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Abstract. A previous paper from this REU by Xinyu Liu[1] gave a proof

of the unique factorization of ideals in a Dedekind domain. This paper will
describe one “backstory” of this problem by motivating the concept of ideals

as a tool for solving Diophantine equations. The content is focused on details

rather than breadth or complexity in hopes of being more accessible to those
without a great deal of background knowledge.
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1. Motivation: Diophantine Equations and the Fundamental Theorem
of Arithmetic

Definition 1.1. Let f(x1, x2, · · · , xn) be a polynomial with integer coefficients.
An equation of the form f(x1, . . . , xn) = 0 is called Diophantine if we allow only
integer solutions x1, · · · , xn ∈ Z.

Consider the Diophantine equation

y2 = x3 + 4.

Readers with their fair share of middle school arithmetic and algebra likely won’t
have any trouble solving it. However, we are not interested in the solution so
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much as its structure. To motivate the problem of this paper, let us solve the equa-
tion by factoring, paying particular attention to the assumptions made at each step.

1.1. The Structure of our Approach: Solving y2 = x3 + 4.
The first thing to notice is that 4 = 22 is a square in the integers. Thus the above
equation is equivalent to y2 − 4 = (y− 2)(y+2) = x3. We will first prove a lemma.

Lemma 1.2. If y is odd, then (y − 2) and (y + 2) are coprime in Z.

Proof. Let y be an odd integer. Suppose m ∈ Z is a common divisor of (y− 2) and
(y+ 2), i.e. m|(y− 2) and m|(y+ 2). Then, m must also divide their difference, so
m|(y + 2− (y − 2)) and thus m|4. However, 4 is a power of two while both (y − 2)
and (y + 2) are odd, so it must be the case that |m| = 1. Since (y − 2) and (y + 2)
share no common factors other than 1 and −1, they must be coprime. □

Now, we take advantage of a useful propery of Z: the Fundamental Theorem of
Arithmetic.

Theorem 1.3 (Fundamental Theorem of Arithmetic). Every integer greater than
1 can be represented uniquely as the product of primes, up to reordering.

Claim 1.1. If (y− 2) and (y+ 2) are coprime integers and their product is a cube
of an integer, then (y − 2) and (y + 2) are both cubes.

Proof. Let x3 = (y − 2)(y + 2) for (y − 2), (y + 2) coprime. Since x is assumed to
be an integer, by Theorem 1.3, we can factor x as

x = pe11 pe22 · · · penn
for some primes p1, · · · , pn ∈ Z. We assume without loss of generality that p1, · · · , pn
are distinct. Our equation gives (y − 2)(y + 2) = p3e11 · · · p3enn .

Let i ∈ {1, · · · , n}. Since pi is prime, pi must divide either (y − 2) or (y + 2).
Suppose, without loss of generality, that pi is a factor of (y−2). Then since (y−2)
and (y + 2) are coprime, pi cannot be a factor of (y + 2). By uniqueness of the

prime factorization of x3 = (y − 2)(y + 2), we must have (peii )
3 | (y − 2). This is

true for all i ∈ {1, · · · , n}, so we can write each of (y − 2), (y + 2) as the product

of cubes of prime integers of the form (peii )
3
. Hence, (y− 2) and (y+2) must both

be cubes of integers. □

Now, let y − 2 = a3 and y + 2 = b3 for some a, b ∈ Z. This gives

4 = b3 − a3 = (b− a)(b2 + ab+ a2).

There are finitely many factors of 4 so all that remains is case work to find a
and b from which we can derive solutions for x and y. However, we said at the
beginning that the solution is not what we’re after. So, what was the point of this
exercise?

Recall the steps that we took. First, we noticed that 4 is a square in Z and used
this fact to rewrite the left hand side of the original equation as the difference of
squares. A natural question we might ask is: what if our equation doesn’t factor
so nicely in Z? For instance, what if we wanted to solve the equation y2 = x3 − 4?
To use our method of factorization, we need to construct a ring in which −4 is a
square.



FACTORIZATION 3

2. Unique Factorization Domains

2.1. Adjoining Algebraic Integers to Z.
Up until this point we have been relying on readers’ intuitive understanding of the
integers. Before proceeding, let us add clarity with a few definitions.

Definition 2.1. A ring (R,+, ·) is a set R equipped with two binary operations +
and · satisfying the following axioms.

