ITO’S FORMULA WITH APPLICATIONS

ETHAN NAEGELE

ABSTRACT. In this expository paper, we highlight some of the far-reaching
applications of It6’s Formula, a powerful tool from stochastic calculus which
can give quick, enlightening proofs of robust results in probability and other
areas of analysis. We build stochastic integration, then prove It6’s Formula
before discussing some of its applications in probability, partial differential
equations, and complex analysis.

CONTENTS
1. Introduction 1
2.  Brownian Motion 2
3. Stochastic Integration and It6’s Formula 7
3.1.  The Ito Integral 7
3.2. Itd’s Formula 11
4. Applications 16
Acknowledgements 20
References 20

1. INTRODUCTION

Brownian motion is a central object in probability. A particularly rich theory
involving Brownian motion is that of stochastic integration, in which one integrates
random processes with respect to Brownian motion. Defining such an integral is
itself a challenge, because, as we will see, one cannot define a stochastic integral in
the usual Lebesgue-Stieltjes sense. Much of our effort, therefore, will be in defining
the stochastic integral.

Beyond the mere definition, however, lies the question of how the stochastic
integral can be useful. This paper gives a glimpse into some of the applications
of the stochastic integral primarily through applying a result known as It6’s for-
mula, which is effectively the fundamental theorem of stochastic calculus. Ito’s
formula is a powerful result, having applications in areas such as partial differential
equations and complex analysis. Such applications include proving a Feynman-
Kac formula (Theorem 4.3) and proving conformal invariance of Brownian motion
(Theorem 4.10), of which Liouville’s theorem from complex analysis is a corollary
(Theorem 4.12).

To prove these results with It6’s formula, we begin by collecting the necessary
results about Brownian motion in Section 2. We then construct the It6 integral
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and prove It6’s formula in Section 3, and we see what this powerful result can do
in Section 4.

We assume the reader is familiar with the basics of measure-theoretic probability,
but we will remind the reader of the necessary details throughout. Of special
importance is understanding the different types of convergence and their relations.

2. BROWNIAN MOTION

We begin by introducing Brownian motion, the underlying object that will be
central to our endeavors, first considering the one-dimensional case.

Definition 2.1. A linear (i.e., one-dimensional) Brownian motion started at
x € R is a real-valued stochastic process (B;);>o satisfing the following properties:

o By =ux.

e Independent increments: For all times 0 < 51 < t; < 59 < g < -+ <
Sn < tp, the increments By, — By, ..., B:, — Bs, are independent random
variables.

e Increment distribution: For any ¢ > 0 and h > 0, the increment B(t + h) —
B(t) is a N(0, h) random variable.

e The map t — B; is almost surely continuous.

n

If x = 0, we call (By,);>0 a standard Brownian motion. For dimension d > 2, we
define d-dimensional Brownian motion to be a process (B;):>o where B(t) =
(B}, ..., B) such that each component is an independent linear Brownian motion,
where independence of processes is in the sense defined below.

Definition 2.2. We call two processes (X;):>0 and (¥2):>0 independent if for any
times ¢1,...,t, > 0 and s1,..., $;n > 0, the vectors (Xy,, ..., Xy, ) and (Yy,,...,Y%,,)
are independent. Similarly, a process (X;);>0 is independent of a o-algebra A if
(X : t > 0) is independent of A.

We have defined Brownian motion, but it must be shown to exist. We will not
describe this construction for sake of brevity. The proof is provided in [2, Theorem
1.3].

Theorem 2.3. Standard Brownian motion exists.

We will now collect some facts about the regularity of Brownian motion that
will help us throughout our endeavors. To do so, we first recall a definition from
analysis.

Definition 2.4. A function f : [0,00) — R is locally a-Hélder continuous at
x if there exists § > 0 and C > 0 such that

[f(@) = f(y)l < Clz —y|*
for all y > 0 with |z — y| < 4.

We now have the following statement on the Holder regularity of Brownian mo-
tion as appearing in [2, Corollary 1.20].

Proposition 2.5. If a < 1/2, then, almost surely, Brownian motion is locally
«a-Hélder continuous at every x € R.
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To lay the groundwork for our discussion of stochastic calculus in Section 3, we
must discuss a fundamental concept known as quadratic variation.
Recall from analysis that a function f : [0,¢] — R is of bounded variation if

sup > |f(t:) = f(ti1)| < o,
i=1

where the sup is taken over all n € N and partitions 0 = tp < t; < --- < t,, =
t. Functions of bounded variation are in some sense “nice” in that they are, for
example, differentiable almost everywhere. More importantly for our purposes, one
can construct a Lebesgue-Stieltjes integral with respect to f if f is of bounded
variation. As one might expect, we are not so fortunate to have encountered such
a “nice” function with Brownian motion, as we shall see. However, the notion of
quadratic variation will save us in our endeavors to create a stochastic integral later
on.

Definition 2.6. Consider a sequence (P,,),>1 of partitions of [0, ¢], where P, is of
the form

0=ty <ty <---<tp =t
Define the mesh size of the nth partition to be

A(n):= sup (&I —t1 ).

1
1<i<kn

Define the quadratic variation of linear Brownian motion to be

En
Bl; = i Bin — Byn 2
[B]: A(;I)IL(J;( I3 tifl) )

where the limit is in probability.
More generally, define the covariation of two continuous processes (X;);>o and
(Y2)t>0 to be

o
XY = 1 Xn—Xn Yn—Yn
(X, Y] A(ler)go;( tr 0 )Y = Yin ),

where the limit is in probability, provided it exists.

Theorem 2.7 shows that quadratic variation of Brownian motion exists in prob-
ability, so our definition is valid. Observe that covariation behaves algebraically
similar to covariance, in that by our definitions, [X, X]; = [X]; and covariation is
bilinear.

