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Abstract. This paper gives an introductory glimpse into the study of dis-

crete differentiable dynamical systems, which roughly means the study of the
repeated action of a diffeomorphism on a manifold. As such, some familiarity

with point-set topology and with calculus on manifolds will be helpful in under-

standing this paper (mainly, familiarity with the notions of homeomorphisms
and of Riemannian metrics on the tangent bundle will be useful). Some basic

concepts of dynamical systems are introduced, as well as the more advanced

concepts of hyperbolicity and shadowing. Hyperbolicity describes a sort of
invariant contraction and expansion of the system. Shadowing describes how

a part of one dynamical system may be similar to a part of another. It turns

out that hyperbolicity and shadowing are closely related; together they can
describe how perturbations affect a dynamical system. In other words, they

describe the ‘stability’ of a system. The relation between hyperbolicity and
shadowing is formalized and proved in the second to last theorem of this paper,

the Shadowing Theorem. This theorem is used to prove the final result of the

paper: that hyperbolic dynamical systems are stable.
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1. Introduction

A ‘dynamical system’ is, roughly speaking, a collection of things which change
over time. For example, the interactions of air particles with the wing of an airplane
could be modeled with a dynamical system. The properties of the system might
indicate whether the shape of the wing allows the airplane to fly. If the shape does
allow for flight, it could be asked if the airplane is ‘barely’ able to fly, that is, if a
slight change in wing shape will prevent the airplane from flying. If the answer is
no, then the shape might be called ‘stable’ in its flight ability, and ‘unstable’ if a
slight change could prevent flight. Stability becomes especially important in this
example when the inevitable imprecisions of human and machine craftsmanship is
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considered – these are of little concern if a wing shape is stable in its flight ability,
but are quite dangerous if the wing shape is unstable.

A similar notion of stability may be defined for other dynamical systems; it is
called ‘structural stability’. The definition of structural stability relies on a more
precise understanding of the elements of a dynamical system. There are three main
components: a space whose elements represent ‘states’ of the system, a notion of
‘time’, and a rule of ‘time-evolution’ which describes how the states of the system
change with respect to time. Stability concerns ‘small’ changes in the system; to
describe the stability of a system, there must be some notion of ‘smallness’ or
‘distance’ describing changes in the space or in the time-evolution rule. For this
reason, the spaces in this paper will all be metric; as finer notions of distance are
needed, the space and the time-evolution rule will be given differential structures.

The notions of time which this paper will focus on are discrete and reversible
– that is, time will be in a natural correspondence to the integers. Time-evolving
one step will be described by applying some function f to the space one time.
Since time is reversible, f will be invertible, and applying f−1 can be thought of
as backwards time-evolution. In order to ensure a consistency in the space of the
systems considered, the domain and range of f will be the same and f will be a
homeomorphism (remember from above that the space will always be metric and
thus topological).

The airplane example may be made to fit these requirements. The metric space
is the atmosphere, with the distance between air particles taken in the usual way
(e.g. with a ruler). The measurements of the position of the air particles are made
discretely, say with a video-camera. Forward time-evolution in this case is observed
by advancing frame-by-frame in the video; backward time-evolution is observed
by rewinding frame-by-frame. The time-evolution function is the function that
describes the results of the laws of physics in action upon the atmosphere during
each time period between successive frames of the video.

It turns out that compactness is fundamental in several of the results of this
paper, and so the dynamical systems of this paper will all be on compact spaces.
In §2, the systems considered and some basic concepts of dynamical systems will
be precisely defined, including the notion of structural stability.

Once this is done, there are two remaining goals of the paper. The first is to
describe a criterion for when a dynamical system is structurally stable, namely, that
of ‘hyperbolicity’. Roughly, a (part of a) system is hyperbolic if it has a certain
notion of invariant contraction in one direction and expansion in another. Some
intuition might be gained by thinking of the squishing and pulling of a sphere of
Play-Doh into an ellipsoid: at each forward time-evolution, the top and bottom are
squished together and the sides are pulled apart; at each backwards time-evolution,
the sides are squished together and the top and bottom are pulled apart. Something
analogous can happen in dynamical systems; in §3 this “something” is defined and
some properties are discussed.

The final goal of the paper is to show the deep connection between the notion of
‘shadowing’ and the structural stability of hyperbolic systems. Shadowing roughly
gives a notion of closeness between parts of systems. A common example is that
of floating-point arithmetic in computers: the sequence of computations carried
out by a computer might be different then the sequence of ‘true’ computations,
because a computer might introduce some error at each step. Nevertheless, in
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certain situations, the computer can be programmed so that not only is the error
term introduced at each step quite small, but also so that the difference between the
final result of the computer and of the error-free computation are quite small. This
floating-point arithmetic example is directly analogous to the connection between
hyperbolicity and shadowing which is stated in the Shadowing Lemma. A powerful
generalization of this connection is given by the Shadowing Theorem. Both are
presented and proved in §4.

Finally, §5 uses the Shadowing Theorem to prove that hyperbolic parts of dy-
namical systems are structurally stable.

Throughout the paper, undefined or vague concepts are introduced in single
quotes, and definitions are given in italics. If a part of the paper is restated directly
or a phrase is being marked, it will be in double quotes. For instance, the first use
of “dynamical system” was in single quotes and when it is defined below it will be
italicized. The notions of the flight ability of a wing being “stable” or “unstable”
are vague and so they were introduced with single quotes, but “strongly structurally
stable” will be italicized when this notion is defined.

2. Basic Concepts

Let X be a compact metric space and let f : X → X be a homeomorphism.
Then fn denotes the composition of f with itself n times, f−n denotes (fn)−1, and
f0 denotes the identity function Id. For any integer n, fn is called an iterate of
f . When n is positive fn is called a positive iterate of f ; when n is negative fn is
called a negative iterate of f . It is also said that fn(x) is a (positive or negative)
iterate of x. Notice that fn is a homeomorphism and that fn ◦ fm = fn+m for any
integers n and m. Sometimes, when there can be no confusion, fg will be written
instead of f ◦ g.

Each integer is called a ‘point in time’ and applying f to any element x in
the space X is called ‘time-evolving’ x; the constituents of a dynamical system as
discussed in the introduction are present. Indeed, the set of iterates {fn}n∈Z of f
is called a dynamical system. (It may be more accurate to call the set of iterates of
f a discrete time dynamical system but, since all systems in this paper are discrete,
the ‘discrete time’ will always be omitted.) Sometimes the pair (X, f) is called a
dynamical system and iteration as time-evolution is to be understood. Some authors
refer to f itself as a dynamical system, as the space is inherent in the definition
of f . It would be reasonable to let “dynamical system” refer to the iterates of
a homeomorphism f : X → X where X is not compact; however, compactness
is important for many results about hyperbolicity, which is an essentially uniform
phenomenon, and therefore all dynamical systems in this paper act on compact
spaces.

For any x in X the set {fn(x)}n∈Z of the iterates of f acting on x is called
the orbit of x under f and is denoted O(x, f) or merely O(x). A set Λ is called
invariant under f if f(Λ) = Λ, that is, if the orbit of any x ∈ Λ is contained in
Λ. The set of the positive (negative) iterates of f acting on x is called the positive
(negative) orbit of x under f and is denoted O+(x, f) (O−(x, f)) or merely O+(x)
(O−(x)). Sometimes the phrase ‘under f ’ will be omitted. If there is an integer n
such that fn(x) = x then the orbit of x is said to be periodic and O(x) is called a
periodic orbit. In this case the point x is called a periodic point and x itself is also
described as periodic. If m is the least natural number such that fm(x) = m then
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x is said to have period m. If m = 1 then x is called a fixed point. Denote the set
of periodic points of f by P (f) and the set of fixed points of f by F (x).

