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Abstract. This paper serves as an introduction to measure theory and func-

tional analysis through an exploration of Lp spaces, also known as Lebesgue

spaces. Our goal is to demonstrate the completeness of Lp spaces, formally
known as the Riesz-Fischer Theorem. We assume the reader has a solid grasp

of concepts in undergraduate-level real analysis and linear algebra, but might

not have a rigorous foundation in more advanced analytical topics. Accord-
ingly, we will slowly build up to the Riesz-Fischer Theorem by introducing

prerequisite concepts such as metric spaces, normed spaces, sigma algebras,

Borel sets, Minkowski’s inequality, and the Monotone and Dominated Conver-
gence Theorems.
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1. Basic Banach Space Theory

The study of real analysis is characterized by the concepts of size and distance.
This notion also holds practical value; economists, physicists, and biologists are all
concerned with taking precise measurements of objects. One of the fundamental
ways in which we formalize the idea of magnitude in mathematics is through the
concept of a metric. As an exercise, the reader might ponder what properties of
a metric make intuitive sense. For instance, take the number of miles between
arbitrary points A and B. It is never negative, it is only ever zero if A and B are
the same places, the journey there is the same length as the journey back, and
detours are always longer. We can write this mathematically in the following way.

Definition 1.1. A metric on a nonempty set V is a function d : V × V → [0,∞)1

such that:
i) d(f, g) = 0 if and only if f = g, for all f, g ∈ V (Definiteness)

1Some authors are explicit in requiring that a metric, and as we shall see later, a norm, is
always greater or equal to zero. This condition is called non-negativity.
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ii) d(f, g) = d(g, f), for all f, g ∈ V (Symmetry)
iii) d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ V (Triangle inequality)

We can easily take the idea of a metric and apply it to a set. Such a set can be
something as simple as some arbitrary finite collection {ϕ, γ, ρ} to more complicated
objects like R. When we do so, we arrive at the idea of a metric space.

Definition 1.2. A metric space is a pair (V, d), where V is a nonempty set and d
is a metric on v.

Example 1.3. The most typical example of a metric space is the Euclidean plane
(R2, d) where d((x1, y1), (x2, y2)) =

√
(x2 − x1)2 + (y2 − y1)2. As you may recall,

this construction allows us to find the distance between two points by connecting
a straight 2-D line between them. Another metric that we could’ve defined on this
set is d((x1, y1), (x2, y2)) = |x2 − x1| + |y2 − y1|. This metric is also known as the
’taxicab metric’ because of how this notion of distance only allows us to ’travel’
between points using lines that are parallel to the x and y axes, which resembles
the block-like path of a car driving through an urban center.

We can now make the definition of a metric space more robust. The reader might
recall that some sequences in Q do not converge to a limit in Q. Thus, we can refer
to this as an ’incomplete’ metric space. This fact is troublesome because we can
think of an incomplete metric space as missing elements. Though a separate issue,
it is worth pointing out that every incomplete metric space can be made complete
by adding the missing elements. We now introduce the notion of a complete metric
space, but first give the following definition.

Definition 1.4. A sequence an is called a Cauchy sequence if for any given ϵ > 0,
there exists N ∈ N such that n,m ≥ N implies |an − am| < ϵ.

We are now ready to consider the formal notion of a complete metric space.

Definition 1.5. A complete metric space is a metric space M such that every
Cauchy sequence in M converges to a limit in M .

Example 1.6. Let C[0, 1] represent the set of continuous real-valued functions
defined on the closed interval [0, 1]. Define a metric d on the set C[0, 1] × C[0, 1]
by d(f, g) = sup{|f(t) − g(t)| : t ∈ [0, 1]}, where f, g ∈ C[0, 1]. Then d is a metric
on the set C[0, 1].

The fact that C[0, 1] is a closed and bounded set, where each function is defined
entirely over [0, 1], is relevant here. Applying the supremum norm to such a set
will yield a complete metric space. However, if we change our set to C(0, 1), we see
that we may not have a complete metric space. The reason for this is that not all
continuous functions are bounded, so the supremum norm cannot be defined. If we
limit ourselves to the set of bounded and continuous real-valued functions on the
interval (0, 1), then we have a complete metric space.

We now introduce a slightly more abstract notion of size, known as a norm, that
is used to analyze vector spaces.

Definition 1.7. A norm on a vector space V over a field F is a function ∥ · || :
V → [0,∞) satisfying the following properties:
i) ∥v|| = 0 if and only if v = 0 (Definiteness)
ii) ∥λv|| = |λ|∥v|| for all v ∈ V and λ ∈ F (Homogeneity)
iii) ∥v1 + v2|| ≤ ∥v1||+ ∥v2|| for all v1, v2 ∈ V (Triangle inequality)
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Comparing these properties with those of a metric, we see that we continue to
require definiteness and the triangle inequality, but symmetry is not relevant as a
condition and we additionally require that homogeneity is satisfied. A norm is a
useful concept because it allows to measure the relative size of a vector, including
the distance between vectors if we use the norm to induce the distance function
d(x, y) = ∥x− y||.
Example 1.8. Let v be an n-tuple in the linear space Rn such that we can write
this vector as v = (v1, v2, . . . , vn). Then the following are norms we can define on
this particular linear space that will be of particular interest later.
i) ∥v||1 = |v1|+ |v2|+ . . .+ |vn|
ii) ∥v||p = {|v1|p + |v2|p + . . .+ |vn|p}

1
p , where p ≥ 1

iii) ∥v||∞ = sup{|v1|, |v2|, . . . , |vn|}
It is fairly straightforward to verify that ∥v||1 and ∥v||∞ are norms and that ∥v||p

satisfies the definiteness and homogeneity properties of the norm, but showing that
∥v||p obeys the triangle inequality will require more technology. In particular, this
result comes from Minkowski’s inequality, which we shall prove in a later section.
We can now describe a normed space as follows.

Definition 1.9. A normed vector space is a pair (V, ∥ · ||), where V is a vector
space and ∥ · || is a norm V .

Normed vector spaces and metric spaces are distinct mathematical objects, but a
metric can be induced on every normed vector space. Our metric d(x, y) = ∥x−y||,
the canonical metric, demonstrates this point. However, the converse is not true in
general.

Example 1.10. For instance, we can define the following metric, which is not
equivalent to a norm

d(x, y) =

∞∑
n=1

2−n
|xn − yn|

1 + |xn − yn|
.

Just as there are incomplete metric spaces, there are also incomplete normed vec-
tor spaces. We introduce the following definition, which provides a ’nicer’ structure
on which to perform analysis.

Definition 1.11. A Banach space is a vector space equipped with a norm (V, ∥ · ||)
such that V is complete. Banach spaces are also referred to as complete normed
vector spaces.

Example 1.12. One of the most frequently encountered Banach spaces is the
normed space (Rn, | · |), where our norm is the absolute value. This structure
induces the usual Euclidean topology on R.
Example 1.13. Here is an enlightening non-example from [NLBE 2011]; we shall
give a metric on R that is not Banach. Suppose for a metric d : R × R → R, we
define d(x, y) = | arctan(x)−arctan(y)| for all x, y ∈ R. We can see that this metric
induces the usual Euclidean topology on R, but this metric is not complete. To
see this, consider the sequence (1, 2, 3, . . .) in R. Then this sequence is a Cauchy
sequence with our metric d(x, y), but it clearly does not converge to a point in
R. Therefore, our d-Cauchy sequence cannot be a Cauchy sequence in (R, | · |)
because if it was, then the fact that (R, | · |) is a Banach space would give rise to a
contradiction.
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Banach spaces appear many times throughout the study of functional analysis. In
our case, our eventual goal in proving the Riesz-Fischer Theorem is to demonstrate
that a particular set with a defined norm is a Banach space.

2. Introducing Measure Theory

The concept of measure is one that is relatively intuitive to most people; the
notion of measurement is widely applicable to fields such as economics, physics,
and probability theory.

