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Abstract. In this paper, we introduce the Unique Games conjecture of Khot,

survey a handful of its many implications in the hardness of approxima-
tion, and attempt to characterize the unexpected relationship between Unique

Games and graph expansion. In particular, we provide a full proof of the

first-known sufficient condition for the Unique Games Conjecture, the Small-
Set Expansion Hypothesis, introduced by Raghavendra and Steurer. We only

assume a working familiarity with classical complexity theory, discrete proba-

bility, and the theory of algorithms.
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1. Introduction

The Unique Games Conjecture (UGC) of Khot [Kho02] is one of the central open
problems in complexity theory and in the hardness of approximation. The conjec-
ture asserts that a certain constraint satisfaction problem is hard to approximate
in a very strong sense. Recently, the Unique Games Conjecture has been shown
to imply optimal inapproximability results for classic problems like MAX-CUT
[KKMO07], VERTEX COVER [KR08], and SPARSEST CUT [KV05], and, per-
haps most impressively, Raghavendra [Rag08] showed that, if the UGC is true, then
every constraint satisfaction problem has a so-called sharp approximation threshold
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τ : for all ϵ > 0, one can achieve a τ − ϵ approximation in polynomial (in fact
quasilinear by a result of Steurer [Ste10b]) time, but obtaining a τ + ϵ approxima-
tion is NP-hard. Beyond approximation algorithms, the UGC has been linked to
the theory of metric embeddings and computational geometry, (discrete) Fourier
analysis, and the study of parallel repetition. So the UGC certainly has profound
implications. Of course, necessary conditions for the UGC do not yield any in-
formation about the truth of the conjecture. Indeed, unlike most of the major
open problems used as hypotheses in theoretical computer science like P ̸= NP or
NP ̸⊂

⋂
γ>0 DTIME

(
2n

γ)
there is no consensus among researchers of the veracity

of the conjecture.
Until recently, there were no known formal consequences of an algorithmic refu-

tation of the UGC. In this paper, we demonstrate a first-of-its-kind “reverse” re-
duction, from the problem of approximating the expansion of small sets to Unique
Games due to Steurer and Raghavendra [RS10]. The hypothesis that approximat-
ing the expansion of small sets is computationally hard turns out to imply the
Unique Games Conjecture by way of this reduction. The crucial consequence of
this reduction (stated formally in Theorem 5.1 is that a refutation will obtain an
algorithm for approximating the edge expansion of graphs in a certain regime—a
fundamental optimization problem. This paper details this reduction and its impli-
cations, and outlines the reduction used to show that the UGC with an additional
assumption of mild expansion on the constraint graph is actually equivalent to the
hardness of approximating small set expansion.

The theorems and proofs in this paper mostly follow those of [RS10], [Ste10a],
and [RST10a].

2. Preliminaries

We consider undirected weighted graphs with self-loops allowed. Thus, we can
identify such a graph G with vertex set V as a symmetric distribution over pairs
ij with i, j ∈ V , where the edges of G are those pairs ij in the support of this
distribution. The distribution is symmetric since our graphs are undirected.

We write i ∼ G to denote a random vertex of ofG obtained by sampling according
to the distribution given by the degrees, ij ∼ G to denote a (uniformly1) random
edge of G and for a vertex i ∈ V , we write j ∼ G(i) to denote a random neighbor of
i in G, which can be obtained by sampling a random edge of G conditioned on the
event that the first endpoint of the edge is i and outputting the second endpoint of
that edge.

2.1. Expansion and expansion profile. For S, T ⊂ V , we define EG(S, T ) as
the fraction of edges going from S to T ,

EG(S, T )
def
= Pij∼G[i ∈ S, j ∈ T ].

For a vertex set S ⊂ V , we define its edge boundary ∂G(S) as the fraction of edges
leaving S (and going to V − S),

∂G(S)
def
= EG(S, V − S).

1Unless otherwise noted, in this paper random means sampled according the uniform
distribution.
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We define its volume µG(S) as the fraction of edges with a vertex in S,

µ(S)
def
= EG(S, V ).

The (edge) expansion ΦG(S) for S ̸= ∅ is the ratio between these two quantities,

ΦG(S)
def
=

∂G(S)

µG(S)
.

We set ΦG(∅) = ∞ as we are ultimately trying to minimize the expansion.
The expansion (also called the conductance or the Cheeger’s constant) ΦG of a

graph G is the minimum expansion over all sets with volume at most 1
2 ,

ΦG
def
= min

S⊂V
µG(S)≤ 1

2

ΦG(S).

More generally, for δ ∈ [0, 1
2 ], the expansion at volume δ, denoted by ΦG(δ), is the

minimum expansion over sets with volume at most δ,

ΦG(δ)
def
= min

S⊂V
µG(S)≤δ

ΦG(S).

The curve δ 7→ ΦG(δ) is called the expansion profile of G.
We note two alternative characterizations of the expansion (equivalent to which

we gave):

ΦG(S) = Pij∼G[j /∈ S | i ∈ S]

= Ei∼G[Pj∼G(i)[j /∈ S] | i ∈ S]

We will always drop the subscript G in the above quantities when the graph is
obvious.

We can now state the Small-Set Expansion problem:

Problem 2.1 (GAP-SMALL-SET EXPANSION (η, δ)). Given a graph G and
constants η, δ > 0, distinguish whether

ΦG(δ) ≥ 1− η or ΦG(δ) ≤ η.

We also state the associated conjecture, which we will see in Section 3 (Theorem
3.1) implies the Unique Games Conjecture:

Conjecture 2.1 (Small-Set Expansion Hypothesis (SSEH)). Given η > 0, there
exists δ = δ(ϵ) > 0 such that the problem GAP-SMALL-SET EXPANSION (η, δ)
is NP-hard.

It’s worth remarking that the best known polynomial-time approximation algo-
rithm for Problem 2.1 (given in [RST10b]) is insufficient to refute this conjecture.

A little more should be said about what NP-hardness means in the context of
this gap promise problem. Since SAT is NP-hard (i.e., the Cook-Levin theorem),
we can express Conjecture 2.1 as the following: for every constant η > 0, there exists
δ = δ(η) > 0 and a polynomial time (Cook) reduction from SAT to SMALL-SET
EXPANSION such that

- Every satisfiable SAT instance reduces to a SMALL-SET EXPANSION instance
with optimal value at least 1− η,

- Every unsatisfiable SAT instance reduces to a SMALL-SET EXPANSION in-
stance with optimal value at most η.
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2.2. Unique Games and partial games. For historical reasons, we state the
version of Unique Games as originally formulated by Khot [Kho02]:

Definition 2.2. An instance of Unique Games represented as U = (V, E ,Π, [R])
consists of the following.

