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Abstract. This paper aims to provide an expository study of first passage

percolation in probability theory by approaching it both theoretically and em-
pirically. First passage percolation studies the set of reachable points in Zd

when the passage time for each edge is an independent identically distributed

random variable. We want to show that the graph eventually grows linearly
and is uniform in all directions. We will first show this property using mea-

sure theory and ergodicity. Subsequently, we will run computer simulation to

obtain a more intuitive understanding of the problem.
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1. Introduction

This paper studies the model of first passage percolation, one of the most classical
areas of probability theory. It is a concept first invented by Hammersley and Welsh
in 1965 [HW65] and studies the collection of points on a graph that can be reached
within a given period of time given a fixed starting point where weights are assigned
to edges. Most studies of first passage percolation, like all topics in probability
theory, has a strong reliance on measure theory. However, the beauty of the first
passage percolation lies in its simple definition and how straightforward some of
its properties are. Therefore, this paper aims to provide a basic introduction to
readers who are interested first passage percolation and probability, but are not yet
equipped with the full knowledge of measure theory. It will do so by providing an

1



2 YUTONG LI (ELENA)

Table 1. Summary of Notations Used

t(e) the passage time of an edge e
F the distribution of every t(e)

T (u, v) the travel time from u to v

B̃(t) the set of reachable points within time t
B(t) the continuous shape covering the reachable points within time t
am,n point to point passage time
bm,n point to line passage time

intuitive explanation for the theories used and offering illustrative graphs for the
properties in first passage percolation.

This paper is divided into five parts. First, we will introduce the general set up
of first passage percolation and define the notations that will be used throughout
the following sections. Since there are many different notations used, a table is
provided for the reader to refer to when the definition of a certain notation is
unclear. See table 1. Next, we will introduce some basic yet relevant concepts in
measure theory in order to prove certain theorems for first passage percolation.
In this part, since our target audience is pre-measure theory, we will place our
emphasis on understanding the statement of the theorem rather than the proof.
Thirdly, we will introduce two key properties of the first passage percolation model.
We will show how they directly result from the theorems in measure theory which
we introduced in the previous section. Following, we will demonstrate the two
properties using computer simulations. We will simulate the graph for different time
limits and different distribution. This will give us a very intuitive understanding of
first passage percolation. Last but not least, we will introduce several applications
of first passage percolation in a diverse range of fields for interested readers to look
into.

2. General Set Up

A graph G of first passage percolation consists of a network of points consisting
of roads with different passage time. This graph can be of any form, but for the
simplicity of notation, we study the network in Zd. The demonstrative graphs in this
article will be in Z2, but the same method applies to graphs of higher dimensions.

Let e be an edge in Zd. A part of a path is defined as an edge if it connects two
points u = (u1, u2, · · · , ud) and v = (v1, v2, · · · , vd) such that u and v are adjacent,
i.e.,

d∑
i=1

|ui − vi| = 1

We assign to each edge a random variable t(e) and define it as the passage time of
an edge e. For all e ∈ Zd, t(e) are independent and have the same distribution F
where F (0−) = 0. This means that F doesn’t take any negative value. For example,
t(e) ∼ |Z|, where Z is a standard normal variable. This means that the passage
time of every edge is the absolute value of a standard normally distributed variable;
or t(e) ∼ U(0, 1), which means that the passage time of every edge is a uniformly
distributed variable between 0 and 1.



BEHAVIOR OF GROWTH FOR FIRST PASSAGE PERCOLATION 3

For vertices u, v of any graph G a path from u to v is an alternating sequence
(v0, e1, v1, .....en, vn) of vertices and edges of G such that vi is adjacent on G to vi−1

and ei is an edge between vi and vi−1 for i = 1, 2.....n (and v0 = u, vn = v). For a
path r = (v0, e1, v1, .....en, vn) in Zd, we define the passage time of r as

T (r) =

n∑
i=1

t(ei).

The travel time from u to v is defined as

T (u, v) = inf{T (r) : r is a path from u to v}.

