EXISTENCE AND UNIQUENESS OF STOCHASTIC OPTIMAL
CONTROLS

J. ZANE MILLER

ABSTRACT. Historically, there have been two broad approaches to optimal con-
trol problems: those that rely on the dynamic programming method pioneered
by Bellman, and those that rely on the maximal approach of Pontryagin. This
is true in stochastic control as well. Despite both methods being developed
to deal with the same set of problems, it is often that those who apply one
method are unfamiliar with the other. This paper seeks to outline and discuss
both approaches and the connections between them, especially as relates to
the generalized Hamiltonian and stochastic verification theorems.
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1. INTRODUCTION

Historically, there have been two broad approaches to optimal control problems:
those that rely on the dynamic programming method pioneered by Bellman, and
those that rely on the maximal approach of Pontryagin. This dichotomy holds
continuously in stochastic control theory. Despite both methods being developed
to deal with the same set of problems, it is often that those who apply one method
are unfamiliar with the other. Oftentimes, in fact, a stochastic control problem
is presented entirely within the context of dynamic programming or a maximal,

Date: December 29, 2023.



2 J. ZANE MILLER

Hamiltonian, framework. This paper seeks to outline and discuss both approaches
and the connections between them.

The connections between the two methods can clarify the way formal solutions
to the problem arise, especially in the case of dynamic programming, for which the
literature on formal solutions is often secondary to computational methods. The
connections should also be known better as to inspire a more unified view of the
field, as the development of two entirely separate frameworks for the same problem
ensures effort is wasted on rediscovery of facts known in one approach in the other.

2. FORMULATIONS OF STOCHASTIC CONTROL PROBLEMS

Some conditions must be established on the objects to be used in optimal control
problems. As these definitions are not yet standardized, they are repeated here.
First, as stochastic analysis revolves around continuous spaces with a useful notion
of probability measure (that events with zero probability are all known), we create
the regular space:

Definition 2.1 (Regular). If a filtered probability space (2, F,{F:}ies,7), P) is
complete and {F }¢c[g 7 is right-continuous such that

Plw) =0 = w € Fg,
we say (€, F, {Ft}ie[s,1, P) is regular.

We then want a set of functions that works with the filtration. Thus we define
feasible controls:

Definition 2.2 (Feasible control). For a given probability space with filtration
{Fi}ters,r), define

UIS,T) = {u(-): [S,T] x @ = U | u(-) is {Fi }ic[s,r-adapted },

or equivalently, that any w(-) € U[S,T] is not dependent on any o-algebra not
contained in the filtration. A member of this set is a feasible control or is said to
satisfy the feasibility condition.

The next definition outlines the type of stochastic differential equation which
we work with in stochastic control. All controlled stochastic differential equations
are stochastic differential equations which take some time-dependent input whose
functional form is one the system controller ostensibly can modify. In this case, we
only consider ones with finite, deterministic time horizons, but easy extensions to
infinite time and random stopping do exist.

Definition 2.3 (Controlled stochastic differential equation). Given a probability
space (2, F,P), if it is adapted with a filtration {F; }+c|s ) such that (2, F, {F; }ies,77, P)
satisfies Definition 2.1 and is equipped with a m-dimensional Brownian motion

W (t), consider the stochastic differential equation X in R™ of the form

dX(t) = f(t, X(t),u(t))dt + o(t, X (t), u(t))dW (t)
X(S) =X € Rn,

where f: [S,T]xR"xU — R" p: [S,T|xR*xU — R™"*™ U is a separable metric
space, S,T € [0,00) with S < T, and u(-) satisfies Definition 2.2. We call this
equation a controlled stochastic differential equation, or specifically a controlled
stochastic differential equation X over [S,T] with initial condition X (S) = o,

X"[Dg T A solution to this equation is deemed )A([SyT]JO (t).
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The other component to a stochastic control problem is an object to take an
infimum or supremum (we choose to use infimum in this text, which is arbitrary
as one can simply negate the function). This object represents the payoff or value
that the controller is trying to maximize.

