, one keeps all of the objects and remembers how
they are equivalent. This leads to the following definition of the bordism category.

Definition 3.1. The category BordG
⟨n−1,n⟩ is defined to have objects closed n − 1 manifolds

M with a G-tangential structure on M × (−1, 1), and morphisms diffeomorphism classes
of bordisms with G-tangential structure between them. The operation of disjoint union of
manifolds gives this category the structure of symmetric monoidal category.

This category roughly remembers the different configurations of space and how they
can evolve. In a field theory, attached to every space should be some vector space of states
on the space. This leads to the concept of a topological field theory, which is a functor out
of this category.

Definition 3.2. A (non-extended) topological field theory is a symmetric monoidal func-
tor F : BordG

⟨n−1,n⟩ → VectC. More generally VectC can be replaced by any symmetric
monoidal category.

Remark 3.1. Note that a closed n-manifold in such a theory is assigned a linear map from
C to C, as C is the unit of the monoidal category Vect. Such a map is determined by a
complex number. Thus, it can be said that a topological field theory is a tool that assigns
numbers to closed n-manifolds and vector spaces to closed n − 1 manifolds in some way
that respects gluing and locality. This idea can be extended further down in dimension with
the notion of an extended theory. The rough idea is that each level down, the categorical
level of the invariants increases.

Remark 3.2. Other common choices for the symmetric monoidal category could include
ModR, the category of modules over a commutative ring R or Ch(R), the (possibly derived)
category of chain complexes of R-modules. A common choice in relation to physics would
be the category sVectC of super, i.e. Z/2-graded vector spaces.

The bordism category has very nice properties as a symmetric monoidal category. Every
single one of its object satisfies some sort of finiteness condition called dualizability. See
section 7.2 for the definitions and some basic results.

Theorem 3.3. Every object of BordSO
⟨n−1,n⟩ is dualizable, with the dual of a manifold M

being M, or M̄ in the oriented bordism category.

Proof. The pictures in the following proof will be done completely in the 1D case, where
the object is the point. The general case can be seen by taking the cartesian product of all
the pictures to follows with an arbitrary closed n − 1 dimensional manifold.

Working in the oriented case, the dual to a manifold M is the manifold with reversed
orientation M̄. The duality data, e : M ⊔ M̄ → ∅ and c : ∅ → M ⊔ M̄ are the bordisms
pictured below.
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Figure 6. A depiction of the two bordisms giving duality for the posi-
tively oriented point.

The underlying manifold in both of these cases is M × I. Now note that the identity
bordism M × I can be decomposed in the following way.

Figure 7. A depiction demonstrating the condition (7.12) for the posi-
tively oriented point

This says that (e ⊔ idM) ◦ (idM ⊔ c) = idM . Taking the same picture with orientations
reversed then gives the other condition for the above maps to be dualization data. Thus, M
is dualizable with dual M. □

Remark 3.3. In general, every object M of BordG
⟨n−1,n⟩ will also be dualizable with dual

the inverse of M in the bordism group ΩG
n−1.

Notation 3.4. From here on out, Bord⟨n−1,n⟩ will denote the oriented theory.

This is important due to the fact that it forces the same constraints on what objects in
the target category can be attached to closed n-manifolds.

Corollary 3.5. Any topological field theory F : Bord⟨n−1,n⟩ → C, where C is a symmetric
monoidal category, factors through the full subcategory of C of dualizable objects denoted
by Cd. In particular, when C = VectC, then it factors through the full subcategory of finite
dimensional vector spaces.

Proof. This follows directly from theorem 3.3 and theorem 7.17 in the appendix. □

Example 3.6. To illustrate some of these ideas, examine the simplest case of an oriented 1-
D topological field theory F : BordS O

1 → VectC. Tracing through the definitions, it follows
that it is equivalent to the data of a assigning a vector space V to the positively oriented
point pt+, and its dual V∗ to the negatively oriented point pt−. There is then a linear map
assigned to the following 2-manifolds with boundary.

Note that by definition it must assign the first one to the identity map on V . The next two
are assigned to the coevaluation and evaluation maps of the duality data by theorem 3.3 and
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corollary 3.5. Finally, the circle is assigned the dimension of V . This is a demonstration
of why the objects have to be dualizable in general. The dimension is only a well-defined
number if V is finite dimensional. In general, the dimension of an object in a symmetric
monoidal category can only be defined if the object is dualizable.

Remark 3.4. In general, in any n-dimensional theory with values in Vectk, there is a man-
ifold assigned to any closed n − 1 dimensional manifold M a vector space V , and assigns
the number dim V to S 1 × M.

Even more generally, if the field theory has targets in a symmetric monoidal category,
C, and some closed n − 1 manifold M maps to an object C, then M × S 1 maps to dim(C).
See 7.15 for the definition of dimension in a dualizable category.

From the above example, it follows that the only data that was put into the 1-D field
theory was that of a vector space, and from here all of the data was uniquely determined.
In fact, given any finite dimensional vector space such a theory can be constructed. This
leads to a classifcation of 1-D oriented field theories.

Theorem 3.7. There is an equivalence of categories between the category of 1-D topolog-
ical field theories and Vectf.d.C , the category of finite dimensional vector spaces.

Actually proving this statement fully rigorously uses Morse-theoretic arguments. The
idea is to decompose every bordism into a collection of simple bordisms using Morse the-
ory, and then enforcing any conditions that arise from the ambiguity in this decomposition.
This is roughly the pattern that other classifications of topological field theories are proved
as well.

In the unoriented case, there is no distinction between the positively and negatively
oriented points. Thus, it follows that V is self-dual since the point is now self-dual. This
data amounts to an identification φ : V

≃
−→ V∗ or equivalently a non-degenerate bilinear

form on V . This leads to the following classification.

Theorem 3.8. There is an equivalence between 1-D unoriented topological field theories
and finite dimensional vector spaces V equipped with a non-degenerate bilinear form.

Note that in this case there is no separate theory of framed bordisms to consider as
oriented and framed manifolds are the same in 0 and 1 dimensions.

3.2. 2-Dimensional Field Theories. In this subsection, the structure of a 2-D topological
field theory will be studied in order to see what type of data it forces onto the vector space
assigned to S 1. Note that S 1 is the only connected, closed 1-dimensional manifold, and so
it suffices to specify the vector space that the theory assigns to S 1. It will be seen that the
different 2-manifolds with boundary manage to give some algebraic structure to this vector
space. To start, first examine the pair of pants as shown below, or its equivalent formulation
as a bordism embedded in the plane.
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Figure 8. A depiction of the pair of pants giving the multiplication and
the bordism viewed within the plane.

This is a bordism from S 1 ⊔ S 1 to S 1 and so it becomes a linear map of the form m :
A⊗A→ A. This is the exact type of map that would be used to define a multiplication on a
vector space in order to turn it into an algebra. Indeed, the map has even been suggestively
labelled m for multiplication. There are a number of nice properties that one would expect
such a map to satisfy, such as associativity. This property can be visually seen to hold.

Figure 9. A depiction of the diffeomorphism of bordisms that demon-
strates associativity of the multiplication.

In this picture, the two bordisms corresponding to m ◦ (m ⊗ id) and m ◦ (id ⊗ m) are
seen to be diffeomorphic. This means that they are both in fact the same morphism in the
bordism category, and so it follows that they are mapped to the same map of vector spaces,
which gives the desired result.
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m ◦ (m ⊗ id) = m ◦ (id ⊗ m)

Therefore, it follows that m is an associative multiplication. An important thing to note
throughout this section is that orientable compact 2 manifolds with boundary are classified
by the number of circles making up the boundary and the genus of the surface. Thus, to
verify that two bordisms are equivalent it suffices to verify that they have the same number
of incoming and outgoing boundary components, and the same genus.

The next question is the existence of a unit for this multiplication. Note that a unit of a
multiplication is an element of the vector space A. Such an element can be represented by
a morphism η : C→ A. Note that such a morphism makes sense as a unit if and only if

m ◦ (η ⊗ id) = m ◦ (η ⊗ id) = m(id ⊗ η).

The claim is that the unit of the multiplication is the disk, or spherical cap, which is a
bordism from ∅ to S 1.

Figure 10. A depiction of the bordism giving the unit of the multiplication.

This bordism then gives the map η : C → A. Indeed the equations from above follow
from the below pictures.

Figure 11. A depiction of the diffeomorphism of bordisms showing that
figure 3.2 is indeed a unit of the multiplication.
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The final condition on such a multiplication that one might want to see is a commuta-
tivity property. To see this, note that there is a second multiplication that can be defined.

Figure 12. A depiction of the bordism giving the second multiplication operation.