(1) (R,+) is a commutative group.
(2) There exists an element 1 ∈ R such that for all r ∈ R, r1 = 1r = r. We

refer to 1 as the multiplicative identity of R.
(3) For all a, b, c ∈ R, we have:

(a) (a · b) · c = a · (b · c),
(b) a · (b+ c) = a · b+ a · c,
(c) (a+ b) · c = a · c+ b · c.

If additionally, for every a, b ∈ R, we have a·b = b·a, then R is called a commutative
ring.

A subring of (R,+, ·) is a subset H ∋ 1 such that (H,+|H×H , ·|H×H) is a ring
with multiplicative identity 1. We write H ≤ R.

Remark 2.2. Observe that the set of complex numbers C forms a commutative
ring under usual addition and multiplication. In this paper, for simplicity, we will
work only with subrings of C.

Back to our second Diophantine equation y2 + 4 = x3. To imitate our previous
approach, we want to work with the “smallest” subring of C in which −4 (and
hence −1) is a square. Equivalently, we want to work with the “smallest” subring
of C containing i =

√
−1. To talk about such rings formally, we need the following

definition.

Definition 2.3. Let S be a subset of C. The subring of C generated by S, denoted
Z[S], is defined as the intersection of all subrings of C containing S. (Note that the
intersection of subrings of C is again subring of C.) We also call Z[S] the subring
of C obtained by adjoining S to Z.

When S = {s} is a simpleton set, we write Z[s] instead of Z[{s}].

Example 2.4. It is not hard too see that Z[i] = {f(i) | f ∈ Z[x]}. One can
further show that Z[i] = {a + bi | a, b ∈ Z} i.e. elements of Z[i] are exactly linear
combinations of 1 and i with integer coefficients.

Over Z[i], the left hand side of our second Diophantine equation factors as

y2 − (−4) = (y − 2i)(y + 2i)

. Thus the equation gives two factorization (y − 2i)(y + 2i) = x3 of the same
element of Z[i]. To continue imitating our approach in the previous case, we want
to generalize the notions of prime and coprime in Z to an arbitrary subring of C.

2.2. Primes and Irreducibles in Subrings of C.
In this section we will discuss various notions related to factorization and divisibility.

Remark 2.5. Note that while we restrict our attention to subrings of C for con-
creteness, the definitions and propositions below hold more generally for any inte-
gral domains. Recall that an integral domain R is a commutative ring in which the
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product of any two nonzero elements is nonzero. Consequently, one can perform
“cancellation” in R: for every a, b, c ∈ R, if ab = ac and a ̸= 0 then b = c.

To begin with, we define divisibility and use this to formalize the notion of a
unit.

Definition 2.6. Let R ≤ C. Take a, b ∈ R, a ̸= 0. We say that a divides b in R
and use the notation a |R b if there exists c ∈ R such that ac = b.

Notation 2.7. For ease of reading, we will drop the subscript R in |R when there
is no risk of confusion.

Definition 2.8. Let R ≤ C and take a, b ∈ R. An element g ∈ R is called a
greatest common divisor of a and b, if for all r ∈ R, r |R a and r |R b if and only if
r |R g. We write g = gcd(a, b). (Note that this is an abuse of notation, since g is
not necessarily unique.)

Definition 2.9. Let R ≤ C. The set of units of R, denoted R∗, consist of all u ∈ R
for which there exists v ∈ R such that uv = 1. Equivalently, the units of R are
exactly the elements of R that divide 1.

An element a ∈ R is said to be associated to an element b ∈ R if a = bu for some
u ∈ R∗. Observe that a is associated to b iff b is associated to a, in which case we
call a and b associates.

Example 2.10. Z∗ = {±1}.

Now we have the tools to define a prime element and irreducible elements of
a subring of C. These are two distinct generalizations of the concept of integer
primes.

Definition 2.11. Let R ≤ C. We say that π ∈ R is prime if π ̸∈ R∗ and for every
a, b ∈ R, π|ab iff π|a or π|b.

Definition 2.12. Let R ≤ C. We say that π ∈ R is irreducible if π ̸∈ R∗ and for
every a, b ∈ R, π = ab implies that at least one of a or b must be a unit.

In the case of the integers, these two notions coincide (see Proposition 2.18
below). However, for a general ring R ≤ C, only one of the implications necessarily
holds.

Property 2.13. Let R ≤ C. If π ∈ R is prime, then π is irreducible.