Definition 2.4 (Cost functional). The cost functional for X with solution X is
defined as

T
I (L F.BW()u(-) =E VS g(t, X (t), u(t))dt + h(X(T))

where X is defined for (Q, F,P,W(-))

2.1. Strong formulation. Usually, we wish to solve the problem given a fixed
probability space and filtration. This approach is generally considered to more
closely reflect the real world. However, this approach is not analogous to solving
a deterministic system due to the unique nature of Brownian motion. Thus, the
techniques and theorems for deterministic systems do not always apply.

Definition 2.5 (Strong admissibility). A control u(-) is called strongly admissible
for a given controlled stochastic differential equation X(g 1) 4, if
i) wu(-) satisfies Definition 2.2.
ii) X&T],mu (t) is the weakly-unique solution to Xig 77,,, under u(-).
i) g, X (), u() € LL([S, THR") and h(X(T)) € £}, (% R").
are all met. The set of all strongly admissible controls is denoted U, 4[5, T].

Definition 2.6 (Strong optimal control). A strong optimal stochastic control is
defined as u*(-) € U;; 4[5, T] such that

27) Tsn(w () = meﬁ?i[s,ﬂ )

The corresponding optimal state process is referred to as X [*S ] 20 (t).

2.2. Weak formulation. Sometimes, varying the probability space and filtration
allows a solution to be more easily obtained, which is useful in some approaches
to the problem, like the dynamic programming approach. It also is relevant for
problems where we wish to obtain the probability law of a solution, such as in
robustness problems in economics. However, unlike in the previous approach where
we study a set of functions, in this case we study a set of tuples.
Definition 2.8 (Weak admissibility). A 5-tuple 7 :== (Q, F,P, W(-);u(+)) is called
a weakly admissible control for a given controlled stochastic differential equation
X‘[”é?,T] if
i) {W(t)}iers,1) is a m-dimensional Brownian motion on (2, F,P) with W(S) =
0 almost surely.
ii) For F; = o{W(r): S < r < t}, the o-algebra generated by the Brownian
motion up to time ¢, we have (Q, F, {]}t}te[S,T},P) regular.
ili) w(-) is feasible for (€2, F, {ﬁt}te[S,T]7P)~
iv) X&T],xo (t) is the weakly-unique solution to X(g 77 ., on (£, F, {ﬁt}te[s,T] ,P)
under u(-).
¥) g, X()ou() € L[S, TER") and h(X(T)) € Lk, (2 R") such that L3([S, T]; B")
and L% (Q;R") are defined for (2, F, {ﬁt}te[S,T]»P)~
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The set of all weakly admissible controls is defined as U’,;[S, T7.

Definition 2.9 (Weak optimal control). An optimal stochastic control is defined
as T € UY,[S, T] such that

2.10 J T) = inf J ().
( ) [&T](W) ﬂeuﬁ[sﬂ (m)

The corresponding optimal state process is referred to as X 1S, 7],z (1)-

3. DynaMIC PROGRAMMING

The goal of the dynamic programming approach is to remove the stochastic ele-
ment from the differential equation. On an abstract level, formal dynamic program-
ming involves deriving a partial differential equation out of the problem. Practically,
the approach enables computational methods to be used to find optimal controls.

In the deterministic case, the approach is built around using the principle of
optimality to solve a first order differential equation for the path of the optimal
cost function. In the stochastic case, we see that we have to pay attention to the
existence of the stochastic term in the differential equation. Thus, the solution we
obtain is not just that of the deterministic problem, but also involves the g term as
well.

3.1. Stochastic dynamic programming.

3.1.1. Stochastic framework for dynamic programming. We essentially wish to solve
a weak problem for every single possible intermediate time horizon in order to learn
about the path of a function that a priori is the path of the cost functional under
the optimal control.

Definition 3.1 (Value function). For a given strong stochastic control problem
with controlled stochastic differential equation X(g 17 4,, let s € [S,T] and X (s) =
y. Then develop a weak control problem for X, 77 -

The value function V of a given strong control problem is defined

(3.2) Vi(s,y) = infreyw 15,77 Iy (1), VX € {X (57,5} (5,09 €l5,7) xR
V(T,y) = h(y),Vy € R".

3.1.2. Bellman’s Principle of Optimality. Bellman’s Principle can be stated as es-
sentially “global optimality is local optimality”. It is key to many proofs in dynamic
programming and thus we repeat it here for clarity.

