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Abstract. The Landweber exact functor theorem constitutes a fundamen-

tal result within chromatic homotopy theory, offering a wealth of useful even

periodic spectra. In this paper, we shall establish the classical version of this
theorem and subsequently delve into its broader form, as presented in [10]. Ad-

ditionally, we will succinctly explore several applications, including chromatic

convergence and elliptic cohomology.
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1. Introduction

1.1. History. There is an interesting phenomenon in algebraic topology first ob-
served by Quillen in the late 1960s. We know that in ordinary cohomology, H∗(CP∞;Z)
is isomorphic to Z[t] as a graded ring, where the degree of t is equal to 2. In
Quillen’s observation, a certain type of general multiplicative cohomology theory
called complex-oriented cohomology theory satisfies the similar equation, E∗(CP∞) ≃
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E∗(∗)[[t]], where we denote by E an arbitrary complex-oriented cohomology the-
ory. The generator t in this (noncanonical) isomorphism can be regarded as the
first E-Chern class of the tautological line bundle of CP∞. Quillen’s observation
was that the first Chern class of the tensor product of two line bundles defined
over CP∞ can be calculated via a formal power series in E∗(∗)[[x, y]], and that the
power series reflects some properties of complex-oriented cohomology theories. At
least, we believe that spectra with nonisomorphic power series can not be equiva-
lent to each other. For the deeper research, Quillen then used the algebraic concept
called formal group to extract the essential properties of these power series given by
complex-oriented cohomology. This observation is very meaningful because many
important cohomology theories are complex-oriented, like complex K-theory and
complex cobordism theory MU, and formal group is a simpler concept in terms of
algebra.

After Quillen’s work, it was Landweber who stepped much further. He con-
tributed to constructing nicer spectra based on nice enough formal groups and gave
us a simple criterion to determine whether a formal group is nice. His theorems
are now called Landweber exact functor theorem. Afterwards, Morava, Ravenel,
and many other homotopy theorists, introduced lots of beautiful and powerful spec-
tra, based on diverse formal groups appearing in specific studies of mathematical
branches. For example, Lubin-Tate spectra were constructed by the formal groups
related to deformation theory. To our surprise, a majority of spectra can be re-
covered through the Bousfield localization with respect to Lubin-Tate spectra. A
more precise statement is Theorem 2.52. Now, these theorems are classified into
the field called chromatic homotopy theory. Many people in this field are devoted
to analyzing the property of formal groups and constructing meaningful spectra so
as to study stable homotopy theory.

With the relationship between E∞-spaces and E∞-ring spectra pointed out in
[12], people found that E∞-ring spectra play a prominent role in stable homotopy
theory. First and foremost, many ring spectra hold the E∞-property, like complex
K-theory and the Eilenberg-MacLane spectra associated with ordinary commuta-
tive rings. Roughly speaking, an E∞-ring spectrum can be thought of a space which
is equipped with an addition and a multiplication in a weak sense. The addition and
multiplication morphisms should satisfy several axioms not only up to homotopy,
but also up to coherent homotopy. From this perspective, E∞-ring spectra are the
reasonable generalization of ordinary rings in a more homotopic sense. The basic
difference between algebra and higher algebra is that the former is set-based and
the latter is space-based. Properties in the former become structure in the latter.
e.g. equality becomes a path/homotopy between two things. As we need ordinary
commutative rings to define affine scheme in algebraic geometry, E∞-ring spectra
are the fundamental building blocks of derived algebraic geometry. There are many
nice models about E∞-ring spectra such as commutative monoids of S-modules in
[12] and commutative algebra objects in the symmetric monoidal ∞-category of
spectra Sp in [9]. We recommend readers unfamiliar with them to skim over these
versions and have a rough grasp of what they are.

Consequently, people are curious about the E∞-property of spectra constructed
in chromatic homotopy theory. This problem is quite challenging because not only
can E∞-rings be very abstract, but also many homotopy theorists kept studying the
ordinary objects instead of spectral objects. But Goerss-Hopkins-Miller in [5] took
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a different way. They developed an obstruction theory about a moduli problem in
spectra that is related to the E∞-problem. They finally verified the E∞-structures
of Lubin-Tate spectra, as presented in Theorem 4.15.

Their theorem was then generalized by Lurie in [10]. Lubin-Tate spectra are
defined by the deformation of formal groups over a perfect field of character p.
But Lurie chose to study the general deformation of a p-divisible group and found
that there exists a nice formal group which induces an E∞-ring spectrum. Actu-
ally, Lurie’s theorem heavily relied on the enhancement of Goerss-Hopkins-Miller
because in his proof, Lurie reduced the general cases to Lubin-Tate spectra by
dévissage.

We have the next plain diagram to conclude this history.

Complex-oriented spectra E∞ complex-oriented ring spectra

Formal groups

Quillen Landweber
Goerss-Hopkins-Miller, and then Lurie

1.2. Statements of several main theorems. I would like to talk about our
main theorems and the structure of the article before we step into following sections.
Since We will devote ourselves to proving these theorems, I hope that this subsection
can help readers understand our following theory better.

One version of Landweber exact functor theorem is the following, and for the
more precise version, see Theorem 2.43.

Theorem 1.1 (Landweber). (1) Let M be an ordinary1 graded module over the
Lazard ring L (See Definition 2.5). If for every prime p, the Hasse invariants
(See Definition 2.12) v0, v1, · · · ∈ L form a regular sequence in M , then X 7→
MU(X) ⊗L M is a homology theory. Here, the term regular sequence means that
each vi is a non-zero divisor in M/(v0, · · · , vi−1).

(2) When an ordinary commutative ring R is flat over the moduli stack of for-
mal groups MFG (See Definition 2.7), we can construct a multiplicative complex-
oriented spectrum whose homology theory is the one constructed in (1) (by virtue
of a certain L-algebra R′). In addition, the construction is functorial and fully
faithful.

Then Lurie’s partial improvement can be summarized into one sentence.

Theorem 1.2 (Lurie). Given an ordinary Noetherian Fp-algebra R0 such that the
Frobenius map is finite and an ordinary nonstationary 1-dimensional p-divisible
group G0, we can construct a classical universal deformation ring R flat overMFG

whose associated ring spectrum in Theorem 1.1 can be lifted as an E∞-ring.

Don’t worry if you don’t understand all the notions in this statement. We’ll
define them carefully through our article.

This theorem is quite useful. For instance, the E∞-property of Lubin-Tate spec-
tra is just a special case when R0 is a perfect field. Apart from it, there is a kind
of elliptic cohomology theories which can be enhanced as E∞-ring spectra in anal-
ogous ways. Last but not the least, in [2], the authors studied the spherical Witt

1We will frequently use the word ordinary or classical when talking about commutative rings
and so on in our common sense. The reason for it is presented at the end of this section.
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vectors whose E∞-property is deduced from this theorem to analyze the number
theory.

Let me explain the relationship between these two theorems and why we need
these conditions in Theorem 1.2. Compared with the traditional way to construct
ring spectra, we pay more attention to p-divisible groups instead of formal groups
because the rigidity of power series limits the abundance of deformation and thus
the ring spectra we can construct. The finite Frobenius morphism is an analogy
of the regular sequence in Theorem 1.1. It suggests that the ordinary ring R has
the nice regularity, providing convenience for our construction. The nonstationary
property of G0 plays the same role. Last but not the least, the reason for the im-
provement brought by this theorem is that the author established his theory based
on ring spectra instead of just on the ordinary rings.

In this article, I will show readers the basic knowledge on chromatic homotopy
theory and pay more attention to Lurie’s improvement. The diagram above also
means the structure of this article. In section 2, we will introduce the basics of
chromatic homotopy theory and its main outcomes, including Quillen’s observa-
tion, Landweber’s construction, and Lubin-Tate spectra in classical sense. Then in
section 3, we begin to prepare for Lurie’s theorem, Theorem 1.2, by defining some
generalized notions about formal groups and p-divisible groups, and then construct
formal groups associated to p-divisible groups. The proof of the main theorem is
presented in section 4 on the basis of the deformation theory and the orientation.

Some technical results about the étale-connected decomposition and the exis-
tence of generalized universal deformation will be presented without proof because
they can be easily understood as counterparts of similar theorems in classical alge-
braic geometry. For better reading experiences, readers are supposed to be familiar
with the stable homotopy theory, basic algebraic geometry, and higher algebra the-
ory. I know that many people cannot accept frequent change of topics due to diverse
reasons, but I hope that everyone can understand our proof and the main construc-
tions as presented above. Since it is really hard to convert hundreds of pages into a
short article, I have to state some lemmas without proof. But I will give the related
references in detail. The main references are [8] and [10].

Due to the abuse of notations in [10], we announce some usage of notations and
terminologies in Convention 3.1. It doesn’t influence reading before we step into
the world of derived algebraic geometry in section 3.

2. Basic Chromatic Homotopy Theory

2.1. Formal groups and the moduli stack. Let’s begin with one of most impor-
tant concept, formal group laws. The following three axioms directly correspond to
the unity, commutativity, and associativity of the tensor product of line bundles.

Definition 2.1. Consider an ordinary commutative and unital ring R, a formal
group law is an element in R[[x, y]] such that

f(x, 0) = f(0, x) = x,

f(x, y) = f(y, x),

f(f(x, y), z) = f(x, f(y, z)).

For two formal group laws f and f ′, a power series g(t) is called a morphism from
f to f ′ if g(f(x, y)) = f ′(g(x), g(y)).
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Example 2.2. For every ring R, f(x + y) = x + y and f(x, y) = x + y + xy are
formal group laws over R.

Example 2.3. For every ring R and a formal group law f over R, if there is a
formal power series g(t) = b0t + b1t

2 + · · · , where b0 is invertible, then there is a
new formal group law f ′(x, y) = g(f(g−1(x), g−1(y))). According to the definition
above, g is an isomorphism from f to f ′, and it can be regarded as the change of
variables.

Remark 2.4. A formal group law f(x, y) over R can be regarded as an abelian
structure over Spf(R[[t]]), the 1-dimensional affine formal scheme, because the data
of f is the same as the data of R[[t]]→ R[[x, y]] and then the data of Spf(R[[t]])×R

Spf(R[[t]])→ Spf(R[[t]]). The axioms of formal group laws deduce the commutative
diagrams of abelian objects. Since there’s no need to totally use the language of
algebraic geometry in this section, we will talk about the story of formal schemes
later.

Definition-Theorem 2.5 (Lazard ring). In the polynomial ring, Z[cij ], where i
and j are natural numbers, we consider the ideal Q generated by the equations of
coefficients in the three axioms of Definition 2.1 where f(x, y) =

∑
cijx

iyj . Then
the Lazard ring L is defined to be Z[cij ]/Q, which corepresents the set of all the
formal group laws of every commutative and unital ring.

Proof. It suffices to observe that every formal group law is uniquely determined by
its coefficients. So the universal property of polynomial rings and quotients implies
our claim. □

Remark 2.6. According to Lazard’s theorem, L is isomorphic to a polynomial ring
with infinitely many generators. As a result, there are lots of formal group laws
over a fixed ring. For detailed proof, see [8].