In this picture the twist map is not identical to the identity morphism on S 1 ⊔ S 1 since
the diffeomorphisms of bordisms must be trivial on the boundary, and so the circles are
effectively being swapped. This is the map that gives the monoidal category Bord2 a sym-
metric structure. Note that this new multiplication, A ⊗ A → A is a map of algebras under
m and m : A ⊗ A → A is a map of algebras under this map. Therefore, it follows by a
classical argument that these two multiplications are equal and commutative.

Remark 3.5. More exactly, the above says that F (S 1) would now have the structure of an
E2 algebra, i.e. a structure with two compatible multiplications. In this case, this turns out
to be equivalent to a commutative algebra structure via the Eckmann-Hilton argument. In
generalizations of the theory, this no longer holds. Viewing the bordisms in the plane as
disks inside of disks, this gives a picture reminiscent of the little disks operad. In fact, such
picture makes it plausible to see that in higher dimensions S k will inherit the structure of a
Ek+1-algebra.

There is one further piece of information on V given by flipping every picture above.

Figure 13. A depiction of the bordism giving the comultiplication.
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Figure 14. A depiction of the bordism giving the counit of the comultiplication.

The first of these pictures gives a so called comultiplication, µ : A → A ⊗ A. By the
same argument for the associativity of the multiplication, but flipping everything around,
it follows that µ is coassociative.

(µ ⊗ id) ◦ µ = (id ⊗ µ) ◦ µ
The second of these pictures gives a map ε : A → C, which is a counit of comulti-

plication µ. This means that (ϵ ◦ id) ◦ µ = id. This can be seen by flipping around the
picture that was used to find the unit of the multiplication m. Similarly, it follows that µ is
cocommutative, i.e. that the following diagram commutes.

A A ⊗ A

A ⊗ A

µ

µ

τV

This makes V into what is called a cocommutative counital coalgebra as well. Now the
vector space V has two different structures on it, and is natural to wonder if there is any
sort of compatibility between these two different structures. This compatibility arises by
considering the following picture.

Figure 15. A depiction of the diffeomorphism of bordisms giving rise to
the compatability condition between the algebra and coalgebra struc-
tures.
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This picture translates to the following diagram commuting on the algebra side.

A ⊗ A A ⊗ A ⊗ A

A A ⊗ A

m

µ⊗id

id×m

µ

This gives rise to what is called the Frobenius condition

(3.9) m ◦ µ = (µ ⊗ id) ◦ (m ⊗ id)

There is also a second Frobenius condition obtained by flipping things around to arrive
at

(3.10) m ◦ µ = (id ⊗ µ) ◦ (id ⊗ m).

However, since everything in sight is commutative or cocommutative, these two condi-
tions are actually equivalent. This leads to the following definition.

Definition 3.11. An algebra A is a Frobenius algebra if it has the structure of a unital
algebra (m, η) and a cocommutative counital algebra (µ, ε) satisfying (3.9) and (3.10). It is
called a commutative Frobenius algebra if the multiplication m is commutative.

Remark 3.6. There is a useful way to interpret this definition and remember the condi-
tion. The Frobenius condition is equivalent to the requirement that the comultiplication
µ : A ⊗ A → A is a map of A-modules. Therefore, it follows that a Frobenius algebra
can be interpreted as an object having an algebra and coalgebra structure such that the
comultiplication is a map of A-modules.

Note then that the entire analysis above effectively says that a oriented 2D topological
field theory attached a commutative Frobenius algebra to the circle. It turns out that this is
all the data that needs to be provided to determine such a theory.

Theorem 3.12. Any commutative Frobenius algebra A determines an oriented 2D topo-
logical field theory F.

This theorem again uses Morse theoretic arguments to decompose any bordism into fun-
damental bordisms, which in this case would be the bordisms determining the (co)multiplication
and the (co)unit maps. The different conditions on these operations then arising by the am-
biguity that occurs in the decomposition into fundamental bordisms.

Before moving on, there are a couple more pictures that should be noted.
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Figure 16. A depiction of two bordisms giving rise to a non-degenerate
bilinear pairing on A and the dimension of the underlying vector space
of A.

The first of these pictures gives a non-degenerate pairing A⊗A→ A, which is arising by
the standard duality data in the bordism category. This pairing is ε◦m. The second of these
is the torus, which is S 1×S 1, and so the number attached it is the dimC A. Decomposing the
torus as shown in the picture then tells us that dimC A = ε(m(µ(η(1)))). Similar formulas
can be obtained for the higher genus g surfaces by taking the decomposition shown below.

Figure 17. A depiction of how any closed orientable surface can be de-
composed into the pieces described above.

3.3. The Mapping Class Group. Note that in the above subsection working through the
data present in an oriented 2-D topological field theory, there was never a distinction given
between the two different orientations on the circle. This follows from the fact that there
are bordisms from a manifold M to itself for every diffeomorphism of the manifold. In
fact, it will turn out that M possesses an action of its mapping class group

MCG(M) B π0Diff(M)

where Diff is the space of diffeomorphisms of M to itself.
Throughout this argument, for ease of notation, the definition of bordism will be altered

by only requiring the maps i0 and i1 in definition 2.1 to be diffeomorphisms of M with
p−1(0) and N with p−1(1). This gives a slightly different definition than the original one.
However, the definitions give rise to the same bordism categories, as it does not change
the diffeomorphism classes. This is basically a result of the fact that their always exist a
collar neighborhood of the boundary, and that they are all diffeomorphic. Nevertheless, the
arguments given in this section can be modified to use definition 2.1.

To see the bordism associated to a diffeomorphism φ : M → M, take the cylinder M× I.
The data of a bordism effectively contained the information of identifications of M with the
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boundary of the cylinder. In particular, take i0 that glues by the identity, and i1 that glues
by φ. Denote this bordism by Cφ The fact that this action factors through the mapping class
group then follows from the following theorem.

Theorem 3.13. The bordism Cφ is diffeomorphic as a bordism to Cφ′ if φ is homotopic to
φ′.

Proof. Note that if φ is smoothly homotopic to φ′, then it follows that there is a map
F : M× I → M such that F(m, 0) = φ(m) and F(m, 1) = φ′(m). In particular, this gives rise
to a homotopy G : M × I → M from idM to φ′ ◦ φ−1 by G(m, t) = F(φ−1(m), t). From this
it is now easy to construct a diffeomorphism of the cylinder G′ : M × I → M × I defined
by G′(m, t) = (G(m), t). It only remains to check that this morphism commutes with the
diffeomorphisms on the boundaries. This easily follows on the left boundary as everything
is the identity. It also follows by construction on the right boundary as the commutative
diagram is now

M

M M

φ′φ

φ′◦φ−1

.

Thus, it follows that any homotopic diffeomorphisms give rise to diffeomorphic bor-
disms.

Now suppose that there is a diffeomorphism of bordisms G′ : Cφ → C′φ. □

The big idea in relation to the 2D oriented case is that there is an orientation reversing
diffeomorphism of the circle. This results in a bordism from one orientation of a circle
to the other, and hence an identification of the circle with its dual. Therefore, there is no
reason to keep track of the orientation of the circle. This identification of the Frobenius
algebra with its dual can be seen to come from the perfect pairing ϵ ◦ m : V ⊗ V → C. It
actually turns out that this pairing, and consquently the map ϵ often called the trace pairing
is enough to give the structure of the frobenius algebra. See section 3.8 of [16] for a proof
of this fact.

Remark 3.7. The above theory is still an oriented theory as its values on unoriented man-
ifolds, such as the Möbius band and real projective space, were not specified.

In a general oriented theory of arbitrary dimension, the two possible orientations of
a manifold only need to be distinguished if that manifold does not possess an orientation
reversing diffeomorphism. The circle possesses such a diffeomorphism given by reflection.
Additionally, an oriented surfaces Σg also possesses such a diffeomorphism given by a
reflection of the fundamental polygon of Σg. Thus, orientations can be safely ignored in a
2D oriented theory. However, in dimension 1, the only diffeomorphism of a point is the
identity, and thus has no orientation reversing diffeomorphism. This resulted in the fact that
the positively and negatively oriented points had different vector spaces attached to them.
Examples of manifolds without orientation reversing diffeomorphisms also exist in higher
dimensions, and so orientations are important in higher dimensional oriented theories as
well.

Another consequence of theorem 3.13 is that is that it means topological field theories
give representations of the mapping class group of manifolds. In the oriented case, it
actually gives a representation of only the orientation preserving diffeomorphisms. In the
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case of the circle, MCG(S 1) ≃ Z/2, and so this data is exactly the identification with the
dual, and there is no non-trivial action on the vector space assigned to S 1.