Theorem 3.3 (Principle of Optimality). Let (U, d) be Polish and f, 0, g, h Lipschitz
continuous. Then for any (s,y) € [S,T) x R™ and u € 7,

(34) V(s,y)= inf E

s+b
t, X" t t))dt
TEUX 4[S,T)] /S 9(t, [S;T]’y( ) u(t))

+V(s+b, X0 7, (1) ]| VO<b< T —s.

It’s clear, therefore, that the path of the value function depends only on the
solution we obtain for the differential equation. We should therefor be able to state
a relationship between the control and the value function.
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3.1.3. Hamilton-Jacobi-Bellman equation. Solving a Hamilton-Jacobi-Bellman equa-
tion, along with the Verification theorem, provides the main method for formally
obtaining a solution by dynamic programming.

Theorem 3.5 (Hamilton-Jacobi-Bellman equation). Let (U, d) be Polish, f,0,9,h
Lipschitz continuous, and V € CY2([S,T] x R™). Then we have for Y = Xir,0)
that

ov

(3.6) %—‘t/ = sup {f(t,Y(t),u(t))aY

uelU

+;tqmayu»uu»f%uYu%u@mggg}

for all (t,x) € [S,T) x R", and & = h(z)Vz € R™.

It is therefore easy to see that the optimal control is the argument v € U that
maximizes the value function. As the above problem takes the form of a determin-
istic partial differential equation, the existence and uniqueness of solutions depends
on the theorems for that class of problem. This is immensely useful, as we have
brought the problem into an area already well-understood by analysts, and for the
most part, removed the unfortunate effects of the rough-path nature of Brownian
motion.

However, as the value function is not necessarily smooth, we consider the exis-
tence of a different class of solution in a later section.

4. MAXIMUM PRINCIPLE

4.1. Stochastic Hamiltonians. Another approach to the problem involves trans-
forming the stochastic partial differential equation into a mere stochastic differen-
tial equation. This is done by breaking the system down into multiple interrelated
stochastic differential equations (the original system and its adjoint processes).

Notations 4.1. (x) == (t7X[TS',T]7ws (t),u*(t)),Y = X[*S)T],ws.

Definition 4.2 (Adjoint process of the first order).

{dp(t) = —[F F(IP(t) + Fr 0" (a(t) — =g (x)]dt + q(t)dB ()
(4.3) 5 .
p(T) = =57 X5 1 0.(T))
Definition 4.4 (Adjoint process of the second order).
dP(t) = —[z5fT()P(t) + P(t) 55 f(x) + 530" () P(t) 53 0(%)
(45) 80T ()QU) + QL) o) + Zldt + QUAB(1)
P(T) =g h(X[5.1y,4,(T)

where Z = — 55 g(%) + p(t) 532 f (*) + a(t) gyzo(*)

These processes are termed backwards stochastic differential equations because
of the terminal condition.

A useful transformation of the system is taking its Hamiltonian, which is a well-
known approach to the deterministic problem.
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Definition 4.6 (Hamiltonian). H(t,z,u,p,q) = (p, f(t,x,u)) + tr[¢To(t, z,u)] —
g(tvajau)a (t,x,u,p,q) € [SvT] XR™" x U xR™ x R™™.

However, in the stochastic case, we must account for the trace properties of the
second-order adjoint process. Thus we generalize the Hamiltonian.

Definition 4.7 (Generalized Hamiltonian). G (¢, x,u,p,q) = H(t,x,u, p,q)—tr[q? o(t, x,u)]+
%tr[g(t,x,u)TPg(t,x,u)], (t,z,u,p,q) €[S, T] x R" x U x R™ x §".

Thus the system becomes much easier to solve because it only involves one
independent variable.

4.2. Stochastic Maximum Principle. Assuming that we have a maximum, we
have a very convenient theorem to use the generalized Hamiltonian and adjoint
processes to derive the optimal control. This maximum principle allows us to just
worry about a system of equations in one variable instead of in multiple.

Theorem 4.8 (Stochastic Maximum Principle). Assume that f, 0,9 € CZ(R™). Let
K(t,z,u) = G(t,z,u,b, B) + o' (t,z,u)(m — Bo(t,z,u)),

where (b,m) and (B, M) are adjoint processes of x of the first and second order,
respectively. Then we have that

(4.9) Kt XS ) (00 (8)) = max (K XS 1 o (0, (D) }

almost surely.