Example 2.1. Let X = S1, the unit circle, and let f : X → X be the rotation by
2πθ for some constant θ ∈ R. Then (X, f) is a dynamical system. If θ is rational
and θ = m

n in lowest terms then P (f) = S1 and every point has period n. If θ is

irrational then no point of S1 is periodic. In fact, the orbit of any point is dense in
S1 (see [4] for details).

Example 2.2. Let X be the one-point compactification of R and let f : X → X
be the contraction f(x) = 1

2x. Then (X, f) is a dynamical system. The orbit of

any point x ∈ R is {( 12 )
nx}n∈Z and the only periodic points in X are 0 and ∞,

which are fixed.

Figure 1. Contraction of the Unit Circle.

Example 2.3. The one-point compactification of R is homeomorphic to the unit
circle. Identifying 0 with the bottom of the circle and ∞ with the top, the map in
the previous example is depicted pictorially above.

One way to think of a periodic point is that it ‘eventually returns to itself’. This
idea is called recurrence, and there are other (weaker) forms of recurrence. For
example, some subsequence of O+(x) or of O−(x) may converge to a point y. In
the first case, y is called an ω-limit point of x. In the second case, y is called an
α-limit point of x. The set of all ω-limit points of x is denoted ω(x) and the set of
all α-limit points of x is denoted α(x). Roughly, the orbit of x keeps approaching
nearer and nearer the points in these sets.

These limit point sets give rise to the notion of ‘topological transitivity’: a
compact invariant set Λ ⊂ X of f is topologically transitive if there exists x ∈ Λ
such that ω(x) = Λ. This roughly means that for any y ∈ Λ the positive orbit of
x eventually gets arbitrarily close to y. Topological transitivity is often referred to
merely as “transitivity”, as is done in the rest of this paper. Transitivity is closely
related to orbit density, as Birkhoff showed.
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Theorem 2.4 (Birkhoff). If Λ is a compact invariant set then the following con-
ditions are equivalent:

(1) Λ is transitive.
(2) For any two open sets U and V in Λ, there is a natural number n such that

fn(U) ∩ V ̸= ∅.
(3) There is x ∈ Λ such that the positive orbit of x is dense in Λ.

In the third condition, “positive orbit” can be replace by “negative orbit”, but
not by “orbit”. A proof of the theorem is given in [4].

Example 2.5. If f is an irrational rotation of S1, the unit circle, then the positive
(and negative) orbit of any x ∈ S1 is dense in S1, and so (by Theorem 2.4) S1 is
transitive for f .

Another type of recurrence is found in ‘periodic pseudo-orbits’. Let a < b be
elements of {−∞}∪Z∪{+∞}. A set P = {xn}a<n<b is called an ε-pseudo-orbit of
f if d(f(xn), xn+1) < ε for each a < n < b− 1. If there is a whole number m such
that xm+n = xn for all a < n < b−m then the pseudo-orbit is called periodic. In
the case that a and b are integers, and so the ε-pseudo-orbit P is finite, P is called
an ε-chain from xa+1 to xb−1. Any chain may be re-indexed to start at zero and
go through the natural numbers, so a chain is often presented as going from x0 to
xn for some n ∈ N. Finite periodic ε-pseudo-orbits are called periodic ε-chains.

A point x ∈ X is called chain recurrent if, for any ε > 0, there is a periodic
ε-chain which contains x. Chain recurrence forms an equivalence class. The set
of these equivalence classes is called the chain recurrent set of f and is denoted
CR(f).

Pseudo-orbits of f may be thought of as actual orbits of dynamical systems which
are ‘close’ to f . Given an ε-pseudo-orbit P of f , a function f ′ can be constructed
(by adding some term near each element of P ) such that P is an actual orbit of f ′.
It turns out that when ε is small enough – and when P is close to a ‘hyperbolic
set’, which will be defined in §3 – there is an orbit of f itself which has a contiguous
subset close to P . This is the Shadowing Lemma presented at the beginning of §4.
A generalization of these ideas is used to prove the final theorem of this paper.

Before motivating and defining structural stability, it should be noted that there
are other notions of recurrence not mentioned in this paper. For more details, see
[1] or [4].

Some dynamical systems which are in some sense ‘close’ to each other exhibit
dramatically different orbital structures, while others exhibit ‘the same’ orbital
structures. Consider Examples 2.1 and 2.2 above. Take f and X as in Example
2.2. Let g : X → X be a differentiable function with Dg close to 1

2 everywhere
and the distance between f and g small everywhere. Then g is a contraction of R
and the only periodic points of (X, g) are ∞ and some x0 close to 0; both are fixed
points (see [1] for details).

The situation is quite different for rigid rotations of S1 (Example 2.1). Since
both the rationals and irrationals are dense in R, very small changes in the angle
of rotation take the system from consisting entirely of periodic points with uniform
period to consisting entirely of points whose orbits are dense in S1.

It is said that the contraction in Example 2.2 is structurally stable while rotations
of the circle are not. The formal definition of structural stability relies on the
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notion of topological conjugacy and on imposing a topology on the space of Cr

diffeomorphisms on a given space.

Definition 2.6. Two homeomorphisms f : X → X and g : Y → Y are topologically
conjugate if there exists a homeomorphism h : X → Y such that hf = gh. If f
and g are topologically congutate then it is said that f is topologically conjugate to
g, and g to f . The homeomorphism h is called a topological conjugacy or merely a
conjugacy.

Some intuition might be gained from the special case where f and g are linear
transformations. In this case the conjugacy h is a linear change of coordinates. It
is sometimes said that f and g are ‘the same linear transformation up to a change
in coordinates’. When f and g are not linear, h is a sort of nonlinear continuous
change of coordinates, and it might be said that f and g are ‘the same dynamical
system up to a homeomorphism’.

Notice that hf = gh implies hfn = gnh for all integers n. This means a conju-
gacy h maps orbits of f to orbits of g, that is,

h(O(x, f)) = O(h(x), g)

for any x ∈ X. Further,

h(P (f)) = P (g), h(ω(x, f)) = ω(h(x), g), and h(CR(f)) = CR(g).

Thus the orbit structures of two dynamical systems (X, f) and (Y, g) are topolog-
ically equivalent if f and g are topologically conjugate. Topological conjugacy is
fundamental in Cr (r-times continuously differentiable) structural stability.

Since this paper is concerned with Cr structural stability, the spaces considered
must have some differentiable structure. Accordingly, from this point onwards the
spaces considered (unless explicitly indicated otherwise) will be compact C∞ Rie-
mannian manifolds without boundary, denoted M , and the functions of the dynam-
ical systems will be C1 diffeomorphisms (that is, the functions and their inverses
are continuously differentiable). For a more thorough discussion of manifolds, see
[2].

