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Abstract. Given a discrete group of isometries, we go through the construc-

tion of the Patterson-Sullivan measure on the boundary of compactified hy-
perbolic space which describes the density of limit points. We then show that

the critical exponent (that is exponent of divergence) of its Poincaré series is

equal to the Hausdorff dimension of the limit set for convex cocompact groups
such as Schottky and Fuchsian groups.

Contents

1. Introduction 1
2. Preliminaries 1
2.1. Fuschian Groups 1
2.2. Schottky Groups 4
3. Poincare Series 5
4. Construction of the Measure 8
5. Showing that our conformal density can be bounded 10
6. Showing the Equivalence of critical exponent and Hausdorff dimension. 12
Acknowledgments 14
References 14

1. Introduction

Patterson-Sullivan theory is a rich field within geometry that looks at how groups
act on hyperbolic spaces. Particularly, it provides insight into how group orbits
evolve as they undergo multiple iterations of the group action and can help predict
how orbits converge and are distributed on the limit set. It does this by constructing
a family of measures as a weighted series (dependent on which group is acting on
the space) and taking their weak limit to get a measure that lives on the boundary.
One interesting result from this beautiful subject is that the exponent of divergence
of the Poincaré series coincides with the Hausdorff dimension of the limit set. While
this is true more generally, here we look at the result primarily for convex cocompact
groups as the proof for these groups only depends on the existence of the measure
and some of its local properties.

2. Preliminaries

2.1. Fuschian Groups. Recall that Z⊕ Z acts on C by translation. We can find
a fundamental domain for this action by passing to orbits. This leaves us with a
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Figure 1. We can match up sides of a unit square to make a torus.

unit square where we must match opposite sides, or a torus, which can be tiled to
generate the complex plane.

Definition 2.1. Given a topological space X and a group that acts on it G, a
fundamental domain is a subset of our space containing exactly one point from each
orbit in its interior. Formally, we can say that a closed F ⊂ X is a fundamental
domain if

⋃
g∈G g · F = X and F ◦ ∩ (gn · F )◦ = ∅ for all n.

A Fuschian group Γ is a discrete, torsion-free subgroup of PSL(2, R) a.k.a. a
group of orientation-preserving isometries of the hyperbolic plane. The question is,
what are its fundamental domains?

Definition 2.2. A Dirichlet polygon, centered at a point z0 ∈ H2, is defined to be
the following set:

F := {z ∈ H2 : dhyp(z, z0) ≤ dhyp(z, γz0) ∀γ ∈ Γ},

where Γ is any Fuschian group. Equivalently, this can be characterized as the
intersection of half-spaces. Namely, we can rewrite the definition as

F = ∩γ∈Γ{z ∈ H2 : dhyp(z, z0) ≤ dhyp(z, γz0)}.

Convexity follows directly — we have that the half-spaces are convex and the
intersection of convex spaces is convex. To see this, we consider that for two points
in the intersection of half-spaces, both points must be in each half-space. Using
their convexity, then the segment between x and y must also be in each half-space.
But by definition, if the segment is in each half-space, it must be in the intersection,
implying that the intersection of half-spaces, our Dirichlet polygon, is also convex.
The associated group acting on the fundamental domain can generate a tiling of
hyperbolic space.

Proposition 2.3. The Dirichlet polygon is a fundamental domain for Γ acting on
H2.

Proof. We must check if the following properties of a fundamental domain hold:

(1) that the intersection between an arbitrary orbit and a Dirichlet polygon is
non-empty and



ON THE PATTERSON-SULLIVAN MEASURE FOR CONVEX COCOMPACT GROUPS 3

Figure 2. The central polygon is an intersection of the half spaces.

Figure 3. Tiling the Poincaré disk model of hyperbolic space with
its fundamental domain.

(2) that the above intersection is no more than one point except on the bound-
ary.

Since Γ is Fuschian, we know that it is a discrete group. Then Γz (for z ∈ H2) is
a discrete set, meaning we can find a minimum distance from our central point
z0. Call a point at which this minimum is achieved z∗ ∈ Γz. Furthermore,
dhyp(z

∗, z0) ≤ dhyp(γz
∗, z0) = dhyp(z

∗, γ−1z0). Now we know that a group ele-
ment must have an inverse element, meaning dhyp(z

∗, γ−1z0) = dhyp(z
∗, γz0) for

some other γ, which implies that dhyp(z
∗, z0) ≤ dhypz

∗, γz0). Since a Dirichlet poly-
gon by is definition F = {z ∈ H2 : dhyp(z, z0) ≤ dhyp(z, γz0) ∀γ ∈ Γ}, the above
inequality implies that z∗ ∈ F , showing that an arbitrary orbit always intersects
the Dirichlet polygon.
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Figure 4. We can match up sides of this octogon to make a 2-torus.