5. CONNECTIONS BETWEEN THE MAXIMUM PRINCIPLE AND DYNAMIC
PROGRAMMING

5.1. Viscosity solutions. As alluded to in Section 3, we need a new framework
for nonsmooth solutions to Hamilton-Jacobi-Bellman equations.

Definition 5.1 (Viscosity solution). A viscosity solution is a solution v € C([\S, T] x
R™) to a given Hamilton-Jacobi-Bellman equation that fulfills

{’U(T,:B) < h(z),Vz € R"

(5:2) o(T,x) > h(z),Yx € R"

and for any ¢ € CH2([S,T) x R™), whenever d(v,p) attains a maximizing (or
minimizing) point respectively at (¢, z) € [S,T] x R™, we have

SUPyecu Q(t,x(t),u(t), _g%(t7x)7 @(tax)) < %(tam)

T 022
e % (t,x).

5.3
( ) SUPyev g(tﬂz(t)vu(t)a*?Ti(t,x)vfw(tam)) ot

v

We should also define the sets of differentials that arise in this chapter.
Definition 5.4 (Differential sets).

D2+y(i, ) = {(p, P) € R" x & |
v(f,ac)—v(f,&?)—(p,m—ff)—%(m—&?)TP(m—E) <0}

lim, 7 [o—7|2

D2 0(f,3) = {(p, P) e R" x &" |
7 PP ~\_ 1 T ~
v(t,x)—v(t,2)—(p,x—%)— 3 (z—%) P(z-7) > 0}7

T—T -2

(5.5)

lim
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Dito(i,7) = {q € R | Tim, p 2eD=0D-a=0 <

(56) Dg_’;v(f, 5:\) =g e R | himtigv(t,&?\)fﬂl(ttzi‘)*q(tfi) Z O

5.2. Relationship for stochastic systems. The simplest connection to exposit
is the relationship between the generalized Hamiltonian and the Hamilton-Jacobi-
Bellman equation, which is immediately observable.

Proposition 5.7. Let (U,d) be Polish, f,o0,g,h Lipschitz continuous, and V €
CH2([S,T) x R™). Then we have for Y = X" . () that

[SfT]JJ
ov oV 9%V
(5.8) B —Sgg{g“”‘“’—ay’—aw)}

for all (t,z) € [S,T) x R", and & = h(z)Vz € R™.

This then begs the question— does there exist a relationship between the value
function and the object we maximize in the stochastic Hamiltonian approach? In-
deed, we have the following theorem, which works for all solutions to the value
function, regardless of the smoothness with respect to the time variable. The proof
is involved but intuitive, and relies simply on properties of measure and continuity
to show the inclusion.

Theorem 5.9. Let (U,d) be Polish, f,0,9,h and their derivatives be Lipschitz
continuous, and V € C*([S,T] x R"). Then

(5.10) K(t, X{s 1,05 (0, 0" (1) € DoV (1t Xy 46 (1)
almost surely for almost every t € S, T.

Proof. For any t € (s,T), take 7 € (t,T]. Denote by X, (-) the classical solution to
the following stochastic differential equation on [r, T):

(1) Xe(0) = Xsrs 0+ [ 10.5:(0),00(0))d0

+ /7" 0(0, X, (0),u*(0))dW (0).
Set &-(r) = X+ (r) = X[gp) . (r) for r € [7,T7. Undethhe new probability measure
P ( | .7:'7)7 we get for any k > 1 that:
512 B{ sw 60" 7| < KXy = Xisa O, Pas
Taking E ( | ]:"t> on both sides, F; C F, we obtain by F CF,

(5.13) E{ sup 57<r>|2’“|ﬁt}szz<|7t’z Poas,
T<r<T

for constant K. We omit here the details of the variational equations that &, (r)
satisfies.! Those equations satisfy weak admissibility such that

(5.14) (Q,]-',IP(-U:"T) (w),W(-)—W(T),u*(-)|[T’T]> U, [T, T), P-as.

IThese can be found in [1].
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Thus, by the definition of the value function V,
(5.15)

V(. Xy (1) <E { /

T
g (r, X (r),u*(r))dr + h (z-(T)) | .737} , Pas.