Denote by Diffr(M) the set of Cr diffeomorphisms of M endowed with the Cr

topology. The Cr topology can be described with a metric as follows. Fix a finite
cover of admissible coordinate neighborhoods (Ui, φi), i = 1, 2, . . . , N of M . Then
the metric dCr is, for any f, g in Diffr(M),

sup
{
|φjfφ

−1
i (x)− φjgφ

−1
i (x)|, |D(φjfφ

−1
i )(x)−D(φjgφ

−1
i )(x)|,

|D2(φjfφ
−1
i )(x)−D2(φjgφ

−1
i )(x)|, . . . , |Dr(φjfφ

−1
i )(x)−Dr(φjgφ

−1
i )(x)|

}
,

where the supremum is taken over all i, j, and x for which the expressions are
well-defined. Notice that the choice of cover of charts does not affect the topology.
If f and g are defined only on proper subsets of M then dCr (f, g) is taken to be
the same as above but with the supremum restricted to those x in the intersection
of the domains of f and g.

For the rest of the section take r,m natural numbers with m ≥ r. If a function
is a Cm diffeomorphism then it is also a Cr diffeomorphism and therefore belongs
to Diffm and Diffr.
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Definition 2.7. A diffeomorphism f ∈ Diffm(M) is Cr structurally stable if there
exists a Cr neighborhood U of f in Diffr(M) such that every g ∈ U is topologically
conjugate to f .

There is a stronger version of structural stability, called strong structural stability.

Definition 2.8. A diffeomorphism f ∈ Diffm(M) is Cr strongly structurally stable
if there exists a Cr neighborhood U of f in Diffr(M) such that every g ∈ U is
topologically conjugate to f and the conjugacy hg may be chosen such that both
hg and h−1

g converge uniformly to the identity as g converges to f in the Cr topology.

In other words, a Cm diffeomorphism f is Cr structurally stable if small Cr

perturbations cannot change topologically the orbit structure of f . The term per-
turbation here is not precise; it sometimes refers to a Cr diffeomorphism g which
is Cr close to f and it sometimes refers to the difference of f and g.

If f ∈ Diffr+1(M) is Cr structurally stable then it is also Cr+1 structurally
stable. Thus C1 structural stability is the strongest; the phrase ‘(strong) struc-
tural stability’ refers to C1 (strong) structural stability. There is no notion of C0

structural stability because C0 perturbations are too damaging; see [4] or [1] for
details.

In the next section the concept of a hyperbolic set is introduced. A set is only
hyperbolic as part of a dynamical system, so any reference to a hyperbolic set
Λ is implicitly a reference to a function f . When f

∣∣
Λ

(that is, f restricted to

Λ) is (strongly) structurally stable, it is said that the set Λ itself is (strongly)
structurally stable. The main result of this paper is that every hyperbolic set is
strongly structurally stable.

3. Hyperbolicity

Hyperbolicity is the key to structural stability, and structural stability is an
inherently differential notion. Accordingly, hyperbolicity imposes some structure
on derivatives and tangent maps. Therefore, before defining hyperbolic sets and
discussing some of their important properties, it will be helpful to discuss tangent
bundles and the like, as well as some notation.

Unless explicitly indicated, M will always refer to a compact C∞ Riemannian
manifold without boundary and f will always refer to a C1 diffeomorphism. For
any x ∈ M , TxM denotes the tangent space at x. If Λ is a subset of M then
the disjoint union

⊔
x∈Λ TxM is denoted TΛM . The tangent bundle

⊔
x∈M TxM is

denoted TM .
It will be important for the linear subspaces of the tangent spaces to have a

topology. Let m be a natural number. The m-Grassmann space

Gm(M) = {V
∣∣ V is an m-dimensional linear subspace of TxM, x ∈ M}

is given a topology in the following way. Let {xk} ⊂ M and {E(xk)} ⊂ Gm(M) be
sequences such that E(xk) is an m-dimensional linear subspace of Txk

M for every
k. Take some x ∈ M and an m-dimensional linear subspace E(x) of TxM . If there
is a basis {e1xk

, . . . , emxk
} of E(xk) for every k and a basis {e1x, . . . , emx } of E(x) such

that ejxk
→ ejx for every j ∈ 1, 2, . . .m then {E(xk)} is said to converge to E(x).

This definition of convergence gives a topology on Gm.
The notion of the convergence of ejxk

→ ejx above comes from the Riemannian
metric on TM . The norm induced by the Riemannain metric will be denoted | · |,
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that is, |v| automatically means |v|x for any v ∈ TxM . Since the base point x is
implicit in v, there is no ambiguity here in base point and so there is no ambiguity
in the notation (as long as it is clear what v denotes, which will always be the case).

Similarly, the tangent map will be denoted Tf . Comparing to the notation with
base points marked and to derivative notation gives

Tf(v) = Txf(v) = Df(x)(v)

where v ∈ TxM . As before, since the base point x is implicit in v, there is no
ambiguity in the notation. Also, Tfn will be written in place of T (fn) = (Tf)n.

The final note before defining hyperbolic sets concerns distance on M . A metric
is induced on M by the Riemannian metric on TM by defining d(x, y) to be the
infimum of the lengths of piecewise differentiable curves joining x and y. If d is
written without a subscript it refers to this metric; any subscript of d will be of the
form Cr and dCr refers to the metric defined in §2.

Definition 3.1. Let f : M → M be a C1 diffeomorphism. An invariant set Λ ⊂ M
of f is hyperbolic if

(1) for each x ∈ Λ the tangent space TxM splits into a direct sum

TxM = Es(x)⊕ Eu(x)

invariant in the sense that

Tf(Es(x)) = Es(f(x)), Tf(Eu(x)) = Eu(f(x))

and
(2) there exist constants C ≥ 1 and 0 < λ < 1 such that

|Tfn(v)| ≤ Cλn|v|, ∀x ∈ Λ, v ∈ Es(x), n ≥ 0,

|Tf−n(v)| ≤ Cλn|v|, ∀x ∈ Λ, v ∈ Eu(x), n ≥ 0.

Sometimes, it is said that Λ is a hyperbolic set of or for f . It is also said that
(Λ, f) is a hyperbolic dynamical system. If Λ is a single orbit then it is called a
hyperbolic orbit.

Remark 3.2.

(1) Since M is compact, the hyperbolicity of a set is independent of the choice
of Riemannian metric.

(2) If Λ is hyperbolic for f then it is also hyperbolic for f−1.
(3) Any invariant subset of a hyperbolic set is hyperbolic.
(4) By invariance, the two inequalities also hold for negative iterates of v. That

is, for any x ∈ Λ and any (possibly negative) integer m,

|Tfn(fm(v))| ≤ Cλn|Tfm(v)|, ∀x ∈ Λ, v ∈ Es(x), n ≥ 0,

|Tf−n(fm(v))| ≤ Cλn|Tfm(v)|, ∀x ∈ Λ, v ∈ Eu(x), n ≥ 0.

In particular, taking m = −n gives

|Tf−n(v)| ≥ C−1(λ−1)n|v|, ∀x ∈ Λ, v ∈ Es(x), n ≥ 0

and taking m = n gives

|Tfn(v)| ≥ C−1(λ−1)n|v|, ∀x ∈ Λ, v ∈ Eu(x), n ≥ 0.

In other words, if vs ∈ Es(x), vu ∈ Eu(y) for some x, y ∈ Λ, positive
iterates of f contract vs and expand vu while negative iterates expand
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vs and contract vu. The invariance of Es(x) and Eu(x) means that vu
‘keeps on expanding (contracting)’ under positive (negative) iterates of f .
Similarly for vs.

