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Abstract. In this paper, I explore some basic linear Partial Differential Equa-

tions, namely Laplace’s Equation, Poisson’s Equation and the Heat Equation,
along with some of their probabilistic interpretations.
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1. Preliminaries

The study of PDEs in general is concerned with equations involving a function
of two or more variables and its partial derivatives. Among the myriad of possible
combinations of these components, we are most interested in those that are mo-
tivated to model physical and probabilistic phenomena, e.g., transport equation,
heat equation, wave equation, etc. Though some rigor will of course be expected,
this paper will place more emphasis on interpretations, intuitions and why things
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should be true, instead of going through the tedium of rigor, as resources are vast
for this use [1].

Throughout this paper, let Ω be an open subset of Rn and u be a function
Ω → R. Then we denote the partial derivatives:

∂u

∂xi
=: uxi ,

∂2u

∂xi∂xj
=: uxixj , etc.

We view Du = ∇u = (ux1
, . . . , uxn

) as a vector. For k = 2, we view D2u as the
usual Hessian matrix.

With this, we are now interested in solving for u : Ω → Rn that satisfies some
relationship

F (Dku(x), Dk−1u(x), . . . , u(x), x) = 0 in Ω.

By solving, we mean finding all u satisfying the above conditions, or possibly
only a subset of all such solutions that satisfies auxiliary boundary conditions on
∂Ω. Oftentimes we hope to find explicit and simple formulae for these solutions,
but in the case that we can’t, we shall deduce existence and properties of those
solutions. Luckily for us, the PDEs under inspection for this paper do have explicit
formulae that are relatively simple.

It should also be stated that for our purposes, when derivatives are concerned,
one can think of them as classical derivatives, meaning that the original function
should be imposed some continuity conditions for such derivatives to exist in the
first place. However, the theory of weak solutions would generalize this notion of
derivatives further in the absence of such continuity conditions, a more advanced
topic that is not the focus of this paper.

2. The Laplacian

Definition 2.1. Let u : Ω → R. Then the Laplacian of u is

∆u :=

n∑
i=1

uxixi = tr(D2u).

This operator will be of utmost importance, so let us develop some intuition
about what it means.

2.1. Divergence of Gradient. The reader might have realized that ∆u = div(Du),
an intuition that will be clearer once put into a context:

(2.2) ∆u = 0 in Ω.

This is Laplace’s Equation. A standard interpretation of a function u satisfying
(2.2) is that it represents a chemical concentration or heat in equilibrium. This
means that the net flux of the “flow” F over any sufficiently smooth boundary ∂V
of a subregion V in Ω is 0: ˆ

∂V

F · νdS = 0,

which, by Divergence Theorem, impliesˆ
V

divF =

ˆ
∂V

F · νdS = 0.
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The selection of ∂V was arbitrary, so divF = 0 in Ω. In such physical systems, what
would appropriately represent such “flow” F? It is reasonable that the quantity
flows from regions of higher to lower concentrations, therefore

F = −aDu,

for some proportionality constant a > 0. WLOG, assume a = 1. It follows that

0 = divF = div(−Du) = −∆u.

2.2. Heat Flow. What if the RHS is not 0? The Poisson’s Equation,

(2.3) −∆u(x) = f(x) in Ω,

describes to us a system (heat) that is in equilibrium, however this time with an
external source of heat f throughout Ω. f(x) + ∆u(x) = 0 implies that whatever
heat that was supposed to diverge out of point x, ∆u(x), is recompensated by the
external source f(x). More concretely, for sufficiently smooth boundary ∂V of a
subregion V of Ω, ˆ

∂V

−Du · νdS =

ˆ
V

div(−Du) =

ˆ
V

f(x)

to show the recompensation over V .
Sometimes it might be easier to visualize heat as a function of time and space,

then consider its evolution in time. This is described by the non-homogeneous Heat
Equation for u : Ω× [0,∞) → R in both time and space:

(2.4) ut(x, t)−∆xu(x, t) = f(x, t) in Ω× [0,∞),

where ∆xu(x, t) only sums over derivatives in x. Reshuffling (2.4):

ut(x, t) = ∆xu(x, t) + f(x, t),

we can similarly interpret u(x, t) to be the temperature at time t at position x on
Ω. At every moment in time, the change in temperature at a fixed x is the flux
flowing outwards with an instantaneous external source of heat f(x, t) added on
top of it. Understanding (2.4) as such, we can understand (2.3) as the steady-state
heat equation, when there is no longer any fluctuation in temperature over time.

To summarize, we can interpret u that satisfies (2.3) or (2.4) as the response
to sources f(x) or f(x, t) respectively. The easier cases will be when there is no
external source, i.e., f ≡ 0. Such a view of these PDEs shall come in handy later.

3. Laplace’s Equation and Poisson’s Equation

Definition 3.1. A C2 function u : Ω̄ → R is harmonic if it satisfies Laplace’s
Equation:

(3.2) ∆u = 0 in Ω.

It is easy to see that this equation is linear, meaning that if f, g : Ω̄ → R are
solutions to (3.2) then λf + µg is also a solution for λ, µ ∈ R. This serves as
our motivation to find simple solutions, potentially with some symmetries, so as to
build up to more complex solutions by linearly combining them.
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Proposition 3.3. Let u, v : Rn → R such that

∆u = 0, v(x) = u(Mx)

for some orthogonal matrix M . Then ∆v(x) = 0. In other words, Laplace’s Equa-
tion is rotationally invariant.

