
A MOTIVIC APPROACH TO THE HEIGHT ONE TELESCOPE
CONJECTURE

RUSHIL MALLARAPU

Abstract. The telescope conjecture, which attempts to unify algebraic and
topological perspectives on chromatic homotopy theory, has motivated a wide
body of research in the subject. In particular, the resolution of the height
one telescope conjecture led to novel techniques in using auxiliary spectral se-
quences to resolve Adams spectral sequence differentials, which have recently
been better understood and generalized by motivic and synthetic homotopy
theory. We first provide an introduction to the motivic and synthetic cate-
gories. Then, we will reprove the height one telescope conjecture at odd primes
to illustrate these modern differential lifting techniques. No background is as-
sumed aside from a good familiarity with stable homotopy theory, localizations
of categories, and Adams spectral sequences.
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1. Introduction

The telescope conjecture in chromatic homotopy theory has been a motivating
source of both formal and computational advances in the subject since its formu-
lation in [Rav84]. It is a family of conjectures, one for each prime p and natural
number n, asserting that “geometric” and “algebraic” versions of localizations of the
category of spectra coincide. While forthcoming work by Burklund-Hahn-Levy-
Schlank shows this conjecture is in fact false for n ≥ 2, it is a classical result of
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Miller that the conjecture holds for n = 1 and p > 2 [Mil81]. Our goal is to reex-
amine the key computation underlying this result, and along the way recount some
of the major advances motivic methods have brought to computational homotopy
theory.

First, a lightning introduction to the telescope conjecture. More details can be
found in [Rav92, Lur10, Pst20].

Theorem 1.1. For each prime p, there exist spectra K(n) for each n ≥ 0, the
Morava K-theories, such that

(1) K(0) is the rational Eilenberg-Mac Lane spectrum HQ and K(1) is the
Adams summand of mod p complex K-theory.

(2) For n > 0, π∗K(n) ≃ Fp[v
±
n ], where |vn| = 2(pn − 1).

(3) If X is a finite spectrum which is K(n)-acyclic (i.e. K(n) ⊗X ≃ 0), then
it is K(n− 1)-acyclic.

(4) If the p-localization of a finite spectrum X is not contractible, then K(n)⊗
X ̸≃ 0 for n≫ 0.

These Morava K-theories interpolate between rational homology, HQ, and mod p
homology, HFp, thought of as “K(∞)” in a way that can be made precise. We think
of rational homology, and more particularly rationalization, as being something
easy to understand and compute, while HFp-localization is much more interesting.
Thus, in light of properties (3) and (4) of 1.1, we can ask how complicated a finite
p-local spectrum is:

Definition 1.2. The type of a nontrivial finite p-local spectrum X is the smallest
integer n such that K(n)⊗X ̸≃ 0. If X has type n, then a vn-map on X is a map

ΣdX
f−→ X

with K(n)⊗ f an isomorphism and K(m)⊗ f nilpotent for all m ̸= n.

As it turns out, there are vn-self maps: this is the content of the Periodicity
Theorem of Hopkins-Smith [HS98].

Theorem 1.3. Let X be a finite p-local spectrum of type ≥ n. Then there exists
a vn-self map f which is asymptotically unique: if g is another vn-self map, then
some iterates of f and g are homotopic.

As a consequence of 1.3, we can uniquely define the telescope X[f−1] as

colim
(
X

f−→ Σ−dX
f−→ Σ−2dX

f−→ . . .
)
,

In fact, we can do better: there is a localization functor LT (n) on the category
of p-local spectra which sends finite p-local spectra of type ≥ n to their telescope
as above, and sends those of type < n to 0. Correspondingly, this is called the
telescopic localization, or T (n)-localization. It is clear that if X is T (n)-
acyclic, then it must be K(n)-acyclic, so K(n)-local spectra must be T (n)-local,
implying a natural transformation of localization functors LT (n) → LK(n).

Conjecture 1.4. For every prime p and n > 0, the natural transformation LT (n) →
LK(n) is an equivalence.

Here, telescopic localizations carry interesting homotopy-theoretic information;
in particular, the existence of certain type n complexes and their corresponding
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vn-self maps lets us construct elements in the stable homotopy groups of spheres.
On the other hand, K(n)-localizations are more algebraic in nature, and can be
accessed directly through the Adams and Adams-Novikov spectral sequence.

Note that the telescope conjecture is something of tautology for n = 0, in which
case multiplication by p is a v0-self map; to rationalize a finite p-local spectrum,
it suffices to simply invert p. For n = 1 and p = 2, 1.4 was proven by Mahowald
[Mah82]. The remainder of this paper will discuss the case for height n = 1 and
odd primes p > 2, where 1.4 is due to [Mil81].

By formal arguments, for a fixed height n and prime p, it suffices to prove
the equivalence in telescope conjecture for one p-local type n finite spectrum. At
height 1, we can use the mod p Moore spectrum S0/p, which is the cofiber of the
multiplication by p map

S0 p−→ S0 → S0/p→ S1.

In [Ada66], Adams constructed a v1-self map, denoted ϕ : Σ2(p−1)S0/p → S0/p,
on this Moore spectrum, and Bousfield shows that the localization map S0/p →
S0/p[ϕ−1] is a K(1)-localization [Bou79, 4.2], under the assumption of the following
computation by Miller:

Theorem 1.5. [Mil81, 4.11] The homotopy groups of S0/p[ϕ−1] are

π∗
(
S0/p[ϕ−1]

)
=

{
Fp ∗ ≡ 0,−1 mod 2(p− 1)

0 otherwise.