Proof. Let R be a subring of C and let π ∈ R be prime. Suppose π = ab for some
a, b ∈ R. Then, π|ab, so π|a or π|b. Suppose, without loss of generality, that π|a.
Then, there exists c ∈ R such that πc = a, so π = ab = πcb. As R is an integral
domain and π ̸= 0 (by definition of prime), we can “cancel” π from both sides to
obtain cb = 1. In particular, b is a unit. Thus, π is irreducible. □

The converse of the above proposition does not hold in general. In Example 2.16
below, we show that Z[

√
−5] contains an irreducible that is not prime. To that

end, we introduce the norm function.

Definition 2.14. Let D be a squarefree integer congruent to 3 modulo 4. On
Z[
√
D], we can define the norm function N : Z[

√
D] → Z by

N(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 −Db2

for all a, b ∈ Z.
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Observation 2.15. It is easy to check that the norm function N satisfies the
following properties:

(1) N is multiplicative;
(2) N(u) = 1 iff u ∈ R∗;
(3) if N(π) is an integer prime then π must be irreducible in R.

Example 2.16. We claim that 2 is irreducible but not prime in Z[
√
−5].

Indeed, to see that 2 is irreducible in Z[
√
−5], suppose 2 = (a+b

√
−5)(c+d

√
−5)

for some a, b, c, d ∈ Z. By multiplicativity of N , we have

4 = N(2) = N(a+ b
√
−5)N(c+ d

√
−5) = (a2 + 5b2)(c2 + 5d2).

By examining the integer factors of 4, one can show that either (a2+5b2) or (c2+5d2)
must be a unit.

Now, suppose for contradiction that 2 is a prime in Z[
√
−5]. Then, as 2 divides

6 = (1−
√
−5)(1 +

√
−5), 2 must divide either 1−

√
−5 or 1 +

√
−5. Equivalently,

one of (and hence both of) 1
2 ±

1
2

√
−5 must lie in Z[

√
−5]. In particular, there exist

m,n ∈ Z such that m+ n
√
−5 = 1

2 + 1
2

√
−5, i.e.

(
1
2 −m

)
+

(
1
2 − n

)√
−5 = 0. As

1 and
√
−5 are linearly independent over Q, this implies m = n = 1

2 , contradicting

the assumption that m,n ∈ Z. Thus, 2 is not prime in Z[
√
−5].

On the other hand, as previously mentioned, over Z, the concepts of irreducibility
and primeness are equivalent. To prove this, we first recall the following consequence
of the Euclidean Algorithm for the integers.

Lemma 2.17 (Bezout’s Lemma). Let a, b ∈ Z have greatest common divisor c.
Then, there exist integers x, y ∈ Z such that ax+ by = c.

Proof. A proof is given in [2, page 6]. □

Proposition 2.18. An integer π ∈ Z is prime iff it is irreducible.

Proof. By Proposition 2.13, it suffices to show that irreducible integers are prime.
Let π ∈ Z be irreducible. Suppose that π|ab for some a, b ∈ Z but π ∤ a. We let
g = gcd(a, π). Then, g|π, so there exists c ∈ Z such that gc = π.

We claim that g is a unit. Indeed, suppose by contradiction that g is not a unit.
Then c ∈ Z∗ = {±1}, by irreducibility of π. Thus π = gc = ±g must divide a,
contradicting our assumption.

By Lemma 2.17, there exist x, y ∈ Z such that ax + πy = g = ±1. Multiplying
both sides by b gives abx + πby = ±b. Since π|ab, we can write ab = πd for some
d ∈ Z. Thus ±b = abx+ πby = π(dx+ by), so π|b. This shows that π is prime.

□

Observe that, given an appropriate definition of greatest common divisors, the
above proof works for any ring R ≤ C for which Bezout’s Lemma hold. This turns
out to be the case when R is a unique factorization domain, which is the topic of
the next section.

2.3. Properties of Unique Factorization Domains.

Definition 2.19. A unique factorization domain (henceforth abbreviated as UFD)
is an integral domain R such that all nonzero elements x ∈ R factor uniquely as
x = up1 · · · pn for some unit u, irreducibles pi, and n ≥ 0. Uniqueness here means
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that if x = wq1 · · · qm for some unit w, irreducibles qi, and m ≥ 0, then m = n and
there exists a bijection ϕ : {1, · · · , n} → {1, · · · ,m} such that pi is associated to
qϕ(i) for i ∈ {1, · · · , n}. We call each pi a prime factor of x. Note that the prime
factors of x are uniquely determined, up to associates.

