
SCHEMES AND THE RIEMANN-ROCH THEOREM

OWEN KOLEAN

Abstract. The purpose of this paper is to build up to the notion of a scheme,

and then use the scheme’s properties and geometric behavior to prove the

Riemann-Roch theorem, which has many important applications in algebraic
geometry (such as providing a formula for computing the Hilbert polynomial

of line bundles on a curve). This paper assumes familiarity with classical

algebraic geometry (i.e. varieties), and will bridge an understanding of varieties
to the more generalized concept of a scheme.

Contents

1. Sheaves 1
2. The Road to Schemes 3
2.1. The Set 3
2.2. The Topology 3
2.3. The Structure Sheaf and Definition of a Scheme 4
3. Schemes 4
3.1. Projective Schemes 4
3.2. Sheaves of Modules 5
3.3. Quasicoherent Sheaves 5
4. The Geometry of Schemes 6
4.1. Divisors 6
4.2. Invertible Sheaves 6
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1. Sheaves

We first must define the sheaf, which will be a necessary ingredient for the defi-
nition of a scheme. A sheaf is made up of collections of functions assigned to open
subsets of a topological space, and will therefore allow for the tracking of local data
on a topological space.

Definition 1.1. Let X be a topological space. A presheaf F of Abelian groups on
X consists of the data:
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• For every open subset U ⊂ X, an abelian group F(U).
Note: The elements of F(U) are called sections of F over U .

• For every inclusion V ⊂ U of open subsets of X, a morphism of abelian
groups pUW = pVW ◦ pUV (Restriction mapping).

With the additional conditions...

• F(∅) = 0, where ∅ is the empty set,
• pUU is the identity map F(U) → F(U), and
• if W ⊂ V ⊂ U are three open subsets, then pUW = pVW ◦ pUV

Now that we have defined the notion of a presheaf, we can add on a couple
of extra conditions to get the definition of a sheaf which, roughly speaking, is a
presheaf with sections that are determined by local data.

Definition 1.2. A sheaf is a presheaf F on a topological space X that satisfies the
following additional conditions:

(III, Identity Axiom): if U is an open set, {Vi} an open covering of U , and
s ∈ F(U) is an element such that s|Vi

= 0 ∀i, then s = 0.
(IV, Gluability Axiom): if U is an open set, {Vi} an open covering of U , and if

we have si ∈ F(Vi) ∀i, with the property that ∀i, j, si|Vi∩Vj = sj |Vi∩Vj , then there
exists a unique s ∈ F(U) such that s|Vi = si for each i.

Definition 1.3. Let F be a presheaf on a topological space X, and let P be a
point of X. Then we define the stalk Fp of F at P to be the direct limit of groups
F(U) for all open sets U containing P .

The stalk gives a way of isolating the behavior of a sheaf around a specific point.
Note that the limit of open sets around p is necessary, as points are not open sets,
so we take increasingly small open sets containing the point to best describe the
sheaf’s behavior at the point.

Definition 1.4. Let F and G be presheaves on a topological space X. Then a
morphism ϕ : F → G consists of a morphism of abelian groups ϕ(U) : F(U) → G(U)
for each open set U , such that whenever V ⊂ U is an inclusion, the diagram below
is commutative.

F(U)
φ(U) //

pUV

��

G(U)

p′
UV

��
F(V )

φ(V )
// G(V )

If F and G are sheaves on X, the same definition holds. Additionally, an iso-
morphism is a morphism with a two sided inverse.

Example 1.5. Suppose X is a topological space with p ∈ X, and S is a set.
Let ip : p → X be the inclusion mapping. Then ip,∗S defined below is called the
skyscraper sheaf:
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ip,∗S(U) =

{
S p ∈ U

{e} p /∈ U

This sheaf is called the skyscraper sheaf, as the picture of the sheaf looks like a
skyscraper at the point p.

Proposition 1.6. The skyscraper sheaf is a sheaf.

Proof. We will describe ip,∗S(U) as a sheaf of functions f : U → S such that
f(u) = e for all u ̸= p, where the restriction mappings are the usual restrictions of
functions.

Suppose U is open, and {Ui}i∈I is an open cover of U . We first show that the
identity axiom holds. Suppose we have f1, f2 ∈ F(U) and pUUi

f1 = pUUi
f2 ∀i ∈ I.