(5) Sometimes a hyperbolic set Λ will be called ‘hyperbolic with splitting
TΛM = Es ⊕ Eu’. In this situation,

Es :=
⊔
x∈Λ

Es(x) and Eu :=
⊔
x∈Λ

Eu(x),

and TΛM = Es ⊕ Eu is called a hyperbolic splitting.
(6) Sometimes, to make explicit the system for which Λ is hyperbolic, Es(x)

and Eu(x) will be written as Es(x, f) and Eu(x, f), respectively.

Before exploring properties of hyperbolic sets, some examples should be provided.

Example 3.3 (Hyperbolic Linear Isomorphism). Let A : E → E be a linear
isomorphism of a finite-dimensional vector space E such that no eigenvalue of A
has magnitude 1. Such a map is called a hyperbolic linear isomorphism. It turns
out (see [4]) that A is a hyperbolic linear isomorphism if and only if E admits a
splitting E = Es ⊕ Eu such that there exist constants C ≥ 1, 0 < λ < 1 such that

|An(v)| ≤ Cλn|v|, ∀x ∈ Λ, v ∈ Es, n ≥ 0,

|A−n(v)| ≤ Cλn|v|, ∀x ∈ Λ, v ∈ Eu, n ≥ 0.

Since DA = A, E is hyperbolic for the dynamical system (E,A).
For instance, A could be diagonal with entries 1/2 and 2; then Es and Eu would

be the standard axes. In Figure 2, Es and Eu are askew from the standard axes,
as would happen if A were multiplied by a rotation matrix.

Figure 2. Hyperbolic splitting of E, with example orbits.

Example 3.4 (Hyperbolic Fixed Point). Let (M,f) be a dynamical system where
f is a C1 diffeomorphism such that p ∈ M is a fixed point of f and Df(p) is
a hyperbolic linear isomorphism. Then {p} is a hyperbolic set and p is called a
hyperbolic fixed point of f .

For instance, if A : R2 → R2 is a diagonal matrix with entries 1/2 and 2 then A
is a hyperbolic linear isomorphism, A is everywhere its own derivative, and (0, 0)
is a hyperbolic fixed point.
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Example 3.5 (Hyperbolic Periodic Point). Let (M,f) be a dynamical system
where f is a C1 diffeomorphism such that p is a fixed point of fm and Dfm(p) is
a hyperbolic linear isomorphism. Notice that p is a periodic point of f . With this
setup, O(p, f) is hyperbolic and O(p, f) is called a hyperbolic periodic orbit. Notice
that p is a hyperbolic fixed point of fm.

The notions of hyperbolic linear isomorphims, fixed points, and periodic points
were around before the notion of hyperbolic sets given above. Smale, inspired by
the work of Anosov and Piexoto, came up with this notion of hyperbolic set as a
way to extend previous work done in structural stability to more general situations.
One such situation is that of the Anosov toral automorphisms below.

Example 3.6 (Anosov Toral Automorphism). A linear isomorphism A : R2 →
R2 is called an Anosov automorphism if A is hyperbolic, has integer entries, and
detA = ±1. The usual example is

A =

(
2 1
1 1

)
.

Since |detA| = 1 and A−1, the entries of A−1 are integers and |detA−1| = 1.
Thus A−1 is an Anosov automorphism; the same argument shows that the inverse
of any Anosov automorphism is an Anosov Automorphism.

It can be shown (for instance, in [4]) that the eigenvalues of any Anosov auto-
morphism are two irrational numbers λ1, λ2 with |λ1| < 1 < |λ2|.

Anosov automorphisms induce an automorphism f on the torus T2 = S1×S1 as
follows. Let A be an Anosov automorphism. Since A has integer entries, it maps
Z2 to itself and A(x + n) − A(x) ∈ Z2 for any x ∈ R2 and any n ∈ Z2. Then, if
π : R2 → T2 is the projection that takes each component modulo 1, f : T 2 → T 2

given by

πA = fπ

is an automorphism; it is called an Anosov toral automorphism. Moreover, f is
C∞ and A−1 induces a C∞ map of T2, which is f−1. Thus Anosov toral auto-
morphisms are diffeomorphisms. The entire torus is hyperbolic for an Anosov toral
automorphism f since the Anosov automorphism which induced f is a hyperbolic
linear isomorphism. Smale coined the term Anosov diffeomorphsim to refer to a
diffeomorphism f on a manifold M such that M is hyperbolic for f .

The periodic points of Anosov toral automorphisms are dense in T2 and the
whole torus T2 is transitive for an Anosov toral automorphism. A proof of this can
be found in [4]. The toral automorphism induced by

A =

(
2 1
1 1

)
is sometimes called Arnold’s cat map because Arnold demonstrated its periodic and
transitive natures by applying it to a picture of his cat.

Now, some properties of hyperbolic sets. Recall that a norm | · | is said to be Cr

if, acting on every C∞ local vector field, | · |2 is a Cr function. Recall also that on
a compact manifold all C0 norms are equivalent.

Theorem 3.7. Let Λ ⊂ M be a hyperbolic set of f with splitting TΛ = Es ⊕ Eu.
There is a C∞ Riemannian metric of M , with induced norm | · |, and there is a
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Figure 3. Arnold’s cat map, applied to a cat. The (approximate)
restoration of the cat is due to the density of the periodic orbits.
The image is from [5].

constant 0 < τ < 1 such that

|Tf(v)| ≤ τ |v|, ∀v ∈ Es,

|Tf−1(v)| ≤ τ |v|, ∀v ∈ Eu.

In short, there is a Riemannian norm for which the hyperbolic behavior is an
immediate contraction and expansion. A proof is given in [4].

There are some useful characterizations of the splitting TxM = Es(x)⊕Eu(x) as
sets. In particular, since they are characterized as sets, the splitting is unique. One
characterization involves the γ-cones about Es(x) and Eu(x), denoted Cγ(E

s(x))
and Cγ(E

u(x)), respectively. If for any x ∈ Λ and any v ∈ TxM , vs denotes the
projection of v onto Es(x) and vu denotes the projection of v onto Eu(x) then the
cones are defined by

Cγ(E
s(x)) := {v ∈ TxM

∣∣ |vu| ≤ γ|vs|},
Cγ(E

u(x)) := {v ∈ TxM
∣∣ |vs| ≤ γ|vu|}.

Theorem 3.8. Let Λ ⊂ M be a hyperbolic set of f with splitting TΛM = Es⊕Eu.
For any x ∈ Λ and any v ∈ TxM let vs denote the projection of v onto Es(x) and
let vu denote the projection of v onto Eu(x). Then for any x ∈ Λ, Es(x) and Eu(x)
are characterized by

Es(x) = {v ∈ TxM
∣∣ |Tfnv| → 0 as n → ∞}

= {v ∈ TxM
∣∣ ∃r > 0 such that |Tfnv| ≤ r ∀n ≥ 0}

= {v ∈ TxM
∣∣ ∃γ > 0 such that Tfnv ∈ Cγ(E

s(fn(x))) ∀n ≥ 0} and

Eu(x) = {v ∈ TxM
∣∣ |Tf−nv| → 0 as n → ∞}

= {v ∈ TxM
∣∣ ∃r > 0 such that |Tf−nv| ≤ r ∀n ≥ 0}

= {v ∈ TxM
∣∣ ∃γ > 0 such that Tf−nv ∈ Cγ(E

s(f−n(x))) ∀n ≥ 0}.
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In particular, the splitting is unique: if there is another splitting TxM = Gs(x) ⊕
Gu(x), x ∈ Λ, then Gs(x) = Es(x) and Gu(x) = Eu(x).