Proof. Using chain rule, we have

vxi(x) =

n∑
k=1

uxk
(Mx)Mki

⇒ vxixj
(x) =

n∑
l=1

n∑
k=1

uxkxl
(Mx)MkiMlj

M is orthogonal, so MMT = I ⇒
∑n

i=1 MkiMli = δkl where δkl is the Kronecker
delta, being 1 when k = l and 0 otherwise. Therefore

∆v(x) =

n∑
i=1

vxixi
(x)

=

n∑
i=1

n∑
l=1

n∑
k=1

uxkxl
(Mx)MkiMli

=

n∑
l=1

n∑
k=1

n∑
i=1

uxkxl
(Mx)MkiMli

=

n∑
l=1

n∑
k=1

n∑
i=1

uxkxl
(Mx)∆kl

=

n∑
k=1

uxkxk
(Mx) = ∆u(Mx) = 0.

□

3.1. Fundamental Solution of Laplace’s Equation. Since Laplace’s Equation
is rotationally invariant, we can first search for harmonic u(x) that is radial: u(x) =
v(|x|) = v(r) in Ω = Rn. Minor computations yield

0 = ∆u = v′′(r) +
n− 1

r
v′(r),

which implies, if v′ ̸= 0,

v′′(r)

v′(r)
=

1− n

r

[log(|v′|)]′ = 1− n

r
log(|v′|) = (1− n) log r + a

v′ =
a

rn−1

v(r) =

b log r + c (n = 2),
b

rn−2
+ c (n ≥ 3),

for any b, c ∈ R.
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Definition 3.4. The function Φ : Rn\{0} → R

Φ(x) :=


− 1

2π
log |x| (n = 2),

1

n(n− 2)α(n)

1

|x|n−2
(n ≥ 3),

where α(n) is the volume of the unit ball in Rn, is the fundamental solution of
Laplace’s Equation. It is important to note that Φ is not well-defined at 0 and is
only harmonic on Rn\{0}.

3.2. Poisson’s Equation. It might be natural at this point to suggest a more
complex solution for Laplace’s Equation by convolving Φ and any f ∈ C2

c (Rn):

u(x) =

ˆ
Rn

Φ(x− y)f(y)dy.

The motivation for this is that since we have ∆Φ(x) = 0, so ∆Φ(x − y) = 0 (∆
operator in x) for fixed y, it should imply that integrating all these terms would
also form a harmonic u. However, this is not possible due to the singularity at
y = x. Φ(x − y) blows up, making swapping differentiation and integral signs
“∆u(x) = ∆

´
Rn Φ(x − y)f(y)dy =

´
Rn ∆Φ(x − y)f(y)dy = 0” unjustifiable and

incorrect.
As it turns out, convolving as above would yield us not a solution to Laplace’s

Equation, but to Poisson’s. For simplicity, we assume that f ∈ C2
c (Rn), a relatively

strong condition.

Theorem 3.5 (Solution of Poisson’s Equation). Given f : Rn → R, f ∈ C2
c (Rn),

then

(3.6) u(x) = (Φ ∗ f)(x) =
ˆ
Rn

Φ(x− y)f(y)dy

is C2 and solves Poisson’s Equation −∆u = f .

Proof. We want to first show that u is C2. By a quick change of variables (or,
simply rewriting the convolution expression):

u(x) =

ˆ
Rn

Φ(x− y)f(y)dy =

ˆ
Rn

Φ(y)f(x− y)dy.

This enables us to evaluate derivatives of x with derivatives of f . For h ̸= 0,

u(x+ hei)− u(x)

h
=

ˆ
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy

lim
h→0

u(x+ hei)− u(x)

h
= lim

h→0

ˆ
Rn

Φ(y)
f(x+ hei − y)− f(x− y)

h
dy.

It remains for us to show that the swapping of limit and integral signs is justified.
Since f ∈ C2

c (Rn), its first and second derivatives are continuous and have compact
support, which implies that they are bounded and uniformly continuous. Define
g(xi) = g(xi;x1, . . . , xi−1, xi+1, . . . , xn) := f(x) then g′ is uniformly continuous.
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Then, ∣∣∣∣f(x+ hei − y)− f(x− y)

h
− ∂f

∂xi
(x− y)

∣∣∣∣
=

∣∣∣∣g(x− y + h)− g(x− y)

h
− g′(x− y)

∣∣∣∣
= |g′(x− y + η)− g′(x− y)| (Mean Value Theorem, some |η| < |h|)
< ϵ

whenever |h| < δ(ϵ), since g′ is uniformly continuous. It follows that

f(x+ hei − y)− f(x− y)

h

unif.−−−→ ∂f

∂xi
(x− y),

which enables the swapping just like we wanted. Therefore

lim
h→0

u(x+ hei)− u(x)

h
=

ˆ
Rn

Φ(y)fxi
(x− y)dy,

with fxi
being continuous (from f ∈ C2), so u is C1. Applying the same argument

again, we get that u is C2. □
Following from the proof above,

∆u(x) =

ˆ
Rn

Φ(y)∆xf(x− y)dy

is justified. Using this, we want to show that −∆u = f . Here are a few important
observations:

a) Φ blows up at 0, so we shall isolate it inside a small ball.
b) The gradual goal will be to “shift” the ∆ operator from f to Φ, using the

Green’s identity below, that is essentially the multivariable version of the

integration by parts
´ b

a
uv′′dx = uv′ |ba −

´ b

a
u′v′dx:

(3.7)

ˆ
Ω

u∆vdx =

ˆ
∂Ω

u
∂v

∂ν
dS −

ˆ
Ω

(Du ·Dv)dx.

c) These estimates will be important throughout the proof:

|DΦ(x)| ≤ C

|x|n−1
, |D2Φ(x)| ≤ C

|x|n
,

which can be easily and explicitly derived from the Φ(x) expression.