The techniques in establishing 1.5 were novel when [Mil81] was released, but now,
thanks to motivic and synthetic homotopy theory, we can intrinsically understand
what once were handcrafted spectral sequence comparision results.

Let us briefly outline the remainder of the paper. In section 2, we will give
an introductory overview of motivic and synthetic homotopy theory. In section
3, we will discuss Miller’s original techniques in establishing 1.5, and explain a
motivically-accesible generalization of this method. Finally, in section 4, we will
walk through the desired computations, aiming to illustrate techniques that have
revolutionized computational homotopy theory more broadly.

2. The Motivic and Synthetic Categories

In this section, we will briefly discuss the category of C-motivic spectra and
the category of synthetic spectra, presenting them as deformations of the classical
category of spectra. Then, we will state an equivalence between the p-completions
of nice versions of these categories, letting us translate intuitions from one into the
other in the subsequent sections.

2.1. Motivic Stable Homotopy Theory. Let us start by overviewing the con-
struction of the category of motivic spectra. Like the classical category of spectra,
it can be thought of as a stabilization of a suitable category of motivic spaces, which
we discuss first
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Definition 2.1. Let Sm/C denote the category of smooth finite type C-schemes.
A distinguished Nisnevich square is a pullback diagram in Sm/C

U ×X V V p−1(X − U)

U X X − U

p

i

∼=

where p is étale, i is an open embedding, and p is an isomorphism away from U .1 A
presheaf of spaces F ∈ Pre(Sm/C) is a Nisnevich sheaf if for every distinguished
Nisnevich square,

F (X) F (U)

F (V ) F (U ×X V )

is a pullback diagram of spaces, and F (∅) is a final object. Let ShvNis(Sm/C)
denote the category of Nisnevich sheaves.

Now, to get to the unstable category of motivic spaces, we need to further
invert A1, thought of as a Nisnevich sheaf under the Yoneda embedding. This
is analogous to inverting the interval [0, 1] in the ordinary category of spaces to
form the homotopy category.

Definition 2.2. Let J be the class of projections
{
A1 × F → F

}
in ShvNis(Sm/C).

The localization of ShvNis(Sm/C) at J is the category of motivic spaces, de-
noted by SpcC.

Explicitly, replacing Sm/C by Nisnevich sheaves formally adjoints limits and
colimits, giving a category that behaves like the familiar category of spaces, while
forming the A1-localization means that for any motivic space X ∈ SpcC, X(U)→
X(A1 × U) is an equivalence of spaces for all U ∈ Sm/C.

Example 2.3. Importantly, the Nisnevich topology is subcanonical, meaning that
representable presheaves are sheaves. Thus, for every smooth finite type C-scheme
X, we get a corresponding motivic space, which we will also call X. This gives
motivic spaces such as A1 or Gm. Note that by construction, the former is con-
tractible in SpcC. In a different direction, we can sheafify and A1-localize constant
presheaves of spaces, giving, for example the motivic spaces Sn.

Remark 2.4. Before proceeding, a few disclaimers are in order. First, the above
definition of the Nisnevich topology as that generated by distinguished squares is
actually a property of it’s “true” definition, in which covers are étale covers with
an additional condition on points having preimages with isomorphic residue fields.
See [MV99, 1.1,1.4] and [AE16] for more details. However, under extremely mild
conditions on the base scheme (in our case SpecC), these two definitions coincide,
giving a much more hands-on perspective on this topology.

To motivate why we consider the Nisnevich topology, note that it sits between the
Zariski and étale topologies, giving it the best properties of both. For instance, fields
have no higher cohomology and algebraic K-theory has descent, as in the Zariski
topology, but also smooth pairs are locally equivalent to linear ones, as in the étale

1The right square in this diagram is the actual distinguished Nisnevich square.
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topology. This latter fact is crucial for the proof of the motivic purity theorem,
which is the motivic analog of the tubular neighborhood theorem in topology.

Now that we have an unstable category of motivic spaces, we can try to stabilize
it. As a preliminary step, we really want to consider SpcC,∗, the category of pointed
motivic spaces, i.e. spaces X with a distinguished map SpecC→ X of spaces; this
enables us to form suspensions and loop spaces as the appropriate limit/colimit
diagrams.2

However, here we see the first major difference between classical and motivic
homotopy theory; in the latter, there are two circles. We have the simplicial circle
S1, viewed as a constant (pre)sheaf of spaces, and the “Tate” circle Gm, which
comes from geometry. We want to invert both of these spheres, and while it is
possible to do these localizations one after the other, we can be more clever. First,
a lemma:

Lemma 2.5. In SpcC,∗, the suspension of the pointed space (Gm, 1) is (P1,∞).

Proof. We have a distinguished Nisnevich square

Gm A1

A1 (P1, 1)

in Sm/C, so considering these as motivic spaces, this becomes a pushout diagram
in SpcC,∗ [AE16, 4.13]. Now, as A1 ≃ ∗, because we’ve A1-localized, this exhibits
(P1, 1) as the suspension ΣGm = S1∧Gm. As (P1, 1) ≃ (P1,∞) are A1-homotopic,
we are done. □

Thus, to invert both circles, we can simply invert (P1,∞).3 Hopefully this
process is familiar from the construction of the ∞-category of spectra:

Definition 2.6. Let ΩP1 : SpcC,∗ → SpcC,∗ be the functor on pointed motivic
spaces given by Map((P1,∞),−).4 The stable motivic category is the ∞-
categorical limit

SpC = lim

(
. . .