Now, we need to show that an orbit intersects the interior no more than once.
We can proceed by contradiction. To obtain a contradiction, suppose there are
2 points z1, z2 from the same orbit that lie in the interior of the same Dirichlet
polygon. By definition of the Dirichlet polygon, dhyp(z1, z0) < dhyp(z1, γz0) =
dhyp(γ

−1z1, z0). Since z1, z2 are from the same orbit, we can choose a γ such that
dhyp(γ

−1z1, z0) = dhyp(z2, z0), giving the inequality dhyp(z1, γz0) ≤ dhyp(z2, γz0).
If we repeat the calculation switching the places of z1 and z2, we can also get
the inequality dhyp(z2, γz0) ≤ dhyp(z1, γz0), which would only be possible if the
equality is achieved. But the equality is only achieved on the boundary which is a
contradiction, hence proving the claim. □

Now that we know that a Dirichlet polygon is a fundamental domain for a
Fuschian group, let’s consider an octagon for example and see what genus sur-
face it translates to as we did with the complex plane. Suppose our group acts by
pairing every other side up. Then we can see, we are left with a genus 2 surface.
Using similar constructions, we can in fact create other surfaces with genus greater
than 2 as well.

2.2. Schottky Groups. A Kleinian group is a discrete subgroup of PSL(2, C)
a.k.a. a group of orientation-preserving isometries of H3. We can think about it
in a similar way to Fuschian groups, except instead of thinking about the Poincaré
Disk model with a circle at infinity, we have the Poincaré ball with a sphere at
infinity. A special case of this is a Schottky group. A Schottky group is a special
kind of finitely-generated Kleinian or Fuchsian group.

The way a Schottky group is generated is as follows: suppose you have two inter-
vals A and B, and let gAB be a hyperbolic isometry taking the complement of A to
B and A to the complement of B. Let gCD be a similar hyperbolic isometry but for
intervals C and D. Composing gAB , g

−1
AB , gCD, g−1

CD in different orders will produce
the self-similar Schottky group.

In some sense, the intuition for the generation of a Schottky group is almost
opposite to the intuition from earlier for a Fuschian group. Particularly, in our
discussion about Fuschian groups, upon finding the fundamental domain, we reverse
engineered the surfaces they came from. But for Schottky groups we are starting
with a surface, specifically a pair of pants, deconstructing it to form the fundamental
domain, and generating the group from there.
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Definition 2.4. A limit set, or set of limit points, is the set of points to which a
sequence of limits converges. More specifically here, limn→∞ Sn where Sn is the
nth generation of the Schottky group. Here a generation is a way of describing the
level of replication. Namely, after applying the action (or in our case the set of
actions) n times, we are left with n ”layers” of replication.

Lemma 2.5. The limit set of a Schottky group is a Cantor set.

Proof. There are 3 properties we need to prove to show that the limit set is a can-
tor set - compact, totally disconnected, and perfect. By the definition of being a
limit set, we have that it is closed. This is because a limit set is the set of all the
accumulation points and a closed set is just a set that contains all of its accumula-
tion points. We know from the construction of the group that the closures of the
generating circles (domains in the disk model) are disjoint and that intervals of the
same generation are non-overlapping. Then by containment within the intervals,
the limit set must be bounded as well, making it compact.

Now to show that the limit set is totally disconnected. We know from above that
intervals within the same generation won’t intersect (Here a generation refers to
how many layers deep we have gone into the fractal. For example the image below
is in its 3rd-generation). We then have sequences of nonempty closed subsets of
our intervals nested within each other (each generation is a subset of the last). We
also know that as n goes to infinity, the diameter of each of the disjoint intervals
of the nth generation Schottky group goes to 0. Then by the nested intersection
property of metric spaces, we have that the intersection for each of these sequences
is a single point. Since we know that the intervals are disjoint from each other, we
can use the fact that the topology on the limit set is generated by the intervals in
each generation of the Schottky group, to see that the set is totally disconnected.
Finally, we have that this set is perfect. To see this, we recognize that by being a
limit set, each point in the set, being a limit point, we can find a sequence of points
converging to that value. Particularly, for any epsilon neighborhood of the limit
point, we can always go back a finite number of generations such that we contain
it (just by the definition of a limit and convergence). By these three properties, we
have a Cantor set. □

Definition 2.6. A group is considered convex cocompact if its action on the convex
hull has a compact fundamental domain. From this definition, we recognize that
Schottky groups are convex cocompact. Furthermore, finitely generated Fuchsian
groups without cusps also have this property.