Let us start. Fix ϵ > 0, we isolate the singularity

u(x) =

ˆ
B(0,ϵ)

Φ(y)∆xf(x− y)dy +

ˆ
Rn\B(0,ϵ)

Φ(y)∆xf(x− y)dy =: Iϵ + Jϵ,

where B(x, r) denotes the ball of radius r, center x in Rn.
Estimating Iϵ: From above, we know that second derivatives in f are bounded,

thus so is ∆xf(x − y). We therefore just need to estimate
´
B(0,ϵ)

|Φ(y)|dy, where
we readily change to polar coordinates:
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(1) For n = 2,

ˆ
B(0,ϵ)

|Φ(y)|dy =

ˆ
B(0,ϵ)

C| log |y||dy

= C

ˆ ϵ

0

r| log r|dr

≤ Cϵ2 log ϵ.

(2) For n ≥ 3,

ˆ
B(0,ϵ)

|Φ(y)|dy =

ˆ
B(0,ϵ)

Cn
1

|y|n−2
dy

= CnAn

ˆ ϵ

0

rn−1r2−ndr

= Cnϵ
2.

where An is the area of the unit sphere Sn−1. This gives us

(3.8) |Iϵ| ≤

{
Cϵ2| log ϵ| (n = 2)

Cϵ2 (n ≥ 3)
.

Notation: The constants C and Cn absorb all constant factors in the evaluations
above, so their exact value might change equation-to-equation.

Estimating Jϵ: Noticing that ∆xf(x− y) = ∆yf(x− y), ∆yΦ(y) = 0 away from
the origin and using (3.7) twice,

Jϵ =

ˆ
Rn\B(0,ϵ)

Φ(y)∆yf(x− y)dy

=

ˆ
∂B(0,ϵ)

Φ(y)
∂f(x− y)

∂ν
dS(y)−

ˆ
Rn\B(0,ϵ)

DΦ(y) ·Dyf(x− y)dy

=

ˆ
∂B(0,ϵ)

Φ(y)
∂f(x− y)

∂ν
dS(y) +

(ˆ
Rn\B(0,ϵ)

∆yΦ(y)f(x− y)dy

−
ˆ
∂B(0,ϵ)

∂Φ(y)

∂ν
f(x− y)dS(y)

)
=

ˆ
∂B(0,ϵ)

Φ(y)
∂f(x− y)

∂ν
dS(y)−

ˆ
∂B(0,ϵ)

∂Φ(y)

∂ν
f(x− y)dS(y)

=: Kϵ + Lϵ,

where ν denotes the inward pointing normal unit along ∂B(0, ϵ), since we have
flipped the boundary ∂Rn\B(0, ϵ) to ∂B(0, ϵ).

Estimating Kϵ: Similar to above, first derivatives in f are bounded and explicitly
calculating

´
∂B(0,ϵ)

|Φ(y)|dS(y) can show

(3.9) |Kϵ| ≤

{
Cϵ| log ϵ| (n = 2),

Cϵ (n ≥ 3).
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Estimating Lϵ: We can explicitly calculate this. On ∂B(0, ϵ),

∂Φ(y)

∂ν
= DΦ(y) · ν

=

(
−1

nα(n)

y

|y|n

)
· −y

|y|

=
1

nα(n)ϵn−1
,

where nα(n)ϵn−1 is, critically, the surface area of the sphere ∂B(0, ϵ)! Therefore,

Lϵ = −
ˆ
∂B(0,ϵ)

1

nα(n)ϵn−1
f(x− y)dS(y)

= −
 
∂B(0,ϵ)

f(x− y)dS(y)
ϵ→0−−−→ −f(x),(3.10)

where
ffl

denotes the average value over the specified integrating domain. From
(3.8), (3.9), (3.10) and letting ϵ → 0, we have −∆u = f . □

Remark 3.11. The above proof, though long, demonstrates the general direction
that is similarly employed to prove some other theorems in this paper.

Observation 3.12. We can interpret

(3.13) −∆Φ = δ0,

where δ0 is the Dirac measure on Rn, giving mass to the point 0. We can then
formally compute

−∆u(x) =

ˆ
Rn

∆xΦ(x− y)f(y)dy =

ˆ
Rn

δxf(y)dy = f(x).

In other words, Φ is the response to the unit impulse δ0. What we have then
done is to break up the impulse f over Rn into a linear combination of these unit
impulses over Rn. Since ∆ is linear, the response to the impulse f would be the
linear combination of the same coefficients of those unit impulse responses. This
gives a natural reason why u = Φ∗f should solve Poisson’s Equation. This theme of
breaking an impulse into more “elementary” impulses (in this case, unit impulses)
and utilizing the linearity of the system to arrive at a solution will continue to be
seen.