ΩP1−−−→ SpcC,∗
ΩP1−−−→ SpcC,∗

ΩP1−−−→ SpcC,∗

)
Explicitly, an object of this category is a P1-spectrum; a sequence of motivic spaces
X0, X1, X2, . . . with chosen equivalences Xn ≃ ΩP1Xn+1. The homotopy category
of SpC is SH(C), the stable motivic homotopy category.

The following list of properties follow formally from this construction.

Proposition 2.7. SpC is a stable symmetric monoidal ∞-category and there is
a monoidal functor Σ∞

P1 : SpcC,· → SpC mapping (P1,∞) to an invertible object.
Moreover, there is an adjunction Σ∞

P1 ⊣ Ω∞
P1 , where Ω∞

P1 sends a P1-spectrum X∗
to its 0-th space X0.

2We are considering SpcC and SpcC,∗ as ∞-categories, so one should think of limits and
colimits as what would classically be called “homotopy” limits and colimits.

3Compare to the situation in classical algebra, where if f, g ∈ A are two elements of a ring, we
have a canonical isomorphism

(
A[f−1]

)
[g−1] ≃ A[(fg)−1].

4Here Map denotes the internal pointed motivic mapping space.
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Remark 2.8. Some sources to construct SpC by inverting S1, then inverting Gm,
and finally taking the A1-localization, e.g. [Voe07]. However, the approach here is
equivalent, and has the benefit of being far more compact.

As a result, spheres in SpC are now bigraded, as is the suspension functor and
homotopy groups. The conventions below are standard, and are chosen to agree
with grading conventions for motivic cohomology.

Definition 2.9. We have bigraded spheres Sp,q ∈ SpC, with S1 ≃ S1,0 and Gm ≃
S1,1. Thus, for instance, P1 ≃ S2,1. The bigraded homotopy groups πp,q(X)
of a spectrum X are the abelian groups of maps πp,qX := [Sp,q, X] in SH(C), and
the bigraded mapping set πp,q Map(X,Y ) is defined as [Σp,qX,Y ]SH(C).

Definition 2.10. Let E be a motivic spectrum and p, q, n integers with 2q−p ≥ 0.
The E-cohomology of a motivic space X is

Ep,q(X) := π−p,−q Map(Σ∞
P 1X+, E) ≃ π2p−q Map(Σ∞

P1X+,Σ
q
P1E).

Example 2.11. Voevodsky constructed a motivic spectrum Fmot
p which represents

mod p motivic cohomology, in the sense of 2.10. Importantly for us, π∗,∗Fmot
p ≃

Fp[τ ], where τ is in degree (0,−1). This element τ lifts to a map

Ŝ0,−1 τ−→ Ŝ0,0

between the Fmot
p -completed sphere spectra, inducing a nonzero map on motivic ho-

mology. The cofiber of this map Cτ in the Fmot
p -completed stable motivic category,

which we’ll denote Sp∧
C, is a commutative algebra object for all primes [Ghe17].

We’ll come back to understanding τ once we discuss synthetic homotopy theory.

Finally, for our purposes, we’ll want to restrict to a smaller subcategory of SpC.

Definition 2.12. The p-complete cellular motivic category is the smallest
stable subcategory of Sp∧

C which contains the p-complete spheres Ŝp,q and is closed
under arbitrary colimits.

Intuitively, cellular motivic spectra are those which admit a description internal
to the homotopy theory of SpC. In fact, using synthetic spectra, we can make this
intuition precise.

2.2. Synthetic Homotopy Theory. Fix a ring spectrum E, where we’ll ask that
E∗E is flat over E∗ (more specifically, that E is Adams type.5) Classically, we can
construct a stack

(2.13) ME := colim[n]∈∆op Spec
(
π∗(E

⊗[n]
)
,

where for any spectrum X, the E-homology E∗X descends to a quasicoherent sheaf
over ME . The Adams spectral sequence

(2.14) Es,t
2 = Exts,tME

(E∗X,E∗Y ) =⇒ [X,Y ∧
E ]t−s

lets us go back, from algebraic geometry over a stack to homotopy theory. The idea
of synthetic spectra is to generalize this phenomena, and construct a “deformation”
of the category of ordinary spectra into a purely algebraic category based on sheaves
over ME , or as more commonly formulated in the literature, E∗E-comodules.

5This means E is a filtered colimit of finite E-projective spectra Eα which all satisfy a universal
coefficient isomorphism; namely that E∗Eα → HomE∗ (E∗Eα, E∗) is an isomorphism. The sphere,
any field, and Landweber-exact homology theories are all Adams-type.
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Theorem 2.15. [Pst22, Mar22] For E an Adams-type ring spectrum, there is a
presentable symmetric monoidal stable ∞-category SynE of E-synthetic spectra
and a diagram of functors

Sp Sp

SynE

ν τ−1

with (1) ν fully faithful, lax symmetric monoidal, and preserving filtered colimits
and (2) τ−1 symmetric monoidal and preserving all colimits.

Remark 2.16. ν is symmetric monoidal on the subcategory of finite E-projectives.
So when E is a field, e.g. E = Fp or K(n), ν is symmetric monoidal on all finite
spectra. In any case, ν carries commutative ring spectra to synthetic commutative
ring spectra by lax monoidality.