Finally, with 0 denoting the origin, we define the set of reachable points within a
given time t as

B̃(t) = {v ∈ Zd : T (0, v) ≤ t}.

B̃(t) then consists of all points which can be reached in time t from the origin. Our

ultimate goal is to study the behavior for large time of B̃(t). However, the set B̃(t)
is a set of discrete points, and to better study this problem, we want a continuous
shape. Thus, we define a “fattened version” of B̃, the set

B(t) = {v + U : v ∈ B̃(t)},

where U is the closed cube

U = {x = (x(1), ....., x(d)) : −1

2
≤ x(i) ≤ 1

2
, 1 ≤ i ≤ d}

In figure 2, the blue points in the picture on the left represent the set B̃(6) whereas
the picture on the right represents the set B(6), which could be more easily studied.

Figure 1. Comparison between B̃(6) and B(6)

In the following sections, we wish to show by theory and by experiment that
B(t)

• grows linearly, and
• has an asymptotic shape which is not random.
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3. Ergodicity

In this section, we will begin by examining some theorems in measure theory
that give us a basic idea of ergodicity, which will be used in the upcoming section
in order to prove the qualities of first passage percolation.

First, we will introduce several definitions in measure theorem to set up the
basic notation for the proof. Then, we will look at Birkhoff’s Ergodic Theorem,
which studies stationary sequences of random variables. It has its applications in the
context of random walks [Lal]. Next, we will look at Kingman’s Subadditive Ergodic
Theorem. It is a variant and a generalization of Birkhoff’s Ergodic Theorem. More
importantly, we will look at it in the language of probability and sequences, which
gives us a direct application to first passage percolation.

Remark 3.1. We would like to begin by explaining the intuition of ergodicity.
Ergodicity describes the property of the path of a point in a moving system, either
a dynamical system or a stochastic process, which will eventually visit all parts of
the space that the system moves in. See figure 3.

Figure 2. Illustration of Ergodicity

Definition 3.2. Let (Ω,F , P ) be a probability space and let T : Ω → Ω be a
measurable transformation. The transformation T is said to be measure-preserving
if for every A ∈ F ,

P (T−1(A)) = P (A)

We then call the triple (Ω,F , P ) a measure-preserving system. An invertible
measure-preserving transformation is an invertible mapping T : Ω → Ω such that
both T and T−1 are measure-preserving transformations.

Example 3.3. A rotation is a measure preserving transformation. Let Ω = T1 =
{z ∈ C||z| = 1} be the unit circle in the complex plane, and for any real number θ
define Rθ : Ω → Ω by Rθ(z) = eiθz. Thus, Rθ rotates Ω through an angle θ. Let λ
be the normalized arclength measure on Ω. Then each Rθ is λ−measure-preserving.

Definition 3.4. If T is a measure-preserving transformation of (Ω,F , P ), then an
event A ∈ F is said to be invariant if T−1A = A, equivalently, if 1A = 1A ◦ T .
The collection F of all invariant events is the invariant σ-algebra. If the invariant
σ-algebra I contains only events of probability 0 or 1 then the measure-preserving
transformation T is said to be ergodic. Similar terminology is used for random
variables: a random variable f is said to be invariant if f = f ◦ T . It is easily seen
that if T is ergodic, then every invariant function is almost surely constant.
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Definition 3.5. We say a random sequence Xj is stationary if its joint probability
distribution is invariant over time, i.e.,

(3.6)
FXn,Xn+1,...,Xn+N−1

(xn, xn+1, . . . , xn+N−1)

= FXn+k,Xn+k+1,...,Xn+k+N−1
(xn, xn+1, . . . , xn+N−1),

Lemma 3.7. Let (Ω,F , P ) be an ergodic, measure-preserving system. For any
bounded measurable function f the functions

A∗f := lim sup
n→∞

Anf

and

A∗f := lim inf
n→∞

Anf

with An ∈ A where A is an algebra A, are invariant, and therefore, since T is
ergodic, are constant.