A proof can be found in [4]. That the hyperbolic splitting of TΛM is unique
allows Es(x) and Eu(x) to be referred to without qualification, as is done in the
next theorem.

Theorem 3.9. Let Λ ⊂ M be a hyperbolic set of f . Then, in terms of the Grass-
mann topology described earlier, Es(x) and Eu(x) vary continuously with x ∈ Λ. In
particular, the dimensions of Es(x) and Eu(x) are locally constant and the closure
Λ is a hyperbolic set of f .

A proof of the theorem can be found in [4]. Since M is compact and the closures
of hyperbolic sets are hyperbolic, for the rest of this paper hyperbolic sets will be
assumed compact. (The theorems of this paper do not rely upon the boundary in
any way; restricting to the interior will not invalidate them.)

A related notion is that of Cr subbundles. If there is a linear subspace E(x) ⊂
TxM for each x in some Λ ⊂ M , the union

E =
⊔
x∈Λ

E(x)

is anm-dimensional Cr subbundle of TΛM if for every x ∈ Λ there is a neighborhood
U of x in Λ and m linearly independent Cr vector fields e1, . . . , em : M → TM such
that the vectors e1(y), . . . , em(y) span E(y) for every y ∈ U . In this case, E(x) is
called the fiber of E at x. It can be shown that E is a C0 subbundle of TΛM if and
only if the E(x) vary continuously with x in the Grassmanian topology. Thus, if Λ
is hyperbolic, Theorem 3.9 guarantees Es and Eu are C0 subbundles of TΛM .

Two C0 subbundles E1 and E2 of TΛM are said to form a direct sum, denoted
E1 ⊕ E2, if E1(x) and E2(x) form a direct sum at every x ∈ Λ. Thus, if Λ is
hyperbolic, Es ⊕ Eu is a direct sum and the notation in the Remark after 3.1 is
justified.

Another piece of notation is needed for the next theorem, which describes the
persistence of hyperbolicity for an invariant set. Given a set U ⊂ M , let d(x, U)
denote the infimum of d(x, y) taken over all y ∈ U and let B(U, a) denote the set
{x ∈ M

∣∣ d(x, U) < a}.
Theorem 3.10 (Persistence of hyperbolicity for an invariant set). Let Λ ⊂ M be
a hyperbolic set of f . There is a neighborhood U of f in Diff1(M) and a number
a > 0 such that for any g ∈ U , every compact g-invariant set ∆ which is contained in
B(Λ, a) is hyperbolic. Further, as g approaches f in Diff1(M) and x ∈ ∆ approaches
y ∈ ∆, Es(x, g) approaches Es(x, f) and Eu(x, g) approaches Eu(x, f).

This is similar to structural stability, though the existence of a nonempty g-
invariant set close to Λ is not guaranteed here.

The proof of Theorem 3.10 relies on a lemma whose statement is rather verbose.
It deals with a ‘fiber-preserving’ map; recall that, if Λ ⊂ M is f -invariant then a
map F between two C0 subbundles of TΛM is called fiber-preserving over f if

πF = fπ

where π : TM → M is the bundle projection. If also F is continuous and F
∣∣
E(x)

is

linear for every x ∈ Λ then F is a C0 bundle homomorphism. If in addition F
∣∣
E(x)

is an isomorphism for every x ∈ Λ then F is a C0 bundle isomorphism.
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Lemma 3.11. Let g : M → M be a diffeomorphism, let ∆ ⊂ M be a g-invariant
set, and let B : T∆M → T∆M be a C0 bundle isomorphism which is fiber-preserving
over g. Let T∆M = E1 ⊕E2 be a direct sum and let Bij denote the projection onto
Ei of B

∣∣
Ej

, so that B can be written(
B11 B22

B21 B22.

)
If there are constants λ > 0 and ε > 0 such that

max{|B−1
11 |, |B22|} < λ,

max{|B12|, |B21|} < ε, and

λ+ ε < 1,

then there is a unique C0 bundle homomorphism PB : E1 → E2 over Id such
that |PB | ≤ 1, the graph gr(PB) is a B-invariant C0 subbundle, and Bx

∣∣
gr(Px)

is

expanding. Further, PB, and hence gr(PB), depends continuously on B.

Remark 3.12. Here, that gr(PB) is B-invariant means Bx(gr(Px)) = gr(Pg(x)),

where Bx denotes B
∣∣
TxM

and Px denotes PB

∣∣
TxM

.

Details for the proof of this lemma and the preceding theorem can be found in [4].
Since the details of the proof are not enlightening but the strategy is important and
general in the study of hyperbolic dynamics, only an outline is given in this paper.
The main technique in the lemma, which also is used in the proof of the Shadowing
Theorem, is to discover a way to apply the Contraction Mapping Principle to
produce the desired function.

Theorem 3.13 (Contraction Mapping Principle). Let X be a complete metric
space with metric d and let φ : X → X be a function such that there exists c < 1
for which d(φ(x), φ(y)) ≤ c · d(x, y) for all x, y ∈ X. Then there is a unique x ∈ X
such that φ(x) = x.

A proof of this theorem can be found, for instance, in [7]. It is possible to apply
the Contracion Mapping Principle in this lemma once the B-invariance of PB is
expressed in an equation of the form

Pg(x) = [expression dependent on PB ]

which holds for all x ∈ ∆. This allows the construction of a map T acting on the
space of C0 bundle homomorphisms from E1 to E2 such that a fixed point of T is
a B-invariant bundle homomorphim. The rest of the proof of the lemma consists
in verifying that the Contraction Mapping Principle applies to T , and then doing
some size checking to establish that Bx

∣∣
gr(Px)

is expanding.

The lemma establishes the theorem in the following way. The continuity of
Es(x) and Eu(x) (and some properties of hyperbolic sets) allows the lemma to be
applied with (1) g and ∆ in the lemma taken to be the same as g and ∆ in the
theorem, (2) E1 and E2 in the lemma taken to be local continuations Gs and Gu of
Es and Eu, respectively, and (3) B in the lemma taken to be either Dg or Dg−1.
Further, restricting a to be sufficiently small, the lemma can be applied with the
same constants λ and ε whether E1 is taken to be Gs, E2 to be Gu, and B to
be Dg or E1 is taken to be Gu, E2 to be Gs, and B to be Dg−1. If a space is
Dg−1-invariant than it is also Dg-invariant and if Dg−1 is expanding on that space
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then Dg is contracting on it. Thus the lemma gives two Dg-invariant spaces Q and
W where Dg is expanding on Q and contracting on W . Checking the dimensions
of Q and W shows that Q⊕W = T∆M ; therefore ∆ is hyperbolic.

The technique of using the linear structure of the derivative to apply the Contrac-
tion Mapping Principle is crucial to the Shadowing Theorem and to the structural
stability of hyperbolic sets. In Euclidean space, the linear structure is often utilized
by taking the difference f −Df(0). On a manifold this subtraction does not make
sense in general, but using the exponential map to ‘lift’ functions locally to the
tangent bundle allows an analogous subtraction.

Recall that, for x ∈ M , the exponential map at x

expx : TxM → M

is defined to be

expx(v) = σv(t)

where σv(t) is the geodesic, determined by the Riemannian metric of M , which
goes through x at t = 0 with velocity v.