Next, we can introduce the moduli stack of formal groups up to the isomorphisms.
As for the theory of stacks, readers can refer to [6].

Definition 2.7. Let G+ be the group scheme given by

G+(R) =
{
g(t) = b0t+ b1t

2 + · · ·
∣∣ b0 ∈ R×} ⊆ R[[t]]

with the group structure of composition. It acts on SpecL due to the corepre-
sentability of L. We call the quotient stack the moduli stack of formal groups and
denote it byMFG.

In order to understand the moduli stack better, we need to generalize the defi-
nition of formal group laws.

Construction 2.8. Given a formal group law f over a ring R, there is a functor
Ff from the category of R-algebras to the category of abelian groups sending an
ordinary R-algebra A to its nilpotence ideal with the additive structure given by
a+f b = f(a, b) for every nilpotent elements a and b. Although f includes infinitely
many summands, the term f(a, b) is well defined because every term of high enough
degree vanishes. We will call every functor isomorphic to Ff for some f coordinated
formal group.

Definition 2.9. Given an ordinary commutative ring R, a formal group over R is
a functor G from the category of R-algebras to the category of abelian groups such
that:
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• G is a sheaf with respect to Zariski topology.
• G is locally given by some formal group law f as in Construction 2.8.

Based on the definition, one can show thatMFG associate every ordinary com-
mutative ring R with the groupoid encoding all formal groups and their isomor-
phisms induced by changing variables.

There is a notion called heights of formal groups and it leads to a stratification
ofMFG. Let’s begin with this lemma.

Lemma 2.10. Let f and f ′ be two formal group laws over R where p = 0 for some
prime number p, and there exists h ∈ tR[[t]] such that h is a morphism from f to
f ′. Then one of the following claims holds:

• h = 0.
• h(t) = h′(tp

n

) for some n and h′(t) = λt+O(t2) with λ ̸= 0.

Proof. Let’s consider a special kind of Krull’s differentials in R[[t]]dt. Here, we say
that g(t)dt is a translation invariant differential with respect to f if and only if
f∗(g(t)dt) = g(x)dx+ g(y)dy. By solving a series of linear equations, we know that
there is a unique translation invariant differential ωf of the form dt+ c1t

2dt+ · · · .
Besides, h induces h∗ from R[[t]]dt to itself, with h∗ carrying invariant differentials
with respect to f ′ to invariant differentials with respect to f . In particular, note
that R[[t]]dt is a free R[[t]]-mod of rank 1, so h∗ωf ′ = λωf +O(t)dt for some λ ∈ R.
Unwinding the definitions, we see that h(t) = λt + O(t2). If h ̸= 0 but λ = 0,

then h∗ = 0 implies that h(t) = h0(t
p) for some h0. We can replace f by f̃ where

f̃(xp, yp) = f(x, y)p. So we get

f ′(h0(x
p), h0(y

p)) = f ′(h(x), h(y)) = h(f(x, y)) = h0(f(x, y)
p) = h0(f̃(x

p.yp)).

We can do the same operation for f ′, f̃ , and h0 again and again until the corre-
sponding λ ̸= 0. □

Definition 2.11. Let f(x, y) ∈ R[[x, y]] be a formal group law over an ordinary
commutative ring R. For every nonnegative integer n, we define the n-series [n](t) ∈
R[[t] as follows:

• If n = 0, we set [n](t) = 0.
• If n > 0, we set [n](t) = f([n− 1](t), t).

Easy calculation shows that [n](t) satisfies the condition in Lemma 2.10. So the
following definition makes sense.

Definition 2.12. Let f be a formal group law over an ordinary commutative ring
R, and fix a prime number p. We let vn denote the coefficient of tp

n

in the p-series
[p], which are called the Hasse invariants of f . We will say that f has height ≥ n if
vi = 0 for i < n. We will say that f has height exactly n if it has height ≥ n and
vn ∈ R is invertible.

Remark 2.13. One can relate the heights above to some more algebro-geometric

objects. Assume that F is a formal group of height exactly n. Let F [p] = Ker(F
×p−→

F ). Then it is represented by a group scheme locally of the form SpecR[[t]]/[p](t).
In this case, the height is determined by its rank. It is linked with p-divisible groups
because locally constant height means globally p-divisiblity of formal groups over a
ring spectra, which is discussed in [10, Theorem 4.4.14].
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Although Hasse invariants are not G+-invariant, the definition of height is not in-
fluenced when we change the variables. Consequently, we have an obvious stratifica-
tion inMFG×SpecZ(p). We letM≥n

FG be the closed substack
(
SpecL(p)/(v0, · · · , vn)

)
/G+.

In other words, it classifies all formal groups of height no less than n. Then we let
Mn

FG beM≥n
FG\M

≥n+1
FG , which form up to the open strata for a stratification of the

moduli stack.

2.2. Complex-oriented spectra. We will introduce Quillen’s observation in this
subsection and then provide readers with some examples.

Definition 2.14. A spectrum is called multiplicative if it is a commutative al-
gebraic object in the stable homotopy category. A multiplicative spectrum A is
called complex-oriented if the structure map S ≃ Σ∞−2CP1 → A can be lifted to
Σ∞−2CP∞ → A. Some people like to call the structure map preorientation and the
lifting map orientation.

Example 2.15. The Eilenberg-MacLand spectra of commutative rings are complex-
oriented since H2(CP∞;R) ≃ H2(S2;R).

Example 2.16. If all the homotopy groups of A in odd degree vanishes, the ob-
struction theory implies that A is complex-oriented. For example, according to
Bott periodicity, the complex K-theory is oriented.

Example 2.17. The complex cobordism spectrum MU is complex-oriented. There
is one proof in [8]. We will see a non-trivial enhancement in this subsection.

Construction 2.18. For a complex-oriented spectrum, one can construct a formal
group law as follows. Note that the lifting element in E∗(CP∞) forces the Atiyah-
Hirzebruch spectral sequence for E to degenerate, one can show that E∗(CP∞)
is isomorphic to the formal power series ring π∗(E)[[t]] where t is the element
Σ∞−2CP∞ → A and its degree is 2, and that E∗(CP∞ × CP∞) is isomorphic to
the formal power series ring π∗(E)[[x, y]]. We know that there is a tautological
line bundle O(1) over CP∞. Then we can obtain another line bundle p∗1O(1) ⊗
p∗2O(1) defined over CP∞ × CP∞, where pi means the projection morphism. As
a consequence, this line bundle is classified by a map u : CP∞ × CP∞ → CP∞.
In terms of cohomology, the orientation t is then mapped to a formal power series
f(x, y) ∈ π∗(E)[[x, y]]. The unital and commutative property of the tensor product
exhibits that f(x, y) = f(y, x) and f(x, 0) = x. Similarly, if we consider the line
bundle p∗1O(1)⊗ p∗2O(1)⊗ p∗3O(1) defined over CP∞ ×CP∞ ×CP∞, we can prove
that f is a formal group law over π∗(E). Sometimes we will call f the (classical)
Quillen formal group.

Remark 2.19. Sometimes we call the orientation t the universal first Chern class.
In order to construct the higher Chern classes, it suffices to consider the universal
map from CP∞ × · · · × CP∞ to Grn(C∞), the classifying space of n-dimensional
complex vector bundle, which classifies the bundle p∗1O(1)⊕ · · · ⊕ p∗nO(1). We can
deduce that cn is nth elementary symmetric function on the orientations t1, · · · , tn.

Example 2.20. The associated formal group law of ordinary cohomology is f(x, y) =
x+ y. As to complex K-theory, the formal group law is x+ y + xy.

Example 2.21. Consider MU, then the formal group law over MU is realized by
a homomorphism L→ π∗(MU). In 1969, Quillen proved that it is an isomorphism
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on the basis of Lazard’s theorem that L ≃ Z[t1, t2, · · · ]. This isomorphism explains
the graded structure of L. Readers interested in the proof of this isomorphism can
refer to [14].

2.3. Flatness and Landweber exact functor theorem. We are ready to prove
the first part of Theorem 1.1. Note that the direct construction E∗(X) = MU∗(X)⊗L

M is not always a homology theory since we lose the long exact sequence, we need
the flatness condition. We don’t need M to be flat over L because flatness over L, a
massive polynomial ring, is too strong. Instead, Landweber realized that the exact
sequence of form · · · → MUi(A) → MUi(X) → MUi(X/A) → · · · has a hidden
structure of an exact sequence consisting of sheaves over MFG and proposed the
following proposition.

Proposition 2.22. Let q : SpecR → MFG be a map (classifying a formal group
η ∈MFG(R) ) and let N be an R-module which is flat overMFG. Then the functor
M 7→M(η)⊗RN = q∗M⊗RN is an exact functor from QCoh (MFG) to the abelian
category of ordinary R-modules.

Proof. Due to the local property of exactness, we can assume that η is induced by
a formal group law f . Then we have a pullback diagram.

SpecR[b±0 , b1, · · · ] SpecL

SpecR MFG

p′ p

η

Here, p′ is faithfully flat unwinding the definition. So the exactness can be detected
by M → p′∗(q∗M ⊗R N). Then the statement directly follows from the definition
of flatness. □

Corollary 2.23. Let M be an ordinary graded module over the Lazard ring L. If
M is flat overMFG, then the functor X 7→ MU∗(X)⊗L M is a homology theory.

Let’s return to the first part of Theorem 1.1. In fact, a stronger version is:

Theorem 2.24. Let M be an ordinary module over the Lazard ring L. Then M
as a sheaf is flat over MFG if and only if for every prime p, the Hasse invariants
v0, v1, · · · ∈ L form a regular sequence in M .

Our approach involves employing the following lemma, which allows us to focus
on simpler cases. There is a concise proof in the 16th lecture of [8].

Lemma 2.25. Let R be an ordinary commutative ring containing a non-zero divisor
x, and let M be an ordinary R-module. Then M is flat over R if and only if the
following conditions are satisfied:

• The element x is a non zero-divisor on M .
• The quotient M/xM is a flat R/(x)-module.
• The module M [x−1] is flat over R[x−1].

Since flatness is just a local property, we fix a prime number p and then reduce
to the case of M(p). In this case, the Hasse invariants give us part of canonical gen-
erators in the isomorphism L ≃ Z[t1, · · · ], which is proved in the second and third
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lecture in [8]. The hidden reason for colorful examples of formal groups is partially
due to the calculation in this proof. Simultaneously, this tedious calculation implies
the following fact.

Lemma 2.26. Fix a prime number p, and let Z(p) [v1, v2, . . .] be the L-module
obtained by taking the quotient of L(p) ≃ Z(p) [t1, t2, . . .] by the ideal generated by
{ti}i+1 ̸=pk . We claim that the map Spec Z(p) [v1, v2, . . .]→ Spec L→MFG is flat.

Then we can reduce our problem to the flatness over SpecZ(p) [v1, v2, . . .].