Let’s try to apply these definitions to Brownian motion. First, with all of the
erratic fluctuations that a Brownian path makes, no matter how far one “zooms
in” due to the self-similarity of the path, it seems plausible that these fluctuations
constitute a path of unbounded variation. We can intuitively reason that after some
time € has passed, we would expect roughly that Brownian motion has moved a
distance of \/z, because E[B2?] = ¢. For simplicity, considering Brownian motion
on I = [0, 1], there are roughly 1/e subintervals of length € on I, and, since on each
subinterval [t;,t;41], we have |B,,,, — By,| = /e, we have that > |By;,,, — By,| is
roughly /(1/¢) = 1/+/¢. Tt is now clear that the latter diverges as ¢ — 0.

When we instead consider quadratic variation, on these same subintervals, we
now have (By,,, — By, )? ~ ¢, suggesting that > (By,,, — By,)? is roughly e(1/¢) = 1,

i+l i+l
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which suggests that we would have [B]; = 1, and in general [B]; = t. Our intuition
here is correct and is formalized in the theorem below, whose proof comes from [5,
Theorem 6.12.1] and [2, Theorem 1.35].

Theorem 2.7. (1) In probability, we have [B]y =t for all t > 0.

(2) If, in addition, we assume that lim,,_,o n*A(n) = 0, then we have [B]; =t
almost surely. Therefore, Brownian motion is almost surely of unbounded
variation.

(3) Alternatively, if (Pn)n>1 5 a nested sequence of partitions, that is, if for
any n, we have P, C Ppy1, then, again, [B]; =t almost surely.

Proof. (1) It is enough to prove L? convergence. That is, we will show
2

kn
. 2 _
nh_}rr;oE (E I(Bt? — By )7 — t) = 0.
i=

A fact we will use is that for a random variable Y ~ N (0, 0?), we have E[Y*] = 304.
Observe that the random variables X; := (B — By )? — (7 — ¢} ) are ii.d.
of mean 0, hence Var[X;] = E[X?], and independence implies Var[zgl X;] =
ngl Var[X;]. It then follows that

2 2

kn kn kn
E (Z[(Bty — By )*] - t) =E (Z Xi> => E[X]]
i=1 i=1 =1
kn kn kn
= E[Biy — By )" =2) E[(Byr — B (8] — 1) + Y (87 —t7,)°
=1 =1 =1
kWr k:'ﬂr k’ﬂ
=3) (tp —t,)? _22@? - ?71)2‘#2@?_ )P
i=1 i=1 =1
< 2A(n) Z(t? —t'y)
=1
= 2A(n)t,

which tends to 0 and proves the first statement.
(2) The assumption implies that A(n) = z,,/n? where z,, — 0. Markov’s in-
equality implies that

ko 2 ko 2
P (Z(Btin — B )% - t) > 2z, | <E (Z(Bt? ~ B )’ — t) /22,

i=1 i=1

< 2A(n)t/2xy,

=t/n?.
Therefore, the Borel-Cantelli lemma implies that there exists some N such that
n > N implies P [(Zfﬁl(Btlﬂ — B )2 - t>2 < an] = 1, hence taking n — oo

inside the probability proves almost sure convergence.
To see that Brownian motion is of unbounded variation, let o € (0,1/2),C > 0,
and ¢ > 0 as in the statement of Proposition 2.5 applied to the interval [0, t]. Now,
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take n so large that for each ¢7',tl" ; € P,, we have [t —t? ;| < A(n) < J. Then it
follows that

kn kn

> |Bin = Bin | > (CAn)*)™ Y (B — By )*.

=1 =1

Taking A(n) — 0, the limit on the right is almost surely infinite, hence the left is
too. It follows that Brownian motion is of unbounded variation almost surely.

(3) The proof of this statement is found in [2, Theorem 1.35]. It uses the theory
of reverse martingales, which we will not discuss here. O

Definition 2.8. We define the Brownian motion’s natural filtration as follows:
FOt) :=0(Bs: 0 <5< t).

Additionally, we define the augmented filtration:

Fr(t) =) Fs).
s>t
Definition 2.9. If (Q, A, (F(t)):>0, P) is a filtered probability space, T is a stop-
ping time with respect to (F(t))>o if {T <t} € F(t) for all t > 0, in which case
we can define

F(T)={Ac A: An{T <t} € F(t) for all t > 0}.

Intuitively, the natural filtration contains the information of Brownian motion
up to time t (all events {Bs € B}, where 0 < s < ¢ and B is a Borel set). The
augmented filtration is somewhat of an upgrade compared to the natural; it is clear
that F0(t) C F*(t), and it contains events that depend on times that are arbitrarily
soon after ¢. In this way, one can think of FT(t) as giving an “infinitesimal peek”
past t.

In general, we will use the augmented filtration instead of the natural. The
augmented strictly contains all of the stopping times of the natural. For instance,
hitting times of open sets are stopping times with respect to F*, but not to F° in
general (details omitted).

Theorem 2.10 (Markov Property). Let (By)i>0 be a d-dimensional Brownian mo-
tion started at x € R%. Then, if s > 0, the process (Byys — By)i>0 is a Brownian
motion started at the origin which is independent of (By)o<t<s-

Proof. One observes that all the properties stated in Definition 2.1 hold. The
independence of these processes follows from the independence of the increments
of Brownian motion. To see this, first consider the start point x = 0. Then
by independent increments, (Bi,+s — Bs,..., Bt +s — Bs) and (Bs,, ..., B, ) are
independent vectors because Bs, = B,, — By. Then, for an arbitrary start point
z € R%, adding the constant vector z to the second vector does not change the
independence of the two vectors. O

The Markov property essentially tells us that after time s, the Brownian motion is
“refreshed” and behaves like a new Brownian motion that starts at B, independent
of whatever happened before time s. Another version of Theorem 2.10 is true for
the augmented filtration.
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Theorem 2.11. If (B:)i>0 is a Brownian motion started in x € R and s > 0,
the process (Byys — Bs)i>0 is a Brownian motion started at 0 and independent of

FT(s).

To appreciate the next example, we recall that a continuous-time martingale
with respect to a filtration (F(t));>0 is a process (X;)¢>o such that (X;) is adapted
to the filtration (that is, Xy is F(f)-measurable for every ¢ > 0), E|X;| < oo for all
t >0, and for all s < ¢, we have E[X; | F(s)] = X,.