Thus, given its ubiquity, it is hardly surprising that the measure of an object is
one of the most fundamental concepts in Euclidean geometry and is highly intuitive.
Those characteristics influenced our modern definition of measure. For instance, on
the real number line R, we instinctively believe that intervals like [a, b] or (a, b] have
length a−b and that objects like ∅ or individual points have length 0. Also, measure
should be translation-invariant; practically speaking, moving an object around will
not change its length. Lastly, we expect that measure is additive when we combine
distinct objects. After all, in the real world, we can always find the measure of an
object by adding up the measurements of smaller pieces of it. Note that from this
last idea, we can make explicit another intuitive idea: if one object is a subset of
another, its measure is bounded by that of the larger object.

However, formalizing these intuitions proved difficult; it is difficult to prescribe
a general method for measuring an arbitrary subset of Rn. This issue is sometimes
called the ’problem of measure’. For instance, the famous Banach-Tarski paradox
(which requires the Axiom of Choice) demonstrates that a ball in R3 can be decon-
structed into a finite number of pieces and reassembled into two distinct copies of
this ball.

Fortunately, there is a generally accepted solution to the problem of measure:
instead of trying to measure all of the subsets of Rn, we shall confine ourselves to
measuring sets that have some regularity. After all, the sets that cannot be mea-
sured are often pathological sets, such as Vitali sets, which we shall explore later.
We will now demonstrate how we can construct sets that ’have some regularity’,
which we will call ’measurable sets’. But first, we introduce the structure of a
σ-algebra, which allows us to conduct analysis on a regular enough object that we
can derive useful results.

Definition 2.1. Suppose X is a set and S is a set of subsets of X. Then S is called
a σ-algebra on X if the following three conditions hold:
i) ∅ ∈ S
ii) if E ∈ S, then X\E ∈ S
iii) if E1, E2, . . . is a sequence of elements of S, then

⋃∞
k=1Ek ∈ S

There are a few properties that are worth pointing out explicitly. For example,
conditions i) and ii) imply that X is always in S. Also, from de Morgan’s law, we
can derive that σ-algebra is closed under countable intersection, just as it is for
countable unions. More explicitly, we can apply these rules to see that if we have
two sets D,E ∈ S, then we can deduce that D ∪ E,D ∩ E, and D\E ∈ S.

The motivation for this structure is that we aim to define a collection of sets
that can serve as the domain for our measure µ. Therefore, it follows that both
the empty set and the entire set should be measurable and also that knowing
the measure of E and X for E ⊆ X implies X \ E = Ec should have measure
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µ(X) − µ(E). Lastly, knowing the measure of each µ(Ei) implies that we should
know the measure of ∪Ei. In other words, we extend infinitely (but still countably)
the idea that knowing the measures of two objects means we should be able to find
the measure of their sum.

Example 2.2. Here are a few examples of a σ-algebra.
i) Suppose X is a set. Then trivially, {∅, X} is a possible σ-algebra on X.
ii) In R, we can construct the σ-algebra {∅,R,Q,R\Q}.
iii) Suppose X is a set. Then the set of all subsets E of X such that E is countable
or X\E is countable is a σ-algebra on X.
iv) In R, the set of all subsets of R is a σ-algebra on R.
v) In R, the collection of Borel sets, which we are about to define, is a σ-algebra
on R. It is important enough that it deserves its own definition.

The following two definitions naturally follow our discussion of σ-algebras and
will be relevant terms later on.

Definition 2.3. A measurable space is an ordered pair (X,S), where X is a set
and S is a σ-algebra on X.

Definition 2.4. Any element of S is called a S-measurable set.

Example 2.5. For instance, if we have the ordered pair (R,S), where S is the
set of all subsets of R that are countable or have a countable complement, then it
follows that the set of rational numbers is S-measurable but the set of positive real
numbers is not S-measurable.

We now formally introduce Borel sets, a key example of a σ-algebra.

Definition 2.6. The smallest σ-algebra on R containing all open subsets of R is
called the collection of Borel subsets of R. An element of this σ-algebra is called a
Borel set.

Example 2.7. The reader can verify that every closed subset, countable subset,
and half-open interval of R is a Borel set.

Definition 2.8. Suppose that (X,S) is a measurable space. A function f : X → R
is called a S-measurable function, or sometimes just a measurable function if the
context is clear, if for every Borel set B ⊂ R we have that f−1(B) ∈ S.

There are many other ways in which we could define a measurable function. The
symmetric structure of a σ-algebra allows for this. In particular, many analysts
define a measurable function as satisfying the criteria f−1((a,∞)) ∈ S for all a ∈ R.
This definition will be useful going forward because it is far more practical. Sources
such as [Axler2020] offer proof on the equivalences of these definitions, but it is not
directly relevant to our purpose, so we shall leave it as an exercise to the reader.
Intuitively, however, we can see that taking complements and then countable unions
and intersections with (a,∞) will eventually generate every Borel set, assuming
f−1((a,∞)) is in a σ-algebra.

3. Properties of Measure

Now that we have clarified the places where our measure can live, it makes sense
to change our attention to defining a measure and its properties. We give credit to
[Axler2020] as the source for proofs in the following section.
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Definition 3.1. Suppose X is a set and S is a σ-algebra on X. A measure on
(X,S) is a function µ : S → [0,∞) such that, for every disjoint sequence E1, E2, . . .
of sets in S, we have that µ(∅) = 0 and

µ(

∞⋃
k=1

Ek) =

∞∑
k=1

µ(Ek).

Note that the way we have defined measure is sometimes referred to as a ’positive’
or ’nonnegative’ measure. The motivation for this definition comes from attempt-
ing to extend the notion of the length of an interval. However, as the definition
demonstrates, our notion is measure is generalized and can encompass notions such
as length, area, volume, or more abstract quantities.

Example 3.2. Here are noteworthy examples of measures that we can define on a
space.
i) The Dirac measure δc is defined on (X,S) for E ⊂ S by

δc(E)

{
1, if c ∈ E,

0, if c /∈ E.

ii) The counting measure is the measure µ defined on the σ-algebra of all subsets
of X such that µ(E) = n if E is a finite set with n discrete elements. If E is not
finite, then µ(E) = ∞.
iii) Consider the measurable space (X,S) and E ∈ S. Also, let D range over all
finite subsets of E. Then consider a function f : X → [0,∞). We can define a
measure µ as

µ(E) = sup
{∑
x∈D

f(x) : D ⊆ E is finite
}
.

iv) Consider the measurable space (R,B), where B is the σ-algebra generated by
the set of Borel subsets of R. Then we can define the outer measure |A| of a set
A ⊂ R by

|A| = inf
{ ∞∑
k=1

ℓ(Ik) : I1, I2, . . . are open intervals such that A ⊂
∞⋃
k=1

Ik

}
.

In this case, we define the length of an open interval ℓ(I) as

(3.3) ℓ(I) =


b− a, for some a, b ∈ R with a < b,

0, if I = ∅,
∞, if I = (−∞, a) or I = (a,∞) for some a ∈ R,
∞, if I = (−∞,∞).

Example 3.4. We now give an important non-example. Consider the measurable
space (R,S), where S represents the set of all subsets of R. If we apply the outer
measure again as defined by (3.3), we see that we will not have a measure because,
for general sets in R, the outer measure does not satisfy countable additivity on
disjoint sets, a core property of measure. We will elaborate on this point with
Example 3.14 when we review Vitali sets, a classic example of a non-measurable
set. It was not a problem that we used the outer measure in our previous example
because we restricted our analysis to measurable sets: specifically, the Borel sets.
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The concept of outer measure is foundational to measure theory; for instance,
we will briefly use it to build up to the notion of a Lebesgue measurable function,
which itself is relevant to deeper results in functional analysis.