Proposition 2.20. Z[i] is a UFD.

Proof. A very readable proof of this fact is given in [2, 41-44].
□

Recall where we left our most recent Diophantine equation, y2 = x3 − 4. We
factor over Z[i] to get (y − 2i)(y + 2i) = x3. In the very first example, we used the
Fundamental Theorem of Arithmetic to show that (y − 2) and (y + 2) must both
be cubes. We can use this same technique in Z[i] because it is a UFD.

Definition 2.21. Let R be a UFD and a, b ∈ R. We call a and b coprime if they
have no common prime factors.

Proposition 2.22. Let R be a UFD. Let a, b ∈ R. Then a and b are coprime if
and only if gcd(a, b) is a unit.

Proof. Suppose a and b are coprime. We show that every common divisor of a and
b must be a unit. To this end, let g be an element of R dividing both a and b. Since
R is a UFD, we can write a = u · p1 · · · ps and b = w · q1 · · · qt for primes pi, qj and
units u,w of R. Because g|a, there exists c ∈ R such that gc = a = p1 · · · ps.

We show that pi | c for all i. Indeed, fix i ∈ {1, . . . , s}. Since a and b are coprime,
pi cannot divide b. Thus pi ∤ g as g | b. As pi is prime, this implies that pi | c. As
this holds for all prime factors pi of a, we must have a | c, so that c = ha for some
h ∈ R. Cancelling a ̸= 0 from both sides of gha = gc = a gives gh = 1. Thus g is a
unit.

The other direction is somewhat more straightforward. Suppose u = gcd(a, b) is
a unit. Suppose for contradiction that a, b have a common prime factor π. Then,
π | u by definition of the gcd. Since u is a unit, there exists w ∈ R such that
wu = 1. However, π | u implies that there exists c ∈ R such that wcπ = u and thus
wcπ = wu = 1. In particular, π must be a unit, contradicting the assumption that
π is prime. Hence, a and b are coprime. □

Theorem 2.23. Let R be a UFD. Let a1, · · · , as ∈ R be pairwise coprime. Suppose
a1 · · · as = bn for some b ∈ R. Then, ai are associated to n-powers in R. In other
words, for all i ∈ {1, · · · , s}, there exist li ∈ R and ui ∈ R∗ such that ai = uil

n
i .

Proof. The same argument as in the proof Claim 1.1 applies. □

Now we finally have the tools to solve (y− 2i)(y+ 2i) = x3 just as we solved its
counterpart in the integers. Using the norm we can show for odd y that (y − 2i)
and (y + 2i) must be coprime. This proof also follows similarly to its counterpart,
Lemma 1.2, but the use of the norm makes it an instructive example so it is included.

Claim 2.1. Let y be an odd integer. Then, (y − 2i) and (y + 2i) are coprime in
Z[i].

Observation 2.24. By considering the common prime factors, it is not hard to
show that every pair of elements in a UFD has a greatest common divisor.
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Proof. Let y be an odd integer. Let (a+ bi), a, b ∈ Z be a greatest common divisor
of y − 2i and y + 2i in Z[i]. Then, (a + bi) divides their difference, which is 4i.
Taking norms gives (a2+b2)|(y2+4) and (a2+b2)|16 in Z. By assumption, y is odd
and hence so is y2 + 4. But 16 is a power of two and thus N(a+ bi) = a2 + b2 = 1.
By Observation 2.15, (a + bi) is a unit. Thus, by Proposition 2.22, (y − 2i) and
(y + 2i) are coprime, as claimed. □

Now, Theorem 2.23, implies that (y − 2i) and (y + 2i) are cubes in Z[i]. In
particular, we can write y + 2i = (a+ bi)3 for some a, b ∈ Z. Expanding the right
hand side gives

y + 2i = (a+ bi)3

= a3 + 3a2bi+ 3ab2(−1) + b3(−i)

= a3 − 3ab2 + (3a2b− b3)i.