Example 2.12. Brownian motion is a martingale with respect to (F*(¢));>0 since,
by Theorem 2.11, for any s < t we have

E[B, | F*(s)] = E[B; — Bs + B | F*(s)]
E[B; — Bs | F*(s)] + B,
E[B; — Bs] + B
B

Example 2.13. Let s < t. Then
Cov(Bs, Bt) = E[BsBy| — E[B,]E[B;]
= E[B,(B; — B,) + B
= E[B,JE[B; - B,] + E[B]
=s.
Now, Theorem 2.10 receives another upgrade with the Strong Markov property,

stating that the Markov property extends to stopping times. The next two results
are found in Theorem 2.16 and Theorem 2.49 respectively in [2].

Theorem 2.14 (Strong Markov Property). Let T be an almost surely finite stop-
ping time with respect to Ft. Then the process (Byir — Br)i>o is a standard
Brownian motion independent of F*(T).

The following is a consequence of the Optional Stopping Theorem for continuous
martingales (see [2, Proposition 2.42)).

Proposition 2.15 (Gambler’s Ruin). Let (B;) be a standard linear Brownian mo-
tion and a <0 <b. Let T :=min{t > 0: B; € {a,b}}. Then

b |a
=, PB :b = y
la] + b [Br =] la| +b

P[Br = aj and E[T] = |a|b.

To appreciate the following result, which is stated and proven in [7, Theorem
2.2.5], we note that Brownian motion is called recurrent if, loosely speaking, it
“comes back infinitely often” and transient if it does not, having an infinite limit
almost surely.

The result below states that Brownian motion in the plane is neighborhood
recurrent, meaning it returns to neighborhoods infinitely often. This is a special
result in that recurrence of Brownian motion does not hold in higher dimensions
(see [2, Theorem 3.20]).

Theorem 2.16. Let U C R? be open. Then the set {t > 0: B, € U} is unbounded
almost surely.
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3. STOCHASTIC INTEGRATION AND ITO’S FORMULA

3.1. The It6 Integral. What would it mean to integrate with respect to Brownian
motion? Let’s take a look at a discrete analogue of the situation, where we have
a simple random walk (.S,,), where each increment S,,11 — S, is a step one unit to
the left or right with equal probability. If we were to integrate a function H,, with
respect to .S, we would have something like

n n—1
/ H;dS; = Z Hit1(Sig1 — Si).
0 i=0

If we were to imagine a gambler betting on each step of the random walk,
fon H;dS; denotes the amount of winnings the gambler has at time n betting H; 1
on the walk moving to the right at time ¢ + 1, or betting —H;;; on the walk
moving to the left. In this interpretation, we see that we would not want to have
H,11 € Fit1, meaning the gambler could change his bet based on present infor-
mation, so we should instead have H;;; € F;. This intuition is confirmed when
we define the stochastic integral of step processes later. Overall, then, we gain the
sense that our stochastic integral would roughly be like placing bets, specified by
our integrand H, on infinitesimal increments By, ,, — B, of Brownian motion.

We would then like to integrate with respect to Brownian motion. We would
imagine having some limit of the form lim )}, H, (By,,, — B;,) where t1,....t,, 41 is a
partition of [0,¢], as in the usual case of Lebesgue-Steiltjes integration. Indeed, we
have the following result from analysis (see [4, p. 41], [3, pp. 316-324]) highlighting
our ideal formula that we would like to imitate with our stochastic integral:

Theorem 3.1. Let A be a random process of almost surely bounded variation on
every compact interval of R>o, and let H be a jointly measurable function such
that s — H(s,w) is continuous for almost all w. Let (P,) be a sequence of finite
random partitions of [0,t] with lim, . A(n) = 0. Then for x; € [t;, ti+1] (with the
t; € Ppn), we have almost surely

krn

t
lim Y H, (Ay,, — Ar,) = / H dA,.
0

n—oo
i=1
But there is a problem. As we saw in Theorem 2.7, Brownian motion is almost
surely of unbounded variation. Is all hope lost? Indeed, according to the following
proposition from [4, pp. 43], whose proof we omit, it is not possible to define an
integral with respect to Brownian motion as a usual Stieltjes integral.

Proposition 3.2. If (P,,) is a nested sequence of partitions, x(t) is right continuous
on [0,1], and the sums Zf”l h(t:)(x(tiy1) — x(t;)) converge to a limit for every

continuous function h, then x is of bounded variation.

It is clear, then, that we need to try a different approach. In particular, let’s try
to go for a weaker form of limit, the L? limit. Recall that (X,,) converges to X in
the L? sense if lim,, o, E[(X, — X)?] = 0.

In the L? theory of integration that we will therefore consider, the class of poten-
tial integrands are the so-called progressively measurable functions, which we define
below. Before doing so, we note that from now on, we assume the probability space
has a filtration (F(t)):>0 to which Brownian motion is adapted, contains all events
of probability 0, and such that the Strong Markov Property holds.
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Definition 3.3. A process (X;(w))i>0weq is progressively measurable if for
any t > 0, the map X : [0,] x 2 — R is measurable with respect to B([0, t]) ® F(t).

Progressively measurable processes, roughly speaking, require only information
from the Brownian path up to time ¢ to determine the values of the process up
to time ¢; they do not require information about Brownian motion from the fu-
ture. The lemma from [2, Lemma 7.2], whose proof we omit, gives a large class of
progressively measurable processes.

Lemma 3.4. Processes (Xi)i>o that are left or right continuous are also progres-
sively measurable.

We will now define the stochastic integral for step processes, which has a natural
definition, and then we will build the general stochastic integral from there.

Definition 3.5. Consider a partition 0 = tp < t; < -+ < t,41 = t of [0,¢]. A
progressively measurable step process (H;(w))i>0weq is a function of the form

Z Ai (W)L, 0,0 ()

where A; is a F(t;)-measurable random variable.
We define the stochastic integral of a step process H to therefore be

/ HydB, = ZAi<Bti+1 - Bti)'
0 =1

Having defined the stochastic integral of step processes, we now define the sto-
chastic integral in general for progressively measurable functions.