Suppose for a contradiction that f1 ̸= f2 or that the exist t ∈ Uj , j ∈ I such that
f1(t) ̸= f2(t). Then f1|ui

̸= f2|ui
, a contradiction.

We next prove that the gluability axiom holds. Let {Ui}i∈I be an open cover
of U . Given fi ∈ F(Ui) for all i such that fi|Ui∩Uj

= fj |Ui∩Uj
∀i, j ∈ I, we can

uniquely glue together a function f : U → S that agrees on these intersections.
Then clearly f(u) = e for all u ̸= p. Hence, f ∈ F(U).

□

2. The Road to Schemes

This section of the paper will consist of the construction of schemes. When said
and done, the scheme will contain three pieces: The set, the topology, and the
structure sheaf. In the construction of the scheme, these pieces will be covered in
this order.

2.1. The Set.

Definition 2.1. Let A be a ring. The spectrum of A, denoted SpecA, is the set of
prime ideals of A (denoted [p] for a prime ideal p). Elements a ∈ A will be called
functions on SpecA, and their value at a point [p] will be a(modp).

Example 2.2. The function 11 on SpecZ takes on values 4 at [7] and 1 at [2].

Example 2.3. SpecC[x, y] consists of prime ideals of the form [(x − a, y − b)],
a, b ∈ C, which exist in 1− 1 correspondence with elements (a, b) ∈ A2

C.

Hence, constructing the complex plane is possible by considering prime ideals of
the 2-dimensional polynomial ring with coefficients in the complex numbers. Note
that the same does not hold for R, as R is not an algebraically closed field, and thus
its polynomial ring contains polynomials of higher degrees which are irreducible.

2.2. The Topology. We will define the Zariski topology in terms of closed subsets
of SpecA for an arbitrary ring A. Let S be a subset of A. Define the vanishing
set of S by V(S) := {[p] ∈ SpecA|S ⊂ p}. We claim that these closed sets form a
topology on A

Proof. We first prove that ∅ and SpecA are open subsets of SpecA. Note that this
follows from the fact that V(A) = ∅ and V((0)) = SpecA.
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The next step is to show that if a and b are prime ideals of A, then V(ab) =
V(a) ∪ V(b). Let p ∈ V(a) ∪ V(b). Without loss of generality, we assume p ∈ V(a).
Then a ⊂ p, which implies ab ⊂ p. For the other direction, suppose, p ∈ V(ab),
or that ab ⊂ p. Suppose, for a contradiction, that a is not contained in p. Then
∃a ∈ a such that a /∈ p. But then for any arbitrary b ∈ b it must be the case that
ab ∈ p, which is a prime ideal, so b ∈ p. This implies b ⊂ p.

Lastly, we prove that if {ai} is any set of ideals of A, then V(
∑

ai) =
⋂

V(ai).
This follows from the fact that any prime ideal p contains

∑
ai if and only if p

contains each ai, due to the definition of
∑

ai as being the smallest ideal containing
all of the ideals ai.

□

Definition 2.4. If f ∈ A define the distinguished open set D(f) := {[p] ∈
SpecA|f /∈ p}.

Definition 2.5. Let X be a topological space. A point p ∈ X is a closed point if
{p} is a closed subset of X.

Recall from Example 2.3 that each point of the complex plane is a closed point,
as each corresponds to an irreducible polynomial, and thus a prime ideal.

2.3. The Structure Sheaf and Definition of a Scheme. We will now define the
notion of a structure sheaf, which will act on distinguished open subsets of SpecA for
some ring A. Define OSpecA(D(f)) to be the localization of A at the multiplicative
set of functions that do not vanish outside of V(f). As a brief example, note that
OSpecA(∅) = {0}

Definition 2.6. A ringed space is a pair (X,OX) consisting of a topological space
X and the structure sheaf OX on X. A ringed space is a locally ringed space if the
stalk OX,P is a local ring for each point P ∈ X.

Definition 2.7. An affine scheme is a locally ringed space (X,OX) which is iso-
morphic to the spectrum of some ring. A scheme is a locally ringed space in which
every point in X has an open neighborhood U such that the topological space U ,
together with the restriction sheaf OX|U , is an affine scheme.

Example 2.8. Let k be an algebraically closed field. Define A1
k := Speck[x] to be

the affine line.

Note that closed points of A1
k are in 1− 1 correspondence with elements of k, as

each element of k corresponds to an irreducible degree one polynomial, which are
the prime ideals of Speck[x].