(1) A graph over vertex set V with edges E between them
(2) A set of label [R] = {1, . . . , R}
(3) A set of permutations πu←v : [R] → [R] for each edge e = (u, v) ∈ E

An assignment A : V → [R] of labels to vertices is said to satisfy an edge (u, v) ∈ E
if πv←u(A(w)) = A(v). The objective is to find an assignment A that satisfies the
maximum number of edges.

As is convenient in hardness of approximation, one defines a gap-version of the
Unique Games problem as follows:

Problem 2.2 (UNIQUE GAMES (R, 1 − ϵ, η)). Given a Unique Games instance
U = (V, E ,Π = {πu←v : [R] → [R] | e = (u, v) ∈ E}, [R]) and constants ϵ, η,R > 0,
distinguish whether

(1) There exists an assignment A of labels that satisfies a 1− ϵ fraction of the
edges, or

(2) No assignment satisfies more than an η-fraction of the edges.

For the purposes of our reductions, it will be more convenient to interpret an
instance of Unique Games as given by a distribution over the constraints:

Definition 2.3 (Unique Games). A Unique Game U with vertex set V and alphabet
[R] is a distribution over constraints (u, v, π) ∈ V × V × S[R], where S[R] is the set

of permutations of [R]. An assignment x ∈ [R]V satisfies a constraint (u, v, π) if
xv = π(xu), i.e., π maps labels for u to labels for v. The value U(x) of an assignment
x for U is the fraction of constraints of U satisfied by the assignment x, i.e.,

U(x) def
= P(u,v,π)∼U [π(xu) = xv].

Finally, the optimal value opt(U) is defined as the maximum of U(x) over all x, i.e.,

opt(U) def
= max

x∈[R]V
U(x).

We will assume that the distribution over constraints is symmetric in the sense that
a constraint (u, v, π) has the same probability as (v, u, π−1).

To this version of a Unique Game, we can associate two graphs. The constraint
graph G(U) is a graph with vertex set V with edge distribution given by the following
sampling procedure:

(1) Sample a random constraint (u, v, π) ∼ U ,
(2) Output the edge uv.

The label-extended graph Ĝ(U) is a graph with vertex set V × [R] with edge distri-
bution given by the following sampling procedure:

(1) Sample a random constraint (u, v, π) ∼ U ,
(2) Sample a random label i ∈ [R],
(3) Output an edge connecting (u, i) and (v, π(i)).

The rationale for using this probabilistic interpretation of Unique Games is the
following: an assignment x ∈ [R]V naturally corresponds to a set S ⊂ V × [R]
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with cardinality |S| = |V| (and therefore volume µ(S) = 1/R). The value of the
assignment x for the Unique Game U corresponds exactly to the expansion of the
corresponding set S in the label-extended graph Ĝ(U),

U(x) = 1− Φ(S).

This correspondence between expansion and the value of an assignment is precisely
the basis of the connection between UNIQUE GAMES and SMALL-SET EXPAN-
SION discussed in the following section.

It will be useful to consider a more general version of Unique Games where par-
tial assignments are allowed (for those familiar with 2-prover games, this situation
corresponds to a prover refusing to answer one of the referees questions):

Definition 2.4. Let U be a Unique Game with vertex set V and alphabet [R]. An
assignment x ∈ ([R]∪{⊥})V is α-partial if at least an α fraction of the vertices are
labeled (with symbols from [R]), i.e.,

P(u,v,π)∼U [xu ̸=⊥] ≥ α.

A partial assignment x satisfies a constraint (u, v, π) if both vertices are labeled and
their labels satisfy the constraint xv = π(xu). For concision, we write xv = π(xu) ∈
[R] to denote the event where the partial assignment x satisfies the constraint
(u, v, π). The value U(x) of a partial assignment x is the fraction of constraints
satisfied by x,

U(x) def
= P(u,v,π)∼U [xv = π(xu) ∈ [R]].

The α-partial value optα(U) is the maximum value of an α-partial assignment
normalized by the fraction of labeled vertices,

optα(U)
def
= max

x∈([R]∪{⊥})V

{
U(x)

Pu∈V [xu ̸=⊥]

∣∣∣∣ P(u,v,π)∼U [xu ̸=⊥] ≥ α

}
.

Note that opt(U) = opt1(U) and optα(U) ≤ optβ(U) whenever α ≥ β.

2.3. Functions on graphs. For a graph G with vertex set V , we write L2(V ) to
denote the function space {f : V → R} equipped with the (natural) inner product

⟨f, g⟩ def
= Ei∼V f(i)g(i).

This inner product induces the norm ∥f∥ := ⟨f, f⟩1/2. We will also be interested
in the norm ∥f∥1 := Ei∈V |f(i)|.

We identify the graph G wth the following linear (Markov) operator on V :

Gf(i)
def
= Ej∼G(i)f(j).

The matrix corresponding to this operator is the (weighted) adjacency matrix of G
normalized so that every row sums to 1 (so that Gf is a (right) stochastic matrix).
The operator G is self-adjoint with respect to the inner product on L2(V ) since
⟨f,Gg⟩ = Eij∼Gf(i)g(j) so its eigenvalues are real and its eigenfunctions form an
orthogonal basis of L2(V ). We note the following identities, which hold for all
vertex sets S, T ⊂ V

E(S, T ) = ⟨1S , G1T ⟩ µ(S) = ∥1S∥2 ∂(S) = ⟨1S , LG1S⟩ Φ(S) =
⟨1S , LG1S⟩

∥1S∥2

where LG := I −G is the Laplacian of G.



6 DOW LAFEVERS

3. Small-Set Expansion implies Unique Games

In this section, we prove that the Unique Games Conjecture is true if the Small-
Set Expansion Hypothesis holds:

Theorem 3.1. The Small-Set Expansion Hypothesis implies the Unique Games
Conjecture.

This result is remarkable for a number of reasons. First, it presents the first
non-trivial “reverse” reduction from a natural combinatorial optimization problem
to Unique Games. Prior to this result, inapproximability results only demonstrated
reductions of Unique Games to a certain combinatorial problem. This result also
connects the UGC to the more well-studied problem of approximating graph ex-
pansion, and makes concrete the conspicuous presence of small set expansion in
semi-definite programming (SDP) integrality gap instances for Unique Games and
related problems (see [KV05] and [ABS10] for an in-depth discussion on this). Fi-
nally, as a consequence of Theorem 3.1, an algorithmic refutation of the UGC now
obtains a (polynomial time) algorithm for approximating edge expansion in a cer-
tain regime (see Theorem 5.1).

The proof of this theorem is predicated on a reduction from SMALL-SET EX-
PANSION to UNIQUE GAMES (the composition of Reduction 3.1 and Reduction
3.2). We prove this theorem at the end of this section.