Lemma 2.27. Let q : SpecZ(p) [v1, v2, . . .] → MFG be the flat map considered
above. Let M be a quasi-coherent sheaf on MFG × SpecZ(p). Then M is flat
over MFG × SpecZ(p) if and only if q′∗M is a flat Z(p) [v1, v2, . . .]-module, where
we assume that q factors through MFG × SpecZ(p) → MFG and generates q′ :
SpecZ(p) [v1, v2, . . .]→MFG × SpecZ(p).

Proof. The only nontrivial part is the “if” direction. According to commutative
algebra, q′ is faithfully flat. So given the following test pullback diagram, R → B
is faithfully flat. Then it suffices that f∗M ⊗R B is flat over B. But f∗M ⊗R B =
q′∗M ⊗Z(p)[v1,v2,....] B, which is flat over B since q∗M is flat over Z(p) [v1, v2, . . .].

SpecB SpecZ(p)[v1, · · · ]

SpecR MFG × Z(p)

q′

f

□

As for our theorem 1.1, let M be an ordinary module over the localized Lazard
ring L(p) such that v0 = p, v1, v2, . . . is a regular sequence on M . We wish to prove
that M is flat along the map SpecL(p) →MFG×SpecZ(p). Form a pullback square

SpecB SpecZ(p)[v1, · · · ]

SpecL(p) MFG × Z(p)
f

We need to prove thatMB = M⊗L(p)
B is flat as a module over the ring Z(p) [v1, v2, . . .].

Then by the technique of filtered colimits and the derived functors Tor, it is reduced
to the flatness over every Z(p) [v1, v2, . . . , vn].

Lemma 2.28. Consider the ideal Im contained in B generated by the image of vi,
0 ≤ i ≤ m − 1. For m ≤ n + 1, the quotient MB/ImMB is a flat module over the
ring Z(p) [v1, v2, . . . , vn] / (p, v1, . . . , vm−1).

The case ofm = 0 implies our theorem, and whenm = n+1, there is nothing nec-
essary to prove. Combined with lemma 2.25, it suffices to prove that for every inte-
germ ≥ 0, the module (MB/ImMB)

[
v−1
m

]
is flat over (Zp [v1, v2, . . .] / (p, v1, . . . , vm−1))

[
v−1
m

]
.

It is related to the fact that every quasi-coherent sheaf on the stack Mm
FG is flat,

and this fact is proved in the 16th lecture of [8] in a very algebraic way.
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2.4. Phantom maps and even periodic cohomology theories. We will prove
a stronger version of the second part of Theorem 1.1 in the end of this subsection.

We have already known that homology theories are related to spectra. The more
precise statement is Adams’ variant of the Brown representability theorem in [1].

Theorem 2.29. Let E be a spectrum and let h∗ be a homology theory. Suppose
we are given a map of homology theories α : E∗ → h∗ (that is, a collection of
maps E∗(X,Y ) → h∗(X,Y ), depending functorially on a pair of spaces (Y ⊆ X)
and compatible with boundary maps). Then there is a map of spectra β : E → E′

and an isomorphism of homology theories E′
∗ ≃ h′

∗ such that α is given by the
composition E∗ → E′

∗ ≃ h∗.

Corollary 2.30. Every homology theory is represented by a unique spectrum up to
homotopy equivalence, although there may be many choices of isomorphisms.

Remark 2.31. The obstructions of unique isomorphism are the so-called phantom
maps. We call a map f : E → E′ between spectra a phantom if and only if it
induces the zero map in the associated homology theories.

We will study the phantom maps between spectra given by Theorem 1.1, 2.23,
and 2.30. First, we need several features of phantom maps.

Lemma 2.32. Let f : E → E′ be a map of spectra. The following conditions are
equivalent:

(1) The map f is a phantom.
(2) For every spectrum X, the map E∗(X)→ E′

∗(X) is zero.
(3) For every finite spectrum X, the mapE∗(X)→ E′

∗(X) is zero.
(4) For every finite spectrum X, the map E∗(X)→ E′∗(X) is zero.
(5) For every finite spectrum X and every map g : X → E, the composition

f ◦ g : X → E′ is nullhomotopic.

Proof. (1) is equivalent to (2) because we know that every spectra is approximated
as the colimit of a family of spaces. The equivalence between (3) and (4) directly
follows from Spanier-Whitehead duality, and it is trivial that (4) is equivalent to
(5). As for (2) and (3), we only need to note that every spectrum is a filtered
colimit of finite spectra. □

From then on, we will restrict our attention to evenly graded ordinary L-modules
that are flat over MFG and the spectra constructed from them. For convenience,
we will call these spectra Landweber-exact spectra.

Theorem 2.33. Let E be a Landweber-exact spectrum, and let E′ be a spectrum
such that πkE

′ ≃ 0 for k odd. Then every phantom map f : E → E′ is nullhomo-
topic.

Because Landweber-exact spectra satisfy the condition that πk ≃ Mk ≃ 0 for
each k odd, we know that:

Corollary 2.34. Let E and E′ be Landweber-exact spectra. Then every phantom
map f : E → E′ is nullhomotopic. In particular, every nontrivial endomorphism
of E acts nontrivially on the homology theory E∗.

More precisely speaking, since there’s no phantom map between Landweber-
exact spectra, Theorem 2.29 implies that the construction from a L-module M flat
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over MFG to a homology theory MU(−) ⊗L M , then to a spectrum realizing this
homology theory is functorial.

Theorem 2.33 is the consequence of the following two propositions.

Proposition 2.35. Every Landweber-exact spectrum E is evenly generated, i.e. for
every finite spectrum X and every morphism X → E, there exists a factorization
X → X ′ → E where X ′ is a finite spectrum admitting a decomposition such that
there are no odd-dimensional cells in it.

Proposition 2.36. Let E be an evenly generated spectrum and let E′ be a spectrum
whose homotopy groups in odd degrees vanish. Then every phantom map f : E → E′

is nullhomotopic.

The reason for Proposition 2.35 is actually the nice structure of MU, Bruhat
decomposition of complex Grassmannians, that is discussed in [8].

As for the Proposition 2.36, let E be an evenly generated spectrum. Here we take
advantage of a common technique. Let A be a set of representatives for all homotopy
equivalence classes of maps Xα → E, where Xα is an even finite spectrum, and
form a fiber sequence

K →
⊕
α

Xα
u→ E.

Take the triangle, and we denote E → Σ(K) by u′. Since E is evenly generated,
every map from a finite spectrum X into E factors through u, so the composite
map X → E → Σ(K) is null. On the basis of Lemma 2.32, u′ is a phantom map.
Furthermore, if f : E → E′ is any phantom map, then f ◦ u is nullhomotopic, so
that f factors as a composition E → Σ(K)→ E′.

As a result, to prove Proposition 2.36, we need to prove that E′−1 vanishes. Since
the homotopy groups of E′ are concentrated in even degrees, the Atiyah-Hirzebruch
spectral sequence shows that E′−1(X) ≃ 0 whenever X is a finite even spectrum.
It will therefore suffice to prove the following:

Claim 2.37. The spectrum K is a retract of a direct sum of even finite spectra.

Proof. Consider the collection B of all the triples β, (α, α′, f), such that α, α′ ∈ A,
and f : Xα → Xα′ induces this commutative diagram.

Xα Xα′

E

f

For each triple β ∈ B, we let Yβ = Xα and take the natural map from
⊕

β Yβ

to
⊕

α′ Xα′ induced by all f ’s. Unwinding the definition, there are maps K →⊕
β Yβ → K giving us the retract diagram. More details is presented in [8]. □

These constructions are still quite different from complex-oriented cohomology
theories. More precisely, they should exhibit both multiplicative and Landweber-
exact properties. But for a general flat graded module, the resultant spectrum
might not inherently possess multiplicativity. In an attempt to step further, people
studied twisted formal group laws. They can be regarded as various coordinations
of generalized formal groups. In [8], the author proves that every formal group can
be recovered by a twisted formal group law in the following way.
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Definition 2.38 (Twisted formal group law). For R a commutative ring and L an
invertible R-module, we consider the twisted formal group law as a formal power
series

f(x, y) =
∑

aijx
iyj ,

where aij ∈ L⊗(i+j−1), satisfying the similar three axioms in Definition 2.1. Like-

wise, it induces a formal group by A 7→ HomR(L,
√
A). Here, A is an R-algebra

and
√
A is its nilpotent ideal. It is indeed a formal group because of the invertible

property.

Remark 2.39. The data of L-twisted formal group laws is the same as the mor-
phism L →

⊕
n∈Z L⊗n with even grade structure in the latter ring. Besides, the

following two statement is equivalent:

• The formal group in Definition 2.38 is classified by a flat morphism SpecR→
MFG.
• The graded L-module

⊕
n∈Z L⊗n is Landweber-exact.

This is true because
⊕

n∈Z L⊗n is flat over R. So for every flat SpecR→MFG, we
functorially obtain a spectrum determined uniquely up to canonical isomorphism
in stable homotopy category due to Corollary 2.34, and denote it by ER.

The following proposition endows ER with a canonical commutative and asso-
ciative ring structure up to homotopy.

Proposition 2.40. In this pullback diagram, EB ≃ ER ⊗ER′ . Hence, the evident
diagonal map SpecR→ SpecB in the case of R = R′ verifies our claim above.

SpecB SpecR′

SpecR MFG

q′

q

Proof. Consider the universal case SpecL→MFG, and then we can get a universal
spectrumMP, called periodic complex bordism spectrum. From the local perspective,
we can assume that q and q′ are formal groups induced by certain formal group
laws. In this case, the definition of MP implies B ≃ R⊗(MP0MP)⊗R′. As a result,
(ER ⊗ ER′)0(X) ≃ R⊗L R′ ⊗L (MP⊗MP)0(X) is identical with (EB)0(X). □

Obviously, these spectra constructed in this way are even periodic as follows.

Definition 2.41. Let E be a ring spectrum. We will say that E is even periodic
if the following conditions are satisfied:

• The homotopy groups πiE vanish when i is odd.
• The map π2E ⊗π0E π−2E → π0E is an isomorphism.

Remark 2.42. For the even periodic spectrum, which is automatically complex-
oriented due to Example 2.16, the formal group law on π∗ can be seen as a twisted
formal group law on π0. It gives us a morphism π0 → MFG. Because for each
even periodic spectrum, π0 → π∗ is flat, the property that π0 is flat over MFG is
equivlent to that π∗ is flat overMFG.

Actually, even periodic spectra form up the essential image of our functorial
construction above. To conclude, we have:
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Theorem 2.43. Let C be the full subcategory of Schaff/MFG
spanned by all affine

scheme flat overMFG. Then the construction R 7→ ER is a fully faithful embedding
into the category of commutative algebras in the homotopy category of spectra whose
essential image is all of even periodic spectra such that the intrinsic map π0 →MFG

is flat.

Proof. The reason for the property of fully faithful functor is that there are no
nontrivial phantom maps. Then we can construct a right inverse E 7→ (π∗(E) →
MFG). After Landweber’s construction, they are isomorphic since it is clear that
they have the same homology theory but no nontrivial phantom maps exists. □

For future discussion, we define a weaker notion called complex periodic spectra.

Definition 2.44. We say that a spectrum A is complex periodic if and only if it
is complex-oriented and weakly 2-periodic in the following sense.