Definition 3.6. Define the norm ||H||; := (E UOOO Hfds])l/Q. If H is a progres-
sively measurable process with ||H||2 < oo and (H,,) is a sequence of progressively
measurable step processes such that ||H, — Hl||z2 — 0, we define the stochastic
integral of H to be

n—o0

/ HodB, = Tim [ H, (s)dB,,

where the limit is in the L? sense.

In Definition 3.5, A;’s being F(t;)-measurable means that Brownian motion’s
information up to the beginning of the interval (¢;,¢;11] is enough to determine the
value of H on that entire interval.

To make sense of Definition 3.6, we need to know that any progressively measur-
able function H can be approximated by such a sequence (H,), that the L? limit
indeed exists, and that it does not depend on the choice of approximating sequence
(H,). These steps are done in Lemma 3.7-Theorem 3.10, the first of which we state
below.

Lemma 3.7. Let (Hs(w))s>0,weq be a progressively measurable process such that
|H||2 < oco. Then there exists a sequence of progressively measurable step processes
(Hy) such that lim, || H, — Hl||2 = 0.

The approximation process is rather tedious and long, and is omitted but is in
[2, Lemma 7.3].
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With the approximation lemma now in hand, we turn to our next crucial tool,
which establishes that the usual L? norm of the stochastic integral for step processes
coincides with the ||-|[2 norm that we have established. This will lead to proving
the isometry in general.

Lemma 3.8 (1t6 Isometry). Let H be a progressively measurable step process with

E[[,~ H2ds) < 0o. Then
o) 2 oo
(/ Hsst) =E U Hfds} )
0 0
Proof. If i < j, then

E[A;A;(Bi.., — Bi)(Bu,,, — By,)) = E[E[AiA; (B, — Bi)(Bi,., — By)) | F(t;)]
= E[AZ-Aj(Bt - Bti)E[(Bt_j+l - Btj)]]
=0,

E

i+1

where in moving from the first line to the second we used that A; and A; are
both F(t;)-measurable, and the conditioning is removed from the expectation by
Theorem 2.11. Thus,

( /O h Hsst>2

E

n 2
—E (Z Ai(Bi,,, — Bti)>
=1

E[Azz(Btwrl - Bti)2]

I
M=

=Y E[E[A}(By,,, — B,,)* | F(t,)]]
=1
- Zn: E[AJE[(By,,, — By,)?]]

&
I
—

E[A7](tiy1 —ti),

I

s
Il
-

where the fourth line follows from the third by using similar logic as above. Now,

— N 2
0 0 i=1

0o n
242
=P /0 ZAil(ti’tiﬂ] + QZAiAJ‘l(tivtiH]l(tjytHl] ds
i=1 1<j

= E / <Z Azz]‘(tutzdrl]) dS]
0 i=1

=E|) At - ti)] :

i=1
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where the elimination of the cross term follows from the disjointness of the intervals
(ti,tiy1] and (t;,t;41]. Applying linearity of expectation to the last line gives the
statement. (]

Lemma 3.9. Suppose (H,) is a sequence of progressively measurable step processes
such that

lim E [/OOO(Hn(s) - Hm(s))zds} =0.

([ - Hm<s>st)2

Proof. Because the difference of two step processes is again a step process, this
statement follows from Lemma 3.8. (]

Then
lim E

n,m—0o

=0.

Theorem 3.10. Suppose that (H,) is a sequence of progressively measurable step
processes and H is a progressively measurable process such that

lim E UOOO(Hn(s) - H(s))zds] =0.

n—oo
Then - -
/ H(s)dBs := lim H, (s)dBs
0

n— oo 0

exists as a limit in the L? sense and is independent of the choice of the approi-
mating sequence. Furthermore, we have the Ité isometry

(/OOO H(s)st>2 =E UOOO H(S)2d8:| :

Proof. Let (H,) be such a sequence. By the triangle inequality, we have E[[(H,, —
H,,)%ds|'? < E[[(H, — H)?ds]"/? + E[[(H,, — H)?ds]'/? so that we may ap-
ply Lemma 3.9 to conclude that (fooo H,(s)dBs) is a Cauchy sequence. By the
completeness of the L? space, a limit exists. Lemma 3.9 implies the limit does
not depend on the choice of approximating sequence. To see this, assume that
(H,) and (H,) are sequences such that ||H, — H||2— 0 and || H], — Hl|j2 — 0,
respectively, and that lim, an(s)st =: X in the L? sense. We again have
E[[(H, — H})%ds]'/? <E[[(H, — H)?ds]'/? + E[[(H!, — H)?ds]'/?. Again, since
the difference of two step functions is a step function, we have that, by the same
logic as Lemma 3.9, [(H,(s) — H},(s))dBs — 0 in L?. By the triangle inequality
in the L? norm, we have E[( [ H.dBs — X)*|'/? < E[([ H/,dB;s — [ H,dB;)?*/? +
E[([ H,dBs — X)?]*/2. Thus, we see lim, . [ H,dBs; = X in the L? sense, so
indeed X is the unique limit [ HdB;s. The Ito isometry follows from Lemma 3.8
and taking n — co. (I

E

We have therefore proven the It6 integral exists for any progressively measur-
able process H in the sense stated in Definition 3.6. There are two more desired
properties that we would like our integral to have. Like with Riemann integrals,
we would like ¢ — fot H,dB, to be continuous. Furthermore, we would also expect
the integral to be a martingale; that is, intuitively, we should not be able to make a
profit placing bets on the Brownian motion path. To state the martingale property,
we need a notion of a stochastic integral with finite upper limit.
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Definition 3.11. Suppose (H;)s>0 is progressively measurable with E[f(f H2ds] <
oo. We define H* such that H'(s) := Hs1ls<;, and

t o
/ H,dB, := / H'(s)dB,.
0 0

In addition, the martingale property also requires the notion of a modification
of a process, which we define now.

Definition 3.12. A modification of a process (X;);>0 is a process (¥;);>0 such
that for all ¢ > 0, P(X;, =Y;) = 1.

This is not to be confused with two processes agreeing everywhere almost surely;
a counterexample is ([0,1],B,\) where A is Lebesgue measure and X;(w) = w if
t = w and 0 otherwise as a modification of 0. The following result from [2, Theorem
7.11] gives a continuous modification of the stochastic integral.