Proof. We have

Anf −Anf ◦ T =
(f − f ◦ Tn)

n
.

We also know that f is bounded, so the difference converges to 0 as n → ∞.
Hence,the sequences Anf and Anf◦T have the same limsup and liminf.[Hau17][Hau]

□

Theorem 3.8 (Birkhoff ’s Ergodic Theorem). If T is an ergodic, measure-preserving
transformation of (Ω,F , P ) then for every random variable X ∈ L1,

lim
n→∞

1

n

n−1∑
j=0

X ◦ T j = EX.

Theorem 3.9 (The Kingman’s Subadditive Ergodic Theorem [Ste89]). If T is a
measure-preserving transformation of the probability space (Ω,F , µ) and {gn, 1 ≤
n < ∞} is a sequence of integrable functions satisfying

gn+m(x) ≤ gn(x) + gm(Tnx),

then

lim
n→∞

gn(x)

n
= g(x) ≥ −∞

with probability one.

Remark 3.10. We will now write Kingman’s Subadditive Ergodic Theorem in the
language of sequence and probability, which gives us a more direct application to
the first passage percolation model we wish to study.

Let {Xmn}0≤m≤n be a family of random variables which satisfies the conditions
below.

(1) X0n ≤ X0m +Xmn for all 0 < m < n.
(2) The distribution of the sequences {Xm+h,m+h+k}k≥l is the same for all

h ≥ 0.
(3) For each k ≥ 1, the sequence {Xnk,(n+1)k}n≥0 is stationary.

(4) E[X+
01] < ∞
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Then

lim
n→∞

1

n
X0n

exists or tends to−∞ with probability one. If the stationary sequence {Xnk,(n+1)k}n≥0

is ergodic, then the limit limn→∞
1
nX0n is constant with probability one and is equal

to

lim
n→∞

1

n
EX0n = inf

n≥0

1

n
EX0n

If, in addition to the four conditions listed above one has

EX−
0n ≥ −An

for some A < ∞ then the convergence of limn→∞
1
nX0n also holds in L1.[ADH17]

4. Time Constant

Theorem 4.1. Assume that

Emin{t1, · · · , t2d} < ∞
where ti are independent and identically distributed copies of t(e). Then there exists
a time constant µ(v1) ∈ [0,∞) , where v1 is the unit vector in the direction of x1,
such that

lim
n→∞

T (0, nv1)

n
= µ(v1)

Historically, one began not with the study of all of B(t), which is the continuous
shape covering the reachable points within time t, but with its furthest point to
the right on the first coordinate axis, i.e., the point (x, 0) ∈ B(t) with the greatest
x. [Kes06]

Definition 4.2. We define am,n as the point to point passage time where

am,n = T ((m, 0, · · · , 0), (n, 0, · · · , 0))
and bm,n as the point to line passage time, or ”point to hyper-plane passage time”
in higher dimensions, where

bm,n = inf{T ((m, 0, · · · , 0), (n, k2, · · · , kd)) : k2, · · · , kd ∈ Z}
Specifically, we care about the two special cases for am,n and bm,n where the point
m is the origin, namely

a0,n = T (0, (n, 0, · · · , 0))
and

b0,n = inf{T (0, (n, k2, · · · , kd)) : k2, · · · , kd ∈ Z}

Theorem 4.3. If

(4.4) Emin{t1, · · · , t2d} < ∞
and

(4.5) Emin{td1, · · · , td2d} < ∞, < ∞
then there exists a constant µ = µ(F, d) < ∞, the so-called time constant, such that

(4.6) lim
n→∞

1

n
a0,n = lim

n→∞

1

n
b0,n = µ

with probability one and in L1.
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Remark 4.7. The requirement in (4.4) is not necessary for the existence of the
time constant. We can define a time constant µ̂ < ∞ [ADH17], but then one only
obtains

(4.8)
1

n
a0,n → µ̂ in probability and

1

n
b0,n → µ̂ with probability 1.