Definition 3.5. A set A ⊂ R is called a Lebesgue measurable set if there exists a
Borel set B ⊂ A such that |A\B| = 0. Here, we apply the outer measure as defined
by (3.3).

Using this definition, we can introduce the following key concept.

Definition 3.6. A function f : A→ R, where A ⊂ R, is called a Lebesgue measur-
able function if f−1(B) is a Lebesgue measurable set for every Borel set B ⊂ R.

We note that there are a number of equivalent definitions for a Lebesgue measurable
set. However, familiarity with each of them is not central to the focus of this paper,
so we do not explore them in detail here.

As we’ve explored, the specific measure that we choose is relevant to our analysis.
If we are considering a particular measure alongside a measurable space (X,S), then
we shall call it a measure space and use the following notation.

Definition 3.7. A measure space is an ordered triple (X,S, µ), where X is a set,
S is a σ-algebra on X, and µ is a measure on (X,S).

We now introduce a few foundational properties of a measure.

Corollary 3.8. (measure preserves order). Consider the measure space (X,S, µ)
and D,E ∈ S are such that D ⊂ E. Then µ(D) ≤ µ(E).

Proof. Observe that E = D ∪ (E\D) and this is a disjoint union. Then because
measure is additive, we have

µ(E) = µ(D) + µ(E\D) ≥ µ(D).

□

Corollary 3.9. (measure of set difference). Consider the measure space (X,S, µ).
If D,E ∈ S are such that D ⊂ E and µ(D) <∞, then µ(E\D) = µ(E)− µ(D).

Proof. Suppose µ(D) < ∞. Then subtracting µ(D) from both sides leads to our
result. □

Corollary 3.10. (countable subadditivity). Suppose then that we have the measure
space (X,S, µ) and E1, E2, . . . ∈ S. Then

µ(

∞⋃
k=1

Ek) ≤
∞∑
k=1

µ(Ek).

Proof. Let D1 = ∅ and Dk = E1 ∪ · · · ∪Ek−1 for k ≥ 2. Then E1\D1, E2\D2, . . . is
a disjoint sequence of subsets of X whose union equals ∪∞

k=1Ek. Then, due to the
countable additivity of µ, we have

µ(

∞⋃
k=1

Ek) = µ(

∞⋃
k=1

(Ek\Dk))

=

∞∑
k=1

µ((Ek\Dk)).
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Finally, because we know that measure preserves order, we conclude
∞∑
k=1

µ((Ek\Dk)) ≤
∞∑
k=1

µ(Ek),

and the result is proven. □

Corollary 3.11. (measure of increasing union). Suppose (X,S, µ) is a measure
space and the sets E1 ⊂ E2 ⊂ · · · are in S. Then

µ(

∞⋃
k=1

Ek) = lim
k=1

µ(Ek).

Proof. If µ(Ek) = ∞ for some k ∈ Z+, then our result holds because both sides
will equal ∞. Therefore, we only need to consider the case where µ(Ek) < ∞ for
all k ∈ Z+.
Suppose that E0 = ∅. Then we have that

∞⋃
k=1

Ek =

∞⋃
k=1

(Ej\Ej−1).

Therefore, we can see that

µ(

∞⋃
k=1

Ek =

∞∑
j=1

µ(Ej\Ej−1)

= lim
k→∞

k∑
j=1

µ(Ej\Ej−1)

= lim
k→∞

k∑
j=1

(µ(Ej)− µ(Ej−1))

= lim
k→∞

µ(Ek).

□

Corollary 3.12. (measure of decreasing intersection). Suppose (X,S, µ) is a mea-
sure space and the sets E1 ⊃ E2 ⊃ · · · are in S, with µ(E1) <∞. Then

µ(

∞⋂
k=1

Ek) = lim
k→∞

µ(Ek).

Proof. From de Morgan’s laws, we know that

E1\
∞⋂
k=1

Ek =

∞⋃
k=1

(E1\Ek).

Then consider an increasing sequence of sets in S such that

E1\E1 ⊂ E1\E2 ⊂ E1\E3

is an increasing sequence of sets in S. A quick application of Corollary 3.11 tells
us that

µ(E1\
∞⋂
k=1

Ek) = lim
k→∞

µ(E1\Ek).
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Applying Corollary 3.9, we can rewrite this as

µ(E1)− µ(

∞⋂
k=1

Ek) = µ(E1)− lim
k→∞

µ(Ek),

and the result follows. □

Corollary 3.13. (measure of union). Suppose (X,S, µ) is a measure space and
D,E ∈ S, with µ(D ∩ E) <∞. Then

µ(D ∪ E) = µ(D) + µ(E)− µ(D ∩ E).

Proof.

D ∪ E = (D\(D ∩ E)) ∪ (E\(D ∩ E)) ∪ (D ∩ E).

Then because the right hand side of this equation is a disjoint union, we have

µ(D ∪ E) = µ(D\(D ∩ E)) + µ(E\(D ∩ E)) + µ(D ∩ E)

= (µ(D)− µ(D ∩ E)) + (µ(E)− µ(D ∩ E)) + µ(D ∩ E)

= µ(D) + µ(E)− µ(D ∩ E).

□

Example 3.14. Here, we offer an example of a non-measurable set in the form
of Vitali sets. We begin by showing how to construct such a set. Let us start
by considering the set of real numbers in [0, 1]. We then partition this set using
equivalence classes. Our rule for determining whether two numbers are equivalent
is the following: for x, y ∈ [0, 1] ⊂ R, we call x ∼ y if x − y ∈ Q. Notice that this
implies that all rational numbers in [0, 1] are equivalent to each other.

Having dealt with the rationals, consider some irrational number n ∈ [0, 1]. The
difference of an irrational and a rational is always irrational, so we can also see
that no irrational number is in the same class as the rational numbers. We must
then create a new equivalence class for n. Then notice that while the difference
between n and another irrational may be either rational or irrational, the difference
between n and any rational translate of n is always rational: n − (n + r) ∈ Q.
Thus, our equivalence class for n must also contain every rational translate of this
number that exists in [0, 1]. Informally speaking, we can think of the numbers in
the equivalence class for a given n as having the same irrational ’ending’. Every real
number in [0, 1] belongs to exactly one of the countably infinite equivalence classes
that we can inductively construct by this process. Using the Axiom of Choice, we
can choose one element from each equivalence class to form a Vitali set V .

We now prove by contradiction that V is non-measurable because it violates our
intuitively-derived properties of measure. To begin, suppose V is measurable and
recall that we can enumerate the rational numbers in [−1, 1] as r1, r2, . . .. We can
then use these numbers to create rationally shifted copies of this particular Vitali
set, generating the disjoint sets V +r1, V +r2, . . .. Then consider the union of these
sets. It must be a subset of [−1, 2] because we are only shifting V by at most one
unit in the positive and negative directions. Thus, we have

∞⋃
n=1

(V + rn) ⊆ [−1, 2].
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From the fact that measure preserves order, formally defined by Corollary 3.8, we
deduce that

µ(

∞⋃
n=1

(V + rn)) ≤ µ([−1, 2]).

We can also see that every real number in [0, 1] must appear in our union, so

[0, 1] ⊆
∞⋃
n=1

(V + rn) ⊆ [−1, 2].

This implies that

µ([0, 1]) ≤ µ(

∞⋃
n=1

(V + rn)) ≤ µ([−1, 2]).

If we let our measure be the outer measure defined by (3.3) such that µ([a, b]) = b−a,
then we can impose bounds on the measure of the union of our Vitali sets and
rewrite this as

1 ≤ µ(

∞⋃
n=1

(V + rn)) ≤ 3.

We know that each of our Vitali sets has the same length because they are copies
of one another, so (V + rn) is identical for all n ∈ N. Then the last piece of the
proof is to recognize that measure is additive for disjoint subsets, so by Definition
3.1, we know the sum of the measures of the Vitali sets is bounded such that

1 ≤
∞∑
n=1

(µ(V + rn)) ≤ 3.