4. 2D Finite Gauge Theory

The above describes all the possible 2D and 1D oriented topological field theories.
There are links between topological field theories and representation theory that lie within
a special class of theories. Given any finite group G, there is a procedure that attaches
to this group a topological field theory of any dimension called finite gauge theory. This
procedure makes use of an important concept in the construction of field theories called the
category of correspondences as will be described in section 4.1. In this section, a functor
Sum⟨n−1,n⟩ from the category of correspondences to that of vector spaces will be described.
Then, in section 4.2 a functor from Bordn to this category of correspondences will be con-
structed by passing through the groupoid of principal G-bundles on a space X BunG(X).
Together, these two functors give the construction of finite gauge theory. Diagrammati-
cally, this process looks like

Bord⟨n−1,n⟩ Corr VectC
BunG

F

Sum⟨n−1,n⟩

In 2D, this reproduces the topological field theory attached to a Frobenius algebra struc-
ture on the center of the group algebra of G. Some of these details will be discussed in
section 4.3. It turns out that in some ways the information contained in this field theory is
that contained in the finite dimensional representation theory of G. This is reflected more
clearly when the extended 2D finite gauge theory is considered in section 6, where the the-
ory assigns the group algebra of G to a point. The ideas of this section and generalizations
of them can be found in [9].

4.1. The Category of Correspondences. In this section, the notion of correspondences
of groupoids will be introduced. This category will serve as an intermediary in the con-
struction of finite gauge theory. The relevant functor Sum⟨n−1,n⟩ out of the category of
correspondences will also be introduced. In order to develop these notions, some prelimi-
naries on groupoids are needed first.

Definition 4.1. LetG be a groupoid. Let π0(G) by the set of isomorphism classes of objects
of G. Given an object g ∈ G, let π1(G, g) denote the set of isomorphisms of g.

Definition 4.2. A groupoid G is finite if π0(G) and π1(G, g) for every g ∈ G are a finite
sets.

It is now time to introduce the category of correspondences that will play a key role for
the remained of this section.

Definition 4.3. The category Corr of correspondences has as objects finite groupoids. Mor-
phisms from a groupoid G toH are another groupoidK along with maps fromK to G and
H . This data is called a correspondence between G and H , and is often depicted by a
diagram of the form

K

G H
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The correspondences compose via pullback, i.e via the diagram

K

H H ′

G G′ G′′

where the top square is a pullback square.

This category is endowed the structure of a symmetric monoidal category via the normal
product of groupoids. Therefore, it is possible to define a topological field theory that has
target Corr according to defintion 3.2. A natural question to ask at this point is what the
dualizable objects in this symmetric monoidal category are as any topological field theory
factors through the full subcategory of dualizable objects. It turns out that this actually
provides no condition.

Theorem 4.4. Every object of Corr is dualizable.

Proof. Given a groupoid, G, then it has dual itself, with coevaluation map

G

∗ G × G

∆

where ∗ is the groupoid with one element and just the identity morphism. The evaluation
map is the same diagram but mirrored. The two conditions then boil down to one, which
amounts to checking that

(G × G) ×G×G×G (G × G) ≃ G.

This condition would be very straightforward to check if these were set valued correspon-
dences, or in general valued in any category with finite products. It is a little trickier to
check in this case. The first is the groupoid of quadruples of elements of G with compat-
ible pairwise isomorphisms between them. It can be checked that the functor that sends
every quadruple to the first element is an equivalence of categories. □

The idea here though is not to end up with a field theory valued in this category, but
instead use it as an intermediate step in order to define the desired field theory valued in
VectC. The rest of this subsection will be devoted to explaining the construction of the
functor Sum⟨n−1,n⟩ out of this category into VectC to this end.

The map on objects sends a groupoid G to the vector space Fun(G,C), where C is
viewed as a discrete category. This has a much more concrete description which makes the
vector space structure easier to see. Note that functors from G into any discrete category
will factor through π0(G) viewed as a discrete category. Therefore, this functor category is
actually just the set of maps Map(π0(G),C). This set carries a natural vector space structure
induced pointwise by that on C.
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Now it is necessary to give a map of vector spaces from a correspondence of groupoids.

(4.5)

K

G H

gf

This will be done in two distinct steps, in a pull-push procedure. The first step, pulling
back along the map f is rather simple. The basic idea is that given a map φ : π0(G) → C,
then the functor f : K → G induces a map f0 : π0(K) → π0(G). The pullback along f is
then defined by precomposition with f0.

f ∗φ = φ ◦ f0

The second map, the pushforward along g is not as transparent to define. Given a map
ψ : π0(K) → C, the idea of the pushforward is to sum along the fibers of the map g. To
formalize this idea, the fiber of a functor between groupoids has to be defined.

Definition 4.6. Take a map of groupoids g : K → H , and an element h ∈ H . This
determines a map h : ∗ → H that sends the unique object of ∗ to h. The fiber groupoid of
the map g over h is defined to be the fiber product of ∗ and K overH with respect to these
maps. In other words, the following diagram is cartesian.

g−1(h) K

∗ H

g

h

Unwinding this definition, g−1(h) has objects (k, φ) where k is an object of K and φ is
an isomorphism g(k) ≃ h. A morphism between two objects (k, φ) and (k′, φ′) is a map
ψ : k → k′ such that φ′ ◦ g(ψ) = φ. There is then a functor F : g−1(h) → K given by
forgetting the isomorphism.

It is now possible to give the formula for the pushforward of ψ along g. Let h be an
element of K . In the following formula, the isomorphism has been suppressed for ease of
notation.

g∗ψ(h) =
∑

k∈π0(g−1(h))

1∣∣∣π1(g−1(h), k))
∣∣∣ψ(k)

This is almost just summing over the values of ψ along the fiber, but there is this strange
factor which is division by the automorphisms of the objects in the fiber. With these maps
now in hand, it is possible to give the definition of the desired functor from correspondences
to vector spaces.

Definition 4.7. The functor Sum⟨n−1,n⟩ : Corr → VectC is defined by sending a finite
groupoid G to Map(π0(G,C). It sends a correspondence (4.5) to the map g∗ ◦ f ∗ on vector
spaces.
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4.2. Principal G-Bundles. In this section, the map BunG from the bordism category to the
category of correspondences described in the introduction is constructed. The key object
in this construction is the groupoid BunG(X) of principal G-bundles over X, where G is a
finite group.

Definition 4.8. A principal G-bundle over a manifold X is a covering space π : P → X
with an action of G on P by deck transformations such that the action restricted to any fiber
is simply transitive.

Definition 4.9. Given a manifold X, there is a groupoid BunG(X), whose objects are the
principal G-bundles over X and morphisms are bundle isomorphisms.

This object can be worked with geometrically by thinking of normal covering spaces
of a manifold X. However, there are more algebraic ways of thinking of this groupoid as
well. The algebraic description is arises from the idea of monodromy, i.e. by considering
the action of the group on a fiber induced by going around a non-trivial loop.

Theorem 4.10. Let X be a connected manifold. Then there is an equivalence between
isomorphisms classes of G-principal bundles on X and group homomorphisms π1(X, x0)→
G up to conjugation.

Proof. The fundamental group, π1(X, x0) acts by deck transformations on X and so in par-
ticular has an induced action on the fiber over x0 which is a G-torsor. Choosing a point
in this fiber x̃0, there is a unique element g ∈ G such that any other point in the fiber is
g · x̃0. Thus, this gives a group homomorphism π1(X, x0) → G, which sends an element
γ ∈ π1(X, x0) to the unique element of G such that g · x̃0 = γ · x̃0. □

This map can be extended to an equivalence of groupoids and the case when X is not
connected by associating a groupoid to X enhancing the fundamental group. This is a
classical object, called the fundamental groupoid, as can be found in [15].

Definition 4.11. Let X be a topological space. The fundamental groupoid of X Π≤1X has
objects the points of X, and morphisms between x, y ∈ X are homotopy classes of maps
from x to y.

Remark 4.1. By choosing basepoints, xi in each path component of X, this groupoid is
equivalent to the groupoid ⊔Bπ1(X, xi) where BG in this case refers to the groupoid with
one element and morphisms given by elements of G. This is called the classifying groupoid
of G.

This description makes it easier to algebraically compute the groupoid associated to a
manifold.

Example 4.12. (1) By noting that a point ∗ has trivial fundamental group so that any
map π1(∗, ∗) = {1} → G is trivial. As conjugating by an arbitrary element of G
gives an automorphism of this map, it follows that BunG(∗) ≃ ∗/G = BG. This
can also be seen by noting that principal G bundles on ∗ are G-torsors, and this
category is known to be BG. See for example [15].