• π2(A) is a projective module of rank 1 over π0(A).
• For every n, π2(A)⊗π0(A) πn(A) ≃ πn+2(A).

2.5. Example: Elliptic cohomology. Elliptic curves have inherent formal groups.
Hence, according to Landweber exact functor theorem, one can construct the spec-
trum associated to certain elliptic curves. Only if the conditions of Theorem 1.1
hold could we obtain an even periodic spectrum. More precisely, we have:

Construction 2.45. Let R be an ordinary commutative algebra and E be an

elliptic curve over R, then we have a formal group Ê which attaches every ordinary
R-algebra A an abelian group consisting of the collection of the following diagrams
and the natural additive structure induced by E. The affine scheme SpecAred

can be seen as the point, while SpecA is its local thickening. Finally, when we
accumulate enough data about the infinitesimal neighborhood of SpecAred, we
finish the procedure of formal completion near the zero point of E. For example,
when R is a field k and we fix Ared to be k as well, then the thickening sequence
Spec(k[ϵ]/ϵn) coincides with our thoughts.

SpecAred SpecA

SpecR E0

When this formal group satisfies Landweber exact functor theorem, the correspond-
ing spectrum will be called elliptic cohomology.

Definition 2.46. For every commutative ring R, let Ell(R) denote the category
of elliptic curves over R and let Ell(R)≃ denote its underlying groupoid. The
construction R 7→ Ell(R)≃ is (representable by) a Deligne-Mumford stack MEll ,
which we will refer to as the moduli stack of elliptic curves. The construction above
implies the existence of the mapMEll →MFG which is flat according to [8].

Remark 2.47. The étale topos of MEll can be identified with the topos of this
Grothendieck category U with étale covering as topology, where U is defined as
follows:

• The objects of U are pairs (R,E), where R is an ordinary commutative
ring and E is an elliptic curve over R which is classified by an étale map
Spec(R)→MEll .
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• A morphism from (R,E) to (R′, E′) in the category U is given by a pullback
diagram of schemes σ :

E E′

SpecR SpecR′

f

f0

having the property that f carries the zero section of E into the zero section
of E′.

Then the uniquely determined elliptic cohomology with respect to a fixed elliptic
curve induces a presheaf Oh

MEll
defined over U with even periodic spectra as val-

ues, which is an actual refinement of the structure sheaf. As before, this presheaf
doesn’t hint at the possibility of E∞-structures. Goerss-Hopkins-Miller enhanced
this construction in the following sense.

Theorem 2.48 (Goerss-Hopkins-Miller). The presheaf Oh
MEll

can be promoted to

a sheaf Otop
MEll

with E∞-ring spectra as values (with respect to the étale topology on

the category U), whose global sections are called topological modular forms TMF.

In other words, our construction above can be lifted to E∞-rings and satisfy the
sheaf condition in this category. The reason for this lifting has something to do
with our main target Theorem 1.2. Based on the similar definition of orientations
in [10], the author proved this theorem briefly. Here, I just use this example to help
our readers understand the value of our constructions in the next sections.

As to TMF, one of the most important features is that its ring of homotopy
groups is rationally isomorphic to the ring of weakly holomorphic modular forms of
integral weights. It is not so surprising since these rings are linked with the moduli
stack of elliptic curves. Besides, both elliptic cohomology and topological modular
forms are regarded as the higher data in our chromatic tower (See Theorem 2.52).
For detailed theories on them, see [3].

2.6. Example: Lubin-Tate theory, classical version. Beyond the basic exam-
ples in chromatic homotopy theory, certain spectra fashioned through formal groups
exhibit remarkable richness and potency. Among these, the Lubin-Tate spectrum
stands out as its particular significance. Originating from the deformation of formal
groups with a fixed height, this spectrum vividly portrays the behavior of an open
substack ofMFG.

Fix a perfect field k of character p and a formal group law f of height n over k,
then we will define the deformation of f .

Definition 2.49. An infinitesimal thickening of k is an ordinary commutative ring
A with a surjective map ϕ : A → k whose kernel mA = ker(ϕ) has the following
properties:

(1) The ideal ma
A = 0 for a≫ 0.

(2) Each quotient ma
A/m

a+1
A is a finite-dimensional vector space over k.

It means that A is a local Artin ring with residue field k.

Definition 2.50. Let A be an infinitesimal thickening of k. A deformation of f over
A is a formal group law fA over A, whose image under the map FGL(A)→ FGL(k)
is f . We say that two deformations of f are isomorphic if they differ by an invertible
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power series g(t) ∈ A[[t]] such that g(t) ≡ t mod mA. We will denote the collection
of isomorphism classes of deformations of f over A by Def(A).

Lubin and Tate found a universal deformation under the settings here. The
following theorem enables our idea at the beginning of the subsection. For the
sketch of proof, one can search [8].

Theorem 2.51 (Lubin-Tate). There is a formal group law f̄ over R = W (k) [[v1, . . . , vn−1]]
that is a universal deformation of f in the following sense: for every infinitesimal
thickening A of k, f̄ gives a bijection

Homk(R,A)→ Def(A).

Here, W (k) means Witt vectors, and R → k is the quotient of the maximal ideal
(p, v1, · · · , vn−1). Then the deformation can be given by every lifting of L(p) ≃
Z(p)[t1, · · · ]→ k such that the image of tpi−1 is just vi.

It is easy that this universal deformation makes R Landweber-exact because for
0 ≤ i < n, vi isn’t zero divisors and vn is invertible in R/(p, v1, · · · , vn−1) ≃ k
due to our assumption of the height. As a result, we can obtain an even periodic
spectrum E called Lubin-Tate theory or Morava E-theory. Despite the reliance on
the prime, the height, the field, and the formal group law, many people tend to
ignore them in notations. Let’s end this section with a nice theorem in chromatic
homotopy theory whose proof can be found in [13].

Theorem 2.52 (Chromatic convergence theorem). Fix the prime number p. Let
E(n) be the n-th Lubin-Tate theory. Then E(n)-acyclicity implies E(n−1)-acyclicity.
Besides, given a finite p-local spectrum X, the following Bousfield localization chro-
matic tower converges to X.

· · · → LE(2)X → LE(1)X → LE(0)X

Remark 2.53. The fiber of each morphism in this sequence gives us the monochro-
matic layers that are slightly easier and important for calculations. Combined with
nilpotence theorem, smash product theorem, and periodicity theorem, calculations
within chromatic homotopy theory are intricately interwoven in a vibrant and in-
terconnected manner.

Remark 2.54. Since the Lubin-Tate theory depicts the behavior of an open sub-
stack, there is a spectrum called the Morava K-theory that depicts the behavior
of the locally closed substack Mn

FG. Many algebro-topological facts can be inter-
preted by this idea. For example, E(n) is Bousfield equivalent to E(n− 1)×K(n).
Moreover, our theorem above can be regarded as a tool to recover all data ofMFG

from its stratification.

The Lubin-Tate theory is a nice example to illustrate the limitation of Landwe-
ber’s theorem. Although we can obtain new spectra reflecting some behaviors of
stable homotopy theory, we know nothing about their further structure. Some peo-
ple, like Robinson in [15], wanted to develop an obstruction theory on a certain
kind of cohomology to overcome this problem. Finally in [5], Goerss-Hopkins-
Miller proved that Lubin-Tate theory admits an essentially unique E∞-structure.
Their approach is slightly different from Robinson’s because they translated the
additional structure into an algebro-geometric problem or, more precisely, a mod-
uli problem first. We will adopt the latter approach to explore questions from an
algebraic-geometric perspective.
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3. p-Divisible Groups

In [10], the author studied the universal spectral deformation ring instead of the
discrete ring W (k)[[v1, · · · , vn−1]]. This is a generalization compared with classical
theories. As a result, it is necessary to extend our theory of formal groups to the
sense of ring spectra. We will first develop the theory of smooth coalgebras so as
to define formal hyperplanes and generalized (higher-dimensional) formal groups.
Then as the relationship between formal groups and p-divisible groups in classical
theory, there is a construction called identity component with respect to a p-divisible
group, sometimes providing us with a fully faithful bridge like Remark 3.25. At
last, we will study the universal deformation in the context of p-divisible groups.
Because there are many notions existing in the higher algebra, we’ll introduce them
at first.

3.1. Preliminaries of higher algebra. Many concepts in commutative algebra
are introduced in higher algebra, and people tend to mix some notations in [10] with
their common meanings. As a result, before we start our journey, I am obligatory
to define several concepts and claim some usage of our notations. We still follow
the convention in [10].

We will frequently use the notions of algebras in the sense of spectra, so I rec-
ommend reader unfamiliar with them to read [4], [9] and [11].

Convention 3.1. Here are our announcements.

• We will use the word generalized to emphasize our constructions over ring
spectra, and the words ordinary or classical to emphasize our constructions
over ordinary commutative algebras. I hope this action can distinguish the
world of ordinary algebras and the world of ring spectra.
• As for E∞-ring spectra, we use Lurie’s version: that is a commutative
algebra object in the symmetric monoidal∞-category of spectra Sp, whose
homotopy category is stable homotopy category.
• CAlg and CAlgR are used to denote the (∞-)category of E∞-ring spectra
(defined over R). This does make sense in Lurie’s theory because the nerve
of the category of finite sets with base points assumes the role to detect
E∞-property.
• We don’t distinguish the difference between an abelian group and its cor-
responding Eilenberg-MacLane spectrum. That is, we view the ordinary
category of abelian groups as a full subcategory of Sp. Similarly, we view
he ordinary category of commutative rings as a full subcategory of CAlg.
• When R is an E∞-ring spectrum, we use R-modules to denote R-module
spectra. Then ModR will denote the (∞-)category of R-modules.
• For an E∞-ring spectrum R, we denote by Spec(R) the nonconnective spec-
tral Deligne-Mumford stack or, equivalently, the functor MapCAlg(A,−).
• Due to the equivalences cCAlgR ≃ cCAlgτ⩾0R

and so on in [10, Proposition

1.2.8], we can assume that our base ring spectrum is always connective from
then on.

Then we need some concepts in higher algebra. They are tightly related to
their counterparts in ordinary algebra. For example, flat module over an E∞-ring
deduces that on each stalk, this module behaves like a free module, so that it is a
good candidate to define formal hyperplane. Adic ring spectra will appear when
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we study functions over a formal hyperplane and spectral deformation ring. As for
completeness, it reflects the regularity of the adic structure.

Definition 3.2 (Flat modules). Let M be a module over an E∞-ring R. We say
that M is flat if the following two conditions are satisfied:

(1) π0(M) is a flat module over π0(R) in the usual sense.
(2) The natural map πn(R) ⊗π0(R) π0(M) → πn(M) is an isomorphism for

every integer n.

Definition 3.3 (Adic E∞-ring spectra). An adic E∞-ring spectrum consists of
an E∞-ring spectrum A and an adic topology of π0(A) in the classical sense. For
two adic ring spectra A and A′, we denote by MapcontCAlg(A,A′) the summand of
MapCAlg(A,A′) spanned by morphisms that are continuous in π0.