Of course, it is impossible to add a finite value infinitely many times to itself and
obtain a finite value. Therefore, our result is a contradiction.

As mentioned earlier, one could argue that this set is a pathological example
of a non-measurable set. Among such cases, Vitali sets are among the easiest
to construct. Intuitively, though we point to flaws, this idea should build confi-
dence in the robustness of our definition of measurability. In fact, Robert Solovay
demonstrated in 1970 that the existence of a non-Lebesgue measurable set cannot
be proved under the axioms of Zermelo-Frankel set theory without the Axiom of
Choice [Solovay1970]. It follows that proving the outer measure–which we used to
measure our Vitali sets–satisfies additivity, in general, for any countable number
of disjoint sets in R would need to contradict the Axiom of Choice. However, by
limiting our attention to measurable sets, we can avoid such issues.

4. Measure-Theoretic Convergence Theorems

We begin our study by briefly reviewing two fundamental types of convergence.

Definition 4.1. Suppose X is a set, f1, f2, . . . is a sequence of functions from X
to R, and f is a function also from X to R. Then the sequence f1, f2, . . . converges
pointwise on X to f if

lim
k→∞

fk(x) = f(x)

for each x ∈ X.
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Figure 1. Graph of fn(x) = xn, from [Magnus2020].

Alternatively, we could say that a sequence f1, f2, . . . converges pointwise onX to
f if for each x ∈ X and every ϵ > 0, there exists n ∈ Z+ such that |fk(x)−f(x)| < ϵ
for all integers k ≥ n.

Definition 4.2. Suppose X is a set, f1, f2, . . . is a sequence of functions from X
to R, and f is a function from X to R. Then the sequence f1, f2, . . . is said to
converge uniformly on X to f if for every ϵ > 0, there exists n ∈ Z+ such that
|fk(x)− f(x)| < ϵ for all integers k ≥ n and all x ∈ X.

The distinction between pointwise and uniform convergence is subtle. Intuitively,
if a sequence of functions will eventually converge to f for every point in the domain
as n → ∞, then we have pointwise convergence. However, the essence of the
distinction is that a sequence of functions may converge to f at different rates for
different values of the domain. In particular, if our sequence of functions converges
at a uniform rate, we arrive at uniform convergence, a stronger form of pointwise
convergence.

For instance, consider the sequence of functions fn(x) = xn on the domain [0, 1].
The graph of these functions is given by (fig. 1). It is clear that as n → ∞, all
fn(x) approach 0 on the domain [0, 1). However, at the point x = 1 itself, we
see that the value of fn(1) = 1 for all n ∈ N because multiplying 1 by itself any
number of times is always equal to 1. Thus, it is clear that at different points
along the domain, we have different rates of convergence. If a function is uniformly
continuous, we should be able to construct an ϵ-radius around a given fn(x) that
encapsulates the entire function, without worrying about where we are along the
domain. As (fig. 1) demonstrates, it is possible to construct such a radius that does
not include the point where fn(1) = 1, so we cannot have uniform convergence.
Equivalently stated, if the limit function is discontinuous, then we cannot have
uniform convergence. In fact, as sources like [Pugh2015] explain, the uniform limit
of continuous functions is continuous. Evidently, pointwise convergence is not a
particularly strong concept.

Now that we have built a rigorous foundation in our understanding of conver-
gence, we will begin to consider more complicated theorems that build on these
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ideas. After all, the convergence theorems in Lebesgue theory are integral to the
study of functional analysis. One of the advantages of Lebesgue theory over the
theory of Riemann integration is that many features are preserved under limits.
The convergence theorems that we explore in this section are built on this idea.
In contrast, Riemann integrable functions are not closed under pointwise limits, a
fact that is well demonstrated by sources like [Axler2020], which makes them more
difficult to generalize and apply. For example, if we have some sequence of Riemann
integrable functions {fn} → f , then the limit is not necessarily Riemann integrable.
Assuming that fn for all n is measurable, however, allows us to conclude that f
is measurable. Therefore, these results will be key to performing mathematical
analysis, where we often consider the limits of functions or sets.

As mentioned, one of the major advantages of Lebesgue integration over Rie-
mann integration is that the pointwise limit of S-measurable functions is itself
S-measurable. We shall now prove that this is true.

Theorem 4.3. (measure space is closed under pointwise limits). Suppose that
(X,S) is a measurable space and we have a sequence of S-measurable functions
f1, f2, . . . from X → R. Also, assume that limk→∞ fk(x) exists for all x ∈ X. We
define f : X → R by

f(x) = lim
k→∞

fk(x).

Then f is an S-measurable function.

Proof. We follow [Axler2020] and demonstrate that

(4.4) f−1((a,∞)) =

∞⋃
j=1

∞⋃
m=1

∞⋂
k=m

f−1
k ((a+

1

j
,∞)).

In particular, to prove that these sets are equal, we shall demonstrate that each is
a subset of the other. We begin by assuming x ∈ f−1((a,∞)); in other words, we
have {x ∈ X : f(x) > a}. Also, recall that lim infn→∞An =

⋃∞
n=1

⋂∞
k=nAk. These

facts allow us to conclude that there is some j ∈ Z+ such that f(x) > a+ 1
j . From

the definition of a limit, we can now see that there must be some m ∈ Z+ such
that fk(x) > a+ 1

j for all k ≥ m. Thus, it follows that x is in the right hand side

of (4.4). We now assume x is a member of the right hand side of (4.4). Therefore,
we have that there must exist j,m ∈ Z+ such that fk(x) > a + 1

j for all k ≥ m.

We can then apply the limit as k → ∞ to see that f(x) ≥ a + 1
j > a. Thus, x is

a member of the left hand side of our equation. We’ve thus proven that each side
is a subset of the other, so we must have equality. That (4.4) is true implies that
f−1((a,∞)) ∈ S, meaning it is S-measurable. □

Now that we have established the closure of a measure space under pointwise
limits, the below corollary readily follows; we credit [Bartle1966] for the proofs in
the remainder of this section.

Corollary 4.5. If (fn) is a sequence in (X,S, µ) which converges to f on X, then
f ∈ (X,S, µ).

Proof. Our result follows from Theorem 4.3. In this case, f(x) = lim fn(x) =
lim inf fn(x). □
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Before we continue our discussion of limits, we need to carefully reintroduce
the functions on which we will apply these theorems, so we shall start on a basic
level. We will introduce characteristic functions and use them to construct simple
functions. When we consider many results that might apply for Lp spaces, we will
often find ourselves asking whether the result is true for simple functions. In fact,
as we will demonstrate by later, we can express every measurable function as a
limit of simple functions, so this simplification will enhance our study.

Another simplification that we often make is to require our functions to be non-
negative. This assumption allows us to apply powerful results, like the Monotone
Convergence Theorem, which require that functions are nonnegative. We can then
extend our result to include negative functions because every real-valued function
can be interpreted as the difference of two nonnegative functions, as justified by the
definition we will explore next. Thus, results that hold for nonnegative functions
also tend to hold for all real-valued functions.

Definition 4.6. If we have some function f on a set X to R, we can define the
nonnegative functions

f+(x) = sup{f(x), 0}, and f−(x) = sup{−f(x), 0},∀x ∈ X,

where we call f+ is called the positive part of f and f− is called the negative part
of f .

This definition is relatively straightforward, but it is quite powerful. In particu-
lar, it readily follows that f = f+ − f− and |f | = f+ + f−. The integrals of these
functions shall follow a similar structure. These results imply that a function f is
measurable if and only if f+ and f− are measurable.

We now introduce another elementary function: the characteristic function.

Definition 4.7. The characteristic function χE , sometimes called an indicator
function, is defined by

χE(x)

{
= 1, x ∈ E,

= 0, x /∈ E.

We can use this idea to develop the following function. In the following definitions
let c1, . . . , cn denote an arbitrary sequence of arbitrary real numbers.