Theorem 3.13. Suppose (Hy)s>o is progressively measurable and for any t >
0 we have E[fot H2ds] < oo. Then there exists a modification of the process

(fg HdBs)i>0 that is almost surely a continuous martingale.

Thus, we have constructed a stochastic integral as defined by Definition 3.6 which
has a continuous martingale modification. Therefore, we can identify the process
with that modification, so that we regard the stochastic integral as a continuous
martingale—an intuitive and desirable property. For instance, the martingale prop-
erty is used in in the proof of Theorem 4.3 and continuity is used in the proof of
Theorem 3.17.

Far more general It6 integrals have been constructed, as is done in texts like
[1] and [4], which construct the integral for semimartingales, the largest possible
class of processes for which we can define an It6 integral. We instead have mostly
followed the construction in [2], which constructs the It6 integral for Brownian
motion only. Their construction allows us to obtain many important results with
less effort.

3.2. It6’s Formula. There are many different versions of It6’s formula. The one
we will prove here, given as an exercise in [2, Theorem 7.15], will be perhaps the
most general version for Brownian motion, so that we can get all lesser versions
simultaneously. Though the proof in full detail is long, it centers around a rather
simple idea of performing a Taylor expansion of f, then using the continuity of the
derivatives to obtain a bound on the remainder given by the Taylor expansion, then
using the convergence of the Riemann sums to their respective integral limits. To
get a sense of this general idea, we sketch the proof of the univariate case, outlining
the proof in [2, Theorem 7.13]. Much of the effort in the general case is devoted to
adapting this general strategy to high dimensions and ensuring all the details still
align to constitute a full proof. To provide such a proof, we will need the following
convergence result from [2, Theorem 7.12].

Lemma 3.14. Suppose f : R — R is a continuous function, t > 0, (P,) is a
sequence of partitions of the form 0 =t < ... <t} =t with mesh size A(n) — 0.
Then, in probability,

kn—1

S F(Bin)(Br,, — Bun)® — / F(B.)ds.

i=1
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Theorem 3.15 (It6’s Formula I). Let f : R — R have a continuous second deriva-

tive, and assume that for some t > 0 we have E[fot f'(Bs)?ds] < co. Then, almost
surely, for all 0 < s <'t, we have

° / 1 ° 1z
F(B) = 1(B0) = [ r(ByaB.+5 [ (B
Proof Sketch. Defining
w(@,M):=  sup |f"(x) = f"()l,

z1,22€[—M,M]
|:E17:E2|<5

Taylor’s theorem implies that for all ¥ close enough to x,

1
F () = f(@) = @)y = 2) = S (@) (y = 2)* < w(0, M)(y — 2)*.
Then with appropriate choice of § and M, for any partition,

1B~ 1(Bo)~ 3 £/ (BL)(Bu, — Bu)

n—1 n—1
1
- 5 Z f//(Bti)(BtH—l - Bti)2| S w(da M) Z(Bti+l - Bti)Q'
i=1 =1

Then, take n — oco. On the LHS, one gets convergence of these sums to their
respective integrals while the RHS converges to 0, giving the statement for s = ¢.
Repeat for each s € Q and exploit continuity of the left and right side of Ito’s
formula as a function of s to get the statement on [0, ¢]. O

To state and prove the multivariable It6’s formula, it is helpful to introduce the
following notation.

Notation 3.16. We consider f : R¥™™ — R as a function f(z,y) where x € R?
and y € R™. We have V,f = (01f,....,0af) and Vyf = (Oat1f, .., Oaymf). We

write

t d t
T uy Su -d u = 81' uy Su Za
| Vet -in ;/ F(Bu.G)B

t mo ot
/O Vyf(Bu; Cu) . dCu = Zz_;/o ad-l—if(Bua Cu) Zu
and .
Apf =Y 0l
i=1

Lastly, we use the shorthand a A b to denote the minimum of @ and b, and we use
a V b to denote the maximum.

Theorem 3.17 (Multivariable It6’s Formula). Let (By) be a d-dimensional Brow-
nian motion and suppose ((s) is a continuous, adapted, m-dimensional stochas-
tic process whose components are all increasing. Let f : R™ — R be a func-
tion such that the partial derivatives 0;f and O f exist for all 1 < j, k < d and
d+1<1i<d+m and are continuous. If, for somet > 0,

B {/ot|vxf(BSaCs)|2d5 < 00,
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then, almost surely, for all 0 < s <'t,

(3.18) ﬂ&xd—fwm®%{AYhﬂBm@%ﬂ%
S 1 S

Proof. First, note we have that Lemma 3.14 also holds when f has a d-dimensional
Brownian motion and an m-dimensional adapted process in its argument. That is,
we have for a sequence of partitions 0 = ¢} < --- <t} =t of [0,¢] with mesh size
going to zero, in probability,
kn—1 ‘ ) t
nh_{I;O ; f(Bt;L,Q;L)(Bg;LH - Bgy)2 :/0 J(Bs, (s)ds,

where BJ is the jth component of B,. Now, let Hes, f(x,y) denote the Hessian
matrix [%;z_f(:my)} ~and define

)

wl(éa M) = sup |Vyf(x1,y1) - vyf($2,y2)|,
@1 ,@9 €[— M, M]?
y1,Y2€[—M,M]™
|21 —22|V]|y1 —y2|<d

wa (0, M) := sup [Hesg f(21,y1) — Hesy f (22, y2) |,
$17$2E[—M7M]d
y1,Y2€[—M,M]™
|z1—22|V]y1—y2]<d

where ||-|| denotes the operator norm. Now take x,z9 € [-M, M| and y,yo €
[—M, M]™ with |x — zo| V |y — yo| < d. By the multivariate mean value theorem,
there exists ¢ on the line segment connecting y and yo with the property that
|7 —y| V |§ — yo| < & such that

f(x,y) = f(z,y0) = Vy f(2,9) - (y — yo)-

Hence,

[f(@,y) — f(@,50) = Vyf (@0, 90) - (¥ — yo)| < w1 (6, M)y — yol.
Similarly, by the multivariate Taylor’s theorem, we have that
1 ~
f(@,90) = f(20,90) + Va f (20, y0)(z — 20) + 5(3? - xO)THeswf(x,yo)(x — o)

for some Z on the line segment connecting « and xy. Therefore,

17(,0) — (20, 90) — Ve f (@0, 90) - (2 — 70) — 5z — w0) " Hese f (o, o)z — o)