Proof. To prove this theorem, we only need to apply the Kingman’s Subadditive Er-
godic Theorem to the family of {am,n}0<m≤n and {bm,n}0<m≤n in the first passage
percolation model.

We will now check whether {am,n}0<m≤n satisfies all the conditions in Remark
3.10 for the Kingman’s Subadditive Ergodic Theorem.

The equivalence of condition (1) in Remark 3.10 is

a0,n ≤ a0,m + am,n

for all 0 < m < n.
This is true by definition of a. Recall that

a0,n = T (0, (n, 0, · · · , 0)) = inf{T (r) : r is a path from 0 to (n, 0, · · · , 0))}
Since the path from 0 to (m, 0, · · · , 0), then to (n, 0, · · · , 0) is obviously a path
from 0 to (n, 0, · · · , 0), the infimum of the time traveling from 0 to (n, 0, · · · , 0) is
less than or equal to the time traveling from 0 to (m, 0, · · · , 0) and (m, 0, · · · , 0) to
(n, 0, · · · , 0) combined as demonstrated in figure 4. Thus, we have a0,n ≤ a0,m +
am,n.

Figure 3. Path from 0 to (m, 0, · · · , 0) then to(n, 0, · · · , 0)

The equivalence of condition (2) in Remark 3.10 is

The distribution of the sequences {am+h,m+h+k}k≥1 is the same for all h ≥ 0.

We will write out a few terms to see how this is true.
For h = 0, we have the sequence

(4.9) {am,m+k}k≥1 = {am,m+1, am,m+2, am,m+3, am,m+4, · · · }.
For h = 1, we have the sequence

(4.10) {am+1,m+1+k}k≥1 = {am+1,m+2, am+1,m+3, am+1,m+4, am+1,m+5, · · · }.
For h = 2, we have the sequence

(4.11) {am+2,m+2+k}k≥1 = {am+2,m+3, am+2,m+4, am+2,m+5, am+2,m+6, · · · }.
Notice that the sequence in (4.10) is only the path in (4.9) shifted to its right

by 1. Since every path e in the graph is independent identically distributed, the
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distribution doesn’t change when we shift every point by 1. Similarly, the sequence
in (4.11) is the path in (4.9) shifted 2 unit to its right, which also doesn’t change
the distribution. We can then use induction to prove that every sequence has the
same distribution.

The equivalence of condition (3) in Remark 3.10 is

For each k ≥ 1, the sequence {ank,(n+1)k}n≥0 is stationary.

Again, we will write out a few terms to form a proof by induction.
For k = 1, we have the sequence

(4.12) {an,n+1}n≥0 = {a0,1, a1,2, a2,3, a3,4, · · · }.

For k = 2, we have the sequence

(4.13) {a2n,2(n+1)}n≥0 = {a0,2, a2,4, a4,6, a6,8, · · · }.

For k = 3, we have the sequence

(4.14) {a3n,3(n+1)}n≥0 = {a0,3, a3,6, a6,9, a9,12, · · · }.

Recall the definition of stationary sequences at Definition 3.5. For (4.12) we have,
for anyN , {a0,1, a1,2, · · · , aN−1,N} has the same distribution as {ak,k+1, ak+1,k+2, · · · , ak+N−1,k+N}.

The equivalence of condition (4) in Remark 3.10 is

E{a+01} < ∞

which is true by definition.
□

Theorem 4.15. [Kes06] Let {Xmn}0≤m≤n be a family of random variables which
satisfies the conditions (1)-(3) below.

(1) X0n ≤ X0m +Xmn for all 0 < m < n.
(2) The distribution of the sequences {Xm+h,m+h+k}k≥1 is the same for all

h ≥ 0.
(3) Emin{td1, · · · , td2d} < ∞ where t1, · · · , t2d are i.i.d. random variables with

distribution F.