3. Poincare Series

Definition 3.1. A Poincare Series is a power series that intuitively looks at a
growth rate of a discrete group acting on a space, particularly our Schottky group.
Mathematically, it can be written as

gs(x, y) =
∑
γ∈Γ

e−s(x,γy),

where s is a positive real number and (x, γy) is the hyperbolic distance.
Our goal is to construct a measure by starting from a point x and looking at the
orbit of a point y under our group. From here, we will have a basis to look at how
the orbit would look at ∞.
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Figure 5. We see in that the 3rd generation Schottky closely re-
sembles the 3rd generation Cantor set below it, except the intervals
lie on the boundary of the disk.

Figure 6. The convex hull of the deconstructed pair-of-pants is
highlighted in purple.
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Definition 3.2. Two functions are proportional if their ratio is bounded both
above and below by finite positive constants.
If we fix x and y, the Poincare series is intuitively looking at the orbit points of y
under Γ as viewed from x. Hence it would make sense that it is proportional to

(3.3)

∞∑
k=0

ske
−ks,

where sk is the number of orbit points in a half-open shell centered about x with a
radius within

(
k − 1

2 , k + 1
2

]
. When does (3.3) converge?

Definition 3.4. The critical exponent can be defined as:

(3.5) δ = lim sup
k→∞

1

k
ln(sk).

If s > δ, (3.3) converges and if s < δ it diverges.

Lemma 3.6. The critical exponent is no bigger than the dimension of the ambient
hyperbolic space and only depends on our discrete group.

Proof. Specifically, now we can use some properties of the Schottky group. Par-
ticularly, since we have that it is a discrete group, there must be some minimum
separation between points. Hence we can bound sk above by cedk, for some constant
c and for dimension d.

δ = lim sup
k→∞

1

k
ln(sk)

≤ lim sup
k→∞

1

k
ln(cedk)

= lim sup
k→∞

1

k
[ln(c) + dk]

= lim sup
k→∞

dk

k

= d,

which shows that δ ≤ d. Furthermore, this critical exponent doesn’t depend on
x or y, rather only our discrete group Γ. We can see this using the two triangle
inequalities:

• (x, γy) ≤ (x, y) + (y, γy)

• (x, γy) ≥ (y, γy)− (x, y)

Then we have that:

e−s[(x,y)+(y,γy)] ≤ e−s(x,γy) ≤ e−s[(y,γy)−(x,y)] ∀γ ∈ Γ

=⇒
∑
γ∈Γ

e−s[(x,y)+(y,γy)] ≤
∑
γ∈Γ

e−s(x,γy) ≤
∑
γ∈Γ

e−s[(y,γy)−(x,y)]

=⇒ e−s(x,y)
∑
γ∈Γ

e−s(y,γy) ≤
∑
γ∈Γ

e−s(x,γy) ≤ es(x,y)
∑
γ∈Γ

e−s(y,γy)

=⇒ e−s(x,y)gs(y, y) ≤ gs(x, y) ≤ es(x,y)gs(y, y)
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So far, there is a characterization of the poincare series when it is either greater
than or less than the critical exponent, but what happens exactly at it? At the
moment, suppose it diverges at this value.

4. Construction of the Measure

Consider the family of measures taking the form of

(4.1) µs =
1

gs(y, y)

∑
γ∈Γ

e−s(x,γy)δ(γy),

These measures are densities, which are formed by weighting a Poincaré series with
point masses at orbit points of y. Each of these measures lives inside hyperbolic
space, on the boundary of a ball contained within the Poincaré ball. However, we
want our final measure to live on the boundary of the Poincaré ball. To arrange
this, we need to define a notion of weak convergence.

Definition 4.2. The weak convergence of probability measures can refer to multi-
ple equivalent notions outlined by the Portmanteau theorem, two of which include:

• |f |Pn → |f |P for all f bounded, continuous

• limPn(A) → P (A) for all continuity sets A (Borel sets with µ(∂A) = 0)

where δ(γy) is the Dirac delta centered at γy. Using our inequality from above, we
can bound the mass of these measures above and below for any s.