= 15 — o) Hes, f o, o) (7 — o) — (& — w0) B, (7, yo) (& — o)
< |(z — o) (Hes, f (w0, y0) — Heso f(&,90))(x — )|

< |[Hes, f (0, y0) — Hes, f(,y0) |||z — ol

< (8, M)z — 2o,

where the fourth line follows from the third line by observing that, from the Cauchy-
Schwarz inequality and from the fact that |[Az| < ||Af|z|, we have |zTAz| <
|zT||Az| < || Al||z|?, where A is a matrix and x is a vector of appropriate dimension.
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It then follows from the triangle inequality that

|f(z,y) = f(zo,90) = Vi f (@0, 50) - (¥ = yo) = Vaf (0, %0) - (. — o)
- %(m — x0)THes, f (0, y0)(x — x0)|
< wi(6, M)y — yol + wa (8, M)z — zo[*.
Now, for any partition 0 =t; <ty < --- < t, =t, define

6= 1<I?<ax |Bt1+1 Bt1| A 1§11n§a73(*1|Cti+1 - Ct11|7

M = [nax, |Bs| A Jnax, Cs-

In the above inequality, replace x with By, ,, o with By, y with ;. ,, and o
with (;,, and sum all of the n — 1 terms of the partition to conclude that

|f(Bt,¢t) — f(Bo, o) — Z Vo f(Bi,;, ) - (Bt — Bt,)

=1
n—1 _
1
— Z Vyf(BtNCtl) : (Ct-;+1 <t 5 Z tit1 HeSzf(BtHCt )( tig1 T Btl)
i=1 i=1
n—1
< w1(67 M)”Ct - <0||1 +CU2(5, M) Z‘Bti+1 - Bti|2'
=1

To see why the first term of the upper bound holds, we observe that

n—1 n—1 m
Z|<ti+1 Ctz‘ = Z ZKtHl Ctl
=1 =1 5=1
m n—1 )
=> > ., —d)
j=1 i=1
m .
=y (-
j=1
m .
=) I¢ =Gl
j=1
Now, consider the following sums:
n—1 d n—1
(3'19) Z valf(BtnCtL) ' (Bti+1 - Bti) = Z 8kf(BtnCt )( t it1 Bi)’
=1 k=1 i=1
n—1 m n—1
(320) Z Vi/f(Bthh) : (Cti+1 Z ad+kf Bt,agt )(Ctl+1 - <t )
=1 k=1 i=1
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n—1
Z(Btprl - Bti)THeSwf(BtwCti)(Bti+1 - Bti)
=1
d n-—1 82 )
(321) = Z Zaxaxkf( L’Ctl)( t+1_Bz1)(Btk+1_BZ)
k=1 i=1 J

By definition of the stochastic integral as the mesh size goes to zero, (3.19)
converges in the L? sense to Zk 1 fo O f(Bu, Cu)dBy, fo Vo f(Buy,y)dB,,. Next,
(3.20) converges almost surely to fo Vyf(Buy, Cu)dC, by Theorem 3.1. Considering
(3.21), we also claim that (B} — B])(Bf _ — Bf) converges to 0 in probability

tit1 tit1
when j # k. Since these Brownian motions are independent, we have

E((B],, - B])(Bf,, — BY) =E[(B], — B])E[(B{, — B)] = 0.
Furthermore, since the independent increments are each of mean 0, we have
Var[(B],,, — B])(Bf ,, — Bf,)] = Var[(B] , — B])]Var[(Bf , — B})]
= (tig1 —t;)?
<A(n)?
— 0,

proving L? convergence, hence convergence in probability. It therefore follows from
the above and from the multivariable version of Lemma 3.14 that (3.21) converges

in probability to Zk 1 f 2f By, Cu)du = fo A, f(By, C)du.
Next, we observe that Zi:l |By,.,—Bu|* = ijl SN (B] —Bl)? (switching

tit1

the order of summation), which converges to dt in probability l+)y Theorem 2.7. To
get almost sure convergence for all terms as n — oo, we observe the following: First,
take a nested sequence of partitions. Then, Theorem 2.7 in fact gives almost sure
convergence to dt. Next, by continuity of Brownian motion and of ¢, w; and ws con-
verge to 0 almost surely. Second, convergence in probability of (3.19)4(3.20)+(3.21)
holds for this nested sequence of partitions in particular, and we recall that there
exists a subsequence of partitions such that convergence of these terms to the sum
of their integral limits holds almost surely. This subsequence is also a sequence
of nested partitions, so almost sure convergence of Z?:_ll\Bti w1 — By, |? still holds.
1t6’s formula therefore holds for s = ¢ almost surely.

We now prove the formula for 0 < s < ¢. By monotonicity of the integral, if
s < t, and s is rational, then E[[|V, f(By, ¢)|%ds] < E[ [y |V, f(Bs, Cs)[?ds] < oc.
Then we can apply the above argument to get (3.18) with upper limit of s. Since
s was arbitrary, this holds for each rational s. Since the intersection of countably
many almost sure events is almost sure, we therefore get that (3.18) almost surely
holds for all rational s between 0 and ¢ simultaneuously. Both sides of (3.18) are
continuous functions of s by Theorem 3.13, hence their equality on rationals in [0, t]
implies their equality on the whole interval, proving the statement. O

Remark 3.22. Often, Itd’s formula will be stated in terms of differentials. For
instance, the one-dimensional statement may be written as an equation

df(B,) = f/(B.)dB; + %f”(Bt)dt
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Such equations themselves don’t have precise mathematical meaning, but they are
in reference to integral equations, such as those seen in Theorem 3.15, which do.
Texts will often use the differential versions to do computations, with the under-
standing that such expressions are referring to the integral forms.