Definition 3.4 (Completeness with respect to an ideal). We say that an E∞-ring
spectrum A is I-complete with respect to an ideal I ⊂ π0(A) if and only if for every
x ∈ I, the limit of this tower vanishes.

· · · x−→ A
x−→ A

x−→ A

This definition is slightly different from classical completeness, but it won’t cause
any confusion because we will add the word classical whenever we discuss the
classical situation.

3.2. Formal hyperplanes. Formal schemes is the nicer refinement than affine
schemes of power series ring because in the completion process of ordinary rings,
there are extra topological structures remembered by formal schemes. So we are
willing to study ordinary formal groups over formal schemes. In order to study
generalized formal groups in derived algebraic geometry, we also need the notion
of formal hyperplane. In addition, there are two reasons for studying this more
complexed definition.

(1) Even when dealing with oridinary rings, we don’t want to just study coor-
dinated formal groups. Besides, we cannot Zariski locally verify whether a
formal scheme is isomorphic to the formal affine space Ân.

(2) The definition of R[[x1, · · · , xn]] is subtly ambiguous in the sense of ring
spectra. There exist a lot of ring spectra whose homotopy groups are iso-
morphic to π∗(R)[[x1, · · · , xn]]. We would allow all of them to become
formal power series ring. It implies that we cannot obtain a good notion of
formal group laws.

One way to solve it is that we enlarge the definition of so-called hyperplanes and
replace the concrete formal group laws by the abelian objects in the category of
formal hyperplanes. Since our definition tolerates the existence of globally twisted
modules, we don’t need to glue them together as we do in the Definition 2.9.

Lurie then used the notion of coalgebra to define formal hyperplanes. In ordinary
algebraic geometry, the coalgebra of formal hyperplanes over a field κ is the coalge-
bra consisting of distributions: that is, the collection of all κ-linear maps OX → κ
which vanish for some power of the maximal ideal m. Sometimes this coalgebra is
easy to handle with because for two formal hyperplanes X and Y , the coalgebra of
X × Y is the tensor product of those coalgebras of X and Y . Coalgebras provide
more convenience than algebras OX because algebras are endowed with topology.
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Definition 3.5 (Flat coalgebras). Given an E∞-ring R, a flat commutative coal-
gebra over R is a flat R-module C with structure R-module homomorphisms co-
multiplication ∆ : C → C ⊗R C and counit ϵ : C → R which make these diagrams
commute.

C

C ⊗R C C ⊗R C

∆ ∆

Swap

∼

C C ⊗R C

R⊗R C

∆

∼ ϵ⊗Rid

C C ⊗R C

C ⊗R C C ⊗R C ⊗R C

∆

∆ ∆⊗Rid

id⊗R∆

Besides, we denote by cCAlg♭R the full subcategory of flat coalgebras.

Construction 3.6. For R an ordinary commutative ring and M an ordinary flat
R-module, we let Γn

R(M) be the submodule of Sn-action invariant elements in M⊗n

and Symn
R(M) be the quotient module given by coinvariants for the action of Sn.

Here, Sn is the symmetric group acting naturally on M⊗n. There are natural
(co)algebra structures on Γ∗

R(M) :=
⊕

n Γ
n
R(M) and Sym∗

R(M) :=
⊕

n Sym
n
R(M).

For example, since Γ∗
R(M⊕M ′) ≃ Γ∗

R(M)⊕Γ∗
R(M

′), the diagonal mapM →M⊕M
induces a coalgebra structure. We say that a flat coalgebra over R is smooth if and
only if it is isomorphic to Γ∗

R(M) for some projective R-module M whose rank is
finite and called the dimension of smooth coalgebra.

Definition 3.7 (Smooth coalgebras). Generally speaking, we define a smooth coal-
gebra C over an E∞-ring R to be a flat coalgebra such that π0(C) is smooth over
π0(R). We let cCAlgsmR be the full subcategory of smooth coalgebras.

Next, let’s define the cospectrum of a coalgebra as what we do in the case of
algebras. Our choice here is grouplike elements.

Definition 3.8. Let R be an E∞-ring and C be a flat commutative R-coalgebra.
Then we define the grouplike elements of C as all morphisms of commutative coal-
gebras R→ C. We let GLike(C) denote the space of all grouplike elements. Since
the extension of scalars preserves grouplike elements, we can get a functor from the
category of connective R-algebras to spaces,

cSpec(C) : CAlgcnR → S A 7→ GLike(A⊗R C),

which is called the cospectrum of C.

Remark 3.9. The internal Hom in a symmetric monoidal category induces a con-
travariant functor Hom(−, 1), turning a coalgebra object into an algebra object. In
terms of an E∞-ring R and a flat coalgebra C, we denote the associated algebra by
C∨. For a smooth coalgebra, [10, Proposition 1.3.10] implies that the dual is an adic
E∞-ring. The main idea is that we can turn Γ∗

R into Sym∗
R by duality. Besides, this

construction is fully faithful when we consider the continuous morphisms between
R-algebras according to [10, Theorem 1.3.15]. Then the following comparison map
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induces an equivalence cSpec(C) ≃ Spf(C∨) ⊆ Spec(C∨).

cSpec(C)(A) = MapcCAlgA
(A,A⊗R C)

→ MapCAlgA

(
(A⊗R C)

∨
, A∨)

→ MapCAlgA
(A⊗R C∨, A)

≃ MapCAlgR
(C∨, A)

= Spec (C∨) (A)

Here we need the equivalence MapcontCAlgR
(C∨, D∨)→ MapFun(CAlgcn

R ,S) (Spf (D
∨) ,Spf (C∨))

in [11, Theorem 8.1.5.1] to determine the image of this comparison map. Due to
the same reason, we have:

Theorem 3.10. Let R be an E∞-ring. Then the construction C 7→ cSpec(C)
induces a fully faithful embedding of ∞-categories

cCAlgsmR → Fun (CAlgcnR ,S) .

This gives us a nice realization of formal hyperplanes. Roughly speaking, for a
smooth coalgebra C, cSpec(C) ≃ Spf(C∨) means that cospectrum is a formal geo-
metric object, and the coalgebra structure determines that the cospectrum behaves
like a hyperplane.

Definition 3.11 (Generalized formal hyperplanes). Given an E∞-ring R, a func-
tor X : CAlgcnR → S is called a (generalized) formal hyperplane if and only if it
lies in the essential image of the fully faithful embedding in Theorem 3.10. The
full subcategory of formal hyperplanes is denoted by Hyp(R). Actually, the con-
struction of Hyp(R) is functorial with respect to R. Besides, we can take some
smooth coalgebra C such that X ≃ cSpec(C) and let OX be C∨ called the E∞-ring
of functions of X. For some reason, we also need to consider the pointed formal
hyperplanes, which are defined as functors CAlgcnR → S∗ such that we get a formal
hyperplane after we forget these base points of S∗.

Convention 3.12. From then on, there are many notions that admits the extension
of scalars, like formal hyperplanes, formal groups, p-divisible groups and so on. We
always use the notation (−)R′ for the morphism R→ R′ to denote this extension.

Example 3.13. With enough assumptions on regularity, the formal completion
along a section is a formal hyperplane, whose reason is discussed in [10, Proposition
1.5.15]. It means that many formal hyperplanes are not as clear as we image.

Definition 3.14 (Generalized formal groups). Given an E∞-ring R, a formal group

over R is a functor Ĝ : CAlgcnR → ModcnZ such that the composition with Ω∞ is
a formal hyperplane. Sometimes we call this formal hyperplane the underlying

hyperplane of Ĝ. Similarly, there is the notion of E∞-ring of functions of Ĝ,
denoted by OĜ. Moreover, the full subcategory of formal groups is denoted by
FGroup(R), which is also a functorial construction with respect to R.

Remark 3.15. Since Ab(S), the category of abelian objects in S, is equivalent to
ModcnZ , we know that

Ab(Fun(CAlgcnR ,S)) ≃ Fun(CAlgcnR ,Ab(S)) ≃ Fun(CAlgcnR ,ModcnZ ).
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As a consequence, formal groups in the sense of Definition 3.14 can be seen as the
abelian objects in the category of formal hyperplanes. This observation is the same
as that in Remark 2.4.

3.3. p-divisible groups and their identity components. Barsotti and Tate
introduced the notion of the p-divisible group of height h as an inductive system
of finite groups schemes Gn over a base S such that the rank of Gn is phn and
Gn is identified with subgroup scheme of Gn+1 whose elements are those of order
divisible by pn. It was proposed because the p-torsion points over an abelian variety
in characteristic p have the this formalism. First, let me define the generalization
of p-divisible groups in derived algebraic geometry.

Definition 3.16. Let R be an E∞-ring. A (generalized) p-divisible group over R
is a functor G : CAlgcnR → ModcnZ with the following properties:

(1) For every object A ∈ CAlgcnR , the Z-module spectrum G(A) is p-nilpotent:
that is, we have G(A)[1/p] ≃ 0.

(2) For every finite abelian p-group M , the functor

(A ∈ CAlgcnR ) 7→
(
MapModZ

(M,G(A)) ∈ S
)

is corepresentable by a finite flat R-algebra.
(3) The map p : G → G is locally surjective with respect to the finite flat

topology. In other words, for every object A ∈ CAlgcnR and every element
x ∈ π0(G(A)), there exists a finite flat map A → B for which Spec(B) →
Spec(A) is surjective and the image of x in π0(G(B)) is divisible by p.

For every finite abelian p-group M , we denote the finite flat R-algebra by G[M ].
Particularly, when M ≃ Z/pkZ, we will denote it by G[pk]. The full subcategory
of p-divisible groups over R is denoted by BTp(R) to memorize Barsotti and Tate.

G[pk] in this definition is the generalization of Gk in traditional definition. As for
the point (3) in this definition, it is related to Grothendieck’s refinement in 1971.
He used the term p-divisibility with respect to the finite flat topology to denote
the condition (3). Based on the definition, G is approximated by the sequence of
G[pk]. In addition, we can define new p-divisible groups by extending scalars. The
next theorem can be regarded as the construction of the Lie algebra of a Lie group.

Theorem 3.17 (Identity components). Let R be a (p)-complete E∞-ring and let
G be a p-divisible group over R. Then there exists an essentially unique formal
group, called the identity component of G, G◦ ∈ FGroup(R) with the following
property: Let E ⊆ CAlgcnR denote the full subcategory spanned by those connective
R-algebras which are truncated and (p)-nilpotent. Then the functor G◦|E is given

by the explicit construction A 7→ fib
(
G(A)→ G(Ared)

)
.

Similarly, Ared means the point, A means the thickening, and the whole data
reflect the formal completion.

Sketch of Proof. Because [10, Theorem 2.1.1] detects this subcategory E and adjusts
the object we need to consider, we can assume that R is a commutative Fp-algebra.
In this case, we can use the Frobenius morphisms to construct our formal group.
More precisely, let X be a functor from the category CAlg♡R of commutative R
algebras to some other category C (in practice, C will be either the category of sets
or the category of abelian groups). For each n ⩾ 0, we let X(pn) : CAlg∞R → C
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denote the functor given by the formula X(pn)(A) = X(A1/pn

), where for every
commutative R-algebra A, the nth power of the Frobenius map φA is denoted by
A → A1/pn

. Simultaneously, it induces a map X(A) → X(A1/pn

) = X(pn)(A).
These maps are natural in A, and therefore define a natural transformation of
functors φn

X/R : X → X(pn) which we will refer to as the relative Frobenius map.