To make discussing the properties of the exponential map easier, let the balls of
radius ρ on TxM and on TM be denoted TxM(ρ) and TM(ρ), respectively. For any
x ∈ M , let 0x denote the origin of TxM . The next theorem reviews some properties
of the exponential map; it can be found in [6].

Figure 4. The exponential map. The image is from [4].

Theorem 3.14 (Properties of exp).

(1) expx(0x) = x.
(2) D(expx)(0x) : TxM → TxM = Id.
(3) ∃ρ > 0 such that, for any x ∈ M , expx : TxM(ρ) → M is a C∞ embedding.
(4) d(x, expx(v)) = |v| for all v ∈ TxM(ρ), where ρ is as in (3) and d and | · |

are both induced by the given Riemannian metric of M .
(5) exp : TM → M , given by exp(v) = expx(v) when v ∈ TxM , is C∞.

A noteworthy consequence of (3) and (4) is that, taking x as the base, any point
y ∈ B(x, ρ) determines a vector exp−1

x y ∈ TxM with | exp−1
x y| = d(x, y). In a

Euclidean space, exp−1
x y is just the vector y − x.

The exponential map can be used to define a ‘self-lifting’ of a function f to a
map on the tangent bundle which is fiber-preserving over f , though it is not linear
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on fibers. Precisely, given a C1 diffeomorphism f : M → M , take some 0 < r < ρ
such that, for any x, y ∈ M , d(x, y) < r implies d(f(x), f(y)) < ρ. Define the
self-lifting of f to be the function Ff : TM((r) → TM given by

Ff (v) = exp−1
f(x) f expx(v),

where v ∈ TxM . Then Ff is fiber-preserving over f and since f is C1, so is Ff .
A similar but more intricate lifting will be used in the proof of the Shadowing
Theorem.

Figure 5. The self-lifting map. The image is from [4].

4. Shadowing

Now, shadowing will be defined. The most immediate relation between shad-
owing and hyperbolicity happens through pseudo-orbits, and for this reason the
definition of pseudo-orbits is restated here.

Definition 4.1 (Shadowing). Let (X, f) be a dynamical system. Let a ∈ Z∪{−∞}
and let b ∈ Z∪{∞} with a < b. A sequence {xn}a<n<b ⊂ X is said to be δ-shadowed
by the orbit O(x) of x ∈ X if d(xn, f

n(x)) < δ for all a < n < b. In this case we
say also that O(x) δ-shadows the sequence.

Definition 4.2 (Pseudo-orbit). Let (X, f) be a dynamical system. Let a ∈ Z ∪
{−∞} and let b ∈ Z ∪ {∞} with a < b. A sequence {xn}a<n≤b ⊂ X is called an
ε-pseudo-orbit if d(xn+1, f(xn)) < ε for all a < n < b. If a pseudo-orbit P is a
subset of A, it is said that P is a pseudo-orbit in A.

The “immediate relation” mentioned above which links shadowing and hyper-
bolic sets is the following: pseudo-orbits near hyperbolic sets are always shadowed
by an actual orbit.

Theorem 4.3. (Shadowing Lemma) Let Λ ⊂ M be a hyperbolic set for the
dynamical system (M,f). There exists a neighborhood U(Λ) of Λ such that for any
δ > 0 there exists an ε > 0 such that every ε-pseudo-orbit in U(Λ) is δ-shadowed
by an orbit of f . Moreover, the orbit is unique if δ is sufficiently small.

This theorem follows from the more general Shadowing Theorem proved below.
For a direct proof, see [4].
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Figure 6. Pseudo-orbit (blue) shadowed by an orbit (purple).

The Shadowing Lemma gives a criterion under which the difference between
pseudo-orbits and orbits is small. This situation can be viewed from a different
angle. Given some hyperbolic set Λ and some δ > 0, take ε > 0 as given by
the Shadowing Lemma. Take any ε-pseudo-orbit P in Λ. Label each element of
P as xn in the same way as was done in Definition 4.2. The Shadowing Lemma
ensures the existence of a point y ∈ M such that O(y) δ-shadows P . Label fn(y)
as yn for all integers n. These labelings induce a function α from the integers to P
and a function β from the integers to O(y). That O(y) δ-shadows P means that
d(α(n), β(n)) < δ for all integers n.

In effect, adopting this view makes two changes to the Shadowing Lemma: the
role of the integers is emphasized and the result of the theorem has become one of
functions rather than of sequences. It is stated with these changes.

Theorem 4.4. (Shadowing Lemma rephrased) Let Λ ⊂ M be a hyperbolic set
for the dynamical system (M,f). There exists a neighborhood U(Λ) of Λ such that
for any δ > 0 there exists an ε > 0 with the following property:

If

(1) P = {xn}n∈Z is an ε-pseudo-orbit,
(2) f ′ : U(Λ) → M has f ′(xn) = xn+1,
(3) g : Z → Z is given by g(n) = n+ 1, and
(4) α : Z → P is given by α(n) = xn

then there exists a point x ∈ M and a function β : Z → U(Λ) given by β(n) = fn(x)
such that

(1) βg = fβ,
(2) d(α(n), β(n)) < δ for all n.

Moreover, the point x and the function β are unique if δ is sufficiently small.

Remark 4.5. A few statements of clarification should be given.

(1) For word economy, the theorem has been stated for a pseudo-orbit indexed
by the integers. To account for pseudo-orbits indexed by a proper subset
of the integers, some additional specifications for the domains of α and β
must be made. Once they are, the theorem holds in as general a situation
as in the original formulation.
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(2) The codomain U(Λ) of β was not mentioned in the exposition above, but it
plays a prominent role in both phrasings of the theorem. The idea is that
in order for the hyperbolicity of Λ to have any effect on a pseudo-orbit, the
pseudo-orbit must be close to Λ.

(3) Two functions, g and f ′, have been introduced in the new statement. Their
roles are to make explicit the transition from one element in the pesudo-
orbit to the next element, which in the exposition above was implicit in the
notions of ‘iterating’ over f and over the integers. If f ′ is a diffeomorphism,
then iterating over the pseudo-orbit (of f) is the same as iterating over an
actual orbit of f ′. This perspective allows the lemma to be generalized
to apply to perturbations of f instead of pesudo-orbits, as is done in the
Shadowing Theorem below.

(4) If the integers are given the discrete topology then g becomes a homeomor-
phism, α and β become continuous functions, and dC0(α, β) < δ. When
the result is generalized below in the Shadowing Theorem, the domain of g
becomes an arbitrary topological space.

While this phrasing of the Shadowing Lemma is more cumbersome than the
first, it is more easily generalized. Instead of referencing elements of sets by integer
indexes (as is done with pseudo-orbits), it is often useful to reference elements
of sets by points in a topological space (for instance, elements of subbundles and
sections of a manifold are referenced by points of the manifold). A pseudo-orbit
of f is just an orbit of some perturbation of f (recall the discussion of pseudo-
orbits in §2). Instead of defining a specific perturbation to iterate over a particular
pseudo-orbit, perturbations themselves may be studied. These considerations lead
to a generalized version of the Shadowing Lemma, called the Shadowing Theorem.