(2) Similarly, the closed interval I and any contractible space, X, for that matter will
have BunG(X) = ∗/G. This follows as this object is invariant under homotopy
since Π≤1X is a homotopy invariant of the manifold.

(3) For a circle, π1(S 1, ∗) = Z, and maps Z → G in bijection with elements of G
by looking at the image of 1 ∈ Z under such a map. Under this bijection, the G
action on the maps corresponds to the normal conjugation action of G on itself.
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Thus BunG ≃ G/G, where this is the groupoid quotient of G acting on itself by
conjugation. The objects are the elements of G, and the morphisms between g, h ∈
G are the set of k ∈ G such that kgk−1 = h.

(4) In the case of the pair of pants P, BunG(P) = G/G × G/G. This follows as
π1(P, ∗) = Z ∗ Z.

This construction provides a symmetric monoidal functor BunG : Bordn → Corr. Com-
bining this functor with the functor Sum⟨n−1,n⟩ from definition 4.7, then gives the con-
struction of a topological field theory valued in VectC. This theory is n-dimensional (non-
extended) finite gauge theory.

4.3. Construction of Finite Gauge Theory in Low Dimensions. In this section, the 1D
and 2D finite gauge theories will be constructed. The examples given at the end of the last
section provide the computations of all the relevant groupoids of principal G-structures for
this purpose.

The 1D case is rather trivial. Note that this theory is determined by its value on the
point, which is Map(∗/G → C) ≃ C. The value assigned to the circle would then be 1.
This can be confirmed by direction computation through the functors constructed above.

The 2D case is more interesting, being effectively equivalent to the finite dimensional
representation theory of the group G. Note that the vector space assigned to the circle S 1

is Map(G/G,C) = Map(G,C)G, which is the functions on G invariant under conjugation.
This is the class functions, which can be viewed as the center of the group algebra Z(C[G]).
This space carries a natural algebra structure and a trace map that sends a function to its
value on the identity of G divided by |G|. This is exactly the data necessary to construct a
2D topological field theory. It turns out that in going through the construction given above
produces the same field theory as that given by this commutative Frobenius algebra. The
most convenient basis to work with in describing the algebra and coalgebra maps explicitly
is the characters χρ of irreducible representations ρ. The algebra and coalgebra structure
in this basis become

(4.13) η(1) =
1
|G|

∑
ρ

dim ρχρ

(4.14) m(χρ, χψ) = δρ,ψ
|G|
d
χρ

(4.15) ε(χρ) =
1
|G|

χρ(e) =
dimρ
|G|

(4.16) µ(χρ) =
|G|

dimρ
(χρ, χρ)

As an example of how the machinery developed in this section works, the counit (4.15)
will be worked out. The counit arises from the disk viewed as a bordism from S 1 to the
empty set. The correspondence of groupoids then becomes
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(4.17)

BunG(D1) ≃ ∗/G

BunG(S 1) ≃ G/G BunG(∅) ≃ ∗

vu

The map u is the map restricting a principal G-bundle G on the disk to the boundary.
This is the inclusion which sends ∗/G to the copy of ∗/G in G/G with single object the
identity e ∈ G. The other map v sends the unique object to the unique object and every
morphism to the identity. Taking the space of maps attached to each of the objects leads to
the following situation.

Map(G,C)G C C
u∗ v∗

In computing the map v∗, note that the fiber of the map v over ∗ is just ∗/G since there
are no non-identity morphisms in the category ∗. The map v∗ is then very easily computed
to be multiplication by 1/|G|. For the map u∗ note that u just maps ∗ in ∗/G to the object
e ∈ G/G. Thus, it follows that u∗χ = χ(e) for χ ∈ Map(G,C)G. Putting these two maps
together then gives (4.15).

This data can then be used to compute the number attached to any genus g surface Σg

by making use of a nice decomposition of the space. This is the same decomposition as
shown in figure 3.2.

This gives a composition of the maps given above, and it turns out that

(4.18) F (Σg) =
∑
ρ

(
|G|

dim ρ

)2g−2

Using the machinery given above gives another way to arrive at the value F (Σg). To see
this note that given a closed surface viewed as a bordism, the correspondence associated to
it is

BunG(Σg)

∗ ∗

Running through the summation functor on this gives∑
P∈π0(BunG(Σg))

1
|π1(BunG,P|

Note that this value can be computed by using the equivalence
BunG(Σg) ≃ Fun(Bπ1(Σg), BG). Therefore, it follows that this value is

|Hom(π1(Σg),G)|
|G|

However, note that π1(Σg) = ⟨x1, ..., xg, y1, ..., yg | [x1, y1]...[xg, yg] = 1⟩. Using the
universal properties of generators and relations, it then follows that

Hom(π1(Σg,G)) = {(a1, ..., ag, b1, ..., bg) ∈ G2g | [a1, b1]...[ag, bg] = 1}.
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Combining this with the other computation of F in (4.18) then gives the following
formula about elements of the group

(4.19) {(a1, ..., ag, b1, ..., bg) ∈ G2g | [a1, b1]...[ag, bg] = 1} =
∑
ρ

|G|2g−1

(dim ρ)2g−2

This formula was known classically by Frobenius by algebraic means, but the machin-
ery of topological field theories and finite gauge theory developed here are able to repro-
duce this result as well using only the computation of the Frobenius algebra structure using
the summation functor.

5. Extended Field Theories and the Cobordism Hypothesis

In this section, a generalization of the the idea of a topological field theory is introduced,
which possesses a powerful classification result called the cobordism hypothesis. The more
general higher bordism category Bordn is introduced in 5.1. Some technical details needed
concerning dualizability in higher categories is then discussed briefly in 5.2. Finally, the
cobordism hypothesis is stated in 5.3. A discussion of these concepts and a sketch of the
proof can be found in [13]. Another leisurely discussion of these ideas can be found in [6],
and it also discussed in the later lectures in [19].

5.1. Definition of a Fully Extended Topological Field Theory. Recall from section 3
that the entire data of a 1D topological field theory was determined by what it assigned to a
point. In the two dimensional case, there was data beyond just the object that was attached
to the circle to determine a 2D topological field theory, but it was still simple to decom-
pose an arbitrary surface into pieces to compute the value of the theory on an arbitrary
manifold. In higher dimensions, it is difficult to decompose manifolds into simpler pieces
using codimension one manifolds. Additionally, there are more closed n − 1 dimensional
manifolds in the picture whose values need to be specified in the theory, frustrating classi-
fication attempts. If instead, manifolds were allowed to be decomposed along codimension
submanifolds, the classification would become simpler. Effectively, since all manifolds are
locally a disk, the hope would be that the entire theory could be computed from its value
on a point. Such a theory must then allow bordisms between bordisms and manifolds with
corners into the theory. The cobordism hypothesis says that it indeed happens that the
theory is completely determined by its value on the point like the 1D case.

In order to accomplish this, we will need to construct a replacement for the category
Bord⟨n−1,n⟩. As stated, we now need to include bordisms between bordisms, and so the
morphisms in our category will now have morphisms and these morphisms will have mor-
phisms and so on. This means that the replacement for Bord⟨n−1,n⟩ will be an n-category.

Definition 5.1. The n-category Bordn is defined to have as objects closed 0 manifolds.
Its 1-morphisms are bordisms between closed 0-manifolds. Its 2-morphisms are bor-
disms between these bordisms, which are now bordisms between the 1-manifolds giving
1-morphisms. These are now manifolds with corners. This goes all the way up to n-
morphisms which are now diffeomorphisms classes of bordisms between n−1 morphisms,
which are now manifolds with higher dimensional corners.

Remark 5.1. The theory of n-categories is a difficult subject to develop and there are
no well studied formulations of this theory. Throughout this paper, to the extent that the
subject will be used, it suffices to understand the basic idea. They will treated naively
throughout the paper. The only higher category that will show up explicitly is a 2-category
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in 6.1. The case of 2-categories has been worked out a lot more in detail. For example,
details on 2-categories and symmetric monoidal 2-categories can be found in [16]. A more
thorough discussion of the ideas of n-categories can be found in [2]. The primary reference
for the cobordism hypothesis [13] deals with an infinity categorical generalization of n-
categories very briefly.

Now with this definition of bordism category in hand, it is possible to define a fully
extended topological field theory.

Definition 5.2. A fully extended n-dimensional topological field theory is a symmetric
monoidal functor of n-categories, F : Bordn → C where C is a symmetric monoidal
n-category.

This idea an extension of the original definition of a topological field theory, as it con-
tains the information of a normal non-extended n-dimensional topological field theory by
only considering closed n−1 dimensional manifolds and bordisms between them. In order
to be more explicit, more notation must be developed first that will be helpful throughout
what follows.