The reduction decomposes into two parts: first, we reduce Small-Set Expansion
to Partial Unique Games (i.e. partial assignments allowed). This is the content
of Reduction 3.1 and Theorem 3.3. Second, we show how to reduce an arbitrary
instance of Partial Unique Games to Unique Games; see Reduction 3.2 and Theorem
3.11. Theorem 3.1 then follows by instantiating Theorem 3.3 and Theorem 3.11
with an appropriate choice of parameters.

3.1. From Small-Set Expansion to Partial Unique Games.

Reduction 3.1 (SMALL-SET EXPANSION to PARTIAL UNIQUE GAMES).

Input: A regular graph G with vertex set V and parameters ϵ > 0 and R ∈ N
(satisfying ϵR ∈ N).

Output: A unique game U = UR,ϵ(G) with vertex set V R′
and alphabet [R′]

where R′ := (1 + ϵ)R.

The unique game U corresponds to the following probabilistic verifier for an
assignment F : V R′ → [R′]:

(1) Sample R random vertices a1, . . . , aR ∼ G. Let A := (a1, . . . , aR) ∈ V R,
(2) Sample two random neighbors bi, b

′
i ∼ G(ai) for every i ∈ [R],

(3) Sample 2ϵR random vertices bR+1, b
′
R+1, . . . , bR+ϵR, b

′
R+ϵR ∼ V . Let B :=

(b1, . . . , bR′), B′ := (b′1, . . . , b
′
R′) ∈ V R′

,
(4) Sample two permutations π, π′ ∈ S[R′].

(5) Verify that π−1(F (π.B)) = (π′)−1(F (π′.B′). (Here π.B refers to the tuple
obtained by permuting the coordinates of B according to π.)

Reduction 3.1 has the following approximation guarantees:

Theorem 3.2. Given a regular graph G with n vertices and parameters R ∈ N and
ϵ > 0, Reduction 3.1 computes in time nO(R) a unique game U = UR,ϵ(G) such that
the following assertions hold (for every ϵ′ > ϵ):
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Completeness: If the graph G contains a vertex set with volume δ := 1
2R and

expansion at most ϵ, then the unique game U has α-partial value optα(U) ≥
1− 5ϵ, where α ≥ 1

10 .

Soundness I: If every vertex set of G with volume δ := 1
2R has expansion

at least 1 − ϵ, then for all α ≥ 1
10 , the unique game U has α-partial value

optα(U) ≤ O(ϵ1/5).
Soundness II: If every vertex set of G with volume between Ω(ϵ2/R) and

O(1/ϵ2R) has expansion at least ϵ′ and half of the edges of every vertex of
G are self-loops, then for all α ≥ 1

10 , the unique game U has α-partial value

optα(U) ≤ 1− ϵ′

4 .

Remark 3.3. The original reduction from Small-Set Expansion to Partial Unique
Games of [RS10] introduced random noise into the sampling procedure to make
the reduction more efficient by sampling fewer vertices. We present a less efficient
reduction to make the proof of the soundness of the reduction more succinct and
less opaque.

3.1.1. Completeness. Let G be a regular graph with vertex set V = [n]. Note that
the size of the unique game U = UR,ϵ(G) produced by Reduction 3.1 has size nO(R).
Thus the size of U is polynomial in the size of G for every R = O(1).

The following lemma shows that Reduction 3.1 is complete in the sense that if
G contains a set of volume δ with expansion close to 0, then the unique game has
a partial assignment that satisfies almost all constraints with labeled vertices.

Lemma 3.4 (Completeness). For every set S ⊂ V with µ(S) = δ and Φ(S) = η,
there exists a partial assignment F = FS for the unique game U = UR,ϵ(G) (as
defined in Reduction 3.1) satisfying

U(F ) ≥ (1− ϵ− 4η)α,

where α ≥ R′δ(1−R′δ) is the fraction of vertice of U labeled by F .

Proof. We may assume that R′ ≤ 1/δ, for otherwise (1 − ϵ − 4η)α is close to
zero so that the lemma becomes trivial. Consider the following partial assignment
F : V R′ → [R′] ∪ {⊥} for U defined by

X := (x1, . . . , xR′) 7−→

{
i if {i} = {i′ ∈ [R′] | xi′ ∈ S},
⊥ otherwise.

In terms of 2-prover games, this (partial) strategy amounts to the provers answering
with vertex i iff it is the only vertex of S in their tuple, and otherwise refusing to
answer.

We compute the number of vertices labeled by F :

α = PX∼V R′ [F (X) ̸=⊥] =

(
R′

1

)
δ(1− δ)R

′−1 = R′δ(1− δ)R
′−1 ≥ R′δ(1−R′δ)

where we use the fact that µ(S) = δ.
Next, we estimate the fraction of constraints satisfied by F . Sample A,B,B′ as

specified in Reduction 3.1. Observe that F behaves nicely under permutations in
the sense that F (π.X) = π(F (X)). Using this fact and the fact that a constraint
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is satisfied only if both vertices (of the constraint) are labelled, we see that

U(F ) = PA,B,B′ [F (B) = F (B′) ∈ [R′]]

≥ PA,B,B′ [F (B) = F (B′) ∈ [R]]

= PX∼V R′ [F (X) ∈ [R]] · PA,B,B′ [F (B) = F (B′) | F (B) ∈ [R]].

We observe that this inequality is basically tight because the event F (X) ∈ [R′]\[R]
is very unlikely:

PX∼V R′ [F (X) ∈ [R]] = PX∼V R′ [F (X) ∈ [R′]]/(1 + ϵ)

≥ (1− ϵ)PX∼V R′ [F (X) ∈ [R′]]

≥ (1− ϵ)PX∼V R′ [F (X) ̸=⊥]

= (1− ϵ)α

where we use the inequality 1
1+ϵ ≥ 1− ϵ (with equality if and only if ϵ = 1). Next

we relate the probability of the event F (B) = F (B′) conditioned on F (B) ∈ [R]
to the expansion of S. It turns out that this probability is more directly related to
the expansion of S in G2. Put η′ = ΦG2(S) = Pa∼V,b,b′∼G(a)[b

′ /∈ S | b ∈ S]. Then

PA,B,B′ [F (B) = F (B′) | F (B) ∈ [R]] = PA,B,B′ [F (B′) = 1 | F (B) = 1]

= (1− η′)(1− η′δ/(1− δ))R−1

≥ 1− η′
(
1 +

1− 1/R

1− δ
Rδ

)
≥ 1− 2η′

where we use the symmetry of F in the first line and in the second line that
Pa∼V,b,b′∼G(a[b

′ ∈ S|b /∈ S] = η′δ/(1 − δ) (this is the expansion of V − S in G2).
The first inequality is the normal estimate on the exponent and the last inequality
uses that R′ ≤ 1/δ and thus 1− 1/R ≤ 1− δ and Rδ ≤ 1.