4. APPLICATIONS

In general, exact computations of stochastic integrals are not feasible. However,
It6’s formula allows us to compute a simple example.

Example 4.1. What is the integral of Brownian Motion with respect to itself?
Let’s consider the single variable version of Itd’s formula and let f(x) = 2% on [0, ],
so that the derivative will just be a constant multiple of the identity function. Then
1to’s formula gives

t 1 t
Bf:/o f’(Bu)dBu+§/O f"(B.)du
t

t
:2/ BudBu—i—/ du,
0 0

hence fot B.dB, = B?/2 —t/2.

We now discuss how Brownian motion relates to the heat equation via the
Feynman-Kac formula. To begin, we define the conditions of the heat equation.

Definition 4.2. Let U C R? be open and bounded. We say that u : [0,00) x U —
[0,00) solves the heat equation with initial condition g:U — [0,00) on U if
we have

lim u(t,z) = f(zo) if xo € U,

Tr—x0
t—07F

lim wu(t,z) =0, if g € U,
Tr—x0
t—to

Owu(t,z) = %Axu(t,:c) on (0,00) x U.

This describes a scenario where particles have initial temperature given by f,
particles are killed, i.e., lose all heat, at the boundary, and diffuse over time accord-
ing to a rule where a particle at x compares itself to its neighbors in the sense that,
if the neighbors in an infinitesimal ball around x on average have more heat than x,
then heat flows to z. If the opposite holds, then heat flows away from x. One can
discuss solutions to such equations in terms of Brownian motion with Feynman-
Kac formulas, of which there are several. The following simplified Feynman-Kac
formula is stated and proven in [2].

Theorem 4.3 (Feynman-Kac). Suppose u is a bounded, twice continuously dif-
ferentiable solution of the heat equation on the domain U with continuous initial
condition g. Then

u(t,z) = Em[g(Bt)l{t < T}}v

where T is the exit time of the Brownian motion from U.
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Proof. One can also apply Theorem 3.17 to stopping times of the form s AT where
s <t, and T is the exit time from a compact set K C U (for a discussion, see [2,
pp. 200]). Now, consider a compact K C U and let o be the respective escape time
when starting from x. Fix ¢t > 0. We apply (3.18) with f(z,y) = u(t — y,z) and
(s = s. We have, for any s < t,

SAo
u(t — (s A o), Bsao) — u(t, Bo) = / Vau(t —v, By) - dBy
0

SAo 1 sNo
,/ Opu(t — v, By)dv + 5/ Ayu(t — v, By)dv,
0 0

with the chain rule being applied to the second integral. However, by the third
property of the heat equation, the second and third integrals cancel. Take the
expectation of both sides; the expectation of the stochastic integral is 0, even when
the upper limit of integration is a stopping time, hence

E.[u(t — (s A o), Bsao)] = Eg[u(t, Bo)] = u(t, By) = u(t, z).

Applying the law of total expectation by distinguishing {s < o} and {s > o}, and
considering as o increases to 7 (by having K increase to U), we obtain E,[u(t —
s, Bs)1{s < 7}] = u(t,z). Now, take a limit s — ¢t~ to obtain the statement. O

Example 4.4. Take g = 1 on U, representing a start of unit temperature. Then
u(t,z) = P,[t < 7]. The temperature at = at time ¢ can be thought of as the
proportion of Brownian motion paths that started at z and have not yet been
killed off at the boundary at time t¢.

Our next application of Brownian motion is the conformal invariance property.
A difficult but self-contained proof is given in [2], which uses It&’s formula. To
provide a different proof, we use the Dubins-Schwarz theorem, which is proven in
[6, p. 181] and relies on the notion of a local martingale, which we introduce now.

Definition 4.5. An adapted process (Xi)o<i<r is a local martingale if there
exists a sequence of stopping times (T;,) that is almost surely increasing to 7' such
that the process (Xyar, )i>0 is a martingale for every n.

Theorem 4.6 (Dubins-Schwarz). Let (Ms) be a continuous local martingale for
which My = 0 almost surely and limy_,oo[M]; = oo almost surely. Let o(t) =
inf{s > 0: [M]s > t}. Then for allt > 0, o(t) is an (F(s))s>0 stopping time.
Furthermore, (F(o(t)))i>o0 is a filtration, and My is a Brownian motion adapted

to (F(o(t)))e>o0-

The Dubins-Schwarz Theorem is telling us that if we are able to see how the
quadratic variation of the process is changing over time, we are able to “reverse-
engineer” a Brownian motion by reparameterizing the process according to that
variation. For example, if [M]; = t?, then we would have that [M]; > t as soon as
s > +/t, that is o(t) = V/t, and M ; would be a Brownian motion.

We now state a sufficient condition for obtaining a local martingale. This will
be useful for when we encounter holomorphic functions, which have harmonic real
and imaginary parts.

Proposition 4.7. Let D C R be a domain and f : D — R be harmonic on
D. Suppose that (Bi)o<i<T is a Brownian motion started in D and stopped at
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the time T when the Brownian motion first exits D. Then (f(By))o<i<r s a local
martingale.

We would also like to have a sufficient condition for when a local martingale is
actually a martingale. The next result tells us that it is enough to have the local
martingale be bounded (see [4, pp. 37-38]).

Proposition 4.8. If (X;) is a bounded local martingale, then (X;) is in fact a
martingale.

Before proving conformal invariance, we prove a general fact about covariation
of Brownian motions. Recall from Definition 2.6 that covariation is defined as a
limit in probability.

Lemma 4.9. Let (X:) and (Y;) be independent linear Brownian motions. Then
[X,Y]: =0.