Note that the empty set ∅ is mapped to the tensor unit 1C of C when it is viewed as
a closed 0-manifold. This implies that any closed 1 dimensional manifold is mapped to
Hom(1C, 1C) as this is a bordism from ∅ to ∅ viewed as a 0-manifold. There is a variation
of the above definition that starts from closed 1-manifolds and gives a n − 1 category. The
above is saying that a fully extended n-dimensional field theory with target C contains such
a modified theory with target Hom(1C, 1C). The empty set viewed as a closed 1 manifold
then maps to the tensor unit of this n − 1 symmetric monoidal category. This process can
be carried out inductively, leading to the following definition.

Definition 5.3. Let C be a symmetric monoidal n-category. Then ΩC B Hom(1C, 1C)
where 1C is the unit of the tensor product on C. This is symmetric monoidal n−1 category.
We can then inductively define ΩkC = Ω(Ωk−1)C. This is called the kth loop space of C.

In particular, ΩkBordn gives a variation of the category from definition 5.2 starting from
closed k-manifolds that is now a (n − k)-category. In particular, Ωn−1Bordn is the old
bordism category from definition 2.1, and as stated above contains the closed (n − 1)-
manifolds and bordisms between them. This non-extended topological field theory now
has targetΩn−1C. In the case of a non-extended topological field theory, the target category
was often assumed to be VectC. Ideally, we would then require that the target category C
in a fully extended topological field theory satisfies Ωn−1C ≃ VectC. An example of such a
category for n = 2 will given in the next section. Some discussion of categories for higher
n appears in [9].

Remark 5.2. The rough idea that a non-extended topological field theory is a tool for at-
taching numbers to closed n-manifolds and vector spaces to closed n−1 manifolds in a way
that behaves nicely under gluing can now be extended. Roughly, an extended topological
field theory is a tool that attaches n-categorical data to a point, n − 1 categorical data to a
closed 1-manifold, and so on with numbers being attached to closed n-manifolds.

5.2. Higher Duality Data. Before giving the statement of the cobordism hypothesis, one
more detail needs to be discussed. Recall that for a normal non-extended topological field
theory, the theory factored through the full subcategory of dualizable objects of the target
category. In the same vein, any fully extended topological field theory will factor through a
category of fully dualizable objects. See [13] section 2.3 for more information. The correct
idea for dualizability at the level of morphisms is having left and right adjoints.
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Definition 5.4. Let C be a 2-category. Given a pair of 1-morphisms f : A → B and
g : B→ A where A, B ∈ Ob(C), then an adjunction between them is a pair of 2-morphisms
u : idA → g ◦ f and v : f ◦ g→ idB such that the following diagrams commute

f f ◦ g ◦ f fid×u

id

v×id

and
g g ◦ f ◦ g gid×u

id

id×v

.

In this case, f is called a left adjoint to g and g is called a right adjoint f .

There are two things to note about this definition. First, as the name suggests, this
definition is similar to that of adjunct functors. If C is taken to be the 2-category of small
categories then this definition is that of adjoint functors. Second, this data looks similar
to the duality data in a symmetric monoidal category. It turns out that duality data can be
viewed as a special case of this definition as well.

Definition 5.5. Let C be a symmetric monoidal category. Then there exists a 2-category
BC. It has one object, ∗, that has morphisms the category C. Composition of 1-morphisms,
which are objects of C, is the tensor product from C. This is called the classifying category
of C.

Duality data in C is then equivalent to the data of adjoint 1-morphisms in BC. This
makes the notion of adjoint 1-morphisms appear to be a natural extension of the notion
of duality data. We now need to introduce a notion that generalizes that of a symmetric
monoidal category having duals for all of its objects. First, the notion of a category having
adjoints is needed, starting with the case of 2-categories.

Definition 5.6. A 2-category C is said to admit adjoints if every morphism has both a left
and right adjoint.

With this it is now possible to define what it means for an n-category to have adjoints
after one more definition is made.

Definition 5.7. The homotopy 2-category of an n-category C is the 2-category h2C with
objects and 1-morphisms the same as those of C, and 2-morphisms are isomorphism classes
of 2-morphisms in C.

Definition 5.8. An n-category C has adjoints for 1-morphisms if the homotopy 2-category
h2C admits adjoints. Proceeding inductively, the category has adjoints for k morphisms
if for every pair of objects X,Y in C, the n − 1 category Hom(X,Y) has adjoints for k −
1 morphisms. The category C is then said to admit adjoints if it admits adjoints for k-
morphisms for all 1 ≤ k ≤ n.

It is now possible to define what it means for a category to have duals, which will be the
generalization of a symmetric monoidal category having all of its objects be dualizable.

Definition 5.9. A symmetric monoidal n-category C has duals for objects if every object
in the homotopy category hC is dualizable, or equivalently the n + 1 category BC has
adjoints for 1-morphisms. The category C is said to have duals if it has duals for objects
and adjoints.
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Similar to how the dualizable objects of a symmetric monoidal category formed a full
subcategory, given a symmetric monoidal n-category C, there is a universal symmetric
monoidal n-category with duals C f .d. with a functor C f .d. → C. It is universal in the sense
that given a symmetric monoidal n-category with duals B and a functor B → C, there is an
essentially unique functor B → Cd that fits into a commutative diagram.

C f .d.

B C

The basic idea of the category C f .d. is that you first throw out the objects without duals.
Then throw away the objects such that the morphisms in duality data don’t have adjoints,
and then the objects such the adjoint data for the morphisms in the duality data don’t
have adjoints and so on. Then throw away all the maps between dualizable objects that
don’t have adjoints, and so on. The follow definition generalizes that of an object being
dualizable in a symmetric monoidal category.

Definition 5.10. An object X of a symmetric monoidal n-category C is called fully dualiz-
able if it is in the essential image of the functor C f .d. → C.

Effectively, an object X is fully dualizable if it admits a dual such the morphisms in its
duality data admit adjoints that then admit adjoints and so on.

5.3. The Cobordism Hypothesis. In this subsection, the cobordism hypothesis and some
of its variants will be stated and discussed.

Theorem 5.11 (The Cobordism Hypothesis). Let C be a symmetric monoidal n-category,
and Fun(Bordfr

n ,C) denote the category of fully extended topological field theories with
values in C. There is an equivalence of categories

Fun(Bordfr
n ,C)

≃
−→ C̃ f .d.

where C̃ f .d. is the n-groupoid obtained from C f .d by throwing away the non-invertible mor-
phisms. The functor sends a field theory F to F (pt).

Remark 5.3. For the rest of this section C will be assumed to be a symmetric monoidal
n-category with duals for ease of notation.

This theorem will not be proved here, but a sketch of the proof can be found [13]. The
main takeaway from this theorem is that a topological field theory is determined by the
value it takes on point. Furthermore, the possible values that can be assigned to the point
are the fully dualizable objects of a category. The theorem is moralistically saying that
Bord f r

n is the free symmetric monoidal n-category generated by a single fully dualizable
object, the point with positive framing. Note that this encapsulates the case of oriented
1D topological field theories given in section 2. In the 1D case the framed and oriented
theories coincide since SO(1) = ∗.

It is convenient to be able to describe topological field theories coming from bordism
categories with different tangential structures besides a framing. There is a generalized
version of the cobordism hypothesis that takes these into account. The theory will still be
determined by its value on the point, but the values that it can take will need to be modified.
In order to describe this modification, it becomes necessary to first note that the category
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Bordfr
n has an action of O(n) on it. An element of O(n) acts by changing the framing on the

point, and then accordingly on every other manifold as well. Theorem 5.11 says that the
fully dualizable objects of a category inherit an O(n) action. Given a group homomorphism
G → O(n), it is then possible to examine the fixed points of C̃ of the induced G-action,
denoted by C̃G. Here, taking fixed points is taken in some higher categorical sense. See
section 2.4 of [13] for more details.

Notice that the setup here is the same as that given in definition 2.4 of a G-tangential
structure on a manifold. Indeed, it turns out that taking the G fixed points of Bordfr

n gives the
bordism category of manifolds with G-tangential structure. This gives rise to the desired
generalization of the cobordism hypothesis.

Theorem 5.12 (Cobordism Hypothesis for G-Tangential Structures). Given a symmetric
monoidal n-category with duals C and a group homomorphism G → O(n), then there is an
equivalence of categories

Fun(BordG
n ,C)

≃
−→ C̃G.

The functor sends a topological field theory F to its value on a point.