Then there exists a nonrandom convex set B0 ⊂ Rd, which is invariant under
permutations of the coordinates and under reflections in the coordinate hyperplanes,
has nonempty interior, and which is either compact or equals all of Rd, and has the
following property:

(1− ϵ)B0 ⊂ 1

t
B(t) ⊂ (1 + ϵ)B0

eventually with probability 1. If B0 = Rd, then for all ϵ > 0

{x : |x| ≤ ϵ−1} ⊂ 1

t
B(t)

eventually with probability one. If condition (3) fails, then

lim sup
v→∞

1

|v|
T (0, v) = ∞

with probability one.
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Remark 4.16. The idea of the proof of Theorem 4.15 is to first use subadditivity
to demonstrate the linear growth of B(t) in a fixed rational direction. This implies
that, with probability one, we have the right growth rate in a countable dense set
of directions simultaneously. To obtain the full result from this, we need some
bound which allows us to interpolate between these directions, insuring that the
convergence occurs along all directions with probability one [ADH17].

There are different ways to implement this interpolation step. Here we sketch
a method which first appeared in [Han13] for establishing the interpolative bound
just mentioned. We want to introduce a lemma about the difference estimate and
then define a concept of “good” vertex such that we can show further claims.

Lemma 4.17 (Difference estimate). Let v ∈ M. Then there exists a constant
K < ∞ such that, for any x ∈ Zd,

(4.18) P

(
sup

z∈Zd,z ̸=x

T (x, z)

||x− z||1
< K

)
> 0

We will call an x in Zd for which the event appearing in (4.18) occurs a “good”
vertex.

Lemma 4.19. Let ζ ∈ Zd \ {0}. For a given realization of edge-weights, denote
by (nk) the sequence of natural numbers such that nkζ is a good vertex. Then with
probability one, the sequence (nk) is infinite and limk(

nk+1

nk
) = 1.

Proof. We know from the Ergodic theorem that the sequence (nk) is infinite almost
surely. Let Bm denote the event that mζ is a good vertex. Then

k

nk
=

1

nk

nk∑
i=1

1Bi .

The right side converges to the probability in 4.18 by the ergodic theorem. Thus,

nk+1

nk
=

(
nk+1

k + 1

)(
k

nk

)(
k + 1

k

)
→ 1

almost surely.
□

We will now prove Theorem 4.15.

Proof of Theorem 4.15. The following proof is adapted from [ADH17].
Let Ξ1 denote the event that limn T (0, nq)/n = µ(q) for all q having rational

coordinates; let Ξ2 denote the event that for every ζ ∈ Zd, the sequence (nk) defined
in Lemma 4.19 is infinite and that the ratio of successive terms tends to one. From
here, the proof of Theorem 4.15 proceeds by contradiction. Assume the Shape
Theorem does not hold. Then there exists δ > 0 and a collection of edge-weight
configurations D(δ) with P (Dδ) > 0 such that, for every outcome in Dδ, there are
infinitely many vertices x ∈ Zd with

(4.20) |T (0, x)− µ(x)| > δ||x||1.
Since P(Ξ1) = 1 = P(Ξ2), the event Dδ ∩ Ξ1 ∩ Ξ2 contains some outcome ω;

we claim that ω has contradictory properties. On outcome ω, there must exist a
sequence (xi) ⊂ Zd satisfying the condition in (4.20). We can assume that xi/||xi||1
converges to some y with ||y||1 = 1 by compactness of the unit sphere. Let δ′ > 0
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be arbitrary; we will fix its value at the end of the proof. We first choose some
large N such that ||xn/||xn||1 − y||1 < δ′ and such that

|µ(xn)− ||xn||1µ(y)| < δ||xn||1/2

for n > N . Using our assumption in (4.20), we have for n > N :