3.3. Properties of Harmonic Functions. Returning to Laplace’s Equation and
our understanding of it as heat in equilibrium, the reader might have a visualization
of how temperature at a certain spot should be some average of the nearby points.
This is indeed true, as seen in the following theorem:

Theorem 3.14 (Mean Value Property). If u ∈ C2(Ω) is harmonic, then

u(x) =

 
∂B(x,r)

u(y)dS(y) =

 
B(x,r)

u(y)dy

for any ball B(x, r) ⊆ Ω.
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Proof. We want to show that the average of u over sphere of any size r stays constant
(u(x)), so it is natural to attempt to show for v(r) :=

ffl
∂B(x,r)

u(y)dS(y), v′(r) = 0.

Re-parameterize y in terms of x and r:

v(r) =

 
∂B(0,1)

u(x+ rz)dS(z).

So

v′(r) =

 
∂B(0,1)

Du(x+ rz) · zdS(z)

=

 
∂B(x,r)

Du(y) · y − x

r
dS(y)

=

 
∂B(x,r)

∂u

∂ν
dS(y)

(3.7)
=

r

n

 
B(x,r)

∆u(y)dy = 0,

with the final factor r
n to account for the scaling change between the averages.

Therefore, v is constant, with the value

v ≡ lim
r→0

v(r) = lim
r→0

 
∂B(x,r)

u(y)dS(y) = u(x).

Since u(x) is the mean-value for every sphere, using polar coordinates one can show
that it is also the mean-value for every ball within Ω. □

Remark 3.15. The converse of Theorem 3.14 holds. That is, if u ∈ C2(Ω) satisfies

u(x) =

 
∂B(x,r)

udS

for each ball B(x, r) ⊆ Ω then u is harmonic.

Remark 3.16. Harmonic functions are therefore quite nice and smoothed out, as
the value at each point is the average of that of its surrounding points. This suggests
that there can’t be local maxima (minima) within Ω, as the average around the
maxima (minima) will be lower (higher) than the maxima (minima), contradicting
the mean-value property. We thus have the following.

Theorem 3.17 (The Strong Maximum Principle). Suppose u ∈ C2(Ω) ∩ C(Ω̄)
is harmonic in Ω, then maxΩ̄ u = max∂Ω u (the maximum lies on the boundary).
Moreover, if Ω is connected and there exists x0 ∈ Ω such that u(x0) = maxΩ̄ u then
u is constant.

Proof. See ([1], pg. 27). □

Remark 3.18. A similar Strong Minimum Principle can be derived using the same
approach.

Corollary 3.19 (Uniqueness). Let g ∈ C(∂Ω), f ∈ C(Ω). Then there exists at
most one solution u ∈ C2(Ω)∩C(Ω̄) of Poisson’s Equation with Dirichlet boundary
conditions

(3.20)

{−∆u = f in Ω,

u = g on ∂Ω.

Proof. Suppose u, ũ satisfy the above then w := u− ũ ∈ C2(Ω)∩C(Ω̄), is harmonic
and is 0 on the boundary ∂Ω. The Strong Maximum Principle implies w ≡ 0. □
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To end this subsection on the properties of harmonic functions, we will prove
that if u ∈ C2 is harmonic, then u ∈ C∞ — which is a very interesting statement
given that the structure of the original PDE only has second-order derivatives, yet
we are claiming that it is infinitely differentiable. We will state and prove a theorem
that is slightly stronger than this.

Theorem 3.21 (Smoothness). If u ∈ C(Ω) satisfies mean-value property for each
ball B(x, r) ⊆ Ω then u ∈ C∞(Ω)

Proof. Let η be the standard mollifier, which is a radial, C∞ function with support
B(0, 1) and

´
Rn η = 1. Then ηϵ is the rescaled η such that its support is B(0, ϵ)

while having
´
Rn ηϵ = 1 still. Then uϵ := ηϵ ∗ u defined for x ∈ Ωϵ := {x ∈ Ω |

d(x, ∂Ω) > ϵ} is also C∞ ([1], pg. 714). x ∈ Ωϵ simply means that it is possible to
draw the ball B(x, ϵ) ⊂ Ω. Then we show that u ∈ C∞ by showing u ≡ uϵ in Ωϵ.
Indeed,

uϵ(x) =

ˆ
Ω

ηϵ(x− y)u(y)dy

=

ˆ
B(x,ϵ)

ηϵ(x− y)u(y)dy

= (−1)n
ˆ
B(0,ϵ)

ηϵ(z)u(x− z)dz

= (−1)n
ˆ ϵ

0

ˆ
∂B(0,1)

ηϵ(rw)u(x− rw)rn−1dS(w)dr

Since ηϵ is radial, there exists ϕϵ such that ηϵ(rw) = ϕϵ(r) for all w ∈ ∂B(0, 1).
Therefore,

uϵ(x) = (−1)n
ˆ ϵ

0

ϕϵ(r)

ˆ
∂B(0,1)

u(x− rw)rn−1dS(w)dr

=

ˆ ϵ

0

ϕϵ(r)

ˆ
∂B(x,r)

u(v)dS(v)dr

=

ˆ ϵ

0

ϕϵ(r)(r
n−1Anu(x))dr (MVP)

= u(x)