Now we relate η′ to η (the expansion of S in G2 to that in G):

η′δ = Pa∼V,b,b′∼G(a)[b ∈ S ∧ b′ /∈ S]

≤ Pa∼V,b,b′∼G(a)[(b ∈ S ∧ a /∈ S) ∨ (a ∈ S ∧ b′ /∈ S)]

≤ Pa∼V,b∼G(a)[b ∈ S ∧ a /∈ S] + Pa∼V,b′∼G(a)[a ∈ S ∧ b′ /∈ S]

= 2δη.

Combining the previous inequalities now obtains the lower bound on U(F ):

U(F ) = PA,B,B′ [F (B) = F (B′) ∈ [R′]]

≥ PX∼V R′ [F (X) ∈ [R]]PA,B,B′ [F (B′) = 1 | F (B) = 1]

≥ (1− ϵ)α · (1− 4η)

≥ (1− ϵ− 4η)α. □

3.1.2. Soundness. Let F : V R′ → [R′]∪{⊥} be a partial assignment for the unique
game U = Uϵ,R(G) obtained by applying Reduction 3.1 to a regular graph G on
V = [n].

For a tuple U ∈ V R′−1 and a vertex x ∈ V , we let f(U, x) be the probability
that F selects the coordinate of x after we place it at a random position of U and
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permute the tuple randomly, i.e.,

f(U, x)
def
= Pi∈[R′],π∈SR′ [F (π.(U +i x) = π(i)]

where U+ix denote the tuple obtained from U by inserting x at the i-th coordinate
and moving the original coordinates i, . . . , R′ − 1 of U one to the the right. Notice
that fixing i = R′ doesn’t change the above probability since the permutation π is
random.

For U ∈ V R′−1, define the function fU : V → [0, 1] by

(3.5) x 7→ EW∼G⊗(R−1)(U),Z∼V ϵRf(W,Z, x)

where W,Z is the concatenation of the tuples W and Z, G⊗(R−1) is the (R−1)-fold
tensor product (this is the Kronecker product from linear algebra of the adjacency
matrix of G with itself), and W ∼ G⊗(R−1)(U) means that W is a random neighbor
of the vertex U in G⊗(R−1). For U = (u1, . . . , uR−1), the distribution G⊗(R−1)(U)
is the product of the distributions G(u1), . . . , G(UR−1).

Before continuing, we will need some properties of the functions {fU}. The
following lemma is proven in Appendix A.

Lemma 3.6. Let α = PX∼V R′ [F (X) ̸=⊥] be the fraction of vertices of U labeled
by the partial assignment F .

(1) The typical L1-norm of fU equals EU∼V R−1∥fU∥1 = α
R ,

(2) For every U ∈ V R−1, the L1 norm of fU satisfies ∥fU∥1 ≤ 1
ϵR ,

(3) The typical squared L2-norm of GfU relates to the fraction of constraints
satisfied by F in U as follows,

EU∼V R−1∥GfU∥2 ≥ 1

R′
(U(F )− 1

ϵR
)

(Here, we identify G with its stochastic adjacency matrix.)

The following lemma is then a consequence of the previous Lemma 3.2 and a
Markov-type inequality argument. In rough terms, the lemma shows that given
a good partial assignment for U , we can extract a function f : V → [0, 1] with
∥f∥1 ≈ 1/R and, at the same time, the squared L2-norm of Gf is comparable to
the L1 norm of f . In Lemma 3.8, we will see that given such a function we can find
a non-expanding set for G2 with volume roughly 1/R.

Lemma 3.7. Let F be a partial assignment for the unique game U = UR,ϵ(G) (as
specified in Reduction 3.1). Suppose α = PX∼V R′ [F (X) ̸=⊥] is the fraction of
vertices of U labeled by F . Then, for every β > 0, there exists U ∈ V R−1 such that
the function fU : V → [0, 1] (as defined in equation (3.5)) satisfies

∥GfU∥2 ≥
(
U(F )

α
− β − 1

αϵR

)
∥fU∥1 and

αβ

R′
≤ ∥fU∥1 ≤ 1

ϵR

Proof. Since G is regular and 0 ≤ fU ≤ 1, we have ∥GfU∥2 ≤ ∥fU∥1 for every U ∈
V R−1 so that we can lower bound the expected square L2-norm of GfU conditioned
on ∥fU∥1 ≥ αβ/R′:

EU∼V R−1∥GfU∥21∥fU∥1≥αβ/R′ = EU∼V R−1∥GfU∥2 − EU∼V R−1∥GfU∥21∥fU∥1≤αβ/R′

≥ EU∼V R−1∥GfU∥2 − αβ/R′

≥ α

R′
(U(F )/α− 1

αϵR
− β)
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where in the last line we use that EU∼V R−1∥GfU∥2 ≥ (U(F )− 1
ϵR )R′ (Lemma 3.2,

item 3). Since EU∼V R−1∥fU∥1 = α/R′ (Lemma 3.2, item 1), there exists a tuple
U ∈ V R−1 such that

∥GfU∥21∥fU∥1≥αβ/R′ ≥ ∥fU∥1(U(F )/α− 1

αϵR
− β).

This function fU satisfies

∥fU∥1 ≥ αβ/R′ and ∥GfU∥2 ≥ ∥fU∥1(U(F )/α− 1

αϵR
− β).

Since ∥fU∥1 ≤ 1/ϵR by (Lemma 3.2, item 2), the tuple U is as desired. □

The following lemma is similar in spirit to Cheeger’s inequality. Given a function
f on a vertex set V taking values in [0, 1], we can find S ⊂ V with volume roughly
∥f∥1 and expansion roughly 1− ∥Gf∥2/∥f∥1 in the graph G2.

The proof, however, is markedly simpler than that of Cheeger’s inequality. It is
enough to analyze the distribution over vertex sets S obtained by including x in S
with probability f(x) independently for every vertex x ∈ V . We will later apply
this lemma to the function obtained in the previous lemma (Lemma 3.4).

Lemma 3.8. Suppose f : V → R satisfies 0 ≤ f(x) ≤ 1 for every x ∈ V . Then,
for every β > 0, there exists a set S ⊂ V such that

β∥f∥1 ≤ µ(S) ≤ β−1∥f∥1,

ΦG2(S) ≤ 1− ∥Gf∥2

∥f∥1
+ 2β + β/(n∥f∥1).

Proof. Consider the following distribution over level sets S ⊂ V of f : for every
vertex x ∈ V , include x ∈ S with probability f(x) independently for every vertex.

Then the expected volume of S is ESµ(S) = ES∥1S∥1 = ∥f∥1 and ESµ(S)
2 ≤

∥f∥21+1/n using the identity µ(S) = ∥1S∥1. On the other hand, we have the lower
bound ES∥G1S∥2 ≥ ∥Gf∥2.