Definition 4.8. A step function is a real-valued function Ψ(x) which is a finite
linear combination of characteristic functions of intervals, defined by

Ψ(x) =

n∑
j=1

cjχEj
,

where Ej represents an interval.

Definition 4.9. We can then use the prior construction to define the integral of a
step function Ψ(x) to be ∫

Ψ(x) =

n∑
j=1

cj(bj − aj),

where Ej represents an interval with endpoints aj and bj .
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The prior definition is relevant because we can use step functions to define the
Riemann integral as the limit of the integrals of the step functions that approximate
our target function. For instance, the lower Riemann integral of a function f(x)
would be defined as the supremum of the integrals of all step functions Ψ(x) such
that Ψ(x) ≤ f(x) for all x ∈ [a, b]; we would also let Ψ(x) = 0 for x /∈ [a, b].

In constructing the Lebesgue integral, we follow a parallel process, but with
some slight differences. Namely, instead of using step functions, which are defined
to work with intervals of R, we shall generalize our sets to be any E ∈ S. We then
arrive at the following definition.

Definition 4.10. A simple function is a real-valued function ψ which is a finite
linear combination of characteristic functions of sets belonging to S. That is, a
simple function can be represented as

ψ(x) =

n∑
j=1

cjχEj

where χEj
is the characteristic function of a set Ej in S. We can define a unique

standard representation for a simple measurable function such that the aj are dis-
tinct and the Ej are distinct nonempty subsets of X and X =

⋃n
j=1Ej .

Generalizations of step functions, simple functions are a foundation for the rest
of our study. Some authors may equivalently state that step and simple functions
are defined by having a finite number of output values.

Definition 4.11. We can now define the integral of a simple function ψ(x) to be∫
ψ(x) =

n∑
j=1

cjµ(Ej),

where µ(Ej) denotes the measure of a set in S. Canonically, we now consider the
values for cj to be distinct and the sets Ei to be disjoint.

Note that our definition does not explicitly employ a characteristic function for
the set Ej . Therefore, the curious reader may look to [Royden2018] for evidence of
the fact that if we have disjoint sets Ei, then

ψ =

n∑
i=1

ciχEi
on E implies that

∫
ψ(x) =

n∑
i=1

ciµ(Ei).

We shall apply this fact in the following pages.
As we mentioned, to simplify our analysis, we can limit our attention to nonneg-

ative functions. When relevant, we will adjust our notation to reflect the fact that
we are working with nonnegative measurable functions.

Definition 4.12. In particular, we shall denote that collection of all nonnegative
S-measurable functions mapping X to the extended real number line by (X,S, µ)+.
A function f ∈ (X,S, µ)+ is a nonnegative S-measurable function.

Now that we have laid out our terms, we shall introduce the properties of func-
tions in a measure space, starting with those of simple functions.

Theorem 4.13. If ψ ∈ (X,S, µ)+, then there exists a sequence (ψn) in (X,S, µ)+
such that
a) Each ψn is a simple measurable function,



LEBESGUE SPACES AND THE RIESZ-FISCHER THEOREM 15

b) 0 ≤ ψn(x) ≤ ψn+1(x) for x ∈ X,n ∈ N, and
c) ψ(x) = limψn(x) for each x ∈ X.

Proof. Let n be a fixed natural number. If k = 0, 1, . . . , n2n− 1, let Ekn be the set

Ekn = {x ∈ X : k2−n ≤ ψ(x) < (k + 1)2−n},
and if k = n2n, we can let Ekn be the set x ∈ X : ψ(x) ≥ n. Notice that the sets
Ekn : k = 0, 1, . . . , n2n are disjoint, in S, and have union equal to X. If we let
ψn = k2−n on Ekn, then ψn belongs to (X,S, µ)+. Then properties (a), (b), and
(c) can quickly be demonstrated. □

We now demonstrate that simple measurable functions obey a few basic properties.

Theorem 4.14. (linearity for bounded measurable functions). If ϕ and ψ are
simple functions in (X,S, µ)+ and we have a scalar a ≥ 0, then∫

aϕ dµ = a

∫
ϕ dµ.

Also, ∫
(ϕ+ ψ) dµ =

∫
ϕ dµ+

∫
ψ dµ.

Proof. We begin by demonstrating that our integral is linear under scalar multipli-
cation. If a = 0, then aϕ disappears and our proof is trivial. If a > 0, then aϕ is in
(X,S, µ)+ and has the standard representation

aϕ =

n∑
j=1

abjχEj .

Thus, we can say that ∫
aϕ dµ =

n∑
j=1

abjµ(Ej)

= a

n∑
j=1

bjµ(Ej)

= a

∫
ϕdµ.

Next, we demonstrate that our integral is linear under addition. We shall let our
simple functions assume the following standard representations:

ϕ =

n∑
j=1

ajχEj , and ψ =

m∑
k=1

bkχFk
,

where we have disjoint nonempty sets and unique scalars aj and bk. Therefore, it
follows that the function ϕ+ ψ can be represented as

ϕ+ ψ =

n∑
j=1

m∑
k=1

(aj + bk)χEj∩Fk
.

However, we should note that this particular representation of ϕ + ψ, as a linear
combination of the disjoint sets Ej ∩ Fk, is actually not necessarily the standard
representation for ϕ + ψ; in particular, it is possible that the scalar values (aj +
bk) are not unique, which is clearly incompatible with our definition of standard
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representation. Thus, let us take the distinct numbers in the set of {aj + bk} and
represent these as ch for some h ∈ N. Then let Gh be the union of those sets
Ej ∩ Fk ̸= ∅ such that aj + bk = ch. Therefore, we have the summation over all j
and k

µ(Gh) =
∑
h

µ(Ej ∩ Fk).

Then, we have that the standard representation of ϕ+ ψ can be written as

ϕ+ ψ =

p∑
h=1

chχGh
.

Thus, we can deduce that ∫
(ϕ+ ψ) dµ =

p∑
h=1

chµ(Gh)

=

p∑
h=1

∑
h

chµ(Ej ∩ Fk)

=

p∑
h=1

∑
h

(aj + bk)µ(Ej ∩ Fk)

=

n∑
j=1

m∑
k=1

(aj + bk)µ(Ej ∩ Fk)

=

n∑
j=1

m∑
k=1

ajµ(Ej ∩ Fk) +
n∑
j=1

m∑
k=1

bkµ(Ej ∩ Fk).

Next, we can apply the fact that X is the union of both of the disjoint families
{Ej} and {Fk} to see that

µ(Ej) =

m∑
k=1

µ(Ej ∩ Fk), and that µ(Fk) =

n∑
j=1

µ(Ej ∩ FK).

It follows that ∫
(ϕ+ ψ) dµ =

n∑
j=1

ajµ(Ej) +

m∑
k=1

bkµ(Fk).

Thus, our result holds. □

Now that we have demonstrated that integration satisfies linearity, we can see
that our earlier requirement that the sets Ei are disjoint is not necessary any further.

Theorem 4.15. If ψ is a simple function in (X,S, µ)+ and λ is defined for E in
S, then

λ(E) =

∫
ψχE dµ,

so λ is a measure on (X,S, µ)+.
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Proof. We begin by noticing that

ψχE =

n∑
j=1

ajχEj∩E .

Therefore, from Theorem 4.14, we can apply induction to demonstrate that

λ(E) =

∫
ψχE dµ =

n∑
j=1

aj

∫
χEj∩E dµ

=

n∑
j=1

ajµ(Ej ∩ E).

As the reader can verify, the mapping E → µ(Ej ∩ E) is a measure, so we can say
that we have expressed λ as a linear combination of measures on S. Then it can
also be verified that λ is a measure on S. □

Then we use the integral of a simple function to define the following.