In synthetic spectra, there are bigraded spheres, arising from taking the “derived”
category of an already stable ∞-category:

Definition 2.17. The bigraded synthetic sphere spectrum St,w is defined
as Σt−wνSw. The monoidal unit is S0,0 and the bigraded suspension functor is
Σt,w = St,w ⊗−. The bigraded homotopy groups are

πt,w := [S0,0, X]t,w = π0map(St,w, X).

The choice of the t−w grading is motivated partly by comparision to the cellular
motivic category, as described below. In fact, in light of the perspective of synthetic
spectra as a deformation of spectra, we can abstractly describe this “deformation
parameter.”

Construction 2.18. The pushout comparision map

S0,−1 = Σ(νS−1)→ ν(ΣS−1) = S0,0

gives a canonical element τ ∈ π0,−1S
0,0. The cofiber Cτ is a synthetic commutative

ring spectrum.

Generically, if we invert τ , we just recover ordinary spectra:

Theorem 2.19. [Pst22, 4.33, 4.37] Let SynE(τ
−1) be the subcategory of synthetic

spectra on which τ acts as an equivalence. Then
(1) SynE(τ

−1) is a localization of SynE,
(2) there is a fully faithful functor Y : Sp → SynE giving an equivalence onto

SynE(τ
−1),

(3) defining the underlying spectrum functor τ−1 : SynE → Sp via

τ−1X = colim
(
X

τ−→ Σ0,1X
τ−→ Σ0,2X → . . .

)
under this equivalence gives a symmetric monoidal left adjoint to Y ,

(4) for any spectrum X, τ−1(νX) ≃ X.

One way to interpret this synthetic τ is that classical spectra are embedded
into synthetic spectra as precisely those which are τ -invertible. This element arises
from the different notions of suspension on a synthetic spectrum, and when this
difference disappears, so do the non-topological phenomona in SynE . Thus, any
algebraic behavior in SynE is effectively τ -torsion.
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While generically, SynE behaves like ordinary spectra, at the special fiber, i.e.
taking modules over Cτ , we get a fully faithful monoidal embedding ModCτ (SynE)→
StableE∗E , where the right side is Hovey’s stable ∞-category of E∗E-comodules,
which is purely algebraic in nature [Pst22, 4.46]. This embedding is an equiva-
lence if E is Landweber exact. As a practical consequence of this fact, we have the
following theorem:

Theorem 2.20. For any X,Y ∈ Sp, there is a cofiber sequence

(2.21) Σ0,−1νX
τ−→ νX → νX ⊗ Cτ → Σ1,−1νX

and an natural isomorphism [νY, νX ⊗ Cτ ]t,w ≃ Extw−t,t
E∗E

(E∗Y,E∗X).

Notice that πt,w(νX⊗Cτ) ≃ ExtE∗E(E∗, E∗X) is (up to regrading) the E2-page
for the E-Adams spectral sequence converging to π∗(X∧

E). This is just the surface
of a surprising relation to the Adams spectral sequence: as a preliminary, note
that taking homotopy groups of 2.21 gives an exact couple leading to a τ -Bockstein
spectral sequence

E1 = ExtE∗E(E∗, E∗X) =⇒ π∗,∗(νX
∧
τ ).

Alternatively, we could construct a νE-Adams spectral sequence internal to
SynE computing π∗,∗(νX∧

νE). These spectral sequences are related as follows:

Theorem 2.22. [BHS22, A] Let X be a spectrum.
(1) There is a trigraded νE-Adams spectral sequence

(2.23) Es,t,w
2 ≃cl E

s,t
2 ⊗ Z[τ ] =⇒ π∗,∗(νX

∧
νE)

with clE
s,t
2 the classical Adams E2-page in tridegree (s, t, s) and |τ | =

(0, 0,−1) The synthetic differentials in this spectral sequence are dr(x) =
τ r−1y for every classical differential dr,cl(x) = y.

(2) X is E-nilpotent complete iff νX is νE-nilpotent complete iff it is τ -complete.
(3) Given X is E-nilpotent complete, the E-Adams spectral sequence, the νE-

Adams spectral sequence, and the τ -Bockstein spectral sequence converge
strongly, and the latter spectral sequences are isomorphic (up to regrading).

This leads to the motto that synthetic spectra “categorify” the E-Adams spectral
sequence; the homotopy groups π∗,∗(νX∧

νE) and module structure over π∗,∗(S0,0)∧νE
capture the differentials and extensions in the E-Adams spectral sequence via the
presence of τ -torsion.

2.3. Motivic and Synthetic Comparisions. For our purposes, a key motivating
property of the synthetic category is the following equivalence, proved in [Pst22,
7.34]:

Theorem 2.24. For each prime p, there is an adjoint equivalence between the p-
complete category of cellular C-motivic spectra and the p-complete category of even
MU -synthetic spectra.

This equivalence qualifies our statement following 2.12: cellular motivic spec-
tra are part of stable motivic homotopy theory that can be described internal to
“ordinary” homotopy theory, and synthetic machinery gives us a handle on that
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description.6 For simplicity, fix a prime p for the remainder of this section, and let
everything in sight be p-complete.

Given the discussion in the previous subsection, one should expect that the
element τ discussed in 2.11 has similar properties to the synthetic τ . Indeed, letting
SpC,cell denote the (p-complete) cellular motivic category, we have functors

(2.25) τ−1SpC,cell
τ−1

←−− SpC,cell
−⊗Cτ−−−−→ SpC,cell/τ

with the left arrow being the generic fiber and the right being the special fiber.
Importantly, we can identify the categories on the far sides of this span:

Definition 2.26. The realization functor R : SpC → Sp is the one induced by
the functor sending a smooth C-scheme X to the topological space of its complex
points X(C). For instance, R(Sp,q) = Sp and R(Fmot

p ) = Fp.