Next, we bound the expected squared L2-norm of G1S conditioned on the event
β ≤ µ(S)/∥f∥1 ≤ 1/β from below:

ES∥G1S∥21{β≤µ(S)/∥f∥1≤1/β}

≥ ES∥G1S∥2 − ESµ(S)1{µ(S)>∥f∥1/β} − ESµ(S)1{µ(S)<β∥f∥1}

≥ ∥Gf∥2 − ESβµ(S)
2/∥f∥1 − β∥f∥1

≥ ∥Gf∥2 − 2β∥f∥1 − β/(n∥f∥1).
It follows that there exists a set S∗ ⊂ V with β ≤ µ(S∗)/∥f∥1 ≤ 1/β such that

∥G1S∗∥2

∥1S∗∥1
≥
ES∥G1S∥21{β≤µ(S)/∥f∥1≤1/β}

ES∥1S∗∥1
≥ ∥Gf∥2 − 2β∥f∥1 − β/(n∥f∥1)

∥f∥1
.

The quantity 1− ∥G1S∗∥2
∥1S∗∥1 is the expansion of S∗ in G2 so we are done. □

Combining the previous two lemmas, we can now show that a good partial
assignment for the unique game U = UR,ϵ(G) obtained by applying Reduction 3.1
to G implies that G2 contains a set with low expansion and volume roughly 1/R.
We want to use this to find a set with low expansion in G. The following two
lemmas describe how to reduce the problem of finding a non-expanding set in G to
a non-expanding set in G2.
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We first consider the case where the fraction of constraints satisfied by the partial
assignment is bounded away from 0. Here, we show how to construct a set of with
volume 1/R and expansion bounded away from 1 in G.

Lemma 3.9 (Soundness close to 0). Suppose there exists a partial assignment F
for the unique game U = UR,ϵ(G) (as defined in Reduction 3.1) with U(F ) ≥ ηα,
where α is the fraction of vertices of U labeled by F . Then, there exists a set S∗ ⊂ V
with µ(S∗) = α/R and Φ(S∗) ≤ 1−O(ϵη4). Here, we make the (mild) assumptions
that 1/αϵη ≪ R ≪ αηn.

Proof. Let β, γ > 0. (We determine the best choice for these parameters later in the
proof). By Lemma 3.4, there exists U ∈ V R−1 such that the function fU satisfies
the following condition

∥GfU∥2 ≥ (η − β − 1

αϵR
)∥fU∥1 and

αβ

R′
≤ ∥fU∥1 ≤ 1

ϵR
.

Using Lemma 3.5 we can round fU to a vertex set S ⊂ V with the following
properties:

αβ2

R′
≤ µ(S) ≤ 1

βϵR′
and ΦG2(S) ≤ 1− η + β +

1

αϵR
+ 2β +

R′

nα
.

Choosing β ≪ η (say β = η/10) and using our assumptions on R, the expansion of
S in G2 is at most 1− η/2.

We now construct a set with expansion in G bounded away from 1 and roughly
the same volume as S. Define

S′ := {x ∈ V | Py∼G(x)[y∈S]≥γ}.
We see that µ(S′) ≤ µ(S)/γ, so the volume of S′ is not much larger than that of
S. On the other hand, we can relate the fraction of edges between S and S′ to the
expansion of S in G2 as follows:

(1− ΦG2(S))µ(S) = Px∼V,y,y′∼G(x)[y ∈ S, y′ ∈ S]

= µ(S′)Px∼V,y,y′∼G(x)[y ∈ S, y′ ∈ S | x ∈ S′]

+ µ(V − S)Px∼V,y,y′∼G(x)[y ∈ S, y′ ∈ S | x /∈ S′]

≤ µ(S′)Px∼V,y∼G(x)[y ∈ S | x ∈ S′]

+ γµ(V − S)Px∼V,y∼G(x)[y ∈ S | x /∈ S′]

= (1− γ)µ(S′)Px∼V,y∼G(x)[y ∈ S | x ∈ S′] + γµ(S).

It follows that E(S, S′) ≥ (1− ΦG2(S)− γ)µ(S) so for S′′ := S ∪ S′ we have

1− ϕG(S
′′) ≥ E(S, S′)

µ(S ∪ S′)
≥ (

η

2
− γ)

µ(S)

µ(S ∪ S′)
≥ (

η

2
− γ)

γ

2
.

Setting γ := η/4, we obtain ΦG(S
′′) ≤ 1 − η2/32. On the other hand, we observe

that the volume of S′′ satisfies

Ω

(
αη2

R

)
≤ µ(S′′) ≤ O

(
1

η2ϵR

)
.

To obtain a set S∗ with the desired volume α/R, we can either pad S′′ with the
desired number of vertices (in the case µ(S∗) < α/R) or simply take a random
subset of S′′ with the desired cardinality (in the case µ(S∗) ≥ α/R). Performing
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either operation obtains a set S∗ with µ(S∗) = α/R and ΦG(S
∗) ≤ 1 − O(ϵη4) as

desired. □

The goal in the following lemma will be to find vertex sets in G with certain
volume and expansion close to 0. It turns out that in this case it is convenient
to apply Reduction 3.1 to the graph 1

2I + 1
2G, i.e. the graph obtained from G

by adding a self-loop at every vertex with weight 1
2 ). The following lemma shows

that if the unique game U = UR,ϵ(
1
2I + 1

2G) (obtained by applying Reduction 3.1

to 1
2I + 1

2G) has a partial assignment that satisfies almost as many constraints as
possible, then we can find a vertex set in G with volume roughly 1/R and expansion
close to 0. The proof is similar to the previous lemma.

Lemma 3.10 (Soundness close to 1). Suppose there exists a partial assignment
x for the unique game U = UR,ϵ(

1
2I + 1

2G) (as defined in Reduction 3.1) with
U(x) ≥ (1 − η)α, where α is the fraction of vertices of U labeled by x. Then there
exists a set S ⊂ V with Ω(αη2/R) ≤ µ(S) ≤ O(1/ϵηR) and Φ(S) ≤ 4η. Here, we
make the (mild) assumptions that 1/αϵη ≪ R ≪ αηn.

Proof. Let β > 0. (We again choose the best value for β later in the proof). Let
G⟲ := 1

2I + 1
2G. Combining Lemma 3.4 and Lemma 3.5, we obtain a set S with

the following properties:

αβ2

R′
≤ µ(S) ≤ 1

βϵR′

ΦG2
⟲
(S) ≤ η + β +

1

αϵR
+ 2β +

R′

nα
.

As before, choosing β ≪ η and using the assumptions on R obtains ΦG2
⟲
(S) ≤ 2η.