Proof. Tt is enough to show that the L? limit of the sum in Definition 2.6 is 0.
Consider a sequence of partitions (P,) of the form 0 =t} < --- <t} =t of [0,7]
and denote W, := Xt;L-}—l — Xt;L and Z; := Yt;LH — Y};L. Then

ko —1 kn—1
E|> WiZ|=> E[W]EZ]=0,
i=1 i=1
and
kp—1 2 ke —1
E <Z WiZZ) = > EW2Z+2) EW,ZW,Z]
i=1 i=1 i<j
kep—1
= Yt - 1)’ + 2 EWIEIZ]EW,]E[Z]
i=1 i<j
< A(n)t
— 0.
Thus the sum converges to 0 in L? and hence in probability. O

Theorem 4.10 (Conformal Invariance). Let D C C be a domain and let (B;) be a
Brownian motion started at z € C. If f : D — C is holomorphic, then there exists a
Brownian motion By in f(D) and started in f(z) such that f(By) = Byt p(B,))2ds-

s

Proof of Theorem. The main task is to compute the quadratic variation of f(By),
which is done with It&’s formula, and the covariation of a vector is determined
pairwise, in this case [u,u],[v,v], and [u,v]. We split everything into real and
imaginary parts. Writing z = = + iy, we have f(z) = u(x,y) + iv(z,y), and
B, = X, + 1Y}, where X; and Y; are independent linear Brownian motions. We
recall the Cauchy-Riemann equations: % = %Z and g—’y‘ = fg—z, and the fact that
both v and v are harmonic. The multivariable It6’s formula Theorem 3.17 implies
that

1 02 0?

S (gt g u(Xe, Yo

0 0
du(Xe,Yy) = %U’(Xtayt)dXt + a*yU(Xt,Y})dYt T5052 992

0 0
= %U(Xty Y1) dX: + —u(Xy,Y:)dY,

(4.11) 5
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by harmonicity. In exactly the same way, one has
0 9]
dv(X,Y:) = %U(Xh)/})dXt + 8—yv(Xt,Y,})dYt.
We have, by using (4.11) and considering the differential of the quadratic variation
process [u(By)],

dlu(By)] = %U(Bt)2d[Xt7Xt] + 220 (B,) - (Bi)dIX:, Vi + a%“(Bt)Qd[Yt, Y

0 Jr dy
= gu(Bt)2dt+ gu(Bt)th
z Y
= |f'(Bo)I%,

and by identical calculations, one obtains

d[v(B;)] = a%v(Bt)?dt + a%v(Bt)%t

_ 9 ma+ L oumy
= d[u(By)],

where the second equality follows from the first by applying the Cauchy-Riemann
equations. We conclude that [u(Bs)]: = [v(Bs)]: = fot|f’(Bs)\2ds, and [u(Bs),v(Bs)]: =
0.

Now, let o(t) := inf{s > 0 : [|f'(Bu)[*du > t}, and define B, = f(Bow) =
u(Bg(t)) + iv(By(y)). By Theorem 4.6, B, is a Brownian motion with respect to
F(o(t)). This implies the statement, because Bfotlf’(Bs)Pds = f(Ba(f(ﬂf'(Bs)Pds))’
but it is clear from the increasing of the integral and the definition of ¢ that
U(fot|f’(Bs)|2ds) = t. (The isolated nature of the zeros of f’ implies that B, will
not stay in a region where f’ = 0 for any time interval, so the integral is indeed
increasing). d

To see more ways that 1t6’s formula and its corollaries relate to complex analysis,
we now offer an alternative proof of Liouville’s theorem, following [7, Theorem
2.4.5].

Theorem 4.12 (Liouville’s Theorem). Assume that f : C — C is a holomorphic
bounded function. Then f is constant.

Proof. We use conformal invariance. Our assumption implies that for a Brownian
motion (By) in the complex plane, ¢ — f(B;) = Bfotlf/(Bs)\zds is a bounded function,
but since Brownian motion visits every neighborhood by Theorem 2.16, this must
mean that t — f(f |f/(Bs)|?ds is bounded. If f is constant, we are done, so assume
that f is nonconstant. We can then consider a disk D whose closure contains no zero
of f’. Furthermore, there exists ¢ > 0 such that |f’(z)| > ¢ for each z € D. Define
S, and T}, to respectively be the nth entrance and exit times of D. The Strong
Markov property implies that 7;, — S,, are i.i.d. random variables. Furthermore,
they are of finite expectation; take a rectangle [a,b] x [c,d] containing D. The exit
time from the rectangle is less than or equal to the time the first component exits
[a, b], and Proposition 2.15 tells us the expectation of the latter is finite. We have
S (Bs)|Pds > 3207 6%(T, — Sn) = oo almost surely, where the last equality
follows from the Strong Law of Large Numbers. O
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We conclude with two proofs of the Fundamental Theorem of Algebra, again
following [7, Theorem 2.4.3]. While the second proof provided below does not use
1t0’s formula, it is a slick argument that further illustrates the utility of Brownian
motion in complex analysis.

Theorem 4.13 (The Fundamental Theorem of Algebra). Assume thatp: C — C
is a nonconstant polynomial. Then there exists zo such that p(zg) = 0.

Proof. Assume the contrary. Define f(z) = 1/p(z) on all of C. Then f is holomor-
phic, and since |p(z)] — oo as |z| = oo, it then follows that f is bounded on C.
It is at this point that we can use Theorem 4.12 and be done: f would then be
constant, a contradiction, as goes the usual proof of this theorem. But we can also
prove the theorem using facts about Brownian motion.

It follows from Proposition 4.7 and Proposition 4.8 that M; := Rf(B;) is a
bounded local martingale and is therefore a martingale (we use Rf to denote the
real part of f). Since it is bounded, we can also apply the Martingale Convergence
Theorem to conclude that there exists some M., such that lim;_,oo My = My
almost surely. Since (M;);>o is bounded and nonconstant (using that Brownian
motion visits every neighborhood, and Rf(z) being nonconstant follows from the
Cauchy-Riemann equations), consider any a, b such that inf M; < a < b < sup M,.
Consider the disjoint sets E7 := {t : My < a} and Eq := {t : M; > b}. Since (B¢)i>0
visits every neighborhood of the plane, these sets are nonempty, and by continuity
of the process (M), they are open. Lastly, (B;) visits each neighborhood infinitely
often, in particular the neighborhoods contained in Rf~!(—o0,a) and Rf~1(b, 00).
Therefore, we conclude that

liminf M; < a < b < limsup M,
t—o00

t—o00

contradicting convergence and proving the statement. ([l
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