Taking E ( | ﬁt> and as t < 7, we have
(5.16)

T
V(r, X[*S,T],xs (t)> <E {/ 9 (7"7 X‘F(T)>U*(r)) dr+h (XT(T)> | ]:—t} , P-as.

Choose a subset Q¢ C Q with P (Q) = 1 such that for any wy € Qo, we have the
above conditions and

(5.17) sup (|p (r,wo)| + [P (r,wo)|) < 400
s<r<T

for any rational 7 > ¢. Let wy € Qo be fixed, and set Ef := E ( | ft) (wo). Then

for any rational 7 > t, we have

v (T’ X(s.1),25 (t’W0)> -V (t’kaS,T],ms (t,wo))
<E { /tTg(T)dT + /TT lg" (r, X-(r),u"(r)) — g"(r)] dr

+h (X (T)) = h(Xis 1.0 (T)) }

(5.18) :Et{—/tTg*(r)dr+/TT<g§ (r)7§r(r)>d7”

2 %

{6 + 3 [ (G5 e e )

2
g 0 (s e DD (DT ) 4 o — 1)
Then

V (7 Xfs 105 (190)) = V (6 X 11,05 (o) )

519 <w [ e -2 {606 0) + 360 PO 0}
+ o{|T — t]).
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As for any ¢, € L% ([S,T]; R"™), by Cauchy-Schwarz

E! < /t " p(r)dr, /t Tw(r)dr>
(5.20) < {Et /tT o(r)dr 2}§ {Et /tT Y(r)dr 2}2
—(r—1) { | Eeerar [ TEt|w<r>|2dr}

=o(|r—t|), astlt, Viel[s,T), P-as,

N

and

Et < /t " oty /t ' w(r)dW(r)>
(5.21) < {IE /tT o(r)dr 2}; {E /tT Y(r)dW(r) 2}2
= -0t { [(weepe [T

=o(lr—t|), astlt, ae te[s,T), P-as.

The last equality comes from the property that sets of Lebesgue points have full
Lebesgue measures for integrable functions and ¢ — F; is continuous in ¢. Thus

oy RO =E {_ <p(t>’ / f*<r>d7"> ) / tr [a(r) 0" ()] dr}

+ o(|T —t]).
Similarly,
623  E&OTPOEM =B [ "t (0" (1) T P (1)) dr + of|7 — 1]).

It follows that for any rational 7 > ¢ and at w = wy

VT, X(s 17,05 (1) = V(E X{g 17,04 (1)

£t {<p<t>, [ )+ i | e wyar

—% /tT tr (g*(r)TP(t)g*(r)) dr — /T fr(r)dr ¢ +o(|T —t|)
= (17 = (G, X[ 17,05 (), u” (1), p(1), P(t))
+0T (8, X gy 06 (8, 0" () (g(t) = P(H)o(t, X{5 17,4 (), u* (1)) + 0|7 — t]).

(5.24)
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As o(]T —t]) is of aribtrary size, by the continuity of V', we have that

G(t, X[s,1) 2 (1), u (1), p(t), P(1))
+ 0" (6, X {57y ,06 (8), w" (1) (a(t) — P(t)olt, X5 17,0, (1), u" (1))
€ D172’+V(th[*s,T],xs (1),
and the proof is complete. (I

5.2.1. Smooth case. The above theorem leads to an extraordinarily powerful result
for smooth value functions. The proof is immediate from the above theorem.

Corollary 5.25. Let (U,d) be Polish, f,o0,g,h and their derivatives be Lipschitz
continuous, and V € C3([S,T] x R™). Then

(5.26) K, X[5 1) as (0™ (8) € DtV (8 X ) 4 (8):

This result essentially says that —g—}‘f is equal to p(t) and —%Q(t, Y(t),u(t)) is
equal to ¢(t). As a corollary to Corollary 5.25, we obtain the following in [1].

Corollary 5.27.

(5.28) V(t,Y(t)) =V(s,y) f/ g(r, Y (r),u*(r))dr

t
ov y
+ a—y(nY(r))Tg(r,Y(r),u (r)dW (r).
S
This theorem expresses the value function as an Ito process, or that an optimal

process (z,u) makes t — V(t,z) + fst g(t(r), z(r),u(r))dr a Martingale for all ¢.