Proposition 2.27. The category of τ -invertible cellular motivic spectra is equiva-
lent to the ordinary p-complete category of spectra:

τ−1SpC,cell ≃ Sp∧
p ,

Moreover, under this equivalence, the τ -inversion functor corresponds to the real-
ization functor in 2.26.

Proposition 2.28. The category of cellular modules over the cofiber of τ , i.e.
SpC,cell/τ , is equivalent to the stable category of BP∗BP -comodules, see [Hov03].

Importantly, we have as before that the generic fiber of this deformation is the
ordinary category of spectra, whereas the special fiber is a category which is purely
describable by algebraic objects, and therefore more computationally-friendly. In
the next section, we will see how this deformation can be leveraged to understanding
relations between various Adams-type spectral sequences.

3. The Miller Square and Lifting Differentials

Recall the setup from the introduction: let p > 2 be an odd prime, and con-
sider the mod p Moore spectrum X = S0/p. Adams constructed a v1-self map
ϕ : Σ2(p−1)X → X, which upon composing with the inclusion S0 → X of the bot-
tom cell, gives an element we will also denote ϕ in π2(p−1)X. By compactness of
the sphere spectrum, we find that ϕ−1(π∗X) ≃ π∗(X[ϕ−1]), and we can compute
the former via a localized Adams spectral sequence.

Consider the mod p dual Steenrod algebra, A, as in [Rav86, §3]. A standard
computation shows that HFp∗X is isomorphic to an Fp-exterior algebra on the
class τ0 in degree 1, i.e. E(τ0), as an A∗-comodule. In [Mil81], Miller shows that
the element ϕ is detected in the Fp-Adams spectral sequence by a class

v1 ∈ E1,2p−1
2 = Ext1,2p−1

A (Fp, E(τ0)).

Localizing the Adams spectral sequence at this element, he proves that the v1-local
E2-page is isomorphic as an Fp-algebra to

(3.1) v−1
1 Ext∗,∗A (Fp, E(τ0)) ≃ Fp[v

±
1 ]⊗ E(hn,0|n ≥ 1)⊗ Fp[bn,0|n ≥ 1],

6In the context of writing this paper, “synthetic” ideas are used to this effect alone – pro-
viding intuition and understanding of ostensibly motivic computations. However, recent work
has demonstrated the power of synthetic spectra, particularly F2-synthetic spectra, in greatly
streamlining computations or in understanding filtrations of interest in higher algebra overall.
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with |hn,0| = (1, 2(pn − 1)) and |bn,0| = (2, 2p(pn − 1)), and that this localized
spectral sequence converges to ϕ−1π∗X.

Examining the spectral sequence in 3.1, it is immediate that the d2 differentials
are v1 and h1,0-linear. The more interesting result is the following

Proposition 3.2. For n > 1, d2hn,0 = v1bn−1,0.

The following section will examine how this differential is computed. However,
it affords us a drastic simplification. A spectral sequence exercise now shows that

v−1
1 E3 ≃ Fp[v

±
1 ]⊗ E[h1,0]

and the spectral sequence degenerates on the E3-page. As mentioned above, the
class v1 detects the v1-self map ϕ, and let α denote the element of π2p−3X detected
by h1,0.7 Thus, we have that

(3.3) π∗(X[ϕ−1]) = Fp[ϕ
±]⊗ E(α).

Counting degrees in 3.3, we get 1.5.

3.1. The Classical Miller Square. To motivate Miller’s approach to 3.2, consider
the following setup. Let X be the mod p Moore spectrum as above. Then, we know
its mod p homology is E(τ0), as an A-comodule. The localized Adams spectral
sequence uses this to compute the localized homotopy groups of X

v−1
1 Exts,tA (Fp, E(τ0)) ≃ Es,t

2 =⇒ ϕ−1(πt−sX).

Likewise, let BP denote the Brown-Peterson spectrum at the prime p, with homo-
topy groups π∗BP = Z(p)[v1, v2, . . .] and |vn| = 2(pn − 1). The BP -homology of
X[ϕ−1] is now v−1

1 BP∗/p. Then, we can use the Adams-Novikov spectral sequences
to compute the homotopy groups of X[ϕ−1].

Exts,tBP∗,BP (BP∗, v
−1
1 BP∗/p) ≃ Es,t

2 =⇒ πt−si(X[ϕ−1]).

These are useful tools, but even their E2 page can be difficult to compute, leading
to the following auxiliary spectral sequences.

Definition 3.4. Recall that the dual mod p Steenrod algebra is, as a Fp-algebra,
isomorphic to

A ≃ Fp[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .).

Letting P denote the polynomial part and Q the exterior part, we have an extension
of Hopf algebras

P → A → Q.
This gives rise to the Cartan-Eilenberg spectral sequence of signature

Es,k,t
2 = Exts,tP (Fp,Ext

k
Q(Fp, E(τ0))) =⇒ Exts+k,t

A (Fp, E(τ0)),

with differentials dr : Es,k,t
r → Es+r,k−r−1,t

r .

Remark 3.5. For odd primes, the Cartan-Eilenberg spectral sequence collapses, as
differentials are required to preserve an additional grading on the generators of A
[BX23, 2.2]. This does not occur at the even prime, and is one of many motivating
sources of the lifting techniques described in the next section.