Definition 4.16. We define the Lebesgue integral of a nonnegative function f as
the common value of the supremum of the integrals of all simple functions that are
less than or equal to the function for a given x and the infimum of the integrals
of all simple functions that are greater or equal to the function for a given x.
Symbolically, we have ∫

f dµ = sup
{∫

X

ψ dµ : ψ ≤ f
}
,

and

∫
f dµ = inf

{∫
X

ϕ dµ : f ≤ ϕ
}
,

where ψ, ϕ are simple functions and f is a nonnegative function on X.

Here are two key properties of the Lebesgue integral.

Theorem 4.17. (homogeneity of nonnegative measurable functions). (a) If f, g ∈
(X,S, µ)+ and f ≤ g, then

(4.18)

∫
f dµ ≤

∫
g dµ.

(b) If f ∈ (X,S, µ)+, we have E,F ∈ S, and E ⊆ F , then∫
E

f dµ ≤
∫
F

f dµ.

Proof. (a) If ψ is a simple function in (X,S, µ)+ such that 0 ≤ ψ ≤ f , then
0 ≤ ψ ≤ g. Thus, (4.18) must hold.

(b) We have fχE
≤ fχF

, so (b) follows from (a). □

The following, together with Fatou’s Lemma and the Dominated Convergence
Theorem, are celebrated results in Lebesgue theory. It is natural to wonder whether
operators such as limn→∞ and

∫
commute. Though they do not in general, the

Monotone and Dominated Convergence Theorems allow us to interchange these
operators given a certain criteria. As we will see later, Fatou’s Lemma answers
this question if we cannot make any additional assumptions about the functions in
question.
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Theorem 4.19. (Monotone Convergence Theorem).2 Suppose (X,S, µ)+ is a mea-
sure space and 0 ≤ f2 ≤ f2 ≤ . . . is an increasing sequence of S-measurable func-
tions in this space. Define f : X → [0,∞) by

f(x) = lim
k→∞

fk(x).

Then

(4.20) lim
k→∞

∫
fk dµ =

∫
f dµ

Proof. From Corollary 4.5, we know that f is a measurable function. We can apply
Theorem 4.17 to the fact that fn ≤ fn+1 ≤ f to demonstrate that∫

fn dµ ≤
∫
fn+1 dµ ≤ f dµ

for all n ∈ N. Therefore, we have that

lim

∫
fn dµ ≤

∫
f dµ.

We then aim to establish the opposite inequality. Let a be a real number that
satisfies 0 < a < 1 and let ψ be a simple measurable function that satisfies 0 ≤ ψ ≤
f . Also, let

An = {x ∈ X : fn(x) ≥ aψ(x)}
such that An ∈ S, An ⊆ An+1 and X = ∪An. From Theorem 4.17, we have that

(4.21)

∫
An

aψ dµ ≤
∫
An

fn dµ ≤
∫
fn dµ.

The sequence (An) is monotone increasing and has union X, so it follows from
Theorem 4.15 and Corollary (3.11 that∫

ψ dµ = lim

∫
An

ψ dµ.

Thus, when we take the limit of (4.21) with respect to n, we derive

a

∫
ψ dµ ≤ lim

∫
fn dµ.

This holds for all a with 0 < a < 1, so we deduce that∫
ψ dµ ≤ lim

∫
fn dµ.

We know that ψ is a simple function in (X,S, µ)+ that satisfies 0 ≤ ψ ≤ f, thus
we conclude that ∫

f dµ = sup
ψ

∫
ψ dµ ≤ lim

∫
fn dµ.

When we combine this result with the opposite inequality, we obtain (4.20). □

2In many ways, continuity and measurability are analogous notions. The curious reader may

study Dini’s Theorem, a result that is quite similar to the Monotone Convergence Theorem. As

given by [Rudin1976], it holds that if a monotone sequence of continuous functions converges
pointwise on a compact space and if the limit function is also continuous, then the convergence is

uniform.
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We now introduce Fatou’s Lemma. Notice that, in contrast to the Monotone and
Dominated Convergence Theorems, we do not impose any special requirements on
our functions; it is as close as we’ll be able to get to interchange the limit and
integration operations without such requirements.

Theorem 4.22. (Fatou’s Lemma). Suppose that (X,S, µ)+ is a measure space
and f1, f2, . . . is a sequence of functions in this space. Define a function f : X →
(−∞,∞) by f(x) = lim infk→∞ fk(x). Then∫

f dµ ≤ lim inf
k→∞

∫
fk dµ.

Proof. Let gm = inf{fm, fm+1, . . .} so that gm ≤ fn whenever m ≤ n. Therefore,∫
gm dµ ≤

∫
fn dµ, where m ≤ n,

so that ∫
gm dµ ≤ lim inf

∫
fn dµ.

The sequence (gm) is increasing and converges to lim inf fn, so the Monotone Con-
vergence Theorem implies∫

(lim inf fn) dµ = lim

∫
gm dµ

≤ lim inf

∫
fn dµ.

□

In addition to Fatou’s Lemma, the Monotone Convergence Theorem allows us
to derive other fundamental results. For instance, we have already proven that
integration is linear and monotonic for bounded measurable functions Theorem
4.14, but we are now equipped to demonstrate that these properties can be extended
to any nonnegative measurable functions. We have the following theorem.

Theorem 4.23. (linearity of scalar multiplication for nonnegative measurable func-
tions). If f ∈ (X,S, µ)+ and a ≥ 0, then af ∈ (X,S, µ)+ and∫

af dµ = a

∫
f dµ.

Proof. The proof is trivial for a = 0. When a > 0, we can let (fn) be a sequence
of simple functions in (X,S, µ)+ that is monotone increasing and converging to f
on X. Then (afn) is a monotone sequence converging to af . We can then apply
Theorem 4.14 and the Monotone Convergence Theorem to obtain∫

af dµ = lim

∫
afn dµ

= a lim

∫
fn dµ

= a

∫
f dµ.

□
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Theorem 4.24. (linearity of addition for nonnegative functions). If f, g ∈ (X,S, µ)+,
then f + g belongs to (X,S, µ)+ and∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. Consider the monotone increasing sequences (ψn) and (ϕn), converging to
f and g, respectively. Then (ψn+ ϕn) is a monotone increasing sequence that con-
verges to f + g. It then follows from Theorem 4.14 and the Monotone Convergence
Theorem that ∫

(f + g) dµ = lim

∫
(ψn + ϕn) dµ

= lim

∫
ψn dµ+ lim

∫
ϕ dµ

=

∫
f dµ+

∫
g dµ.

□

Finally, we come to another strength of Lebesgue theory: absolute integrability.
Recall that in evaluating a Riemann integral, we may not be able to compute the
improper Riemann integral of a function. However, this is not an issue here, as we
shall see.

Theorem 4.25. (absolute integrability). A measurable function f is integrable if
and only if |f | is integrable. In particular,

|
∫
f dµ| ≤

∫
|f | dµ.

Proof. By definition, f is integrable if and only if f+ and f− belong to (X,S, µ)+
and have finite integrals. Since |f |+ = |f | = f+ + f− and |f |− = 0, our statement
follows from Theorems 4.17 and 4.24. Furthermore,

|
∫
f dµ| = |

∫
f+ dµ−

∫
f− dµ|

≤
∫
f+ dµ+

∫
f− dµ

=

∫
(f+ + f−) dµ

=

∫
|f | dµ.

□

We have demonstrated before that homogeneity and linearity are fundamental
properties that hold for more special types of functions. We now generalize these
to all measurable functions.

Theorem 4.26. (homogeneity of measurable functions). If f is measurable, g is
integrable, and |f | ≤ |g|, then f is integrable, and∫

|f | dµ ≤
∫

|g| dµ.

Proof. This result follows from Theorems 4.17 and 4.25. □
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Theorem 4.27. (linearity of addition for measurable functions). The sum f + g
of integrable functions is also integrable. That is,∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. We follow [Bartle1966]. First, note that since we take f and g as functions
in our measure space, it follows that |f | and |g| are also in this set. Then by our
definition of a metric space, |f + g| ≤ |f | + |g|, so we deduce from Theorems 4.24
and 4.26 that f + g is in the measure space. Next, we see that

f + g = (f+ + g+)− (f− + g−).