Definition 4.3. Let µ(x) = limsi→δ µsi(x) be the weak limit of our family of
measures. We can call this limit the Patterson-Sullivan measure. Interestingly, our
initial measure family lived on the interior points, but upon taking the limit, our
new measure lives on the limit set.

Proposition 4.4. µ(x) gives no mass to the interior

Proof. We consider definition 4.3, i.e. what happens when we take s to ∞. We see
that gs(y, y) goes to ∞ as s goes to δ since we assume it diverges at the critical
exponent. Then given our definition above, since we are taking our limit toward
the boundary, our measure is only non-zero at the limit points and 0 in the interior.

Definition 4.5. A horosphere is a hypersurface that can be described as a limit
of hyperspheres that share a tangent hyperplane as their radii go to infinity. The
shared point of tangency is called the base point. A two-dimensional horosphere,
better known as a horocycle, also has the property that all of its normal geodesics
converge in the same direction to its base point.

Claim 4.1. For another point x′, limsi→δ µsi(x
′) → µ(x′), an equivalent measure

s.t. the Radon-Nikodym Derivative dµ(x′)
dµ(x) = es(x,x

′)ξ , where (x, x′)ξ is the signed

distance between the horospheres based at ξ passing through x and x′.

Proof. For orbit points near the base point, ξ, we know that (x, γy) − (x′, γy) ≈
(x, x′)ξ. To see this, we notice that as we approach infinity, the difference goes
to 0, as shown in figure 8. Since the purple segment in figure 8 goes to length 0
as y approaches infinity in the hyperbolic metric, we are allowed to approximately
equate the two sides. Now we can think about the ratio of the coefficients of the
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Figure 7. Pictured above in pink are horospheres in Hyperbolic
2 and 3 space.

delta mass in the measure. Particularly using the definition from above, we have
the ratio of the coefficients to be:

e−s(x′,γy)

e−s(x,γy)

= e−s[(x′,γy)−(x,γy)]

≈ es(x,x
′)ξ .

Now, we recognize that as we approach the critical exponent, these points are the
only ones that contribute (since we are computing the measure of a neighborhood
of the limit point and base point of our horospheres, ξ), meaning we have the ratio

to be es(x,x
′)ξ as desired. Finally, we realize that the equality (rather than an

approximation) is achieved as the approximation error term goes to 0 upon taking
the limit by the definition of the hyperbolic metric. This gives the existence of the
measure specifically if the dimension is δ. Now we deal with the assumption from
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Figure 8. Pictured here are the geodesics in the upper-half plane
model. We see that as we go to infinity, the distance between the
two go to 0 by the hyperbolic metric, allowing us to equate the
desired difference to a Busemann function/ horospherical distance
between x and x′

earlier regarding the divergence at the critical exponent.
What do we do if the Poincaré series doesn’t diverge at δ? We can observe that
defining the measure as a weak limit of the weighted series as we did before doesn’t
make sense if it doesn’t diverge at the critical exponent. So how does one deal with
this? There needs to be a way to increase the weights of the delta masses such
that the series would diverge. Choose a continuous and non-decreasing function h :
R+ → R+ such that the series,

∑
k h(k)ske

−ks diverges at the critical exponent and

that
∣∣h(r+d)

h(r) − 1
∣∣ < ε for a bounded distance and positive epsilon. This effectively

removes dependence on the choice of the function h because as si approaches the

critical exponent, we see that h(r+d)
h(r) → 1.

5. Showing that our conformal density can be bounded

Definition 5.1. A conformal density is a family of finite positive Borel measures
that live on the boundary of our space X taking the form of µ = (µx)x∈X . Further-
more, for any two elements of X, the associated measures are absolutely continuous
with respect to each other.
Consider an invariant conformal density µ of dimension α associated to our group
Γ. From above, we have the existence of such a density if α = δ. Our goal is to
estimate the measure of a ball of radius r scaled by 1

rα with respect to the metric
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Figure 9. Uniform expansion to engulf all but a ball of radius
≤ ε. We can use the boundedness from this construction to prove
the critical exponent is equal to the Hausdorff dimension.

on the sphere associated to a point x in hyperbolic space (ie µx(Bγ)/r
α). We need

to be careful to change our metric conformally to ensure that asymptotic properties
of the radii when r → 0 don’t change.

Proposition 5.2. Given x in Hd+1, let rγ = e−(x,γ−1x). We can find balls Bγ of
radius k · rγ that are centered at the ends of rays from x to γ−1

x for γ ∈ Γ such that
µx(Bγ)/r

α can be bounded above and below.