7It turns out that this element exists before localization, and is related to ϕ via a Bockstein
map.
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Definition 3.6. Let I = (p, v1, v2, . . .) denote the augmentation ideal of BP∗.
Filtering BP∗ by powers of I gives the algebraic Novikov spectral sequence of
signature

Exts,t
′

BP∗BP/I(Fp, I
k/Ik+1) =⇒ Exts,t

′

BP∗BP (BP∗, BP∗/p),

with differentials dr : Es,k,t′

r → Es+1,k+r−1,t′

r

Theorem 3.7. The Cartan-Eilenberg spectral sequence 3.4 and algebraic Novikov
spectral sequence 3.6 have isomorphic E2 pages. More precisely, suppressing the
grading, we have an isomorphism

ExtP(Fp,ExtQ(Fp, E(τ0))) ≃ ExtBP∗BP/I(BP∗/I, I
∗/I∗+1)

induced by the isomorphism of Hopf algebroids (BP∗/I,BP∗BP/I) ≃ (Fp,P).

We can organize these spectral sequences into the Miller square below:

v−1
1 ExtP(Fp,ExtQ(Fp, E(τ0)))

v1
−1 ExtA(Fp, E(τ0)) ExtBP∗BP (BP∗, v

−1
1 BP∗/p)

π∗X[ϕ−1]

Adams

Cartan-Eilenberg algebraic Novikov

Adams-Novikov

The key idea in this square is that Adams-Novikov d2 differentials in the top right
can induce Adams d2 differentials in the bottom left. More precisely, Miller proves
the following:

Theorem 3.8. Suppose in the diagram above that the Cartan-Eilenberg spectral
sequence collapses. Let d2(x) = y be a differential in the algebraic Novikov spectral
sequence. Then, letting x and y denote the corresponding classes in the Adams
spectral sequence, there is a d2 differential d2(x) = ±y.

This is how 3.2 was proven in [Mil81]: BP -theory gives concrete algebraic meth-
ods for computing the algebraic Novikov differentials on hn,0, and 3.8 turns these
into the key Adams differentials. However, the original proof of 3.8 relies on a
complex diagram chase, and is quite limited in its scope and assumptions. As it
turns out, there is a way to generalize this result to lift arbitrary algebraic Novikov
differentials, relying crucially on the motivic Adams spectral sequence.

3.2. Lifting through the Motivic Adams Spectral Sequence. Now, we will
introduce the motivic dual Steenrod algebra and motivic Adams spectral sequence,
with the goal of better conceptualizing 3.8. Most of this material comes from
[BX23, Sta21].

Definition 3.9. The motivic dual Steenrod algebra Amot := Fmot
p ∗,∗(F

mot
p ) is

the Hopf algebra of motivic homology cooperations; the motivic homology of any
spectrum is a comodule over Amot.

In fact, we know the structure of the motivic dual Steenrod algebra, which is
important due to its analogous role to the classical dual Steenrod algebra.
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Theorem 3.10. At odd primes p > 2, we have an Fp[τ ]-algebra isomorphism.

Amot
∗,∗ ≃ Fp[τ ][ξ1, ξ2, . . .]⊗Fp[τ ] EFp[τ ][τ0, τ1, . . .],

where |ξn| = (2(pn − 1), pn − 1) and |τn| = (2pn − 1, pn − 1). The coproduct is

∆(ξn) =

n∑
i=0

ξp
i

n−i ⊗ ξi, and ∆(τn) = τn ⊗ 1 +

n∑
i=0

ξp
i

n−i ⊗ τi.

We won’t be focusing on the even prime in the rest of this paper, but the following
is included for completeness.

Theorem 3.11. For p = 2, we have an F2[τ ]-algebra isomorphism.

Amot ≃ F2[τ ][τ0, τ2, . . . , ξ1, ξ2, . . .]

τ2i = τξi+1

Remark 3.12. Observe that the even motivic dual Steenrod algebra isn’t simply
the extension of the classical dual Steenrod algebra along Fp → Fp[τ ], as in the
odd prime case. The extra relation τ2i = τξi+1 means that when τ is inverted,
we return to the classical dual Steenrod algebra tensored up to F2[τ

±], but when
τ is killed, i.e. via forming A∗,∗ ⊗F2[τ ] F2, the resulting algebra appears to mimic
the odd prime case. This is one potential explanation for the dramatic success of
motivic methods at the even prime [IWX23].

Now we have the technology to set up the motivic Adams spectral sequence.

Construction 3.13. Let E be a motivic ring spectrum where E∗,∗ is flat over
E∗,∗E (such as for E = Fmot

p ). Let E be the fiber of the unit S0,0 → E, giving the
family of cofiber sequences

E
⊗s+1 ⊗X −→ E

⊗s ⊗X → E ⊗ E⊗s ⊗X.

for X a motivic spectrum. Splicing these sequences together gives the canonical
E∗,∗-Adams resolution

X E ⊗X Ē⊗2 ⊗X Ē⊗3 ⊗X . . .

E ⊗X E ⊗ E ⊗X E ⊗ Ē⊗2 ⊗X E ⊗ Ē⊗3 ⊗X . . .

Taking homotopy groups gives a trigraded exact couple, and by usual formal ma-
nipulations, a trigraded spectral sequence Es,t,w

r (X;E) with differentials

dr : E
s,t,w
r (X;E)→ Es+r,t+r−1,w

r (X;E).