This implies that∫
(f + g) dµ =

∫
(f+ + g+) dµ−

∫
(f− + g−) dµ

=

∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ

=

∫
f dµ+

∫
g dµ.

□

Theorem 4.28. (linearity of scalar multiplication for measurable functions). A
constant multiple of an integrable function af is also integrable. That is,∫

af dµ = a

∫
f dµ.

Proof. If a = 0, then af = 0 everywhere, such that∫
af dµ = 0 = a

∫
f dµ.

For a > 0, we know that (af)+ = af+ and (af)− = af−. Then∫
af dµ =

∫
af+ dµ−

∫
af− dµ

= a(

∫
f+ dµ−

∫
f− dµ)

= a

∫
f dµ.

Lastly, suppose consider the case when we have a negative scalar −a for a > 0.
then (−af)+ = −af− and (−af)− = −af+. Then∫

−af dµ =

∫
−af+ dµ−

∫
−af− dµ

= −a(
∫
f+ dµ−

∫
f− dµ)

= −a
∫
f dµ.

□

Before we introduce the Dominated Convergence Theorem, we should clarify the
meaning of ’almost every’, often abbreviated in mathematical literature as a.e. We
have the following definition.
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Definition 4.29. Consider the measure space (X,S, µ). A set E ∈ S is said to
contain almost every element of X if µ(X\E) = 0. We can also say that two
functions f and g are equal µ-almost everywhere if the disparity between them has
measure zero.

A classic example is that the outer measure of the rational numbers |Q| = 0, so
almost every real number is irrational; to be clear, the measure of the rational
numbers is zero because, on the real line, each rational is an isolated point–these
are defined to have zero measure.

We are now equipped to interpret the following result.

Theorem 4.30. (Dominated Convergence Theorem). Suppose (X,S, µ) is a mea-
sure space, f : X → (−∞,∞) is S-measurable, and f1, f2, . . . are S-measurable
functions from X to (−∞,∞) such that

lim
n→∞

fn(x) = f(x)

for almost every x ∈ X. If there exists an S-measurable function g : X → (−∞,∞)
such that ∫

g dµ <∞ and |fn(x)| ≤ g(x)

for every n ∈ Z+ and almost every x ∈ X, then

lim
n→∞

∫
fn dµ =

∫
f dµ.

Proof. We can redefine the functions fn, f on a set of measure 0. Then we can
assume that convergence occurs on the entirety of X. From Theorem 4.26, we
deduce that f is integrable. We have that g + fn ≥ 0, so we apply Fatou’s Lemma
and Theorem 4.27 to obtain∫

g dµ+

∫
f dµ =

∫
(g + f) dµ ≤ lim inf

∫
(g + fn) dµ

= lim inf(

∫
g dµ+

∫
fn dµ)

=

∫
g dµ+ lim inf

∫
fn dµ.

Thus,

(4.31)

∫
f dµ ≤ lim inf

∫
fn dµ.

Since g− fn ≥ 0, we can apply Fatou’s Lemma and Theorem 4.27 again to see that∫
g dµ−

∫
f dµ =

∫
(g − f) dµ ≤ lim inf

∫
(g − fn) dµ

=

∫
g dµ− lim sup

∫
fn dµ,

and it follows that

(4.32) lim sup

∫
fn dµ ≤

∫
f dµ.

Combining (4.31) and (4.32), we conclude that∫
f dµ = lim

∫
fn dµ.
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□

5. Lebesgue Spaces

In constructing Lebesgue spaces, our eventual goal is to incorporate the structure
of a Banach space on the set of all integrable functions on a measure space (X,S, µ).
We begin by introducing an important preliminary definition.

Definition 5.1. Suppose that (X,S, µ) is a measure space, 0 < p < ∞, and
f : X → F is S-measurable. Then the p-norm of f is denoted by ∥f ||p and is
defined by

∥f ||p = (

∫
|f |p dµ)

1
p .

We are now equipped to define a general Lebesgue space.

Definition 5.2. Suppose (X,S, µ) is a measure space and 0 < p ≤ ∞. The
Lebesgue space Lp(µ) (or Lp) is defined to be the set of S-measurable functions
f : X → F such that ∥f ||p <∞.

The cases where we let p = 1 or p = ∞ are usually given special attention. The
definition of L1 follows from our prior definitions. Importantly, ∥f ||1 may not be
not a true norm, by some standards. It might be called a semi-norm because it may
not satisfy definiteness: this comes as a result of the fact that the Lebesgue measure
can be zero for nonempty sets. For instance, we might have ∥χE ||1 = 0 for χE ̸= 0.
We shall leave further exploration of this as an exercise. For our purposes, we shall
satisfy definiteness by claiming that our norm is zero if and only if f(x) = 0 almost
everywhere. Therefore, it is important to note than any element of this space is
actually an equivalence class of functions that are equal µ-almost everywhere.

To rigorously define the case when p = ∞, we will need to revisit our definition
for the p-norm.

Definition 5.3. The essential supremum of f , ∥f ||∞, is defined by

∥f ||∞ = inf{t > 0 : µ({x ∈ X : |f(x)| > t} = 0}.

It remains to show that ∥f ||p satisfies the properties of a norm on L∞. Now that
we have clarified how the p-norm would be defined, the construction for L∞ follows
from Definition 5.2.

Example 5.4. We also have special notation for Lp spaces when µ is counting
measure on Z+, the set Lp is denoted by ℓp. Therefore, if 0 < p <∞, then

ℓp = {(a1, a2, . . .) : each ak ∈ F and

∞∑
k=1

|ak|p <∞}.

Also,

ℓ∞ = {(a1, a2, . . .) : each ak ∈ F and sup
k∈Z+

|ak| <∞}.

It is relatively manageable to prove that all of the properties of a norm hold
for the p-norm, with the notable exception of the triangle inequality. In fact, the
next section is entirely devoted to proving this holds, and thus the p-norm is a true
norm.
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Our eventual goal is to demonstrate that Lp is a Banach space, so in addition to
showing the norm holds, we will need to demonstrate that Lp is a complete vector
space.

We will now give short proofs that demonstrate Lp is closed under addition and
multiplication, which will help us show that Lp is a vector space. Soon after, we
will prove Minkowski’s inequality, the triangle inequality for our norm, which is a
stronger condition to the following result when p ≥ 1.

Theorem 5.5. (Lp is closed under addition). Suppose that (X,S, µ) is a measure
space and 0 < p <∞. Then

∥f + g||pp ≤ 2p(∥f ||pp + ∥g||pp)

for all f, g ∈ Lp and all a ∈ F.

Proof. Suppose f, g ∈ Lp. If x ∈ X, then

|f(x) + g(x)|p ≤ (|f(x)|+ |g(x)|)p

≤ (2max{|f(x)|, |g(x)|})p

≤ 2p(|f(x)|p + |g(x)|p).
We can then integrate both sides of the above inequality with respect to µ, which
gives the desired inequality. This result implies that if ∥f ||p < ∞ and ∥g||p < ∞,
then ∥f + g||p <∞. □

Theorem 5.6. (Lp is closed under scalar multiplication). Suppose that (X,S, µ)
is a measure space and 0 < p <∞. Then

∥af ||p = |a|∥f ||p
for all f, g ∈ Lp and all a ∈ F.

Proof. The result follows from the definition of ∥ · ||p. □

Theorem 5.7. (Lp is a vector space). For all f ∈ Lp and all a ∈ F, with the usual
operations of addition and scalar multiplication of functions, Lp is a vector space.