Remark 5.4. The theory of G-tangential structures does not port over to the category
BordG

n since it was developed with respect to a specific dimension. This can be fixed by
considering m-manifolds M with a G-tangential structure on M × In−m and the data of
these extra intervals are remembered in the gluing. Another way would be to modify the
definition of G-tangential structure to that which is found in [13].

The next section will work with the example of finite gauge theory in order to demon-
strate some of these ideas.

6. Fully Extended Finite Gauge Theory

In this section, finite gauge theory from section 3 will be enhanced to a fully extended
theory. In the case of dimension 2, the idea is that one would want to attach some cate-
gorical data to the point. The most natural and what is effectively the correct idea is to
assign the category of finite dimensional G-representations RepG to the point. However,
working with some 2-category of C-linear categories is tricky. Instead, there is a simpler
category to work with, where all of the objects are algebraic objects as opposed to cate-
gories. The way to conceptually bridge the gap between these two perspectives is to note
that given enough structure on the category of representations, it is possible to recover the
underlying algebra. Nice enough morphisms between categories of modules can be given
in formulas by tensoring with a bimodule, and then natural transformations are given maps
of bimodules. This leads to a definition of a 2-category that is much easier to work with.
This category and its fully dualizable objects will be characterized in 6.1. Topological field
theories from these fully dualizable objects including fully extended finite gauge theory are
then discussed in 6.2.

6.1. The Morita 2-Category. In this subsection, the 2-category mentioned above will be
described.

Definition 6.1. The morita 2-category of algebras Alg2 has as objects C-algebras. A 1-
morphism from an algebra A to an algebra B is an (A, B)-bimodule M. The composition
of an (A, B)-bimodule M and a (B,C)-bimodule N is the (A,C)-bimodule M ⊗B N. The
2 morphisms between 1-morphisms are bimodule morphisms. The symmetric monoidal
structure on this category is the normal tensor product of algebras.
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Note that this satisfies the requirement that ΩAlg2 = VectC. This can be seen as the
tensor unit of C-algebras is C, and Hom(C,C) is the category of (C,C)-bimodules, i.e. C
vector spaces. The morphisms are then also morphisms of C-vector spaces.

It is now necessary to understand what fully dualizable objects in Alg2 are. The con-
dition that an object be dualizable in the normal sense of symmetric monoidal categories
turns out to be trivial.

Theorem 6.2. Every object A in Alg2 is dualizable, with dual the opposite algebra Aop.
The dualizing morphisms are A viewed as a (C, A ⊗ Aop)-bimodule and as a (A ⊗ Aop,C)-
bimodule.

Proof. It suffices to verify that the following diagram commutes

A A ⊗ Aop ⊗ A AA⊗A

A

A⊗A

as (Aop)op = A. This is then equivalent to showing that the tensor product

T = (A ⊗ A) ⊗A⊗Aop⊗A (A ⊗ A) ≃ A

as an (A, A)-bimodule. Here the first copy of A is acted on by A ⊗ Aop on the right. The
second copy of A is acted on the right by the third copy of A in A ⊗ Aop ⊗ A. The third
copy of A is acted on the left by the first A in A ⊗ Aop ⊗ A, and the last copy of A is acted
on the left by Aop ⊗ A. Note that there is a map of (A, A)-bimodules A → T given by
a 7→ a ⊗ 1 ⊗ 1 ⊗ 1. The claim is that this map is an isomorphism. To see this note that any
element a⊗b⊗ c⊗d of T can be expressed as α⊗1⊗1⊗1. This comes from the following
chain of equalities.

a ⊗ b ⊗ c ⊗ d = a ⊗ 1 ⊗ c ⊗ bd = ca ⊗ 1 ⊗ 1 ⊗ 1 ⊗ bd = bdca ⊗ 1 ⊗ 1 ⊗ 1
This gives the surjectivity. The injectivity then roughly follows from the fact that the

actions above are roughly the unique possible way to get an element of the form α⊗1⊗1⊗1.
No matter what is done α will always be bdca. □

It still remains to see when the dualizing morphisms form adjoints. This is equivalent
to seeing when A is dualizable as an object of VectC and as an object of ModA⊗Aop (the
category of bi-modules). The first is equivalent to A being finite dimensional as a C vector
space, as has already been seen. Thus, it only remains to see when A is dualizable as an
object of ModA⊗Aop .

Theorem 6.3. A finite-dimensional algebra A is dualizable in the symmetric monoidal
category ModA⊗Aop if and only if A is semisimple.

Proof. By theorem 7.21, it follows that it suffices to show that A is a finite dimensional
projective A ⊗ Aop module if and only if it is semisimple. By assumption, A is finite
dimensional as a C-algebra, and so the only condition to check is that it is a projective
A ⊗ Aop module if and only if A is semisimple.

Note that there is a natural surjective map of A ⊗ Aop modules

A ⊗ Aop m
−→ A

given by a⊗ b 7→ ab. Showing that A is projective as an A⊗ Aop module is then equivalent
to showing that this map splits. Such a splitting is a map of A ⊗ Aop modules

A
µ
−→ A ⊗ Aop.
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This map µ is determined by its value on 1 ∈ A, i.e. by an element of A ⊗ Aop

(6.4) µ(1) =
∑

i

ai ⊗ bi

This element has to satisfy two conditions

(6.5)
∑

i

aibi = 1

(6.6)
∑

i

αai ⊗ bi =
∑

i

ai ⊗ biα,

where α is any element of A. The first of these equations 6.5 is equivalent to the map µ
being a splitting of m, i.e. m ◦ µ = idA. The second equation 6.6 is equivalent to the map µ
being a map of A ⊗ Aop algebras. The theorem then follows from the following result. □

Definition 6.7. An algebra A over C is separable if there exists an element
∑

i ai ⊗ bi of
A ⊗ Aop that satifies equations 6.5 and 6.6.

Theorem 6.8. Separable algebras over C are the same as semisimple algebras.

Proof. This is proposition 3.69 of [16]. The proof that semisimple algebras over C are sep-
arable will be given here. This direction suffices for the purposes of this paper to construct
finite gauge theory.

Note that a semisimple algebra A over C is a finite product of matrix algebras over C
by the Artin-Wedderburn theorem. Note that a finite product of separable algebras Ai is
separable. This follows as the element of A ⊗ Aop can be taken to be a direct sum of the
element from each Ai ⊗ Aop

i tensored with the identity from the other A j.
It then suffices to show the result for an arbitrary matrix algebra Mn(C). In this case the

desired element is
∑

i e1i ⊗ ei1, where ei j is the matrix with a 1 in the ith row and jth column
and 0’s everywhere else. □

Remark 6.1. This theorem holds for algebras over any perfect field k. The direction not
given above holds even if k isn’t perfect. This says that separable is a stronger condition
than semisimple in general. The proof fails for non-perfect k since non-separable field
extensions are simple algebras over k that are not separable.

Putting all of the above together, then gives the desired characterization of fully dualiz-
able objects ofAlg2.

Corollary 6.9. The fully dualizable objects of Alg2 are finite dimensional semisimple al-
gebras A.

6.2. Topological Field Theories from the Morita 2-Category. It follows from theorem
5.11 that given any such finite dimensional semisimple algebra A, one can construct a 2D
fully extended topological field theory on framed manifolds assigning A to a point. Given
such a theory, it is now natural to ask what the theory assigns to a the circle S 1. This data
recovers the non-extended 2D theory associated to the fully extended one.

Theorem 6.10. Take a fully extended 2D topological field theory on framed manifolds F
that assigns a finite dimensional semisimple algebra A to the positively framed/oriented
point. Then it assigns A/[A, A] to the circle S 1.



32 MICHAEL PANNER

Proof. Note that S 1 can be decomposed into two half arcs. These half arcs then map to
the coevaluation and evaluation maps associated to the duality data of A. Thus, the circle
is assigned to the composition of maps C → A ⊗ Aop → C. The first morphism is A
viewed as a (C, A ⊗ Aop)-bimodule, and the second by A viewed as a (A ⊗ Aop)-bimodule.
The composition is then C-bimodule A ⊗A⊗Aop A. This tensor product can be seen to be
A/[A, A]. There is a map A→ A ⊗A⊗Aop A given by a 7→ a ⊗ 1. This map can be verified to
be surjective with kernel [A, A]. □

Remark 6.2. Note that even though this is only a priori a vector space, it also carries the
structure of a commutative algebra. This follows algebraically as [A, A] is an ideal of A and
then verifying that this quotient has a commutative multiplication. It can also be seen by
noting that the object assigned to the circle carries an E2-algebra structure from the pairs of
pants and switch map, all of which are 2-framed. An E2-algebra structure in the category
of vector spaces is a commutative algebra by the classical Eckmann-Hilton argument.