Proof. By applying a hyperbolic translation that preserves the axis of γ going
through x, we can uniformly expand the ball with a radius of k · rγ . The idea is
that if we choose some ε > 0, we can choose a corresponding k = k(ε) large enough
so that the image of our ball under this transformation will be expanded uniformly
to include all but a small ball of radius ≤ ε. Now, we can apply this process
for all geodesics connecting x and γ−1x, iterating through each group element γ

in Γ. What results is that Bγ of radius k(ε)e−(x,γ−1x) about ξ, the endpoint of
our directed ray, is expanded uniformly to engulf all but a ball of radius ≤ ε.
Furthermore, we know, that if we are given µ isn’t a single atom, we can pick some
ν < mass µ such that for ε > 0, every ball on the sphere of radius ≤ ε has µ-measure
≤ ν. If µ has no atoms (eg Lebesgue measure), ν can be chosen arbitrarily small.
Otherwise, we can choose ν to be the mass of the largest atom of µ + some small
positive number.

Definition 5.3. A Lebesgue number, given a compact[ified] space and a [finite]
open covering of that space {Ui}, is a positive number β such that for every S ⊂ X
with diam(S) ≤ β, we can find Ui ⊃ S.
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We can now choose ε to be less than the Lebesgue number of some finite sub-
cover {Uξ}, where Uξ is a disk about ξ such that µ(Uξ) ≤ ν. Now by picking our ε
this way and using the setup that we have created, the expansion rate is approx-

imately e(x,γ
−1x) and we have essentially guaranteed ourselves bounds above and

below for µx(Bγ)/r
α where all γ dependence cancels out. Hence our bounds are

independent of γ.

6. Showing the Equivalence of critical exponent and Hausdorff
dimension.

Definition 6.1. The Hausdorff δ-measure looks at the size of a set by using shrink-
ing set coverings. As δ approaches 0, the coverings become increasingly fine allowing
for the approximation of the Hausdorff measure. Mathematically, the d-dimensional
Hausdorff δ-measure of S, a subset of a metric space, is defined as:

Hd
δ (S) := inf

{ ∞∑
i=1

(diam(Ui))
d
∣∣ ∪∞

i=1 Ui ⊃ S,diam(Ui) < δ
}
.

Definition 6.2. The d-dimensional Hausdorff measure Hd is defined as the limit
as δ → 0 of the Hausdorff δ-measure for measurable sets (otherwise it is called an
outer measure). Given the definition above, we can see that it is similar to the
Lebesgue measure, but generalizes to allow for non-integer dimension, making it
very useful for many things, including limit sets of self-similar groups.

Definition 6.3. The Hausdorff dimension is defined as:

dimH(X) := inf{d ≥ 0|Hd(X) = 0}.

Theorem 6.4. For a convex cocompact group, the Hausdorff dimension of the limit
set Λ(Γ) is the critical exponent δ(Γ). It is also positive and finite.

Proof. Choose a Γ-invariant conformal density µ of dimension δ, the critical ex-
ponent of our convex cocompact group. Using proposition 5.2, we can compute
the ratios µx(Bγ)/r

δ for all balls about ξ on the limit set. Consider a ray that
originates at a point x in the convex hull and terminates at ξ. Since the action on
the convex hull has a compact fundamental domain, we know that the orbit points
of x will be a bounded distance from each point on the ray.
Now we want to consider our prior construction of Bγ . Given some small positive
number ε, we can choose an appropriate constant such that upon scaling, for γ near
the ray, Bγ will contain a ball of radius εrγ centered at the endpoint of the ray, ξ.
If we follow the ray, B(ξ, εrγ) ⊂ Bγ will continue to shrink.
This is useful as we can take the boundedness above and below of µx(Bγ)/r

γ in
proposition 5.2 and apply it to our ball centered at ξ. Namely, because of the subset
relationship, the boundedness above and below of µx(Bγ)/r

γ automatically gives
the boundedness above and below of µx(B(ξ, r))/rγ for every r. Now, we recognize
that we the choice of ξ was arbitrary, meaning we can use this same construction
for any point in the limit set. Now, we are ready to evaluate the Hausdorff measure
on the limit set.
Consider a Borel subset of the limit set A ⊂ Λ. Take a covering of this subset ∪iBi

where each Bi is a ball centered at a point at the limit set with a respective radius
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ri. Now, we can set up the following inequality which follows from boundedness,
subadditivity, and definition of a cover respectively:

(6.5)
∑
i

rδi ≥ constant ·
∑
i

µx(Bi) ≥ constant · µx(∪iBi) ≥ constant · µx(A)

Then computing the Hausdorff measure and using this inequality, we have:

lim
ε→0

inf
ϑ=∪oi⊃A,ri≤ε

∑
i

rdi ≥ c∗ · µx(A)

Since we ultimately want to prove equality, we now need to get the inequality in
the reverse direction. Our strategy to approach this would be to construct a cover
of the limit set in a systematic fashion for some ε > 0 and shrink the balls to ensure
disjointness. Consider a sequence of balls that are centered at points on the limit
set such that radius Bi ≥ radius Bi+1 with radius B1 ≤ ε. At the ith step, we can
choose the center of Bi such that center Bi /∈ (∪i−1

j=1Bj). While this construction
creates some level of separation, it doesn’t guarantee that the balls are entirely
disjoint. To ensure disjointness between the balls, we can shrink the radii to half of
the original radii. Denote this new disjoint union B. Now we are perfectly set up
for the reverse inequality which gives that the Hausdorff measure of the subset is
at most some constant times µx(A):∑

i

rdi = 2d
∑
i

(1
2
ri
)d ≤ c∗∗ · µx(B) ≤ c · µx(Λ)

As we have both directions, taking ε → 0 proves the claim.

In addition to this theorem, the above proof gives information regarding the Haus-
dorff δ-measure of the limit set when confined to a ball. Given the inequalities
above, we get that, the measure must be proportional (up to a proportionality con-
stant determined by the constant terms in the inequality) to rδ, giving a sense of
how the limit set grows.
Now we just want to show uniqueness of the measure. From theorem 6.4, we have
that for a Γ-invariant δ-conformal density on the limit set, δ must be the Hausdorff
dimension and resultantly that all sets of the same measure class correspond to the
measure classes under Hausdorff measure (just following from the equivalence).

Definition 6.6. Consider the following two conditions:

(1) γA = A ∀γ ∈ Γ

(2) µ(A) = 1 or µ(X \A) = 1

Ergodicity with respect to a probability measure µ and a group Γ means that
condition (1) necessarily implies condition (2).

Claim 6.1. The Hausdorff measure class (hence equivalently that of µ) is ergodic
under the action of Γ.

Proof. To prove this, consider a measurable set A whose measure is preserved un-
der the group action. We observe that if A has positive Hausdorff dimension d,
then it has a positive d- dimensional Hausdorff measure. Since the measure of
A is preserved under the group action, there are two options: µ(X \ A) = 0 or
µ(A) = 0, where the latter only occurs if the Hausdorff dimension was originally
0. But this is precisely the criterion for ergodicity, hence showing the desired result.
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This is significant as it means that the Γ-invariant conformal density is unique.
To see this, suppose for the sake of contradiction that it isn’t unique. Then we can
take two such densities and take their average, which would be 1 (by the above
claim). Then the Radon-Nikodym derivatives with respect to the average measure
for each starting measure would be constant. Taking limits, we get that the two
densities are equivalent, contradicting our initial assumption that they were differ-
ent.
Another thing we can note is that the Poincare series must diverge at this critical
exponent in the convex cocompact case. We can check this using our construction
of the balls within each other. Our covering is arbitrarily fine upon taking the
limit, and since the measure inside each ball is proportional to the subsequent one
(by our construction earlier), we would have to diverge as no matter how far out
we go, we still have dependence on the next term. Recall at the end of section 3,
we just took this to be the case to make sense of the construction that followed.
Confirming this fact means that this assumption was reasonable.

That the critical exponent of the Poincaré series equals the Hausdorff dimension of
the limit set is not unique to convex cocompact groups. For example, for cocom-
pact groups, where the limit set is the full circle at infinity, we can relatively easily
check manually that it holds (since the Hausdorff dimension of the limit set would
just be 1). In this case, it would work out rather nicely as this would just make the
Patterson-Sullivan measure equal the Lebesgue measure. However, in many other
cases, the construction is far messier and while very interesting, requires far more
machinery.
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lications Mathématiques de L’Institut des Hautes Scientifiques 50, 171–202 (1979).

https://doi.org/10.1007/BF02684773


	1. Introduction
	2. Preliminaries
	2.1. Fuschian Groups
	2.2. Schottky Groups

	3. Poincare Series
	4. Construction of the Measure
	5. Showing that our conformal density can be bounded
	6. Showing the Equivalence of critical exponent and Hausdorff dimension.
	Acknowledgments
	References