Proof. Lp contains the constant function 0, is closed under addition and scalar
multiplication, and is a subspace of FX . Thus it is a vector space. □

6. Constructing Minkowski’s Inequality

Definition 6.1. The conjugate of a number p ∈ (1,∞) is the number q = p
(p−1) ,

which is the unique number q ∈ (1,∞) for which

1

p
+

1

q
= 1.

Note that the conjugate of 1 is defined to be ∞ and the conjugate of ∞ is defined
to be 1.

Theorem 6.2. (Young’s inequality). Suppose 1 ≤ p ≤ ∞. Then

ab ≤ ap

p
+
bq

q

for all a, b ≥ 0.
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Proof. We follow [Axler2020]. Let b > 0. Then we define some function f :
(0,∞) → R by

f(a) =
ap

p
+
bq

q
− ab.

We can then differentiate this function with respect to a to obtain that f ′(a) =
ap−1 − b. Then, using the fact that pq = p + q by the definition of conjugate, we

can optimize this function to find that f attains its global minimum when a = b
1

p−1

and is therefore increasing on (b
1

p−1 ,∞). We see that at the point f(b
1

p−1 ) = 0, so
it must be true that f(a) ≥ 0 when a ∈ (0,∞) and the result follows. □

Theorem 6.3. (Hölder’s inequality). Suppose (X,S, µ) is a measure space, 1 ≤
p ≤ ∞, and f, g : X → F are S-measurable. Then

∥fg||1 ≤ ∥f ||p∥g||q.

Proof. Suppose that 1 < p < ∞. We leave the cases where p = 1 and p = ∞ as
exercises for the reader.
First, consider the special case where ∥f ||p = ∥g||q = 1. From Young’s inequality,
we have that

|f(x)g(x)| ≤ |f(x)|p

p
+

|g(x)|q

q
for all x ∈ X. We can integrate both sides of this inequality with respect to µ to
demonstrate that ∥fg||1 ≤ 1 = ∥f ||p∥g||q, which completes the proof in this special
case.
If ∥f ||p = 0 or ∥g||q = 0, then ∥fg||1 = 0 and the desired inequality holds. We can
also see that the inequality will hold if ∥f ||p = ∞ or ∥g||q = ∞. Thus, we assume
that 0 < ∥f ||p <∞ and 0 < ∥g||q <∞.
We now define S-measurable functions f1, g1 : X → F by

f1 =
f

∥f ||p
and g1 =

g

∥g||q
.

Then ∥f1||p = 1 and ∥g1||q = 1. From the result of our special case, we then have
∥f1g1||1 ≤ 1 which implies that ∥fg|| ≤ ∥f ||p∥g||q □

Theorem 6.4. (Minkowski’s inequality). Suppose (X,S, µ) is a measure space,
1 ≤ p ≤ ∞, and f, g ∈ Lp. Then

∥f + g||p ≤ ∥f ||p + ∥g||p.

Proof. It follows from Theorem 4.27 that our statement is satisfied when p = 1.
Therefore, suppose that p > 1. Then the sum f + g must be measurable. We also
know that

|f + g|p ≤ (2 sup{|f |, |g|})p ≤ 2p{|f |p + |g|p},
so it follows from Theorems 4.26 and (4.27) that f + g ∈ Lp. Furthermore, we have
that

(6.5) |f + g|p = |f + g||f + g|p−1 ≤ |f ||f + g|p−1 + |g||f + g|p−1.

Because f + g ∈ Lp, then |f + g|p ∈ L1. Also, since p = (p − 1)q, it follows that
|f + g|p−1 ∈ Lq. Therefore, we can apply Hölder’s inequality to see that∫

|f ||f + g|p−1 dµ ≤ ∥f ||p
{∫

|f + h|(p−1)q dµ
}

= ∥f |||f + g|.
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□

With the proof of Minkowski’s inequality, we now can say that Lp spaces are
closed under addition; in fact, the triangle inequality holds for Lp spaces and thus
they are normed vector spaces.

7. Completeness of Lp

We’ve already shown that Lp is a normed vector space, but as we’ve also pointed
out, normed vector spaces can be metrically incomplete; this is potentially prob-
lematic, as we prefer our normed vectors spaces to be complete so that we can apply
to them more interesting and generalized results.

We’ve discussed pointwise and uniform convergence, but to show the complete-
ness of Lp spaces, we will need to introduce a new type of convergence. We begin
by tailoring the definition of a Cauchy sequence fit our needs.

Definition 7.1. A sequence (fn) in Lp is a Cauchy sequence in Lp if for every
ϵ > 0 there exists an M(ϵ) such that if m,n ≥M(ϵ), then ∥fm − fn||p < ϵ.

We now rigorously explore what it means for a sequence of functions, each of which
has a measurable value, to converge to a given size.

Definition 7.2. A sequence (fn) in Lp is convergent to f in Lp if for every ϵ > 0
there exists an N(ϵ) such that if n ≥ N(ϵ), then ∥f − fn||p < ϵ.

Lemma 7.3. If the sequence (fn) converges to f in Lp, then it is a Cauchy se-
quence.

Proof. If m,n ≥ N( ϵ2 ), then

∥f − fm||p <
ϵ

2
, and ∥f − fn||p <

ϵ

2
.

Therefore, we have that

∥fm − fn||p ≤ ∥fm − f ||p + ∥f − fn||p < ϵ.

□

Now recall that, as we introduced earlier, a normed linear space such that every
Cauchy sequence in the space converges to some element in that space is called a
Banach space. We conclude by giving a proof that a particular set is a Banach
space.

Theorem 7.4. (Riesz-Fischer Theorem). The set (Lp, ∥ · ||p) with 1 ≤ p <∞ is a
Banach space.

Proof. From [Bartle1966]. We know that Lp is a normed linear space. Then to
establish the completeness of Lp, let (fn) be a Cauchy sequence relative to the
norm ∥ · ||p. Then, if ϵ > 0, there exists an M(ϵ) such that if m,n ≥M(ϵ), then

(7.5)

∫
|fm − fn|p dµ = ∥fm − fn||pp < ϵp.

There exists a subsequence (gk) of (fn) such that ∥gk+1 − gk||p < 2−k for k ∈ N.
Define g by

(7.6) g(x) = |g1(x)|+
∞∑
k=1

|gk+1(x)− gk(x)|,
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so that g is in (X,S, µ)+. By Fatou’s Lemma, we have that∫
|g|p dµ ≤ lim inf

n→∞

∫ {
|g1| =

n∑
k=1

|gk+1 − gk|
}p

dµ.

We then take the pth root of both sides before applying Minkowski’s inequality to
derive that {∫

|g|p dµ
} 1

p ≤ lim inf
n→∞

{
∥g1||p +

n∑
k=1

∥gk+1 − gk||p
}
.

≤ ∥g1||p + 1.

Thus, if E = x ∈ X : g(x) <∞, then E ∈ S and µ(X\E) = 0. As a result, we see
that (7.6) converges almost everywhere and gχE belongs to Lp. Now, we define f
on X by

f(x) = g1(x) +

∞∑
k=1

gk+1(x)− gk(x), if x ∈ E,

= 0, if x /∈ E.

Because |gk| ≤ |g1| +
∑k−1
j=1 |gj+1 − gj | ≤ g and since (gk) converges almost every-

where to f , we can deduce from the Lebesgue Dominated Convergence Theorem
that f ∈ Lp. Since |f −gk|p ≤ 2pgp, we see again from the Dominated Convergence
Theorem that 0 = lim ∥f − gk||p, so that (gk) converges in Lp to f . Going back to
(7.5), if m ≥M(ϵ) and k is sufficiently large, then∫

|fm − gk|p dµ < ϵp.

Then we apply Fatou’s Lemma to find that∫
|fm − f |p dµ ≤ lim inf

k→∞

∫
|fm − gk|p dµ ≤ ϵp,

whenever m ≥ M(ϵ). Thus, we’ve proven that the sequence (fn) converges to f in
the norm of Lp, so we conclude that Lp is a Banach space. □
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