ˆ ϵ

0

ϕϵ(r)r
n−1Andr

= u(x)

ˆ ϵ

0

ϕϵ(r)r
n−1

ˆ
∂B(0,1)

1dS(w)dr

= u(x)

ˆ ϵ

0

rn−1

ˆ
∂B(0,1)

ηϵ(rw)dS(w)dr

= u(x)

ˆ ϵ

0

ˆ
∂B(0,r)

ηϵ(v)dS(v)dr

= u(x)

ˆ
B(0,ϵ)

ηϵ(z)dz = u(x)

Therefore u ∈ C∞(Ωϵ) for each ϵ > 0. □
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3.4. Poisson’s Equation with Dirichlet Boundary Conditions. What hap-
pens if we impose additional Dirichlet boundary conditions on our Poisson’s Equa-
tion, i.e., a value for our solution on the boundary ∂Ω, as we briefly did in (3.20)?
What modifications would we have to make to our existing general solution (3.6)
to cater to these new constraints?

Theorem 3.22 (Representation Formula using Green’s function). If u ∈ C2(Ω̄)
solves (3.20) for Ω ⊆ Rn open, bounded with ∂Ω that is C1 then

(3.23) u(x) =

ˆ
Ω

f(y)G(x, y)dy −
ˆ
∂Ω

g(y)
∂G

∂ν
(x, y)dS(y) in Ω,

with G(x, y) constructed to satisfy:

(3.24) G(x, y) := Φ(y − x)− ϕx(y) for x, y ∈ Ω;x ̸= y

and the “corrector function” ϕx(y) found so that:

(3.25)

{
∆ϕx(y) = 0 in Ω,

ϕx(y) = Φ(y − x) on ∂Ω.

Proof. See ([1], pg. 34). □

Remark 3.26. We omit the proof and try to provide some intuition on what (3.23)
is doing. From (3.24), (3.25) and Observation 3.12 on how Φ is the response to the
unit impulse δ0, we can symbolically write for Gx(y) := G(x, y)

(3.27)

{−∆Gx(y) = −∆(Φ(y − x)− ϕx(y)) = δx in Ω,

Gx(y) = Φ(y − x)− ϕx(y) = 0 on ∂Ω.

Gx(y) is therefore the response throughout Ω to the unit impulse at x that
vanishes at the boundary ∂Ω. Thus, the first part of (3.23) contributes to solve
−∆u = f per our previous approach. The second part handles the continuity of u
from in Ω to u ≡ g on ∂Ω.

Remark 3.28. Oftentimes finding such G will be difficult, and only for certain
Ω having some sort of symmetry (e.g., the half space Rn

+ or ball B(x0, r)) explicit
formulae for G can be found ([1], pg. 36). The symmetry enables us to make
an informed guess of the corrector function ϕx(y) so that G cancels out at the
boundary.

4. The Heat Equation

4.1. Fundamental Solution of the Heat Equation. In the same approach as
for Laplace’s Equation, we try to find a solution that is “fundamental” for the
homogenous heat equation

(4.1) ut −∆u = 0 in Ω× (0,∞),

with Ω ⊆ Rn open, u(x, t) : Ω̄ × [0,∞) → R unknown, and ∆u = ∆xu only in the
spatial variables.

The first thing to notice is that there is a certain scaling ratio between x and
t, i.e., if u(x, t) solves (4.1) then ũ(x, t) := λαu(λx, λ2t) (invariant under dilation
scaling) for any λ, α would also solve (4.1). Therefore, a family of solutions is
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characterized by a scaling factor α and a “unit-less” function v defined when λ =
t−1/2:

(4.2) ũ(x, t) = t−α/2u

(
x√
t
, 1

)
=: t−α/2v

(
x√
t

)
.

We then opt for v to be radial (similar to Laplace’s), with a corresponding α = n
2

so we can arrive at an explicit solution. Detailed derivations can be found in ([1],
pg. 46).

Definition 4.3. The function Φ : Rn × (R\{0}) → R

(4.4) Φ(x, t) :=


1

(4πt)n/2
e−

|x|2
4t on Rn × (0,∞),

0 on Rn × (−∞, 0),

is the fundamental solution of the heat equation.

Lemma 4.5. ˆ
Rn

Φ(x, t)dx = 1 ∀ t > 0.

Remark 4.6. We wanted Φ to have the property above and this was the point of
the additional scaling constant 1

(4π)n/2 . Moreover, Φ(x, t) is generally well-behaved

around (x ̸= 0, t → 0), but has a singularity at the origin (0, 0).

4.2. Initial-value Problem. We first visit the initial-value problem

(4.7)

{
ut −∆u = 0 on Rn × (0,∞),

u = g on Rn × {t = 0}. .

In other words, (4.7) asks: With initial temperature g, how does heat propagate
with no external impulse? We know that Φ(x, t) solves the heat equation away
from the singularity (0, 0), therefore so does Φ(x − y, t) for fixed y ∈ Rn. Thus,
convolving Φ over the spatial variables with any g : Rn → R should also solve the
heat equation away from the singularity. There are no blow-up issues for t > 0, so
this behavior is expected. Perhaps what’s surprising is that this convolution, solves
the initial-value problem, i.e., it approaches g as t → 0.