Since 1 and i are linearly independent over Q, we can then conclude that y =
a3 − 3ab2 and 2 = 3a2b − b3 = (3a2 − b2)b. By enumerating the finitely many
integer factors of 2, we can solve for a and b, and consequently for x and y.
We have now been able to solve two Diophantine equations using factorization and
some nice properties of UFDs. But, as we saw in Example 2.16, not all subrings of
C are UFDs. What are we to do if we are presented with a Diophantine equation
such as y2 = x3 − 5, where y2 + 5 can only be factored in Z[

√
−5]? We have seen

that Z[
√
−5] is not a UFD because not all irreducibles are primes, so how might

we solve this? Studying problems such that this is what inspired Ernst Kummer’s
notion of ideals numbers which were later formalized as ideals.

3. Ideals

3.1. What is an ideal?
The balance of the paper will be guided in part by solving our final Diophantine
equation, y2 = x3 − 5, which, as mentioned above, can be factored as

x3 = (y −
√
−5)(y +

√
−5)

in Z[
√
−5]. But, elements of this ring may have multiple distinct factorizations into

irreducibles

Example 3.1. Consider 6 ∈ Z[
√
−5]. We can write the factors of 6 in Z[

√
−5] as

6 = 2 · 3 = (1−
√
−5)(1 +

√
−5), both of which are factorizations into irreducibles

in Z[
√
−5]. Since N(2) = 4, N(3) = 9, N(1 −

√
−5) = N(1 +

√
−5) = 6, we see

that these two factorizations are distinct.

Before formalizing the notion of ideals, we must first give a few definitions.

Definition 3.2. Let R be a ring. An R-module is an additive group (M,+)
together with a “scalar multiplication” map R×M → M such that for all a, b ∈ R
and x,y, z ∈ M , the following properties hold (here we denote the image of (r,m)
by rm):

x+ y = y + x (ab)x = a(bx)
x+ (y + z) = (x+ y) + z 1x = x

x+ 0 = x x(a+ b) = ax+ bx
x+−x = 0 a(x+ y) = ax+ ay
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An R-submodule of M is an R-subgroup of M that is an R-module under the
restriction of the scalar multiplication map on M .

With this, we can now define ideals and some of their properties. We will use
the formal definition given below, but it is perhaps more intuitive to think of an
ideal as a module, so keep the above definition in mind.

Definition 3.3. Let R be a ring. Then R can be viewed as a module over itself.
An ideal of R is simply an R-submodule of R. In other words, a subgroup I of
(R,+) is called an ideal of R if it is closed under multiplication by elements of R,
i.e., for all r ∈ R, r · I ⊆ I.

Notation 3.4. As in the definition above, script capitals (e.g. A,B, I,P) will be
used to denote ideals.

Definition 3.5. Let S ⊂ R. We define the ideal of R generated by S, denote ⟨S⟩
as the intersection if all ideals of R containing S. Equivalently, ⟨S⟩ is the smallest
ideal of R containing S, if we order ideals of R by inclusion.

We denote the ideal generated by elements a1, · · · , an ∈ R by ⟨a1, · · · , an⟩. A
principal ideal is an ideal that can be generated by a single element.

Notation 3.6. Let R be a domain.

Example 3.7.

⟨2⟩ = 2Z = {· · · ,−6,−4,−2, 0, 2, 4, 6, · · · }
⟨4, 6⟩ = 6Z+ 4Z = {4m+ 6n | m,n ∈ Z} = {· · · ,−6,−4,−2, 0, 2, 4, 6, · · · }

Notice that ⟨2⟩ = ⟨4, 6⟩. This is in fact because 2 = gcd(4, 6). We will see that
the ideal is a nice generalization of the concept of gcd. Next, we will find out what
it means for ideals to be prime and coprime.

3.2. Prime and Coprime Ideals.
First, we define the product of ideals and use this to define a prime ideal.

Definition 3.8. Let A and B be ideals of a ring R.
The product AB of A and B is defined as the ideal generated by elements of the

form ab for some a ∈ A and b ∈ B. In other words,

AB = {a1b1 + · · ·+ anbn | ai ∈ A, bi ∈ B, n ∈ N}.

The sum A+ B of A and B is defined as the ideal generated by elements of the
form a+ b for some a ∈ A and b ∈ B.

Definition 3.9. Let R be a ring. We call an ideal P ⊆ R a prime ideal if P ≠ R
and for all I,J ⊆ R, P ⊇ IJ implies P ⊇ I or P ⊇ J .

Notice that this definition is similar to that of primes in a UFD but with “divides”
replaced by “contains.” When it comes to ideals, “to divide is to contain” captures
the intuition behind this definition. Let’s look at an example in the integers.