We can directly compare the quantities ΦG2
⟲
(S) and ΦG(S) as follows:

⟨1S , G2
⟲1S⟩ =

1

4
⟨1S , I1S⟩+

1

2
⟨1S , G1S⟩+

1

4
⟨1S , G21S⟩ ≤

1

2
∥1S∥2 +

1

2
⟨1S , G1S⟩.

It follows that ΦG2
⟲
(S) ≥ ΦG(S)/2 so that ΦG(S) ≤ 4η as desired. □

3.2. Partial Unique Games to Unique Games.

Reduction 3.2 (PARTIAL UNIQUE GAMES to UNIQUE GAMES).

Input: A unique game U with vertex set V and alphabet Σ, and a parameter
c ∈ N.

Output: A unique game U ′ = Ψc(U) with vertex set V ′ = V c and alphabet
Σ′ = [c]× Σ.

The unique game U ′ corresponds to the following probabilistic verifier for an as-
signment F : V ′ → Σ′:

(1) Sample c random vertices u1, . . . , uc ∼ V ,
(2) Sample two random constraints (ur, vr, πr), (ur, v

′
r, π
′
r) ∼ U | ur for every

r ∈ [c] (the notation U | ur denotes the uniform distribution over constraints
of U that contain vertex ur). Let (r, j) := F (v1, . . . , vc) and (r′, j′) :=
F (v′1, . . . , v

′
c),

(3) Verify that r = r′ and that j = πr(i) and j′ = πr′(i) for some label i ∈ Σ.
(Note that at most one label satisfies this condition.)

Reduction 3.2 has the following approximation guarantees:
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Theorem 3.11. Given a parameter c ∈ N and a unique game U with n vertices,
Reduction 3.2 computes in time poly(nc) a unique game U ′ = Ψc(U) such that the
following assertions hold (for all α, η, η′, ζ > 0):

Completeness: If optα(U) ≥ 1− η, then opt(U ′) ≥ 1− 4η − 2e−αc.
Soundness I: If opt1/2c(U) < ζ, then opt(U ′) < 8ζ.

Soundness II: If opt1/2c(U) < 1 − η′ and half of the constraints of every

vertex are trivial identity constraints, then opt(U ′) < 1− η′/32.

3.2.1. Completeness. Let U be a unique game with vertex set V = [n] and alphabet
Σ = [k]. Recall that optα(U) is the optimal value of an α-partial assignment for U .

The following lemma shows that Reduction 3.2 is complete, i.e., given a unique
game U with optα(U) ≥ 1− η for some constant α, for c = O(log(1/η)), the unique
game U ′ = Ψc(U) obtained by Reduction 3.2 has value opt(U ′) ≥ 1−O(η).

Lemma 3.12. If optα(U) ≥ 1− η, then opt(U ′) ≥ 1− 4η − 2e−αc.

Proof. Let f : V → Σ ∪ {⊥} be an optimal α-partial assignment for U . We may
assume without loss of generality that Pu∼V [f(u) ̸=⊥] = α and thus U(f) ≥
(1−η)α. To lower bound the value of the unique game U ′, we consider the following
assignment F : V c → [c]× Σ given by

(u1, . . . , uc) 7−→

{
(r, i) if (f(ur) = i ∈ Σ) ∧ (∀j < r(f(uj) =⊥))

(1, 1) if f(u1) = · · · = f(uc) =⊥ .

In words, the prover returns the first answer in the list f(u1), . . . , f(uc) (ignoring
⊥). If the partial strategy (assignment) refuses to answer on all inputs, then the
prover returns an arbitrary answer. Note that returning an arbitrary answer can
only increase the number of satisfied constraints.

We claim that this assignment F satisfies at least 1−4η−2e−αc of the constraints
of U ′, which proves the lemma. To establish this claim, it suffices to show that

P(u1,v1,π1)∼U,...,(uc,vc,πc)∼U [∃r ∈ [c], i ∈ Σ : F (u1, . . . , uc) = (r, i) ∧ f(v1, . . . , vc) = (r, πr(i))]

≥ 1− 2η − e−αc

Observe that this probability simplifies to the product of two probabilities p1, p2
(which will be easier to lower bound):

P(u1,v1,π1)∼U,...,(uc,vc,πc)∼U [∃r ∈ [c], i ∈ Σ : F (u1, . . . , uc) = (r, i) ∧ f(v1, . . . , vc) = (r, πr(i))]

=P(u1,v1,π1)∼U,...,(uc,vc,πc)∼U [∃r ∈ [c] : f(ur) ̸=⊥ ∨f(vr) ̸=⊥]

· P(u,v,π)∼U [f(v) = π(f(u)) | f(u) ̸=⊥ ∨f(v) ̸=⊥]

:= p1 · p2.
Since f is α-partial, the event f(u1) = · · · = f(uc) =⊥ has probability (1 − α)c ≤
e−αc. Thus with probability at least 1 − e−αc, one of the vertices u1, . . . , uc is
labeled, so p1 ≥ 1− e−αc.
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We lower bound p2 as follows:

p2 = P(u,v,π)∼U [f(v) = π(f(u)) | f(u) ̸=⊥ ∨f(v) ̸=⊥]

=
P(u,v,π)∼U [f(v) = π(f(u))]

P(u,v,π)∼U [f(u) ̸=⊥ ∨f(v) ̸=⊥]

=
P(u,v,π)∼U [f(v) = π(f(u))]

2Pu∼V [f(u) ̸=⊥]− P(u,v,π)∼U [f(u) ∈ Σ, f(v) ∈ Σ]

≥ (1− η)α

2α− (1− η)α

≥ 1− 2η.

So we can conclude that p1 · p2 ≥ 1− 2η − e−αc as claimed. □

3.2.2. Soundness. In the following, we shows that Reduction 3.2 is sound, i.e., that
given a good assignment for the unique game U ′ = Ψc(U) obtained via applying
Reduction 3.2 to U , one can construct a good partial assignment for the original
unique game U .

It turns out that it is easier to bound the values of such a partial assignment in
the unique game U2: the square of a unique game U on vertex set V with alphabet
Σ is a unique game on the same vertex set and alphabet corresponding to the
following probabilistic verifier:

(1) Sample a random vertex u ∼ V according to the marginal distribution of
the first vertex in a random constraint of U ,

(2) Sample two random constraints incident to u: (u, v, π), (u, v′, π′) ∼ U | u.
(Here U | u denotes the constraint distribution of U conditioned on the first
vertex being u.)

(3) Verify that π−1(xv) = (π′)−1(xv′ .

Let U⟲ be the unique game obtained from sampling with probability 1/2 a random
constraint from U and sampling with the remaining constraint a trivial constraint
(u, u, id). Observe that U⟲(x) =

1
2 (1 + U(x)) so we have U2

⟲(x) = 1/4 + 1/2U(x) +
1/4U2(x) for all x ∈ (Σ ∪ {⊥})V .