After the pure but tedious calculation on affine spaces and then gluing them
together given in [10], we know that if we let X(p∞) be the direct limit of the
sequence of relative Frobenius maps

X → X(p) → X(p2) → · · · ,

we can obtain an homotopy equivalence

(3.18) X(p∞)(A) ≃ X(p∞)(Ared)

every truncated E∞-ring A.
Given a p-divisible group G, we can do the same construction G(pn), a functor

from CAlg♡R to Ab. Then we can take the kernel of the relative Frobenius mor-
phism, and we denote it by G[Fn]. We can prove that G[Fn] is a finite flat group
scheme over R. Our challenge is just the finiteness property because other proper-
ties follows from the fact that G[Fn] is a kernel. So the key point here is that there
is also a so-called Verschiebung map G(pn) → G. It can help us obtain a series of
commutative diagrams which is related to finiteness. Besides, as a property in clas-
sical algebraic geometry tells, G[Fn] is compatibly and Zariski locally isomorphic

to Spec(R[x1, · · · , xd]/(x
pn

1 , · · · , xpn

d )) for a fixed d dependent on G.
After all of these preliminaries, we define G0 : CAlgcnR → ModcnZ by G0(A) =

colimn (G [Fn]) (A). Our theorem is thus the consequence of the following two
facts.

(1) The functor G0|E can be extended to a formal group over R.
(2) For each A ∈ E , we have a fiber sequence G0(A)→ G(A)→ G(Ared ).

The first fact is a Zariski-local problem. It suffices to justify that the underlying
scheme is a formal hyperplane. Then we can take advantage of the simple represen-

tation ofG[Fn] above. Take Cn as the dual coalgebra ofR[x1, · · · , xd]/(x
pn

1 , · · · , xpn

d ),
then the underlying scheme of G[Fn] is cSpec(Cn). So the underlying scheme of
G0 can be regarded as the cospectrum of the colimit of Cn that is isomorphic to
Γ∗
R(R

d).
As to the second fact, we need to return to Verschiebung maps. After similar pro-

cesses, one can construct a fiber sequence G0 → G → H in Fun (CAlgcnR ,ModcnZ ).
In this diagram, for A ∈ E , the isomorphism (3.18) implies G0(A

red) ≃ 0.

G0(A) G(A) H(A)

0 G0(A
red) G(Ared) H(Ared)∼

If we can prove that H(A) ≃ H(Ared), our theorem directly follows from diagram
chasing. This isomphism holds because of the definition of H and (3.18). □

Now that formal groups are the derivatives of p-divisible groups, the notions of
height and Hasse invariants can be translated naturally under this setting. But we
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will only give the definition of the nth Landweber idea in section 4 but omit the
generalized Hasse invariants.

Definition 3.19 (Height). Let R be an ordinary commutative ring, let Ĝ be a

1-dimensional formal group over R, and let [p] : Ĝ → Ĝ be the map given by

multiplication by p. For n ≥ 1, we will say that Ĝ has height ≥ n if p = 0 in R

and the map [p] factors through the iterated relative Frobenius map Ĝ
φ

Ĝn−−−→ Ĝ(pn)

introduced in the proof above. We extend this terminology to the case n = 0 by
declaring that all formal groups over R have height ≥ 0. In this case, we do not
require that p = 0 in R. It coincides with the classical definition because when our
formal group is coordinated, the iterated relavtive Frobenius map is t 7→ tp

n

, and
the decomposition of natural transformation [p] is written as [p](t) = h′(tp

n

) for
some h′ in the sense of Lemma 2.10.

Remark 3.20. The motivation behind our construction is inherently straightfor-
ward. The Frobenius maps extracts these torsion points. When we deal with Lie
groups, similar procedures make us obtain the data of Lie algebras instead of the
original Lie groups.

Afterwards, we will introduce a technical decomposition for our future use. Its
classical version is also a famous theorem in algebraic geometry. In order to avoid
tedious but useless proof, I just list the definitions and properties here. Impatient
readers can directly read Theorem 3.27 for the following sections. For detailed
theories, see [10].

Definition-Theorem 3.21. A morphism of p-divisible groups G → G′ over an
E∞-ring R is called strict epimorphism if and only it satisfies the following three
equivalent conditions:

(1) For every finite abelian p-group M , the induced map G[M ]→ G′[M ] is an
epimorphism of finite flat group schemes over R.

(2) For each m ⩾ 0, the induced map G [pm] → G′ [pm] is an epimorphism of
finite flat group schemes over R.

(3) The induced map G[p] → G′[p] is an epimorphism of finite flat group
schemes over R.

In addition, a morphism of p-divisible groups G→ G′ over an E∞-ring R is called
monomorphism if and only it satisfies the following four equivalent conditions:

(1) For every finite abelian p-group M , the induced map G[M ] → G′[M ] is a
monomorphism of finite flat group schemes over R.

(2) For each m ⩾ 0, the induced map G [pm]→ G′ [pm] is a monomorphism of
finite flat group schemes over R.

(3) The induced map G[p] → G′[p] is a monomorphism of finite flat group
schemes over R.

(4) For every discrete R-algebra A, the induced map G(A) → G′(A) is a
monomorphism of abelian groups.

Definition-Theorem 3.22. Let R be an E∞-ring, let Mod
cn,Nil(p)
Z denote the

category of connective (p)-torsion Z-module spectra, and let C ⊆ Fun(CAlgcnR ,Mod
cn,Nil(p)
Z )

denote the full subcategory spanned by those functors X : CAlgcnR → Mod
cn,Nil(p)
Z

which are sheaves with respect to the finite flat topology. Suppose we are given a
commutative diagram σ :
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G′ G

0 G′′

f

g

in the C. The following conditions are equivalent:

(1) The functors G and G′′ are p-divisible groups, the map g is a strict epi-
morphism of p-divisible groups, and the diagram σ is a pullback square in
C.

(2) The functors G′ and G are p-divisible groups, the map f is a monomor-
phism of p-divisible groups, and σ is a pushout square in C.

(3) The functors G′ and G′′ are p-divisible groups and σ is a pushout square
in C.

In this case, we say that σ is a short exact sequence. Sometimes we will denote it
by 0 → G′ → G → G′′ → 0. According to the property above, this sequence is
exact if and only if σ is not only a pullback diagram but also a pushout diagram,
f is a monomorphism, and g is a strict epimorphism.

Our target is to introduce the essentially unique connected-étale sequence of p-
divisible groups. These two concepts were introduced by Tate and other people to
determine whether a formal group is given by a p-divisible groups.

Definition 3.23. Let R be a E∞-ring and let G be a p-divisible group over R,
so that the functor (Ω∞ ◦G[p]) : CAlgcnR → S is corepresentable by a finite flat
R-algebra A. We say that G is connected if the underlying map of topological
spaces |Spec(A)| → |Spec(R)| bijective.
Definition 3.24. Let R be an adic E∞-ring and let G be a p-divisible group over
R. We will say that G is formally connected if Gπ0(R)/I is a connected p-divisible
group over the commutative ring π0(R)/I, where I ⊆ π0(R) is a finitely generated
ideal of definition.

Remark 3.25. By [10, Theorem 2.3.12], we know that when dealing with adic
E∞-rings such that p is topologically nilpotent in π0(R), the category of formally
connected p-divisible groups are fully faithfully embedded into the category of for-
mal groups through identity components. Under this setting, we say that a formal
group is p-divisible if and only if it lies in the essential image of identity component
functor.

Definition-Theorem 3.26. Let R be an E∞-ring and let G be a p-divisible group
over R. The following conditions are equivalent:

(1) For every finite abelian p-group M , the functor

Ω∞G[M ] : CAlgcnR → S A 7→ MapModZ
(M,G(A))

is corepresentable by an étale R-algebra.
(2) For each n ≥ 0, the functor

Ω∞G [pn] : CAlgcnR → S A 7→ MapModZ
(Z/pnZ,G(A))

is corepresentable by an étale R-algebra.
(3) The functor

Ω∞G[p] : CAlgcnR → S A 7→ MapModZ
(Z/pZ,G(A))

is corepresentable by an étale R-algebra.
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At this time, G is called an étale p-divisible group.

In the study of algebraic groups, people already discovered that after quotienting
the maximal connected component, one can get an étale quotient group. This
analogous fact holds even in the field of Lie groups. We will then introduce the
generalized form in the sense of p-divisible groups. Two features are that the
identity component of the connected part is the same as that of the whole p-divisible
group, and that the étale part is as easy as possible.

Theorem 3.27. Let R be a complete adic E∞-ring such that p is topologically
nilpotent in π0(R) and G be a p-divisible group over R. Then the following two
statements are equivalent:

(1) There exists a short exact sequence of p-divisible groups 0 → G′ → G →
G′′ → 0 such that the former one is formally connected and the latter one
is étale.

(2) The identity component of G is p-divisible.

Besides, when these statements are right, the decomposition is essentially unique.

3.4. Deformation theory of p-divisible groups. Our main theorem here is the
generalized version of Theorem 2.51. The improvements are mirrored in these
aspects:

• We are focused on the deformation of p-divisible groups instead of the
original 1-dimensional formal groups.
• We study more ring spectra instead of just perfect fields.
• The forms of deformations get more colorful.

Before the statement of our theorem, we need some notions first. They appear in the
statement of Theorem 1.2, and endow our geometric objects with great regularity
so that many nice properties hold.

Definition 3.28. Like the definition of deformation above, given a p-divisible group
G0 over a commutative ring R0 and an E∞-ring A with a morphism ρA : A→ R0,
a deformation of G0 along ρA is a pair (G,α), where G is a p-divisible group over A
and α : G0 ≃ GR0

is an isomorphism from G0 to the extention of scalars of G. The
collection of such deformations is denoted by DerG0

(A, ρA), which is a homotopy
fiber of BTp(A) over BTp(R0).

Construction 3.29. Let G be a p-divisible group defined over a commutative ring
R. Suppose that we are given a point x ∈ |Spec(R)| and a derivation d : R→ κ(x),
where κ(x) denotes the residue field of R at x. Then the canonical map β0 : R →
κ(x) lifts to a ring homomorphism β : R → κ(x)[ϵ]/(ϵ2), given by the formula
β(t) = β0(t) + ϵdt. Let Gd denote the p-divisible group over κ(x)[ϵ]/(ϵ2) obtained
from G by extending scalars along β. Then Gd is a first-order deformation of the
p-divisible group Gκ(x). If d = 0, then Gd is a trivial first order deformation of
Gκ(x).

Definition 3.30. Let R be a commutative ring and let G be a p-divisible group
over R. We will say that G is nonstationary if it satisfies the following condition:
For every point x ∈ |Spec(R)| and every nonzero derivation d : R → κ(x), the p-
divisible group Gd of the construction above is a nontrivial first-order deformation
of Gκ(x).
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The following theorem is also the enhancement of classical universal deformation.
It’s slightly technical, so we directly use it without further illustration.