Example 3.10. Observe that in Z, d|m iff ⟨d⟩ ∋ m or ⟨d⟩ ⊇ ⟨m⟩.



FACTORIZATION 9

Proposition 3.11. Let P = ⟨p⟩ be a principle ideal of a ring R generated by some
prime element p ∈ R. Then P is a prime ideal.

Proof. Let A,B ⊆ R be such that AB ⊆ P. Suppose by contradiction that neither
A nor B is contained in P, i.e. there exist a ∈ A\P and b ∈ B\P. Thus p ∤ a and
p ∤ b, so p ∤ ab, as p is prime. Thus ab is an element of AB not contained in P,
contradicting our assumption.

□

As before, now that we have a notion of prime ideals, we want to expand this
to formulate the notion of coprime ideals. Previously, we did this using the gcd,
and now we get to see the very nice relationship between ideals and gcd mentioned
earlier.

In Example 3.7 we saw that the ideal generated by 2 is equal to that generated
by 4 and 6 since we can express 2 as 4m + 6n for some m,n ∈ Z. We saw in
Lemma 2.17 that this is a property of the gcd, and in fact, the gcd of two ideals is
just their sum! Let’s formalize this.

Definition 3.12. Let I and J be ideals of a ring R. An ideal A of R is said to be
a greatest common divisor of I and J , denoted gcd(I,J ), if for all ideals B of R,
we have B ⊃ I and B ⊃ J iff B ⊃ A.

Theorem 3.13. Let I,J be ideals of a ring R. Then, gcd(I,J ) = I + J . In
other words, I + J is the smallest ideal of R containing both I and J .

Proof. Clear. □

Definition 3.14. Two ideals I,J of a ring R are coprime if I + J = R = ⟨1⟩.

Recall that two integers are coprime if their gcd is equal to 1. Consider how this
is analogous to the definition of coprime ideals; we have seen previously that the
sum of two ideals of a ring R of algebraic integers is equal to their gcd, so if their
sum is ⟨1⟩, i.e. the entire ring, then they are coprime!
Before proceeding to the next section, we will formally define what it means for an
ideal to divide another ideal and from this give an alternate but equivalent definition
of coprime. To do so, we first give an overview of the notion of a Dedekind domain.

Definition 3.15. Let R be a ring. Then R is called a Dedekind domain if R
contains a nontrivial ideal (i.e. a nonzero ideal that is not the whole of R) and if
for all ideals I and J of R, we have I ⊆ J if and only if, I = JJ ′ for some ideal
J ′ ⊆ R.

Theorem 3.16. Let R be a Dedekind domain. Then, every nonzero ideal I of R
factors as a product of nonzero prime ideals I = Pe1

1 · · · Pen
n with e1, · · · , en ∈ Z≥0

and this factorization is unique up to reordering. We call Pi’s the prime factors of
I.

Proof. This is the subject of the paper referenced in the abstract by Xinyu Liu [1].
See below. □

3.3. Dedekind Domains. In order to continue solving our Diophantine equation,
we will need to use some properties not just of the commutative rings we have been
discussing, but of a Dedekind Domain. The definition and proofs of properties of
a Dedekind domain as they relate to our use of ideals require exposition beyond
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the scope of this paper and are covered in another paper from this REU by Xinyu
Liu[1], as well as in Stillwell[2]. The goal of this paper is to see why such properties
are useful rather than to repeat their exposition.

3.4. nth Power Law for Ideals.
Let’s check in with our latest Diophantine equation, x3 = (y−

√
−5)(y+

√
−5).

We find by a similar argument to Claim 2.1 that (y −
√
−5) and (y +

√
−5) must

be coprime. So, our next step is to prove something akin to the nth power law
(Theorem 2.23) for ideals. But first, a few more results about ideals.

Lemma 3.17. Let I1 and I2 be pairwise coprime ideals of a Dedekind domain R.
If a prime ideal P ⊇ I1 of R, then P ̸⊇ I2.

Proof. Suppose by contradiction that P ⊇ I2. Then, since P is closed under
addition, P ⊃ I1 + I2 = R (contradiction). □

Theorem 3.18 (nth Power Law for Ideals). Let I1, · · · , Is be coprime ideals of a
Dedekind domain R. Suppose I1 · · · Is = J n for some ideal J of R. Then each Ij
must be an nth power of some ideal of R.