This is the motivic Adams spectral sequence. Standard homological algebra
identifies the E2 page with trigraded Ext groups in E∗,∗E-comodules

Es,t,w
2 ≃ Exts,t,wE∗,∗E

(E∗,∗, E∗,∗X).

Example 3.14. Applying 3.13 for the case when E = Fmot
p and X = S0,0, we get

the motivic Adams spectral sequence

Exts,t,wAmot
∗,∗

(Fp[τ ],Fp[τ ]) =⇒ πs−t,wŜ0,0

converging to the homotopy groups of the p-completed sphere.
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Example 3.15. Under the realization functor in 2.26, we get map Amot → A.
This sends R(τ) = 1, R(τn) = τn, and R(ξn) = ξn. In addition, this gives a map
from the motivic Adams spectral sequence to the classical Adams spectral sequence,
corresponding to the τ -inversion arrow in 2.25.

While the previous example relates the motivic and classical Adams spectral
sequences, we also want a spectral-sequence analog of the special fiber 2.28: this is
the motivic Adams spectral sequence for the cofiber of τ

ExtAmot(Fp[τ ],Fp) =⇒ π∗,∗(Cτ).

Given that modules over Cτ have an algebraic description in terms of BP -theory, we
should expect something similar for this spectral sequence, motivating the following
critical theorem in motivic stable homotopy theory [GWX20, 1.17]:

Theorem 3.16. There is an isomorphism of tri-graded spectral sequences between
the motivic Adams spectral sequence for Cτ and the algebraic Novikov spectral se-
quence

Ext
s+k,t′−k,t′/2
Amot (Fp[τ ],Fp) Exts,t

′

BP∗BP/I(Fp, I
k/Ik+1)

πt′−s,t′/2(Cτ) Exts,t
′

BP∗BP (BP∗, BP∗)

MASS for Cτ algebraic Novikov

≃

≃

Finally, we can understand how to lift differentials in the case of X = S0/p.
By naturality of Adams spectral sequences, we’ve translated the abstract motivic
deformation of 2.25 into the following diagram of spectral sequences:8

Exts,tA (Fp, E(τ0)) Exts,t,wAmot

(
Fp[τ ], EFp[τ ](τ0)

)
Exts,t,wAmot (Fp[τ ], E(τ0))

πt−sX πt−s,wX πt−s,w(Cτ ⊗X)

The leftward map is that of realization, setting τ = 1, and the rightward map is
induced by the inclusion of the bottom cell S0,0 → Cτ , setting τ = 0. We start by
computing the E2 pages of these various spectral sequences, using whatever strate-
gies at hand. Next can use BP -theory combined with 3.16 to deduce differentials
in the rightmost spectral sequence, and map differentials from the middle spectral
sequence to classical ones on the left.

To see how to lift differentials across the right-hand map, consider a class x
on the E2 page of the middle spectral sequence such that its image x′ in the Cτ
spectral sequence supports a nontrivial d2-differential d2(x′) = y′ ̸= 0. Then, if we
define y := d2(x), y must map to y′, implying d2(x) is nonzero. If in addition there
was only one possible target for this differential, we would have computed d2(x).
In general, considering dr differentials for r ≥ 2, there can be far more possibilities,
but we can still force the existence of otherwise hard-to-compute differentials.

8We implicitly identify a classical spectrum with its “constant spectrum” motivic analog; that
this embedding of Sp into SpC is fully faithful is a theorem of Levine [Pst22].
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4. Revisiting the Key Computation

To conclude, let us apply the program of the previous section to proving 1.5
vis-a-vis 3.2. For the sake of completeness, we record below our working definition
of Ext of comodules over a Hopf algebroid:

Definition 4.1. Let (A,Γ) be a Hopf algebroid and H a Γ-comodule. Let Γ denote
the unit coideal, i.e. the cokernel of the left unit where we mod out the image of 1.
The cobar complex C∗(H) is the cochain complex given by

Cs(H) = Γ
⊗s ⊗H,

where tensor products are taken over A. The differential ds : Cs(H)→ Cs+1(H) is
given by

ds[a1| . . . |as]x =

s∑
i=1

(−1)i[a1| . . . |∆ai| . . . |as]x+ (−1)s+1[a1| . . . |as|x′]x′′,

where ψ(x) = x′ ⊗ x′′ ∈ Γ⊗H. Then, ExtsΓ(A,H) is defined as Hs(C∗(H), ds).

4.1. Computing the Motivic E2 Page. We follow the strategy in [Mil78] to
compute the MASS E2 page for (the motivic analog of) X = S0/p. As in the
classical case, define

Pmot := Fp[τ ][ξ1, ξ2, . . .]

Qmot := EFp[τ ][τ0, τ1, . . .].

We have an extension of Hopf algebras

Pmot → Amot → Qmot,

giving rise to a Cartan-Eilenberg spectral sequence 3.4

Exts,t,wPmot(Fp[τ ],Ext
k
Qmot(Fp[τ ], EFp[τ ](τ0))) =⇒ Exts+k,t,w

Amot (Fp[τ ], EFp[τ ](τ0)).

with differentials dr : Es,k,t,w
r → Es+r,k−r+1,t,w

r . Moreover, as differentials must
preserve the Cartan grading, with ξi in degree 0 and τi in degree 1, this spectral
sequence collapses. Additionally, by a straightforward computation with 4.1, using
that Qmot is a cocommutative, primitively generated exterior algebra, we have the
following lemma:

Lemma 4.2. We have an isomorphism

ExtQmot(Fp[τ ], EFp[τ ](τ0)) ≃ Fp[τ ][v1, v2, . . .]

with vn = [τn] ∈ Ext1,2p
n−1,pn−1.