Theorem 3.31. Let R0 be an oridinary Noetherian Fp-algebra which is F -finite
(that is, the Frobenius morphism φ : R0 → R0 is finite) and let G0 be a nonstation-
ary p-divisible group over R0. Then there exists a morphism of connective E∞-rings
ρ : Run

G0
→ R0 and a deformation G of G0 along ρ with the following properties:

• The E∞-ring Run
G0

is Noetherian, the morphism ρ induces a surjection of
commutative rings ϵ : π0(R

un
G0

)→ R0, and Run
G0

is complete with respect to
the ideal ker(ϵ).
• Let A be any Noetherian E∞-ring equipped with a map ρA : A → R0 for
which the underlying ring homomorphism ϵA : π0(A)→ R0 is surjective and
A is complete with respect to ker(ϵA). Then extension of scalars induces an
equivalence MapCAlgR0

(Run
G0

, A)→ DefG0
(A, ρA).

In particular, π0(R
un
G0

) is exactly the classical universal deformation ring to which
the scalar extention of G is exactly the classical universal deformation of G0. We
will denote the classical universal deformation of G0 by Gcl.

Remark 3.32. Our strategy is similar to the one we use in the proof of Lemma
2.10, although we are dealing with more complicated problems. In differential
geometry, differential forms are sections of cotangent bundles. But in algebraic
geometry, one needs to introduce a reasonable definition of dualizing sheaves. The
author of [10] preferes the language of dualizing lines because dualizing lines are
easy and comprehensive for the special case of 1-dimensional formal groups.

4. Orientations

Similar to the case of complex-oriented spectra, a fixed (pre)orientation makes
more data coherent. For example, we have a well-behaved formal group law and
then develop its theory in section 2. As a result, better properties will emerge if
we consider the oriented classifier and the oriented universal deformation. In the
beginning of this section, we will generalize our theory of formal groups associated
with a given complex periodic spectrum. Then we will develop the notion of orien-
tation. Last but not the least, we will review the properties of Lubin-Tate theory
for our main theorem.

4.1. Generalized Quillen formal groups.

Convention 4.1. We adopt the convention of notations in [10]. So we will denote
by C∗(X;A) the spectrum whose homotopy groups are A-homology groups of X.
Besides, C∗(X;A) is the associated spectrum of cohomology groups.

The following proposition doesn’t touch any new ideas, and interested readers
can try to prove it on their own or read the proof of [10, Theorem 4.1.11]. We need
this proposition to define generalized Quillen formal groups.

Proposition 4.2. Let A be a complex periodic E∞-ring. Then C∗(CP∞;A) is a
smooth coalgebra of dimension 1 over A.

Construction 4.3 (The (generalized) Quillen formal group). As we know, the
category of finite sets with base point is equivalent to the category of free abelian
groups of finite rank. If we denote the latter one by Latop, then we get a functor

Latop → Hyp(A) M 7→ cSpec(C∗(K(M∨, 2), A)).



26 ZHENPENG LI

for a complex periodic E∞-ring A since the proposition above and CP∞ ≃ K(Z, 2).
It is an abelian object in Hyp(A), which is thus, by Remark 3.15, called the Quillen

formal group and denoted by ĜQ
A . Sometimes we use the name, generalized Quillen

formal group, to distinguish it from the classical Quillen formal group constructed
by the complex orientation. Moreover, unwinding the definition, we know that when

we extend the scalar of ĜQ
A to π0(A), this formal group is exactly the classical one.

We will denote the classical one by ĜQ0

A .

4.2. (Generalized) Orientations. The complex orientations in classical cases
are (noncanonical) bridges connecting formal groups and complex-oriented spectra.
Abstractly speaking, an orientation is a recognition of a concrete formal group as
the inherent one of some complex-oriented spectrum, and two orientations give us
different but isomorphic formal groups. In this way, Theorem 4.12 is much more
meaningful than it looks like, although we take a very indirect and abstract way
define the generalized orientations. Besides, we will define the orientation classifier
so as to fulfill the claim in Theorem 1.2.

To define the generalized orientations, we have to define preorientations for for-
mal hyperplanes first. They are the direct generalizations of the classical theory.

Definition 4.4 (Preorientations). Let R be an E∞-ring and let X : CAlgcnR → S∗
be a pointed formal hyperplane over R. A preorientation of X is a map of pointed
spaces

e : S2 → X(R).

We let Pre(X) = Ω2X(R) denote the space of preorientations of X. A preoriented
formal hyperplane is a pair (X, e), where X is a pointed formal hyperplane over
R and e ∈ Pre(X) is a preorientation of X. In particular, a preorientation of a
formal group is just the preorientation of its underlying formal hyperplane, and the

notation Pre(Ĝ) thus makes sense.

Then the following series of definitions and constructions can be regarded as
the correction of orientations, compared with preorientations, from the perspec-
tive of algebraic geometry. The dualizing line is the counterpart of the dualizing
sheaf in ordinary algebraic geometry, and the linearization map can be seen as the
differential.

Definition 4.5 (The dualizing line). Let R be an E∞-ring and let X be a 1-
dimensional formal hyperplane over R equipped with a base point η ∈ X (R),
classified by an augmentation ϵ : OX → R. We let OX(−η) denote the fiber of
ϵ, which we regard as a module over OX . We let ωX,η denote the tensor product
R⊗OX

OX(−η). We will refer to ωX,η as the dualizing line of X at the point η.

For example, in oridinary algebraic geometry, we can consider the case that
X = SpecA, η is a maximal ideal m, and R is the residue field of m. Then the
tensor product R ⊗OX

OX(−η) is identified with A/m ⊗A m ≃ m/m2, the Zariski
cotangent space at m.

Construction 4.6 (The linearization map). Let R be an E∞-ring and let X be a
1-dimensional formal hyperplane over R equipped with a base point η ∈ X(R). If
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A is a connective E∞-algebra over R, we obtain a canonical map

ΩX(A) ≃ MapCAlgR
(R⊗OX

R,A)

→ MapModR
(R⊗OX

R,A)
u→ MapModR

(Σ (ωX,η) , A)

≃ ΩMapModR
(ωX,η, A) .

where we have the first isomorphism because the homotopy pullback of ∗ → X(A)←
∗ ΩX(A) is transformed into a homotopy pushout diagram in the side of rings: that
is the reason for the tensor product. In addition, u is induced by the fiber sequence

ωX,η → R ⊗OX
R

m→ R in [10, Proposition 4.2.8]. We will denote the composite
map by

L : ΩX(A)→ ΩMapModR
(ωX,η, A)

and refer to it as the linearization map associated with the pair (X, η).

Construction 4.7 (The Bott map). Let R be an E∞-ring, letX be a 1-dimensional
formal hyperplane over R, equipped with a base point η ∈ X(R) and the associated
dualizing line ωX,η. Applying the construction above, we obtain a linearization map

L : ΩX(R)→ ΩMapModR
(ωX,η, R) .

Passing to loop spaces, we obtain a map

Pre(X)→ MapModR

(
ωX,η,Σ

−2(R)
)

For each preorientation e ∈ Pre(X), we denote its image under this map by βe :
ωX,η → Σ−2(R). We will refer to βe as the Bott map of e.

Definition 4.8. Let R be an E∞-ring and let X be a 1-dimensional formal hyper-
plane over R with a base point η. An orientation ofX is a preorientation e ∈ Pre(X)
for which the Bott map βe : ωX,η → Σ−2(R) is an equivalence. We let OrDat(X)
denote the subcategory of Pre(X) spanned by the orientations of X.

Remark 4.9. Some readers may feel confused about the condition that the Bott
map is an equivalence. In ordinary algebraic geometry, we discussed the dualizing
sheaves of projective spaces. It satisfies the criterion that ωPn ≃ O(−n − 1) by
adjunction formulas in [7, Proposition 8.20]. Here, O(−n− 1) means the ordinary
Serre twisting operation. Because the oridinary way to twist a sheaf is fulfilled by
the suspension, we can understand the definition of orientations that excludes the
weird preorientations from the perspective of algebraic geometry.

The remaining task of this subsection is to prove the following theorems on
representability of (pre)orientations in [10]. The first theorem interprets what the
preorientation is in detail. The second theorem introduces the orientation classifier
for our main theorem. At last, the third theorem reflects the meaning of the
existence of an orientation, as is the corollary of the complex-orientation.

Theorem 4.10. Let R be a complex periodic E∞-ring, let ĜQ
R ∈ FGroup(R) denote

the Quillen formal group, and let Ĝ be any formal group over R. Then we have a
canonical homotopy equivalence

Pre(Ĝ) ≃ MapFGroup(R)(Ĝ
Q
R , Ĝ).
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Proof. Let C denote the image of Ĝ under the equivalence

FGroup(R) ≃ Ab(Hyp(R))
cSpec←−−− Ab (cCAlgsmR ) ,

We then have canonical homotopy equivalences

Pre(Ĝ) = MapS∗
(S2,Ω∞Ĝ(R))

≃ MapAb(S)(CP
∞,MapcCAlgR

(R,C))

≃ MapAb(cCAlgR) (C∗ (CP∞;R) , C)

≃ MapAb(Hyp(R)) (cSpec (C∗ (CP∞;R)) , cSpec(C))

≃ MapFGroup(R)(Ĝ
Q
R , Ĝ). □

Theorem 4.11. Let R be an E∞-ring and let X be a 1-dimensional pointed formal
hyperplane over R. Then there exists an E∞-algebra OX , called the orientation
classifier, and an orientation e ∈ OrDat (XOX

) which is universal in the following
sense: for every object R′ ∈ CAlgR, evaluation on e induces a homotopy equivalence

MapCAlgR
(OX , R′)→ OrDat (XR′) .

Proof. First, let’s study the case of preorientations. Then the analogous functor is
Ω2X according to the definition. We need to check its corepresentability. Since the
looping functor is realized by the (homotopy) pullback of ∗ → X(R′)← ∗, we know
that this functor can be corepresented by R ⊗R⊗OX

R R by the universal property
of tensor products of E∞-ring spectra. Let’s denote this ring spectrum by A.

Next, in order to get the orientation classifier, we should study the procedure of
“inverting” the Bott map. In ordinary commutative algebra, one can easily finish it
by introducing its inverse. Here, out of close reasoning, we will give the construction
with respect to the Bott map of XA, βe : ωXA,η → Σ−2(A).

Let u denote the morphism R → ω−1
XA.η ⊗R Σ−2(A) induced by βe. We define

A[β−1
e ] as the direct limit of the following sequence:

R
u→ ω−1

XA.η ⊗R Σ−2(A)
u→ (ω−1

XA.η)
⊗2 ⊗R

(
Σ−2(A)

)⊗2 u−→ · · · .