Theorem 4.8 (Solution of homogenous problem). Assume g ∈ C(Rn) ∩ L∞(Rn),
and define for t > 0, x ∈ Rn,

(4.9) u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y)dy =
1

(4πt)n/2

ˆ
Rn

e−
|x−y|2

4t g(y)dy,

then

(1) u ∈ C∞(Rn × (0,∞)) and solves the homogenous heat equation.
(2) lim(x,t)→(x0,0) u(x, t) = g(x0) for each point x0 ∈ Rn.

Proof. We omit the proof for (1) as the intuition is above. See ([1], pg. 47).
To prove (2), fix x0 ∈ Rn and ϵ > 0. Using Lemma 4.5, we then estimate:

|u(x, t)− g(x0)| = |
ˆ
Rn

Φ(x− y, t)g(y)dy − g(x0)

ˆ
Rn

Φ(x− y, t)dy|

≤
ˆ
B(x0,δ)

Φ(x− y, t)|g(y)− g(x0)|dy

+

ˆ
Rn\B(x0,δ)

Φ(x− y, t)|g(y)− g(x0)| =: I + J
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for some δ. We will then control I through the continuity of g and control J through
the decay of Φ when y is farther away.

Since g ∈ C(Rn), choose δ = δ(ϵ) such that |y − x0| < δ ⇒ |g(y) − g(x0)| < ϵ.
Then

I ≤ ϵ

ˆ
B(x0,δ)

Φ(x− y, t) ≤ ϵ.

To control J , we see that y is at least δ away from x0, while x → x0 is arbitrarily

close to x0. This is convenient as Φ(x − y, t) = Ce−
|x−y|2

4t and thus the “speed of
decay” |x−y| has a lower bound. Concretely, if |x−x0| < δ

2 then |y−x| ≥ 1
2 |y−x0|.

Therefore,

J ≤ 2||g||L∞

ˆ
Rn\B(x0,δ)

Φ(x− y, t)dy

≤ C

tn/2

ˆ
Rn\B(x0,δ)

e−
|x−y|2

4t dy

≤ C

tn/2

ˆ
Rn\B(x0,δ)

e−
|y−x0|2

16t dy

=
C

tn/2

ˆ ∞

δ

e−
r2

16t rn−1dr
t→0+−−−−→ 0,

with the last convergence owing to the exponential decaying much faster than poly-
nomials. Therefore if |x−x0| < δ

2 and t > 0 small enough, |u(x, t)−g(x0)| < 2ϵ. □

Observation 4.10. We can write

(4.11)

{
Φt −∆Φ = 0 in Rn × (0,∞),

Φ = δ0 on Rn × {t = 0},

which informally makes, on Rn × {t = 0}, u(x) =
´
Rn δxg(y)dy = g(x). In other

words, this means that Φ is the representation of how heat propagates with an
initial unit impulse δ0 and no external impulse. It is then understandable that
the (linear) propagation of initial temperature g is just the integration of all these
responses with corresponding coefficients!

4.3. Nonhomogenous Problem. The nonhomogenous, initial-value problem is

(4.12)

{
ut −∆u = f in Rn × (0,∞),

u = 0 on Rn × {t = 0}.

This time, the problem asks for how heat propagates given no initial temperature,
but at every time τ , an external impulse fτ (x) := f(x, τ) is fed into Rn. At
first glance, this might look very different from the homogenous problem from
above; after all, 0 and the functions f (or g) are switched! However, due to the
linearity of the system, there is no difference between the solution when injecting
the external impulse f(x, t) and linearly combining solutions of “new” propagation
processes that start at different times with (shifted) initial conditions as exactly
these impulses. Concretely, for fixed τ , consider (4.9) shifted in time with time-
adjusted initial conditions. Define

(4.13) uτ (x, t) :=

ˆ
Rn

Φ(x− y, t− τ)fτ (y)dy =

ˆ
Rn

Φ(x− y, t− τ)f(y, τ)dy,
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then us would solve the homogenous heat equation on Rn× (τ,∞) with initial con-
ditions fτ . To solve (4.12), one simply linearly combines these processes throughout
time.

Theorem 4.14 (Solution of nonhomogenous problem). Define

(4.15) u(x, t) :=

ˆ t

0

ˆ
Rn

Φ(x− y, t− τ)f(y, τ)dydτ.

Then,

(1) ut(x, t)−∆u(x, t) = f(x, t) on Rn × (0,∞).
(2) lim(x,t)→(x0,0) u(x, t) = 0 for each point x0 ∈ Rn.

Proof. Intuitions are provided above. See ([1], pg. 50). □

Remark 4.16. Of course, we can combine (4.9) and (4.15):

(4.17) u(x, t) =

ˆ
Rn

Φ(x− y, t)g(y)dy +

ˆ t

0

ˆ
Rn

Φ(x− y, t− τ)f(y, τ)dydτ

to solve

(4.18)

{
ut −∆u = f in Rn × (0,∞),

u = g on Rn × {t = 0}.

Remark 4.19. There are analogues of the theorems of Mean Value Property,
Strong Maximum Principle, Uniqueness and Regularity for the heat equation, which
are not that surprising given that Laplace’s Equation is the steady-state heat equa-
tion. See ([1], pg. 52) for more.