Remark 6.3. Note that this construction does not require A to be finite dimensional or
semisimple. In fact, it is possible to define what is effectively a once-categorified 1D
theory from a 1-dualizable object in the terminology of [10]. This theory is defined in the
same way, but it is no longer possible to construct the theory on 2-manifolds. Such a theory
provides no numerical invariants. However, they are easier to construct due to the weaker
dualizability constraints on the object assigned to a point.

Recall that finite gauge theory was constructed on oriented and not framed manifolds,
and so we would like to examine fully extended theories on oriented manifolds. In order
to construct an oriented theory from such an algebra A, the algebra must be a homotopy
fixed point of the action of SO(2) on Alg2. In order to examine this action it is useful
to introduce a higher categorical generalization of the fundamental groupoid. The case of
n = 2 in the following definition will be of primary interest in what follows.

Definition 6.11. Let X be a topological space. The fundamental n-groupoid of X Π≤n has
objects the points of X and its 1-morphisms by paths between points. It’s 2-morphisms are
then homotopies between paths, and its 3 morphisms by homotopies of homotopies, and
so on. It’s n-morphisms are homotopy classes of homotopies between n − 1 morphisms.
In particular, Π≤2 has objects the points of X, 1-morphisms paths in X, and 2-morphisms
homotopy classes of homotopies of paths.

Roughly, an action of SO(2) can then be thought of in this 2-categorical world as a func-
tor from Π≤2SO(2) to Alg2 for every dualizable object A that sends a chosen base point
in Π≤2SO(2) to A. This then sends the generator of π1(SO(2)) ≃ Z to an automorphism
of A. It turns out that this automorphism is the vector space dual A∗ of A regarded as a
(A, A)-bimodule. In order for A to be a fixed point, this automorphism must be trivialized,
i.e., there must be an identification of A with A∗ as (A, A)-bimodules. This is a nondegen-
erate bilinear form b : A ⊗ A → C that satisfies certain properties with respect to scalar
multiplication by A.

(6.12) b(aα, β) = b(α, βa)

(6.13) b(αa, β) = b(α, aβ)

Notice that since any element of A can be written as a ·1, that this means that this form is
determined by a non-degenerate trace map tr : A→ C, which factors through A/[A, A] (see
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[9] for more details). The data of an algebra A with this trace map is equivalent to the earlier
definition of a Frobenius algebra. The trace map will then descend to A/[A, A], making it
into a commutative Frobenius algebra. An oriented 2D non-extended topological field
theory is then recovered from this data being attached to S 1 as expected. The identification
of A with A∗, allows for A/[A, A] to be identified with the center of the algebra Z(A).

Remark 6.4. In general this SO(2) action can be understood in terms of the serre auto-
morphism. This automorphism is defined and discussed briefly in [13]. The details are
discussed more in [16].

In particular, take C[G] with trace map
∑

g∈G agg 7→ 1
|G|ae. This gives a fully extended

topological field theory on oriented manifolds by the above discussion. It assigns Z(C[G])
to the circle S 1. As this was the commutative Frobenius algebra assigned to circle in 2D
finite gauge theory, it follows that this fully extended theory contains the information of
the non-extended finite gauge theory. Thus, this fully extended theory is the fully extended
2D finite gauge theory. There is also a way to extend the construction we used to construct
finite gauge theory in section 4, see [9] for more details on this.

7. Appendix: Monoidal Categories

This section contains a brief introduction to the theory of symmetric monoidal cate-
gories and dualizability conditions. A good source for information on these concepts is
[4]. This book contains a lot of information towards a theory of categorified versions of
algebras and representations, which are closely related to higher dimensional topological
field theories. A briefer reference on some of these ideas is given in [3]. There is also some
information in the first section of [13].

7.1. Definitions.

Definition 7.1. A monoidal category is a quintuple of data
(M, 1M,⊗, α, ιL, ιR). HereM is category, 1M is an object ofM, ⊗ : M ×M → M is a
functor, and α : ⊗ ◦ (id × ⊗) → ⊗ ◦ (⊗ × id), ιL : 1M ⊗→ idM, and ιR :⊗ 1M → idM are
natural isomorphisms of functors. This data is required to satisfy the following coherence
relations.
(7.2)

(A ⊗ B) ⊗ (C ⊗ D)

A ⊗ (B ⊗ (C ⊗ D)) ((A ⊗ B) ⊗C) ⊗ D

A ⊗ ((B ⊗C) ⊗ D) (A ⊗ (B ⊗C)) ⊗ D

α−1
A,B,C⊗D α−1

A⊗B,C,D

αA,B,C⊗idD

α−1
A,B⊗C,D

idA⊗α
−1
B,C,D

(7.3)

(A ⊗ 1M) ⊗ B

A ⊗ B A ⊗ (1M ⊗ B)

αA,1M ,B

idA⊗(ιL)B

(ιR)A⊗idB
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The first of these is conditions is referred to as the pentagon identity and the second the
triangle identity in reference to their shapes.

Remark 7.1. In principle, the idea of the coherence relations is that parentheses should
not matter in a given expression. No matter how the parentheses are arranged, the resulting
natural isomorphisms should be the same. The coherence conditions express this condition
at the lowest possible level. It is then a theorem of MacLane that these conditions are
sufficient to imply this with any number of terms.

Definition 7.4. A symmetric monoidal category is a monoidal category M along with a
natural isomorphism σ : ⊗◦τ→ ⊗, where τ is the swap functor. This functor has to satisfy
two conditions:

(1) σ2 = idM, i.e. σA,BσB, A = idA⊗B

(2)

(A ⊗ B) ⊗C

A ⊗ (B ⊗C) (B ⊗ A) ⊗C

(B ⊗C) ⊗ A B ⊗ (A ⊗C)

B ⊗ (C ⊗ A)

αA,B,C

σA,B⊗C

αB,C,A

σA,B⊗idC

αB,A,C

idB⊗σC,A

The last condition is called the hexagon identity.

Example 7.5. (1) Any category with finite products is a symmetric monoidal cate-
gory whose tensor product is the categorical product. Similarly any category with
finite coproducts is a symmetric monoidal category whose tensor product is the
coproduct.

(2) The category Vectk of vector spaces over a field k is a symmetric monoidal cate-
gory with tensor being the usual tensor product of vector spaces. The swap map is
the natural isomorphism V ⊗W ≃ W ⊗ V .

(3) Assume that the field k does not have characteristic 2. The category of super
vector spaces, i.e. the category of Z/2 graded vector spaces, sVectk is a symmetric
monoidal category. It has the usual tensor product of vector spaces. The swap
map is now modified so that given homogeneous elements v ∈ V and w ∈ W, then
v ⊗ w 7→ (−1)deg(v) deg(w)w ⊗ v.

(4) Let R be a ring. The category of bi-modules over R, ModR, is a symmetric
monoidal tensor category under the usual tensor product and isomorphism M⊗N ≃
N⊗M. This can be generalized to the case of quasicoherent sheaves over a scheme
X.

(5) Let G be a finite group. Then the category of G representations RepG under the
usual tensor product of representations and isomorphism V ⊗ W ≃ W ⊗ V . Note
that by considering the group ring C[G], this example is a special case of the last
one.

Definition 7.6. Let (M, 1M,⊗M, αM, ιL,M, ιR,M) and (N , 1N ,⊗N , αN , ιL,N , ιR,N ) be two
monoidal categories. The data of a monoidal functor is a functor F : M → N and a
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natural transformation JX,Y : F(X) ⊗N F(Y) → F(X ⊗M Y). This data is then required to
satisfy F(1M) ≃ 1N and the following commutative diagram.
(7.7)

(F(A) ⊗N F(B)) ⊗N F(C)

F(A ⊗M B) ⊗N F(C) F(A) ⊗N (F(B) ⊗N F(C))

F((A ⊗M B) ⊗M C) F(A) ⊗N F(B ⊗M C)

F(A ⊗N (B ⊗M C))

idF(A)⊗N JB,C

(αN )F(A),F(B),F(C)

JA,B⊗MC

JA,B⊗idF(C)

JA⊗MB,C

F(αM)A,B,C

Definition 7.8. Let M be a symmetric monoidal category with symmetric structure σM
andN be a symmetric monoidal category with symmetric structure σN . Then a symmetric
monoidal functor is a monoidal functor (F, J) subject to the further constraint that it satisfy
the following commutative diagram.

(7.9)

F(A) ⊗N F(B) F(A ⊗M B)

F(B) ⊗N F(A) F(B ⊗M A)

JA,B

(σM)A,B

JB,A

(σN )F(A),F(B)

Example 7.10. (1) The forgetful functor RepG → Vectk can be given the structure of
a symmetric monoidal functor. The extra data J is easily given since the tensor
product in RepG is the tensor product of the underlying vector spaces.