Then by [10, Proposition 4.3.17], for every B ∈ CAlgR, MapCAlgR
(A[β−1

e ], B)
is contractible if βe ⊗R B is an equivalence, and empty otherwise. This universal
property of A[β−1

e ] implies that A[β−1
e ] satisfies the conditions of the orientation

classifier. □

Theorem 4.12. Let R be an E∞-ring, let Ĝ be a 1-dimensional formal group over

R, and let e ∈ Pre(Ĝ) be a preorientation of Ĝ. Then e is an orientation if and
only if the following condition are satisfied:

(1) The E∞-ring R is complex periodic.

(2) Let f : ĜQ
R → Ĝ denote the image of e under the homotopy equivalence

Pre(Ĝ) ≃ MapFGroup(R)(Ĝ
Q
R , Ĝ), then f is an equivalence of formal groups

over R.

Sketch of Proof. First, let’s assume the existence of the orientation. Then the Bott
map, as an isomorphism, implies that the dualizing line is an invertible R-module.
So it is automatically weakly 2-periodic. For the complex orientation, we believe
that the orientation of formal groups induces it after diagram chasing. So anyway,
R is complex periodic and Quillen formal group is well-defined. This theorem thus
follows from that whether f is an isomorphism can be identified with the same
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question of f∗ : ωĜ → ωĜQ
R
because we study the case of hyperplanes, and that the

Bott map can be decomposed into ωĜ

f∗

→ ωĜQ
R

∼→ Σ−2(R). □

4.3. Lubin-Tate spectra. Lubin-Tate spectra give us a simple but essential case
of our main theorem. Even the proof of the main theorem heavily depends on the
similar claim about Lubin-Tate spectra, since the process of decomposing problems
reduces the general case to that of Lubin-Tate spectra. Here, we tend to directly use
the statement in [5], Theorem 4.15. One of the necessary lemmas is the following
proposition.

Proposition 4.13 (Landweber ideal). Let R be a commutative ring and let Ĝ be
a formal group of dimension 1 over R. Then, for each integer n ≥ 0, there exists a

finitely generated ideal IĜn ⊆ R, called the nth Landweber ideal, with the following

property: a ring homomorphism R → R′ annihilates IĜn if and only if the formal

group ĜR′ has height ≥ n.

In [5], Goerss-Hopkins-Miller enhanced the theorem about Lubin-Tate spectra,
endowing it with an essentially unique E∞-ring structure. We will state their the-
orem completely after this notation.

Notation 4.14. We define a category FG as follows:

• The objects of FG are pairs (R, Ĝ), where R is a commutative ring and Ĝ
is a 1-dimensional formal group over R.

• A morphism from (R, Ĝ) to (R′, Ĝ′) in the category FG is a pair (f, α),

where f : R → R′ is a ring homomorphism and α : Ĝ′ ≃ ĜR′ is an
isomorphism of formal groups over R′.

Theorem 4.15 (Goerss-Hopkins-Miller). Let κ be a perfect field of characteristic

p > 0 and let Ĝ0 be a 1-dimensional formal group of height n < ∞ over κ. Then

there exists an even periodic E∞-ring E, called the Lubin-Tate spectrum of Ĝ0, and
an isomorphism

α : (κ, Ĝ0) ≃ (π0(E)/IEn , Ĝ
Qn

E )

in the category FG with the following features:

• The E∞-ring E is even periodic and the composite map

(π0(E), ĜQ0

E )→ (π0(E)/IEn , Ĝ
Qn

E )
α−1

−→ (κ, Ĝ0)

exhibits the classical Quillen formal group ĜQ0

E as a universal deformation

of Ĝ0. In particular, π0(E) can be identified with the Lubin-Tate ring of

Ĝ0 in Theorem 2.51.
• The E∞-ring E is K(n)-local. Moreover, for every complex periodic K(n)-
local E∞-ring A, composition with α induces a homotopy equivalence

MapCAlg(E,A) ≃ HomFG((κ, Ĝ0), (π0(A)/IAn , Ĝ
Qn

A ))

In particular, the mapping space MapCAlg(E,A) is discrete.

Their original proof took use of the perspective of moduli problems. They defined
the moduli space CAlg(Sp)×CAlg(hSp){E} and then calculated the obstruction of
contractibility. The author of [10] used a different way. He claimed that the Lubin-
Tate spectrum is exactly the K(n)-localization of the orientation classifier. This
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claim solves the second part of our theorem above. So we have to compute its
homotopy groups to complete our proof. Both of these ideas are interesting, fruitful,
and related to deformation—in [5], we deform our Lubin-Tate theory to its partial
approximations in order to obtain an easier obstruction theory.

We have fully prepared for our final proof. So many mathematical properties
proved or unproved will mix together.

4.4. Oriented deformation ring spectrum and proof of the main theorem.

Construction 4.16 (Oriented deformation ring spectrum). Let R0 be an ordinary
Noetherian Fp-algebra which is F -finite, let G0 be an ordinary nonstationary p-
divisible group over R0, and let G ∈ BTp(Run

G0
) be a universal deformation of G0

(see Theorem 3.31). We let Ror
G0

denote an orientation classifier for the underly-
ing formal group G◦ (See Theorem 4.11). We will refer to Ror

G0
as the oriented

deformation ring spectrum of G0.

Using these notions defined throughout this article, we have a precise statement
of Theorem 1.2. The strategy to prove it is that we decompose a general p-divisible
group into an étale one and a connected one, and by dévissage, we finally need to
check the case of perfect field, which is proved as the enhancement of Lubin-Tate
spectra in [5].

Theorem 4.17 (Lurie). Let R0 be an ordinary Noetherian Fp-algebra and let G0

be an ordinary 1-dimensional p-divisible group over R0. Assume that the Frobenius
map φR0 : R0 → R0 is finite and that G0 is nonstationary. Then there exists a uni-
versal deformation G of this p-divisible group defined over the spectral deformation
ring Run

G0
and an oriented deformation ring spectrum Ror

G0
such that:

(1) Ror
G0

is an even periodic E∞-ring with the localization map Run
G0
→ Ror

G0
.

(2) If we extend the scalar of G to Ror
G0

, the identity component of GRor
G0

will

be the generalized Quillen formal group induced by the even periodic ring
spectrum Ror

G0
.

(3) π0(R
or
G0

) is the same as the classical deformation ring of G0, and the iden-
tity component of the classical universal deformation is exactly the classical
Quillen formal group induced by Ror

G0
. In other words, Ror

G0
is constructed

by a certain formal group in Landweber’s way.

Moreover, all of these constructions can be chosen to depend functorially on the
pair (R0,G0).

Definition 4.18. Let R be an connective E∞-ring, let X be a 1-dimensional
pointed formal hyperplane over R, and let OX denote the orientation classifier
of X. We will say that X is balanced if the following conditions are satisfied:

• The unit map R → OX induces an isomorphism of commutative rings
π0(R)→ π0 (OX).
• The homotopy groups of OX are concentrated in even degrees.

We will say that a 1-dimensional formal group Ĝ is balanced if the underlying

pointed formal hyperplane X = Ω∞Ĝ is balanced.

I claim that in order to prove Theorem 4.17, we only need to prove this theorem:

Theorem 4.19. Let R0 be an ordinary F -finite Noetherian Fp-algebra, let G0

be an ordinary nonstationary p-divisible group of dimension 1 over R0, and let
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G ∈ BTp(Run
G0

) be its spectral universal deformation. Then the identity component
G◦ is a balanced generalized formal group over Run

G0
.

Proof of Theorem 4.17 from Theorem 4.19. Let (R0,G0) be as in the statement of
Theorem 1.2. Let G ∈ BTp (Run

G ) denote the universal deformation of G0, and
set E = Ror

G0
. By construction, the formal group G◦ acquires an orientation after

extending scalars from Run
G0

to E. It follows that E is complex periodic and that

the G◦
E can be identified with the Quillen formal group ĜQ

E due to Theorem 4.12.
It follows from Theorem 4.19 that E is even periodic and that the classical Quillen

formal group ĜQ0

E agrees with the identity component of the p-divisible group Gcl

obtained from G by extending scalars along the projection map Run
G0
→ π0(R

un
G0

),
which is the classical universal deformation of G0. □

Proof of Theorem 4.19. First, suppose that we have proved the Lubin-Tate case
where R0κ is a perfect field of characteristic p and p-divisible group G0 is con-
nected. Unwinding the definition, the property of being balanced is a local prop-
erty. It means that it suffices to consider the localization at each maximal ideal
m ⊆ π0(R

un
G0

). Note that since Run
G0

is complete with respect to the kernel of the

map π0

(
Run

G0

)
→ R0, we can write m as the inverse image of a maximal ideal

m0 ⊆ R0.
Let κ be any perfect extension field of R0/m0, and let G1 = (G0)κ be the p-

divisible group obtained from G0 by extending scalars to κ. Using [10, Theorem
6.1.2], we obtain a flat map of spectral deformation rings ρ : Run

G0
→ Run

G1
. More-

over, the inverse image under ρ of the maximal ideal of Run
G1

is m, so that ρ induces a
faithfully flat map (Run

G0
)m → Run

G1
. By virtue of the descent property of faithfully

flat morphisms, it will suffice to show that the formal group G◦
Run

G1

is balanced.

We may therefore replace (R0,G0) by (κ,G1) and thereby reduce to proving this
theorem in the special case where R0 = κ is a perfect field of characteristic p. In
this case, the p-divisible group G0 admits a connected-étale sequence

0→ G′
0 → G0 → G′′

0 → 0.

Let Run
G′

0
be the spectral deformation ring of G′

0 and let G′ ∈ BTp(Run
G′

0
) be its

universal deformation. As in the following proof of the assumption, we will observe
that the formal group G◦ can be obtained from G′◦ by extending scalars along a
comparison map u : Run

G′
0
→ Run

G0
. Since u is flat by [10, Theorem 6.2.4], we are

reduced to proving that the formal group G′′ is balanced because of descent, which
is our assumption in the beginning of this proof.

As for our assumption, the same process, localization at some prime ideal, implies
that it suffices to prove that G◦

Run
G2

is a balanced formal group over Run
G2

, where G2

is the extension of G to an algebraic closed field contained a residue field. Note
that the p-divisible group G2 admits a connected-étale sequence

0→ G′
2

i0→ G2 → G′′
2 → 0.

Let Run
G′

2
be the spectral deformation ring of G′

2 and let G′ ∈ BTp(Run
G′

2
) be its

universal deformation. Then we have a comparison map u : Run
G′

2
→ Run

G2
, which

is essentially characterized by the requirement that i0 can be lifted to a monomor-
phism G′

Run
G2

→ GRun
G2

of p-divisible groups over Run
G2

. In particular, the formal

group G◦
Run

G2

can be obtained from the formal group G′ by extension of scalars
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along u. Since u is flat due to the same theorem above, it will suffice to show that
the formal group G′ is balanced. We can then do induction on the heights of prime
ideals. Thus we can assume that we are dealing with the maximal ideal m. So we
can directly consider the fiber of Ror

G0
→ E := LK(n)R

or
G0

. We have known that it
vanishes at every non-maximal ideal. Unwinding definition, we know that this fiber
vanishes at m-completion. On the basis of [11, Proposition 7.3.1.7], this localization
is actually an isomorphism. So our claim follows directly from the Theorem 4.15
and the observation in that subsection. □
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