Proof. Since R is a Dedekind domain, we can factor J as J = Pe1
1 · · · Pet

t for some
distinct prime ideals P1, · · · ,Pt of R.

We show that I1 is the n-th power of some ideals of R. The same argument
applies for the rest of the Ij . By uniqueness of the prime factorization of J n (cf.
Theorem 3.16), all the prime factors of I1 must appear amongst the Pj . By rela-
beling, assume that P1, . . . ,Ps, s ≤ t are the prime factors of I1. By Lemma 3.17,
P1, . . . ,Ps do not contain Ij for any j ̸= 1. In particular, they do not appear in
the prime factorizations of Ij for any j ̸= 1. Again by uniqueness of the prime
factorization of J n, we must have that I1 = Pne1

1 · · · Pne2
s = (P∞

e1 · · · P∫
es)n is an

n-th power, as claimed.
□

Definition 3.19. Let R be a domain. We call an ideal I of R maximal if it is
contained only by the domain and itself. Returning once again to the intuition “to
divide is to contain,” we would say that the only divisors of I are R = ⟨1⟩ and I.

Remark 3.20. Note that maximal ideals are prime. Consult [2] for a proof.

Example 3.21. Consider the domain Z. The maximal ideals of Z are all of the
ideals generated by prime elements of Z. For example, ⟨5⟩ is a principle ideal
because the only divisors of 5 are units and 5 itself.

Lemma 3.22. Let I1 and I2 be ideals of a domain R such that I1 and I2 have no
common factor. Then, I1 and I2 are coprime.

Proof. Let I1 and I2 be ideals of a domain R such that I1 and I2 have no common
factor. Suppose I1 + I2 ̸= R. Then, there exists a maximal ideal P ⊆ R such that
I1 + I2 ⊆ P.1 However, recall that the gcd of two ideals is their sum and I1 and
I2 have no common factor, so I1 + I2 ̸⊆ P. Hence, I1 + I2 = R, that is to say, I1
and I2 are coprime. □

1this fact is not obvious and requires some additional background knowledge which is not
particularly useful for the rest of the paper and is thus ommitted. Consult [2] or [3].
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Now, we return to the equation x3 = y2 + 5. Recall that we factored y2 + 5 in
Z[
√
−5] and now we replace these factors with ideals to get

⟨y +
√
−5⟩⟨y −

√
−5⟩ = ⟨x⟩3.

What remains is to show that ⟨y +
√
−5⟩ and ⟨y −

√
−5⟩ are coprime.

Claim 3.1. Let ⟨y+
√
−5⟩⟨y−

√
−5⟩ = ⟨x⟩3. Then, ⟨y+

√
−5⟩ and ⟨y−

√
−5⟩ are

coprime.

Proof. Let ⟨y +
√
−5⟩⟨y −

√
−5⟩ = ⟨x⟩3. Suppose, for contradiction, that there

exists a prime ideal P ⊆ Z[
√
−5] such that P ⊇ ⟨y −

√
−5⟩ and P ⊇ ⟨y +

√
−5⟩.

Then, P ∋ x and P ∋ 2
√
−5. Because P is closed under addition and multiplication

by scalars, P ∋ 2
√
−5

√
−5 = −10 and thus P ⊇ ⟨−10, x⟩. We find that x must

be odd, so 1 = gcd(−10, x) (we can find by casework that x ̸= 5 and x ̸= −5).
Since P ⊇ ⟨−10, x⟩, this implies P ⊇ ⟨1⟩ and thus P = R (contradiction). Thus,
⟨y +

√
−5⟩ and ⟨y −

√
−5⟩ have no common factors so by Lemma 3.22, they are

coprime. □

Finally, we can show that ⟨y +
√
−5⟩ and ⟨y −

√
−5⟩ are cubes in Z[

√
−5] using

the nth power law for ideals, Theorem 3.18. With that, we have found analogous
tools to those used to solve our very first Diophantine equation, y2 = x3+4, to solve
the similarly simple-looking but much trickier equation y2 = x3−5. It happens that
this equation and the ring in which it factors are special cases that have simplified
our task, but delving into these topics (in particular, class groups) is beyond the
scope of this paper. However, there is much to be gained by studying this special
case! With any luck, this paper has given you a deeper appreciation for some
properties of the integers which we may take for granted, a concrete motivation for
the construction of the ideals, and a glimpse of one of the many ways in which they
can be useful.
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