(2) Given a (R, S )-bimodule M, then the functor − ⊗R M gives a functor from ModR

to ModS that can be given the structure of a symmetric monoidal tensor functor.

7.2. Duality Data. Take a symmetric monoidal category C. Then there is a notion of du-
alizability which is in a way a finiteness condition, which plays an essential role throughout
the paper.

Definition 7.11. Take an object X in C. Duality data for X is a triple (X∗, e, c) where X∗ is
an object of C, while e : X∗ ⊗ X → 1C and c : 1C → X ⊗ X∗ are morphisms. This data must
satisfy the following conditions

(7.12) X X ⊗ X∗ ⊗ X Xc⊗id

id

id⊗e

(7.13) X∗ X∗ ⊗ X ⊗ X∗ X∗id⊗c

id

e⊗id
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Theorem 7.14. The duality data of an object X is unique up to unique isomorphism. In
other words, given different duality data (X∨, e′, c′) then there is a unique isomorphism
X∗ → X∨ that commutes with the evaluation and coevaluation maps.

Proof. See proposition 2.10.5 of [4]. □

Remark 7.2. If there exists duality data associated to X, then the object X∗ is referred to
as the dual of X, and X is called a dualizable object.

Definition 7.15. Let X be a dualizable object of a symmetric monoidal categoryM with
duality data (X∗, e, c). The dimension of X is defined to be the morphism

1M X ⊗ X∗ X∗ ⊗ X 1M
c σ e

When Hom(1M, 1M) ≃ C the dimension is a complex number.

Example 7.16. • Let C be VectC the category of vector spaces and V a vector space.
Then duality data for V is (V∗, e, c). Here V∗ B Hom(V,C) is the normal dual
vector space and e : V ⊗ V∗ → C is the normal evaluation giving the perfect
pairing. In order to express the coevaluation map, take a basis ei of V and the dual
basis ei of V∗. The coevaluation map is defined by 1 7→

∑
i ei⊗ei. This duality data

only exists if the vector space is finite dimensional, so the dualizable objects are
finite dimensional vector spaces. In this case, the dimension of V from definition
7.15 is the normal dimension of the vector space.
• Let Set be category of sets with tensor product given by direct product. The unit

of this tensor product is the singleton set ∗. Note that the coevaluation map is then
given by a point of X × X∗, and the evaluation map is the unique map X × X∗ → ∗.
The first map in condition (7.12) is then X → X ⊗ X∗ ⊗ X which has image a
point times the last factor of X. The evaluation map collapses the last factor to a
point though in the second map of condition (7.12). Therefore the only way for
this composition to be the identity is for X to be a singleton set. Thus, there are no
interesting dualizable objects in this symmetric monoidal category.
• Let Set be the category of sets with tensor product given by direct sum. The unit

of this tensor product is the empty set. The evaluation map cannot exist unless X
and X∗ are the empty set as only the empty set can map to the empty set. Thus the
empty set is the only dualizable object of this symmetric monoidal category.

The following theorems give useful properties of dualizable objects, building towards
theorem 7.21, which will be important to the results of section 6.

Theorem 7.17. Let A be a dualizable object of a symmetric monoidal category M with
dual A∗, N another symmetric monoidal category, and a symmetric monoidal functor F :
M→ N . Then, F(A) is a dualizable object of N with dual F(A∗).

Proof. See exercise 2.10.6 of [4]. □

Theorem 7.18. If X is dualizable with dual X∗, then ⊗ X is both a left and right adjoint
to ⊗ X∗.

Proof. This follows from proposition 2.10.8 in [4] since in a symmetric monoidal category,
right and left duals always coincide. □



TOPOLOGICAL FIELD THEORY AND FINITE GAUGE THEORY 37

Theorem 7.19. Let C be a symmetric monoidal category with finite coproducts. Then
coproducts of dualizable objects are dualizable.

Proof. Note that ⊗ commutes with coproducts since it is a left adjoint by theorem 7.18.
Therefore, it can easily be seen that the dual of (X ⊗ Y) is Y∗ ⊗ X∗ as the conditions break
down into a coproduct of the conditions for X and Y respectively. □

Theorem 7.20. If a symmetric monoidal category C has an internal hom functor [−,−],
i.e. a right adjoint to the tensor functor, then if an object X is dualizable, its dual is [X, 1C]

Proof. For all objects A of C, it follows from 7.18 that Hom(A⊗X, 1C) ≃ Hom(A, X∗), and
by the adjunction between internal hom and tensor that Hom(A ⊗ X, 1C) ≃ Hom(A, [X, 1]).
Therefore, it follows that X∗ ≃ [X, 1] by the Yoneda lemma. □

As an application of the above results it is possible to classify dualizable objects in the
symmetric monoidal category of modules over a ring.

Theorem 7.21. Let R be a ring, and ModR be the category of bi-modules over R. It is
a symmetric monoidal category with the tensor operation the usual tensor product of bi-
modules. The dualizable objects of ModR are the finite dimensional projective modules.

Proof. First note that R is a dualizable object of ModR as it is the tensor unit. Therefore,
it follows that Rn is dualizable by theorem 7.19. It’s duality data is the same as that of a
vector space in example 7.16 with dual Hom(Rn,R) since ModR has an internal hom. Now
note that a direct summand M of Rn is also dualizable. This follows as if Rn = M ⊕N, then
it follows that Hom(Rn,R) ≃ Hom(M,R) ⊕ Hom(N,R). Thus, it follows that

Rn ⊗Hom(Rn,R) ≃ M ⊗Hom(M,R)⊕N ⊗Hom(N,R)⊕M ⊗Hom(N,R)⊕N ⊗Hom(M,R).

The coevaluation map R → M ⊗ Hom(M,R) is then the composition of the coevaluation
map for Rn followed by the projection of Rn ⊗ Hom(Rn,R) to the M ⊗ Hom(M,R) factor.
Evaluation still has the same form. The conditions for this to be duality data follow from
two observations. The evaluation map vanishes on the components M⊗Hom(N,R) and N⊗
Hom(M,R). Additionally, the N ⊗ Hom(N,R) factor does not contribute as the evaluation
map is only applied to elements of M or its dual Hom(M,R).

To see the other direction, note that ModR has an internal hom given by the natural
structure of an R-module on Hom(M,N). Therefore, it follows that if M is dualizable
M∗ = Hom(M,R) by theorem 7.20. The evaluation map is the image of the identity under
the isomorphism Hom(M∗,M∗) ≃ Hom(M∗ ⊗ M,R). This can be seen to be the classical
evaluation map that sends ( f ,m) to f (m). Now note that the coevaluation map c : R →
M ⊗ M∗ if it exists is then determined by an element of M ⊗ M∗. This element is a finite
sum

∑n
i=1 mi ⊗ fi. The condition (7.12) then gives that for all m ∈ M,

∑
i fi(m)mi = m. Note

that this in particular implies that every m ∈ M can be written as a sum of the mi, so the mi

form a generating set of M. This then gives rise to a morphism Rn → M. This morphism is
then split by the map M → Rn sending m to ( f1(m), ..., fn(m)). It follows that M is a direct
summand of Rn and therefore projective and finite dimensional. □
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28 (1954), no.1 ,17–86.
[21] Ravi Rakil, The Rising Sea: Foundations of Algebraic Geometry ,

https://math.stanford.edu/ vakil/216blog/FOAGaug2922public.pdf.
[22] Edward Witten, Topological quantum field theory, Commun. Math. Phys. 117, 353-386 (1988)


	1. Introduction
	2. Bordisms
	2.1. Unoriented Bordisms
	2.2. G-Tangential Structures and Bordisms

	3. Topological Field Theories
	3.1. The Definition of a Topological Field Theory
	3.2. 2-Dimensional Field Theories
	3.3. The Mapping Class Group

	4. 2D Finite Gauge Theory
	4.1. The Category of Correspondences
	4.2. Principal G-Bundles
	4.3. Construction of Finite Gauge Theory in Low Dimensions

	5. Extended Field Theories and the Cobordism Hypothesis
	5.1. Definition of a Fully Extended Topological Field Theory
	5.2. Higher Duality Data
	5.3. The Cobordism Hypothesis

	6. Fully Extended Finite Gauge Theory
	6.1. The Morita 2-Category
	6.2. Topological Field Theories from the Morita 2-Category

	7. Appendix: Monoidal Categories
	7.1. Definitions
	7.2. Duality Data

	8. Acknowledgements
	References