Theorem 4.6. (Shadowing Theorem) Let f : M → M be a diffeomorphism
and let Λ ⊂ M be a hyperbolic set for (M,f). There exists a neighborhood U(Λ) of
Λ and ε0, δ0 > 0 such that for any δ > 0 there is an ε with the following property:

If

(1) f ′ : U(Λ) → M is a C2 diffeomorphism with dC1(f ′, f) < ε0,
(2) Y is a topological space and g : Y → Y is a homeomorphism, and
(3) α : Y → U(Λ) is a continuous function such that dC0(αg, f ′α) < ε,

then there exists a continuous function β : Y → U(Λ) such that

(1) βg = f ′β, and
(2) dC0(α, β) < δ.

Moreover, the function β is unique when δ is sufficiently small: if β̄g = f ′β̄ and
dC0(α, β̄), dC0(α, β) < δ0 then β̄ = β.

Remark 4.7.

(1) In this theorem, f ′ is a perturbation of f , Y is the topological space used
to reference subsets of M , and α and β are the means of reference.

(2) In the Shadowing Lemma, the pseudo-orbit iterating function f ′ may with-
out loss of generality be chosen to be a C2 diffeomorphism. Taking ε in the
Shadowing Lemma small enough ensures dC1(f ′, f) < ε0, where ε0 is as in
the Shadowing Theorem. Then, taking Y to be the integers endowed with
the discrete topology, taking g to be iteration over the integers, and taking
α to be iteration over some ε-pseudo-orbit turns the Shadowing Theorem
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into the Shadowing Lemma. In other words, the Shadowing Lemma follows
directly from the Shadowing Theorem.

The strategy for the proof of the Shadowing Theorem, like that of Theorem 3.10,
is to transform the theorem into a statement about fixed points and then to apply
the Contraction Mapping Principle. The fixed-point-transformation follows from
the fact that g is a homeomorphism and therefore invertible: the desired β is a
fixed point of F ∈ C0(Y,U(Λ)) given by

F (ζ) = f ◦ β ◦ g−1,

where C0(Y, U(Λ)) is the space of continuous functions from Y to U(Λ). In order
to construct a contraction mapping, it is helpful to access the structure that hyper-
bolicity imposes on the linear part of f . Composing F with the exponential map
in the following way helps utilize this linear structure.

Let B be a ball around α in C0(Y,U(Λ)) with a radius θ small enough that on
B, the function A given by Aβ(y) = exp−1

α(y) β(y) is well-defined. By Theorem 3.14,

θ is independent of Y , g, and α.
Then A can be used to ‘lift’ F to act on maps from Y to TM instead of on maps

from Y to M . Let C0
α(Y, TM) denote

{v ∈ C0(Y, TM)
∣∣ v(y) ∈ Tα(y)M (y ∈ Y )},

the vectorfields along α, and let Bα
r (0) denote the ball of radius r centered at 0 in

C0
α(Y, U(Λ)). Let

Fα : Bα
θ → C0

α(Y, TM)

be given by

Fα = AFA−1.

Then, if v a fixed point of Fα, A−1v is a fixed point of f . Thus the proof of the
Shadowing Theorem consists in showing that Fα is a contraction mapping and that
the fixed point β of F has the properties desired. For this, a sort of bound on DFα

is needed.

Lemma 4.8. Let f : M → M be a diffeomorphism and let Λ ⊂ M be a hyperbolic
set for (M,f). Let Y be a topological space and let g : Y → Y be a homeomorphism

There exists a neighborhood U(Λ) of Λ and constants ε0, ε > 0 such that for any
continuous function α : Y → U(Λ) there exists a constant R > 0 independent of Y ,
g, and α such that ∥((DFα)0 − Id)−1∥ < R whenever f ′ is a C2 diffeomorphism,
dC1(f, f ′) < ε0, dC0(αg, f ′α) < ε, || · || is the norm of convergence, and Fα is
defined as it is above.

The idea is roughly this: Since f is hyperbolic, Df can be bounded with respect
to Es and Eu. In particular, the bounding is not dependent on specific points in
Λ. By the continuity of Es and Eu and the persistence of hyperbolicity, a similar
bounding can be found for Df ′ near Es and Eu. Finally, since (D exp−1

x )
∣∣
x
= Id,

restricting dC0(α, f ′αg−1) to be small makes (DFα) close to Df ′ and thus (DFα)0
may be bounded as described in the lemma. Many of these steps are more easily
seen when referencing the explicit formula for DFα; the formula is written below.
For a full proof, see [1].

Much of what is discussed above will be restated in the proof of the Shadowing
Theorem, which is given now.
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Proof of the Shadowing Theorem. First, the groundwork needed to utilize Lemma
4.8 is set.

Let C0
α(Y, TM) denote {v ∈ C0(Y, TM)

∣∣ v(y) ∈ Tα(y)M (y ∈ Y )}, the vector-
fields along α.

Let ∥ · ∥ denote the norm of uniform convergence on C0
α(Y, U(Λ)).

Let Br(α) denote the ball of radius r centered at α in C0(Y,U(Λ)). Let Bα
r (0)

denote the ball of radius r centered at 0 in C0
α(Y,U(Λ)).

Let θ > 0 be a constant independent of Y , g, and α and small enough that
the map A : Bθ(α) → C0

α(Y, TM) given by Aβ(y) = exp−1
α(y) β(y) is well-defined.

Notice that A is a homeomorphism onto Bα
θ (0).

Let the map F ∈ C0(Y,U(Λ)) be given by F (ζ) = f ′ ◦ ζ ◦ g−1.
Let the map Fα : Bα

θ → C0
α(Y, TM) be given by AFA−1. More explicitly,

Fα(v)(y) = exp−1
α(y)(f

′(expα(g−1) v(g
−1(y)))).

The groundwork has been set and the theorem can now be proved. The desired
map β is a fixed point of F . If v is a fixed point of Fα then A−1v is a fixed point
of F , so it suffices to find a fixed point of Fα. For this it is important that Fα is
smooth in v and its derivative

((DFα)vξ)(y) = (D exp−1
α(y))

∣∣
f ′ expα(g−1(y)) v(g

−1(y))

· (Df ′)
∣∣
expα(g−1(y)) v(g

−1(y))
· (D expα(g−1(y)))

∣∣
v(g−1(y))

· ξ(g−1(y))

is Lipschitz in v. Note that f ′ being C2 is essential for this derivative being Lips-
chitz.

Writing Fα(v) = (DFα)0v +H(v) gives

v = Fα(v) = (DFα)0v +H(v)

⇐⇒ − ((DFα)0 − Id)v = H(v)

⇐⇒ v = −((DFα)0 − Id)−1H(v) := T (v)

That is, v is a fixed point of Fα if and only if v is a fixed point of T . The Contraction
Mapping Principle will be applied to T .

By the linearity of the derivative, that DFα is Lipschitz in v means that DH is
Lipschitz in v as well, say with constant K. Since DH is Lipschitz, it is bounded
on Bα

θ . Then, by the generalized mean value theorem, on any ball around 0 in Bα
θ

there exists w such that

||H(v1)−H(v2)|| ≤ ||DH(w)|| ||v1 − v2|| ≤ K||w − 0||||v1 − v2||
≤ K||w|| ||v1 − v2||

for any v1, v2 in the ball. Combining all this, taking R as in Lemma 4.8 shows that
for any v1, v2 ∈ Bα

θ

∥T (v1)− T (v2)∥ < RKmax(∥v1∥, ∥v2∥)∥v1 − v2∥.