The following properties are immediate from unwrapping definitions, and will be
used in Lemma 3.15 and Lemma 3.16:

Proposition 3.13.

(1) If U(x) ≥ 1− η, then U2(x) ≥ 1− 2η.
(2) If U2(x) ≥ ζ, then one can construct an assignment y such that U(y) ≥ ζ/4.
(3) If U(x) ≥ 1− η, then U2

⟲(x) ≥ 1− η.
(4) If U2

⟲(x) ≥ 1− η′, then U(x) ≥ 1− 2η′.

Let F : V c → [c]× Σ be an assignment for the unique game U ′ = Ψc(U) (recall
that U is on vertex set V = [n] and alphabet Σ = [k]). Based on F , we construct
a collection {fU,r} of partial assignments for U . For U ∈ V c−1 and r ∈ [c], define
fU,r : V → Σ ∪ {⊥} by

x 7→

{
i if F (U +i x) = (r, i),

⊥ otherwise.

We first show that one of the partial assignments fU,r has good value in U2.
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Lemma 3.14. Let β > 0. Then, there exists a partial assignment fU,r that labels
at least β/c of the vertices and has value at least

U2(fU,r) ≥
U ′(F )− β

1− β
Px∼V [fU,r(x) ̸=⊥].

In particular, optβ/c(U2) ≥ (U ′(F )− β)/(1− β).

Proof. We first compute the expectation of fU,r for U2:

EU∼V c−1,r∈[c]U2(fU,r)

= PU∼V c−1,r∈[c],u∼V,(u,v,π),(u,v′,π′)∼U|u[π
−1(fU,r(v)) = (π′)−1(fU,r(v

′))]

=
U ′(F )

c
.

For fixed U ∈ V c−1 and r ∈ [c], define

αU,r
def
= Px∼V [fU,r(x) ̸=⊥].

The expected value of αU,r is 1/c since

EU∼V c−1,r∈[c]αU,r = PU∼V c−1,r∈[c],x∼V [fU,r(x) ̸=⊥] =
1

c
.

So U2(fU,r) ≤ αU,r, which we can can use to bound the contribution of assignments
fU,r with αU,r ≤ β/c to the expected value of U(fU,r):

EU∈V c−1,r∈[c]U2(fU,r) · 1αU,r≤β/c ≤ β/c.

Therefore we can lower bound the β/c-partial value of the unique game U2 via:

optβ/c(U) ≥
EU∼V c−1,r∈[c]U2(fU,r) · 1αU,r≥β/c

EU∼V c−1,r∈[c]αU,r · 1αU,r≥β/c

≥ U ′(F )/c− β/c

1/c− β/c

=
U ′(F )− β

1− β
. □

Using Lemma 3.14 and basic relations between the optimal value of a unique
game and its square, we can show the following lemmas:

Lemma 3.15 (Soundness close to 0). Let U ′ = Ψc(U) be the unique game obtained
by applying Reduction 3.2 with parameter c ∈ N to the unique game U . If opt(U ′) ≥
ζ, then opt1/2c(U) ≥ ζ/8.

Let U⟲ be the unique game obtained by sampling with probability 1/2 a random
constraint from U and sampling with the remaining probability a trivial constraint
(u, u, id). Note that U(f) = 1/2(α+U(f)) for every assignment f : V → Σ∪{⊥}that
labels an α fraction of the vertices.

Lemma 3.16 (Soundness close to 1). Let U ′ = Ψc(U⟲) be the unique game ob-
tained by applying Reduction 3.2 with parameter c ∈ N to the unique game U⟲. If
opt(U ′) ≥ 1− η, then opt1/2c(U) ≥ η/16.
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4. The Unique Games Conjecture on Small-Set Expanders implies the
Small-Set Expansion Hypothesis

In this section, we introduce a variant of the Unique Games Conjecture wherein
one additionally assumes mild expansion of small sets on the constraint graph of the
instance. We then describe the reduction from the such instances of Unique games,
which we call Unique Games on Small-Set Expanders, to the Small-Set Expansion
problem. This establishes an equivalence between the Unique Games Conjecture on
Small-Set Expanders and the Small-Set Expansion Hypothesis. We omit all proofs
and refer the interested reader to [RST10a].

Conjecture 4.1 (Unique Games Conjecture on Small-Set Expanders). For every
η > 0, there exists δ = δ(η) > 0 such that for every ζ > 0, the following promise
problem is NP-hard for some R = R(η, ζ): given a unique game U with alphabet
[R] and constraint graph G, distinguish whether

(1) opt(U) ≥ 1− η, or
(2) opt(U) ≤ ζ and ΦG(S) ≥ 1− η for all sets S with µ(S) = δ.

Reduction 4.1 (From Unique Games to Small-Set Expansion).

Input: A unique game U with vertex set V and alphabet [R], and parameters
q ∈ N and ϵ > 0.

Output: A graph H = Hq,ϵ(U) on the vertex set V × [q]R with edge distri-
bution given by the following sampling protocol:
(1) Sample a random vertex u ∼ V ,
(2) Sample a random point x ∈ [q]R,
(3) Sample two random constraints (u, v, π), (u, v′, π) ∼ U | u,
(4) Sample two random points y, y′ ∼ T1−ϵ(x) (Here, T1−ϵ(x) is the usual

noise graph on [q]R with noise parameter 1 − ϵ; see [RST10a] for a
detailed definition),

(5) Output an edge between (v, y) and (v′, y′).

The Reduction 4.1 plus the appropriate analysis yields the following theorem:

Theorem 4.2. Conjecture 4.1 (Unique Games Conjecture on Small-Set Expanders)
implies the Small-Set Expansion Hypothesis.

5. If the Unique Games Conjecture is false

Raghavendra and Steurer observe in [RS10] that an immediate corollary of The-
orem 3.1 is that the following hypothesis would emerge out of an algorithmic refu-
tation of the Unique Games Conjecture:

Conjecture 5.1 (Unique Games is Easy). There exists a constant ϵ > 0 and a
function f : N → N such that given a UNIQUE GAMES instance U with n vertices
and k labels, it is possible to distinguish between the cases opt(U) ≥ 1 − ϵ and
opt(U) ≤ ϵ in time nf(k).