(4.21) |T (0, xn)− ||xn||1µ(y)| < δ||xn||1/2

Next, we set up a sequence of approximating good vertices. We find some z ∈ Rd,
||z||1 = 1 such that ||z − y||1 < δ′, with the additional property that z = x/M for
some x ∈ Zd and some positive integer M . This can be done because vectors with
rational coordinates are dense in the unit sphere. On ω, there must exist a sequence
(nk) such that nkMz is a good vertex and such that nk+1/nk tends to one. For
any n, there exists a value of k such that

nk+1M ≥ ||xn||1 ≥ nkM ;

denote this value by k(n). Finally, fix K > 0 such that nk+1 < (1 + δ′)nk and

|T (0, nkMz)

nkM
− µ(z)| < δ′

for all k > K. We now let n > N be large enough that k(n) > K.
Now, we will find the contradiction.
We have that T (0, ny) − nµ(y) is of order n for infinitely many n. Since µ is a

norm, µ(y) and µ(z) are arbitrarily close and since infinitely many of the {nz} are
good vertices, T (0, ny) and T (0, nz) are arbitrarily close. Thus T (0, nz)−nµ(z) is
large – but this is counter to the properties assumed for ω. To turn the above into
a rigorous estimate, write k for k(n) and expand

(4.22)

∣∣∣∣T (0, xnk
)

||xn||1
− µ(y)

∣∣∣∣ = ∣∣∣∣T (0, xn)− T (0, nkMz)

||xn||1
− µ(y)

∣∣∣∣
+

T (0, nkMz)

nkMz

(
1− nkM

||xn||1

)
+

∣∣∣∣T (0, nkMz)

nkMz
− µ(z)

∣∣∣∣+ |µ(z)− µ(y)|

We wish to find an upper bound for each term on the right hand side of equation
4.22 in terms of δ′, which gives us a overall upper bound of the left hand side of
the equation.

(1) We know that n > K and k > K, so we have

nkM ≤ ||xn||1 ≤ (1 + δ′)nkM,

||nkMy − nkMz||1 ≤ δ′nkM,

and

|| xn

||xn||1 − ||y||1
||1 < δ′.

Combining these three equations, we get

||xn − nkMz||1 ≤ 2δ′||xn||1.

Since we also know that nkMz is a good vertex, we have

T (0, xn)− T (0, nkMz) ≤ ∥||xn − nkMz||1 ≤ 2Kδ′||xn||1
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(2) From the first term, we already know that 1 − nkM
||xx||1 is bounded above.

Since we also know that k > K, we get the overall bound for the second
term

[µ(z) + δ′](1− (1 + δ′)−1).

(3) Since k is chosen to be greater than K, this term is bounded above by δ′.
(4) There are two cases for µ. If µ is identically zero, this term is trivially zero.

If µ is not identically zero, it is a norm on Rd and is thus bounded by the
|| · ||1 norm:

cL|| · ||1 ≤ µ(·) ≤ cU || · ||1.

Since ||z−y||1 < δ′, given µ, there exists some constant C such that this
term is bounded above by Cδ′.

Thus, given δ′, there is some ϵ such that ϵ → 0 as δ′ → 0, and that ϵ||xn||1 is
an upper bound for the left side of 4.22. However, since δ′ is arbitrary, we can find
some δ′ such that ϵ||xn||1 is less than the right hand side of 4.22. Thus, we have
found a contradiction.

□

5. Simulation

In order to better understand the theorem, it is very helpful to visualize the
result. It can be used to form conjectures or provide visual aids after we know the
result. Computer simulation adds empirical evidence to the theorems we proved to
help us have a more solid perception of the theorem. Simulations is widely used
to study different characters of first passage percolation. Alm and Deijfen[AD14]
studied the growth of first passage percolation on Z2 in a certain direction and
the shape of its reachable set. They ran simulations on different distributions and
studied the behavior of the estimated time constant. Here, we simulated the graph
of first passage percolation using Dijsktra algorithm. Since we are interested in the
behavior of reachable sets, we simulated the graph given different time constraints.