Thus T is a contraction near 0.
The constants of the theorem are now specified. Take δ0 = 1

2RK . Take θ such
that, in addition to making A well-defined, θ ≤ min(δ, δ0). (Remember that the
theorem provides a result which holds “for any δ > 0. . . ”.) Take ε and ε0 so that
the Lemma 4.8 holds and so that ε < θ

2R .
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With these constants, restricting T to Bα
θ (0) gives

∥T (v1)− T (v2)∥ < RKmax(∥v1∥, ∥v2∥)∥v1 − v2∥ ≤ 1

2
∥v1 − v2∥

for any v1, v2 ∈ Bα
θ (0). Additionally, that

H(0)(y) = Fα(0)(y) = exp−1
α(y) f

′(α(g−1(y)) = dC0(f ′αg−1(y))

means

∥T (0)∥ < R||H(0)|| < θ

2

whenever α is such that dC0(αg, f ′α) < ε. Thus, for all v ∈ Bα
θ (0),

∥T (v)− T (0)∥ ≤ ∥T (v)∥+ ∥T (0)∥ <
1

2
∥v∥+ 1

2
θ ≤ θ

and so T (Bα
θ (0)) ⊂ Bα

θ (0). Thus T is a contraction map.
By the Contraction Mapping Principle, T has a unique fixed point v ∈ Bα

θ (0) ⊂
Bα

δ0
(0). As discussed above, v is also a fixed point of Fα. Hence there is a fixed point

β = A−1v of F , i.e. βg = f ′β. Since A is a homeomorphism, β ∈ Bθ(α) ⊂ Bδ(α).
Thus β is as required and is unique in Bδ0(α). □

The Shadowing Theorem has been presented in its full generality, though only
very special cases will be needed to prove that hyperbolic sets are structurally
stable. In these cases, Y will be taken to be a subset of M , g will be either f or a
small perturbation of f , and α will be the identity on Y . These simplifications allow
the Shadowing Theorem to hold for perturbations f ′ which are C1 diffeomorphisms
close to f , not just for C2 diffeomorphisms. The reason is roughly that the function
Fα in the proof of the Shadowing Theorem is simplified, and so DFα is Lipschitz
in v even when f ′ is merely C1. See [4] for details.

5. Structural Stability of Hyperbolic Sets

Theorem 5.1. (Structural Stability of Hyperbolic Sets) Let f : M → M be
a diffeomorphism, let U ⊂ M be an open set, and let Λ ⊂ U be a hyperbolic set for
(M,f). Then for any open neighborhood V ⊂ U of Λ and every ρ > 0 there exists
an η > 0 such that if f ′ : U → M is a C1 diffeomorphism with dC1(f

∣∣
V
, f ′) < η

then

(1) there exists a (nonempty) set Λ′ ⊂ M which is hyperbolic for f ′;
(2) there exists a homeomorphism h : Λ′ → Λ such that h ◦ f

∣∣
Λ′ = f

∣∣
Λ
◦ h and

dC0(Id, h) + dC0(Id, h−1) < ρ.

Moreover, h is unique when ρ is sufficiently small.

Remark 5.2.

(1) The structural stability here is strong C1 structural stability (Definition
2.8).

(2) That Λ′ is nonempty is becuase it is constructed as the range of a homeo-
morphism on Λ, which is nonempty.

(3) If Λ = M , then f is an Anosov diffeomorphism. Thus, as promised in Ex-
ample 3.6, this theorem shows that Anosov diffeomorphism are structurally
stable.

(4) The constants ρ and η have been used instead of the traditional δ and ε to
avoid confusion when the Shadowing Theorem is referenced.
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Proof. Take any C1 diffeomorphism f ′ with dC1(f, f ′) < η with η to be determined
later. The Shadowing Theorem is used three times. First it finds β such that
β ◦f = f ′ ◦β, then it finds h such that h◦f ′ = f ◦h, and finally it shows that h is a
homeomorphism. When Y, g, α, ε0, δ0, and ε are referenced, they are as introduced
in the Shadowing Theorem.

For the first application, take Y = Λ, g = f , and α = Id
∣∣
Λ
. The Shadowing

Theorem ensures the existence of a neighborhood U(Λ) of Λ, constants δ0, ε0 > 0,
and a constant ε > 0 dependent on some δ > 0 (to be determined later) such
that there exists a continuous function β : Λ → U(Λ) with β ◦ f = f ′ ◦ β and
dC0(Id

∣∣
Λ
, β) < δ whenever dC1(f, f ′) < ε0 and dC0(f, f ′) < ε.

Notice that already η must be at least as small as min(ε0, ε), a condition depen-
dent on the as yet undetermined δ mentioned above. A restriction on δ and further
restrictions on η are introduced now.

Let Λ′ denote β(Λ). The goal is to apply the Shadowing Theorem to f ′ with
Y = Λ′, α = Id

∣∣
Λ′ , and g = f ′ to obtain the function h promised in the current

theorem. In order to do this, Λ′ must be hyperbolic for f ′ and f ′ must be close
enough to f that the Shadowing Theorem can be applied to f ′.

Theorem 3.10 is used to gurantee Λ′ is hyperbolic. Since β is continuous and Λ is
compact, Λ′ = β(Λ) is compact. That Λ is invariant under f means Λ′ is invariant
under f ′, since

f ′(Λ′) = f ′ ◦ β(Λ) = β ◦ f(Λ) = β(Λ) = Λ′.

Restricting δ to be sufficiently small guarantees Λ′ is contained in the set B(Λ, a)
from Theorem 3.10. It will be important later that δ is also chosen to be less than
ρ/2. Taking η sufficiently small satisfies the final requirement of Theorem 3.10 and
thus ensures Λ′ is hyperbolic for f ′.

Now the reason the roles of f and f ′ in the Shadowing Theorem can be switched
will be explained. If dC1(f, f ′) is sufficiently small then Lemma 4.8 holds after
switching the roles of f and f ′. Since Lemma 4.8 is what determines ε and ε0 in
the Shadowing Theorem, shrinking η again (to be less than the minimum of the
required ε and ε0) allows the Shadowing Theorem to be applied with the roles of
f and f ′ switched.

Thus applying the Shadowing Theorem with Y = Λ′, α = Id
∣∣
Λ′ , and g = f ′ gives

a continuous function h on Λ′ such that h ◦ f ′ = f ◦ h and dC0(h, Id
∣∣
Λ′) < ρ/2.

The last application of the Shadowing Theorem will show h◦β is the identity on
Λ. Then β is injective, since it has a left inverse, and β is surjective onto β(Λ) = Λ′.
This means β is a homeomorphism and so its inverse h is also (see, for instance,
[3]). As a side note, this means that the equation in the previous paragraph really
should be written h ◦ f

∣∣
Λ′ = f

∣∣
Λ
◦ h, as it is in the statement of the theorem.

The important part of the final application of the Shadowing Theorem is the
uniqueness clause. Take the ‘f ′ = f ’ case, where Y = Λ, g = f , and α = Id. Then
there exists some δ0 and a unique continuous function γ such that γ ◦f = f ◦γ and
dC0(Id, γ) < δ0. Clearly Id, the identity, works, and so (by uniqueness) γ = Id. On
the other hand, taking ρ < δ0/2 gives dC0(Id, h ◦ β) < δ0 and

h ◦ β ◦ f = h ◦ f ′ ◦ β = f ◦ h ◦ β,

so that h ◦ β = γ = Id, as desired.
Finally, dC0(Id, h)+ dC0(Id, h−1) = dC0(Id, h)+ dC0(Id, β) < ρ/2+ ρ/2 = ρ. □
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