5.2.2. Nonsmooth case. An equivalent theorem exists in [1] for value functions non-
smooth in the state variable.

Corollary 5.29.

(5.30)  {=p(t)} x [~P(t),00) C D2HV (L, X[y, (D) V1 € [, T,
(6:31) D V(L X5, ) S {-p(t)} x [~P(t),00).V¢ € [5,T]
almost surely.

This result again expresses the value function as related to the adjoint processes,
but this time with less precision.

5.3. Stochastic verification theorems. There are many different modes for the
verification theorems, which are normally presented as a core part of solving for-
mally the Hamilton-Jacobi-Bellman equation. Instead, here I present a theorem
that relates any given solution for the value function to the generalized Hamilton-
ian. This theorem does not require smoothness, as it allows for the expectation
to be used instead. It is a convenient criterion for checking if a given solution we
obtain to a Hamilton-Jacobi-Bellman equation is valid.
The theorem is typically stated as in [2]:

Proposition 5.32. V(s,y) < J(s,y;u(-)), Vu(-) € Uy [s,T], (s,y) € [s,T] € R",

However, the following formulation is much more useful, as it does not rely on
the optimal cost functional.
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Theorem 5.33. A given admissible pair (X (5.1, 25 (1), u()) is optimal if and only if
for almost every t there exists separable (v(t),p(t), P(t)) € Dgf”;V(t X5 17,24())
such that

(5.34) E[o(t)] <E[G(t, X{s 1) 5 (1), ult), =p(t), =P(1))].

Proof. First we have that for any V(-,-) € C([S,T]x R™), there exists a ¢(-,-) =
(-, 3tz v,p, P) € CH2([S,T] x R™) with (t,z) € [S,T) x R" and (v,p, P) € R x
R™ x 8™ such that whenever (¢,z) € [S,T) x R™ and (v,p, P) € Dtlf’;V(t,m), one

has for Y = X&T],IS

dy dp 0%
(G goen. G2 ) = )

and v — ¢ attains a strict maximum over [t,T] x R™ at (¢,z). Now, for almost all
w € Q, let

o(r, z) = é(r, z;w) = @(r, 2,8, Y (H;w), v(t; w), p(t; w), P(t;w)),

where (v(-),p(+), P(-)) are the processes satisfying the given conditions. Then, on
the probability space (Q,]-',P ( | .7:',5) (w)), applying Itd’s formula to ¢(r, Y (1)),

we have

E [V(t +0,Y(t+0b) - V(t,Y()) | ﬁt}
<E[o(t+b,Y(t+b) - 6(t,Y (1) | ]

B {/+ Sron+ (2w vm.m)

sgtr (o7 S5V o)) | dr | £ Peas.

Taking the expectation in the above and letting ¢ be the Lebesgue point of the
integrand, we have

E[V(E+bY(t+Db)—V(t,Y(t))

~ 2|0y (0)+ < (Y (). £0))
s ]

=8 {u(t) + ((0) F0) + 15 (o7 PO)2(0)]  + o0,

Consequently,

m E[V(t+b,Y(t+0b)] —E[V(tz(t)))
bgg+ b

<E Jolt) + (o0) £0) + 5 o (el D020
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Now, applying a technical lemma from [1], we arrive at

T
< [ o0+ 000 10) + 31 (o) PO) f
T
<-5 [ fea

where the last inequality is due to the theorem. This leads to
V(87 y) > J(S, Y; U*())
Thus, combining with Proposition 5.32, we obtain the optimality of the
pair (X[*S,T],zy“*('))' O

As a convenient corollary, if we do have a smooth value function, we obtain a
more exact result [1].

Corollary 5.35. A given admissible pair (X(g 7, . (-),u(-)) is optimal if and only
if for almost every t there exists (v(t),p(t), P(t)) € Di_’f"“V(t,X&TWS (t)) such
that

(536) U(t) < g(ta Xﬁg7T],xs (t)7 u(t)a 7p(t), 7P(t>)

This means that when it comes to smooth functions, we can actually obtain
functional forms to an arbitrary degree of precision via a guess-and-check method.
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