5. Fourier Transform

Throughout the previous sections, a clear motif that has been used is that we
break complex impulses into smaller “elementary” components, solving for these
components and then building back up the more complex solution, of course pro-
vided that the differential operator is linear. So far, these “elementary” components
have been Dirac delta unit impulses, but there is another common technique that
adheres to this exact philosophy, yet with a different family of “elementary” com-
ponents. The technique in this section was first used by Joseph Fourier (1768 –
1830) to study the heat equation. We will arrive at the fundamental solution of the
heat equation via this different approach.

Definition 5.1 (Fourier transform). For u ∈ L1(Rn), the Fourier transform of u
is

(5.2) û(y) :=
1

(2π)n/2

ˆ
Rn

e−ix·yu(x)dx,

and the inverse Fourier transform of u is

(5.3) ǔ(y) :=
1

(2π)n/2

ˆ
Rn

eix·yu(x)dx.

Remark 5.4. Since |e±ix·y| ≤ 1 and u ∈ L1(Rn), the two integrals are well-
defined. Moreover, we can similarly define the Fourier transform and inverse Fourier
transform for L2 functions as the convergence of those of L1∩L2 functions ([1], pg.
188). We immediately introduce the key result.
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Theorem 5.5. For u ∈ L1(Rn) ∩ L2(Rn),

(5.6) u(x) = (ˇ̂u)(x) =
1

(2π)n/2

ˆ
Rn

eix·yû(y)dy.

i.e., u(x) is the inverse Fourier transform of its Fourier transform.

Remark 5.7. What we are really doing here is breaking u(x) into “elementary”
impulses of type eiy·x. Theorem 5.5 therefore implies that 1

(2π)n/2 û(y) is the strength

of each of those impulses. We will make use of the theorem and the following
properties to re-derive the fundamental solution of the heat equation.

Lemma 5.8. The following properties hold true:

(1) If u, uxi ∈ L2(Rn) then ûxi(y) = iyiû(y). Therefore ∆̂u(y) = −|y|2û(y).
(2) If u, v ∈ L1(Rn) ∩ L2(Rn) then û ∗ v = (2π)n/2ûv̂.

Proof. (Sketch)

(1) This is an application of the chain rule. The swapping of the differentiation
and integral signs are justified by approximating u through smooth and
compactly supported functions.

(2) By explicit computation, we have:

û ∗ v(y) = 1

(2π)n/2

ˆ
Rn

e−ix·y
ˆ
Rn

u(z)v(x− z)dzdx

=
1

(2π)n/2

ˆ
Rn

e−iz·yu(z)

ˆ
Rn

e−i(x−z)·yv(x− z)dxdz

=

ˆ
Rn

e−iz·yu(z)dzv̂(y)

= (2π)n/2û(y)v̂(y). □

Remark 5.9. Equivalently,

1

(2π)n/2
û ∗ v(y) =

(
1

(2π)n/2
û(y)

)(
1

(2π)n/2
v̂(y)

)
.

In other words, the strength of the impulses eix·y in the breakdown of u ∗ v, is the
product of the strengths of those impulses in the breakdown of u and v.

Example 5.10. With new tools equipped, we consider again the initial-value prob-
lem for the heat equation to explore how Fourier transform can help us solve similar
linear PDEs. {

ut −∆u = 0 in Rn × (0,∞),

u = g on Rn × {t = 0}.
Then applying Fourier transform on u but only on spatial variables gives us{

ût + |y|2û = 0 in Rn × (0,∞),

û = ĝ on Rn × {t = 0}.

where we assume u to be sufficiently nice to apply Lemma 5.8 twice to compute

∆̂u(y) =
∑

i2y2i û(y) = −|y|2û(y). If we fix |y| and inspect across the time-axis,
a simple ODE in t emerges, yielding a solution having an exponential form: û =

e−t|y|2 ĝ, in which temporal and spatial variables are separated. Theorem 5.5 then
implies

u = (e−t|y|2 ĝ)̌ .
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Therefore, if there exists F such that F̂ = e−t|y|2 then

u = (F̂ ĝ)̌

⇒ u =
1

(2π)n/2
(g ∗ F ),(5.11)

using Lemma 5.8. We directly compute F via Theorem 5.5:

F =
1

(2π)n/2

ˆ
Rn

eix·yF̂ (y)dy

=
1

(2π)n/2

ˆ
Rn

eix·ye−t|y|2dy

=
1

(2π)n/2

n∏
i=1

ˆ ∞

−∞
eixiyi−ty2

i dyi

=
1

(2π)n/2

(π
t

)n/2
e−

|x|2
4t =

1

(2t)n/2
e−

|x|2
4t ,

where we leave the second last equality as an exercise of applying Cauchy’s integral
theorem. Therefore, from (5.11),

u(x, t) =
1

(2π)n/2

ˆ
Rn

g(y)

(
1

(2t)n/2
e−

|x−y|2
4t

)
dy

=
1

(4πt)n/2

ˆ
Rn

e−
|x−y|2

4t g(y)dy.

□

6. Harmony in Randomness

In this last section, we introduce a probabilistic interpretation of the solutions
of Poisson’s Equation and the Heat Equation. I personally found this fascinating,
but this is perhaps not surprising, given that heat is propagated via particles that
are in random motion. For our purposes, we will explore this interpretation only
using discrete time and discrete space through random walks, instead of continuous
time and continuous space through Brownian motion.