Theorem 5.2. Suppose Conjecture 5.1 is true for some constant ϵ0 and function f .
Then there exists a function g : [0, 1] → N such that given any graph G on n vertices
and δ ∈ [0, 1], it is possible to distinguish whether ΦG(δ) ≤ ϵ1 or ΦG(δ) > 1 − ϵ1
for some absolute constant ϵ1 in time ng(δ) .
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Using the parallel repetition theorem of Rao [Rao08], we can actually say some-
thing stronger. The following corollary is an immediate consequence of our reduc-
tion from Small-Set Expansion to Unique Games and the aforementioned theorem:

Corollary 5.3. Suppose Conjecture 5.1 is true for some constant ϵ0 and function
f . Then, given a graph G with vertex set V = [n] and parameters ϵ, δ such that
ϵ < ϵ1 for some absolute constant ϵ1, we can distinguish between the following cases
in time ng(ϵ,δ) for some g : [0, 1]2 → N

(1) There exists S ⊂ V with µ(S) = δ and ΦG(S) ≤ ϵ,
(2) Every set S ⊂ V with µ(S) ≤ 1500δ/ϵ satisfies ΦG(S) ≥ 1500

√
ϵ.

6. Conclusion

The recent connections between the Small-Set Expansion Hypothesis and the
Unique Games Conjecture put the veracity of the latter conjecture on potentially
more stable ground: graph expansion is well-studied, so it is natural to ask about
the veracity of the Small-Set Expansion Hypothesis. On one hand, the recent
resolution of the 2 − 2 Games Conjecture [KMS18] (a lesser variant where there
are two possible values each constraint is allowed to satisfy; the unique in Unique
Games is for similar reasons) gives credence to the truth of the Unique Games
Conjecture and thus by extension to the Small-Set Expansion Hypothesis. On the
other hand, the Small-Set Expansion Hypothesis implies the following (improbable)
combinatorial conjecture:

Conjecture 6.1. For all ϵ > 0, there exists δ > 0 and a family of n-vertex graphs
{Gn}n→∞ such that (1) every subset of size between δ

2n and δn in Gn has expansion
at least (say) 1/2 and (2) the number of eigenvalues of the normalized adjacency
matrix of Gn that exceed 1− ϵ is at least nδ.

We refer the interested reader to [Kho14].
The Unique Games Conjecture has led to the creation of many interesting algo-

rithms. As it relates to this paper, there are two algorithms ([Aretal08], [MM10])
which efficiently solve Unique Games instances where the underlying constraint
graph has good expansion (these results both clearly generalize to the case of
small-set expansion). In particular, since a random graph has good expansion
by a straightforward combinatorial argument, these results show that UGC is easy
on random instances. If one believes that Unique Games is indeed hard in the
worst case (as the conjecture contends), then these results perhaps indicate that
(small-set) expansion in the constraint graph is the wrong place to look for hard
instances for Unique Games. On the other hand, if one believes that the Unique
Games Conjecture is false, then these results indicate that one need only find a
way to unite the expanding and non-expanding cases to disprove the conjecture.
Proving or disproving the 2 − 2 conjecture for graphs with small-set expansion
properties would help to resolve this confusion, as a proof in either direction would
help determine whether expansion is intrinsically tied-up with the veracity of the
Unique Games Conjecture.
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Appendix A. Facts About Functions Over Graphs

We now prove Lemma 3.5

Proof of Lemma 3.5. We proceed by proving each item.

(1) We evaluate EU∼V R−1∥fU∥1 as follows:

EU∼V R−1∥fU∥1 = P
U∼V R,W∼G⊗(R−1)(U),

Z∼V ϵR,x∼V,π∈SR′ ,i∈[R′]

[F (π. ((W,Z) +i x)) = π(i)]

= P
x∼V R′

,π∈S)R′,i∈[R′][F (π.X) = π(i)]

=
1

R′PX∈V R′ [F (X) ̸=⊥] =
α

R′ .

Here the second line uses that the joint distribution (W,Z) +i x and i is the same as

the joint distribution of X and i and the third line uses that the distribution of π(i) is
uniformly random in [R′] even when condition on X and π (and thus on F (π.X)).

(2) For fixed U ∈ V R−1, the L1 norm of fU evaluates to

∥fU∥1 = P
W∼G⊗(R−1)(U)

Z∼V ϵR,x∼V,π∈SR′ ,
i∈{R,R+1,...,R′}

[F (π. ((W,Z) +i x)) = π(i)]

= P
W∼G⊗(R−1)(U)

Z′∼V ϵR+1,x∼V,π∈SR′ ,
i∈{R,R+1,...,R′}

[
F
(
π.(W,Z′)

)
= π(i)

]

=
1

ϵR+ 1
P

W∼G⊗(R−1)(U)

Z′∼V ϵR+1,π∈SR′

[
π−1

(
F
(
π.(W,Z′)

))
∈ {R,R+ 1, . . . , R′}

]
≤

1

ϵR+ 1

where the second set uses that (i, (U,Z) +i x) has the same distribution as (i, (U,Z′)).
As opposed to the proof of (1), we insert x in a random coordinate among {R, . . . , R′}
(as opposed to totally random in [R′]). The experiment as a whole doesn’t change since

π is a random permutation, as remarked previously.

(3) Sample tuples A,B,B′ as specified in Reduction 3.1). Note that B and B′ are distributed
independent and identically conditioned on A. We denote this conditional distribution

B | A. We can compute U(F ) as

U(F ) =
R′∑
r=1

PA,B,B′,π,π′∈SR′

[
F (π.B) = π(r) ∧ F (π′.B′) = π′(r)

]
=

R′∑
r=1

EA∼V R

(
P B|A

π∈SR′

[F (π.B) = π(r)]

)2

.

Fix A ∈ V R. Observe that for any r, r′ ∈ {R+ 1, . . . , R′}, it holds that

P B|A
π∈SR′

[F (π.B) = π(r)] = P B|A
π∈SR′

[F (π.B) = π(r′)]

since all coordinates br of B with r ∈ {R + 1, . . . , R′} are distributed identically (even

conditioned on A). Thus, for every r ∈ {R+ 1, . . . , R′},

P B|A
π∈SR′

[F (π.B) = π(r)] ≤
1

ϵR
.

Now consider r ∈ [R]. For B = (b1, . . . , bR′ ) ∈ V R′
, let B−r ∈ V R′−1 denote the tuple

obtained from B by removing the r-th coordinate br. Then

P B|A
π∈SR′

[F (π.B) = π(r)] = P B|A
π∈SR′

[F (π.(B−r +r br)) = π(r)] = EB|Af(B−r, br).

Since br is distributed as a random neighbor of ar (where A = (a1, . . . , aR′ )), it follows
that

EB|Af(B−r, br) = Ebr∼G(ar)fA−r (br) = GfA−r (ar).
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Recall that we identify the graph G with its stochastic adjacency matrix so that GfA−r

denotes the function on V obtained by applying the linear operator G to the function

fA−r . Combining the two previous bounds, we get

U(F ) ≤
R∑

r=1

EA∼V R (GfA−r (ar))
2 + ϵR

(
1

ϵR

)2

= REU∼V R−1∥GfU}2 +
1

ϵR

which implies the desired bound. □
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