5.1. Dijkstra Algorithm. In order to calculate the travel time from the origin to
each point on the graph, we use Dijkstra algorithm to find the shortest travel time.
Conceived by Edsger W. Dijkstra in 1956, Dijkstra algorithm finds the shortest
paths between nodes in a weighted graph, which can be directly applied on the
first passage percolation model to calculate the time needed to reach a certain
point. Given a distribution, we will first generate the t(e) for every edge, and then
calculate the time needed to reach each point using Dijkstra algorithm. We will
then filter all the points that are reachable within time t and generate a graph for
B(t) for that specific distribution and time limit.

The part of the code for Dijkstra Algorithm is adapted from the code written
by Divyanshu Mehta. [Meh]

5.2. Simulation. We will run the simulation for three different distributions in
which one is discrete and two are continuous. We will run each distribution on 4
to 6 time limits that are deemed appropriate to demonstrate the evolution of the
graph. Note that all the graphs are not to scale and we place emphasis on the
shape of the graph.
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5.2.1. Random Integer. First, we want to simulate the distribution of a discrete
case where t(e) takes its value with equal probability among 1, 2, 3, 4, 5. This can
be understood as rolling a fair dice with 5 sides, where each path takes the number
on the dice to pass.

P (1) = 0.2, P (2) = 0.2, P (3) = 0.2, P (4) = 0.2, P (5) = 0.2

We take time t = 10, 30, 50, 100, 200, and 300 and simulate the graph for B(t) as
shown in figure 4.

Figure 4. Simulation for Random Integers 1 to 5
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5.2.2. Uniform Distribution. Next, we want to examine the case when the distribu-
tion is continuous. We will simulate the graph for t(e) takes its value on a uniform
distribution on [0, 1], where

f(x) =

{
1, if x ∈ [0, 1]

0, if x < 0 or x > 1

and

F (x) =


0, if x < 0

x, if x ∈ [0, 1]

1, if x > 1

We take time t = 5, 10, 30 and 50 and simulate the graph for B(t) as shown in
figure 5.

Figure 5. Graph for Uniform Distribution [0, 1]
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5.2.3. Exponential. Last but not least, we want to examine the case where t(e)
taking its value on a exponential distribution, where

f(x) =

{
e−x, if x > 0

0, if x < 0

and

F (x) =

{
0, if x < 0

1− e−x, if x ≥ 0

Note that this case has its special application in the real world, namely the Eden
growth model, which will be further discussed in section 6.3.

We take time t = 10, 30, 50 and 100 and simulate the graph for B(t) as shown in
figure 6.

5.3. Summary. We can clearly see the trend that the shape of B(t) gets more
and more smooth and circular as time increase in all three simulations, which is
consistent with our theories.

6. Application

The first passage percolation model has various applications in different fields.

6.1. Physics. It is used in physics to study the traveling of particles given cer-
tain restrictions characterized by the traveling time in the first passage percolation
model. V. M. Joshi studied how a particle travels on the plane square lattice from
the origin to the points (n, 0), n = 1, 2, the path to (n, 0) being subject to the
restrictions 0 ≤ x ≤ n, 0 ≤ y ≤ 1. [Jos77]

6.2. Social Sciences. The model can also be easily adapted to study social prob-
lems like rumor-spreading. Based on a model introduced by Maki and Thomp-
son[Gan00], Aidan Sudbury showed that the proportion of the population never
hearing the rumour converges in probability to 0.203 as the population size tends
to ∞.[Sud85] https://www.overleaf.com/project/64b319ae7d4b3be6af80ae3c

6.3. Biology. First passage percolation also has its application in biology, specifi-
cally the Eden growth model. The Eden growth model studies the growth of spe-
cific types of clusters such as bacterial colonies and deposition of materials. [Ger18]
These clusters grow by random accumulation of material on their boundary, which
could be characterized by first passage percolation of the exponential distribution.
One can easily notice the similarity between the graph of a study for Eden growth
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Figure 6. Graph for Exponential Distribution

model (see figure 7 [Fer06]) and the simulated graphs for first passage percolation
in section 5.2.3.
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Figure 7. Demonstration for the Eden Growth Model
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