We are interested in u : U → R, where U ⊂ Zn is a finite subset of the lattice
grid Zd. Then ∂U = {x ∈ Zd | d(x, U) := miny∈U d(x, y) = 1}, and Ū = U ∩ ∂U as
usual.

Definition 6.1 (The Discrete Laplacian). Let u : Ū → R. Then the discrete
Laplacian of u is

(6.2) Lu(x) := 1

2d

∑
z∈Zd,|z−x|=1

[u(z)− u(x)] =
1

2d

d∑
i=1

[u(x± ei)]− u(x),

defined for x ∈ U .

Definition 6.3 (Simple Random Walk). Let X1, X2, . . . be independent random
variables with probability distribution P(Xj = ei) = P(Xj = −ei) =

1
2n , j ∈ N, 1 ≤

i ≤ n. Then for x ∈ Zd,

Sn := x+X1 +X2 + · · ·+Xn

models a simple random walk, starting from x.
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We now investigate 2 problems that we have previous looked at.

6.1. The Heat Equation. The discrete Heat Equation on finite U ⊂ Zd asks for
the temperature un(x) for each time n ∈ N and x ∈ U satisfying

(6.4)


u0(x) = g(x) in U,

un(x) = 0 ∀ n ∈ N ∪ {0} on ∂U,

un+1(x)− un(x)− Lun(x) = 0 ∀ n ∈ N ∪ {0} in U.

The propagation mechanism implies

un+1(x) =
1

2d

∑
|z−x|=1

un(z),

i.e., the temperature at a location at the next time step is the average of the
temperatures of its neighbors at the current time. Then we can represent this
process by a transition matrix Q of size |U | × |U |, where rows and columns of
Q are indexed by similarly enumerating lattice points in U , with Q(x, z) = 1

2d if
|x − z| = 1, = 0 otherwise. Then un, as a column vector is (deterministically and
recursively) equal to Qnu0 = Qnf .

Recall that we had our solution in Section 4.2 as a convolution of the initial value
g and the response to the unit impulse. The discrete analogue is the sum

(6.5) u(x) =
∑
y∈U

K(n, x, y)g(y)dy,

where K(n, x, y) is the response to the unit impulse δx(y) (Kronecker delta) at x.
What might K(n, x, y) be, probabilistically? Imagine if we dropped 1 heat particle
at x and let the process evolve. Then

K(n, x, y) = P(Sn∧TU
= y | S0 = x),

where TU := min{n ≥ 0 | Sn ̸∈ U}, n ∧ TU := min{n, TU}. Simply put, it is the
expected number of particles at y that have not already been “killed” going out of
U . This should come as no surprise, and one can check that K(n, x, y) satisfies our
requirements as the unit impulse response.

6.2. Poisson’s Equation with Dirichlet Boundary Conditions.

(6.6)

{−Lu = f in U

u = 0 on ∂U

We’ve shown the (more general) continuous case of this in Section 3.4. We’ve
shown the solution

u(x) =

ˆ
Ω

f(y)G(x, y)dy in Ω,

where G(x, y) =: Gx(y) satisfies −∆Gx(y) = δx in Ω, Gx(y) = 0 on ∂Ω, and is the
response throughout Ω to the unit impulse at x that vanishes at the boundary ∂Ω.
The discrete analogue is the sum

u(x) =
∑
y∈U

f(y)G(x, y)dy.
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Similarly, Gx(y) now satisfies −LGx(y) = δx in U (Kronecker delta) and Gx(y) = 0
on ∂U . Similarly, a probabilistic way to think about it is again through a simple
random walk Sn,

G(x, y) = E[Vy | S0 = x],

where Vy is the number of times that the random walk visits y before leaving U
(0-step inclusive). We check

−LGx(y) = E[Vy | S0 = x]− 1

2d

∑
|z−x|=1

E[Vy | S0 = z]

=

δx(y) +
∑

|z−x|=1

P[S1 = z | S0 = x]E[V (1)
y | S1 = z]


− 1

2d

d∑
i=1

E[Vy | S0 = z]

=

(
δx(y) +

d∑
i=1

1

2d
E[V (1)

y | S1 = z]

)
− 1

2d

d∑
i=1

E[Vy | S0 = z]

= δx(y),

where we explicitly denote V (1)(y) to be the number of times the simple random
walk visits y, counting from S1. Furthermore, it is clear that G(x, y) = 0 if y ∈ ∂U ,
because then, we can’t visit y before leaving U !

This interpretation of G(x, y) brings forth a proof sketch for why it is symmetric
(for the continuous case too), that is G(x, y) = G(y, x). We have

Vy =

∞∑
n=0

1{Sn = y, n < TU}

⇒ E[Vy | S0 = x] = E

[ ∞∑
n=0

1{Sn = y, n < TU} | S0 = x

]

=

∞∑
n=0

P(Sn = y, n < TU | S0 = x)

=

∞∑
n=0

pn(x, y;U),

where n < TU means the random walk has not left U until time n (end-inclusive),
and pn(x, y;U) is thus the probability of a random walk starting from x and arriving
at y at the n-th step without leaving U . The reader can see [2] for the discussion of
the convergence of the above infinite sum. The important thing to note here is that
pn(x, y;U) is symmetric! Intuitively, if there is a path for the particle to take from
x to y, one simply reverses its direction to get a path from y to x. More concretely,
pn(x, y;U) = Qn(x, y) where Q is the aforementioned transition matrix.
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