Proof. In general, taking Ext over the exterior Hopf algebra (Fp[τ ],Qmot) will pro-
duce a polynomial algebra [Rav86, 3.1.9]; the nuance is in why there is no “v0”
in the right-hand side. To see this, observe that the cobar differential on[]τ0 ∈
C0(EFp[τ ](τ0)) is [τ0]. □

Now, inverting v1 and using that localization is exact, the collapsing Cartan-
Eilenberg spectral sequence gives an isomorphism (up to a regrading)

v−1
1 ExtAmot(Fp[τ ], EFp[τ ](τ0)) ≃ ExtPmot(Fp[τ ],Fp[τ ][v

±
1 , v2, . . .]).

Here, we use the following change-of-rings isomorphism [Mil78, Rav91]
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Lemma 4.3. Let B = Pmot/(ξpi ); this is a primitively generated cocommutative
Hopf algebra which acts trivially on Qmot. We have isomorphisms

ExtPmot(Fp[τ ],Fp[τ ][v
±
1 , v2, . . .]) ≃ ExtB(Fp[τ ],Fp[τ ][v

±
1 ])

≃ Fp[τ ][v
±
1 ]⊗Fp[τ ] ExtB(Fp[τ ],Fp[τ ]).

Finally, computing ExtB(Fp[τ ],Fp[τ ]) is a direct consequence of the following
lemma, which is a good exercise in working with 4.1.

Lemma 4.4. Let Γ = A[x]/xp be the truncated polynomial algebra on an even-
degree generator x, considered as a primitively generated Hopf algebra over A. Then

ExtΓ(A,A) = E(h)⊗A(b),
where

h = [x] ∈ Ext1

and

b =
∑

0<i<p

1

p

(
p

i

)
[xi|xp−i] ∈ Ext2 .

Proof. See [Rav86, 3.2.4]. □

Combining 4.3 and 4.4, we have proved

Theorem 4.5. The v1-localized E2 page of the motivic Adams spectral sequence
for X = S0/p is, as an Fp[τ ]-algebra,

Es,t,w
2 ≃ Fp[τ ][v

±
1 ]⊗Fp[τ ] EFp[τ ](h1,0, h2,0, . . .)⊗Fp[τ ] Fp[τ ][b1,0, b2,0, . . .]

with

v1 ∈ Ext1,2p−1,p−1,

hn,0 ∈ Ext1,2(p
n−1),pn−1,

bn,0 ∈ Ext2,2p(p
n−1),p(pn−1) .

Remark 4.6. In fact, replacing Amot with A and Fp[τ ] with Fp, the process
outlined above is how Miller computes the classical E2 page in [Mil78]. Observe
that the same change-of-ring isomorphism in 4.3 applies in the motivic world, as
the constructions in [Mil78, §4] preserve motivic weights.

Corollary 4.7. The v1-localized E2 page of the motivic Adams spectral sequence
for X ⊗ Cτ is isomorphic to

Es,t,w
2 ≃ Fp[v

±
1 ]⊗ E(h1,0, h2,0, . . .)⊗ Fp[b1,0, b2,0, . . .]

i.e. it is the localized E2 page of 4.5 with τ = 0.

4.2. Computing the Key Differential. Recall that BP∗BP ≃ BP∗[t1, t2, . . .],
with |tn| = 2(pn − 1). Moreover, we have

Lemma 4.8. [Mil81] For n ≥ 2, the coproduct of tn in BP∗BP is

∆tn ≡ [tn|1] + [1|tn]− v1
∑

0<i<p

1

p

(
p

i

)
[tin−1|t

p−i
n−1] mod I2.

Additionally, tracing through the definitions, we have the following translations
from Cτ classes to algebraic Novikov classes:
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Lemma 4.9. In the algebraic Novikov spectral sequence

Es,t′,k
2 = Exts,t

′

BP∗BP/I(BP∗/I, v
−1
1 Ik/Ik+1) =⇒ Exts,t

′

BP∗BP (BP∗, v
−1
1 BP∗/p)

the classes hn,0 and bn,0 are represented under 3.16 by

hn,0 = [tn] and bn,0 =
∑

0<i<p

1

p

(
p

i

)
[tp−i
n |tin].

Thus, computing the algebraic Novikov d2 differential on hn+1,0 becomes a prob-
lem of computing the cobar differential on tn. Combining 4.8 and 4.9, we find

Proposition 4.10. In the algebraic Novikov spectral sequence, we have

d2(hn+1,0) = −v1
∑

0<i<p

1

p

(
p

i

)
[tin|tp−i

n ] = −v1bn,0,

for n ≥ 1

With this, we can compute the motivic Adams d2 differential on hn+1,0. Observe
that y := d2(hn+1,0) has degree (s, t, w) = (3, 2pn+1 − 1, pn+1 − 1) and maps under
the special fiber to v1bn,0. As there are no other classes in this tridegree in 4.5, we
conclude that d2(hn+1, 0) = v1bn,0. This differential then maps under realization
to the desired Adams d2 differential, completing the proof of 3.2, and with it, the
height 1 telescope conjecture for odd primes.

Remark 4.11. While the lifting problem in this example was rather simple, re-
cent work by Isaksen-Wang-Xu has used this general process, what they call the
“Cτ -philosophy” at the even prime to compute the first 90 stable stems, greatly
expanding on the range in which these groups were known from previous methods
[IWX23].
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