Example 2.9. We can extend Example 2.8 to n dimensions to get An
k := Speck[x1, ..., xn].

Interestingly, this scheme is homeomorphic to An, the affine variety.

3. Schemes

3.1. Projective Schemes. Projective schemes can be constructed by gluing to-
gether affine schemes, but we will approach their construction in a different way
given the difficulty of keeping track of gluing. This construction of schemes will be
more algebraic, and will focus on carving them out of graded rings.
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Definition 3.1. A Z-graded ring is a ring S• =
⊕

n∈Z Sn where multiplication
sends Sn × Sm to Sn+m. Additionally, elements of Sn are called homogeneous
elements of S• and the subset S+ :=

⊕
i>0 Si ⊂ S• is called the irrelevant ideal.

Definition 3.2. Similar to how we constructed SpecA by considering its points
and then imbuing a topology and a structure sheaf, we will now construct ProjS•
in an analogous way:

-The Set: The points of ProjS• will be the homogeneous prime ideals of S• not
containing the irrelevant ideal S+.

-The Topology: If T is a set of homogeneous elements of S• of positive degree,
define V(T ) ⊂ ProjS• to be the set of homogeneous prime ideals containing T but
not S+. This vanishing set will be the closed set for the topology. Additionally, the
projective distinguished open subsets are defined, for homogeneous f , as D(f) :=
ProjS•\V(f).

-The Structure Sheaf: The structure sheaf sends each distinguished open subset
D(f) to the subset Spec(((S•)f )0), which represents the rational functions with
homogeneous numerator and some power of f as the denominator, which has the
same degree as the numerator. In other words, they are the zero graded pieces of
the graded ring S•, localized at f .

Definition 3.3. A scheme of the form ProjS•, where S• is a finitely generated
graded ring over A, is called a projective A-scheme.

Example 3.4. Let k be an algebraically closed field. Then the variety Pn
k is

homeomorphic to the subspace of closed points of Projk[x0, ..., xn].

3.2. Sheaves of Modules.

Definition 3.5. Let (X,OX) be a ringed space. A sheaf of OX -modules (also
known as an OX -module), is a sheaf F on X such that for each open set U ⊂ X,
the group F(U) is an OX -module, and for each inclusion of open sets V ⊂ U , the
restriction homomorphism F(U) → F(V ) is compatible with the module structure
via the ring homomorphism OX(U) → OX(V ).

Definition 3.6. A sheaf of ideals on X is a sheaf of modules J which is a subsheaf
of OX . In other words, for every open U , J (U) is an ideal in OX(U).

Definition 3.7. An OX -module F is free if it is isomorphic to a direct sum of
copies of OX . It is locally free if X can be covered by open sets U for which F|U
is a free OX |U -module. Additionally, the rank of F is the number of copies of the
structure sheaf needed. An invertible sheaf is a locally free sheaf of rank one.

3.3. Quasicoherent Sheaves. In this section, we will briefly define what a qua-
sicoherent sheaf is. Much like how you glue together rings to form a scheme, con-
structing a quasicoherent sheaf involves gluing together modules over those rings.
The concept of a quasicoherent sheaf will be necessary for when we later define the
Čech cohomology and look at the geometry of schemes.

Definition 3.8. Let M be an A-module. Define the sheaf M̃ such that for distin-
guished open subsets D(f), M̃(D(f)) is the localization of M at the set of functions
which do not vanish outside of f (i.e. 1, f, f2, ...).
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Definition 3.9. Let X be a scheme, and F an OX -module. Then F is quasicoher-
ent if X can be covered by affine open subsets Ui such that for each affine subset
Ui = SpecAi ⊂ X, F|SpecAi

∼= M̃i for some Ai-module M . Further, we say F is
coherent if Mi is a finitely generated Ai-module.

4. The Geometry of Schemes

4.1. Divisors. In this section, we will define two types of divisors, which are useful
for studying the intrinsic geometry of a scheme. We will first define Weil divisors
(which come with a clearer geometric intuition) and then move on to Cartier divisors
(which can be used for more general schemes).

Definition 4.1. LetX be a scheme. AWeil divisor is a formal Z-linear combination
of codimension 1 irreducible closed subsets of X. Additionally, only a finite number
of the integer coefficients of the closed subsets can be non-zero.

A Weil divisor can also be written in the form
∑

Y⊂X nY [Y ], where X is codi-
mension 1.

Example 4.2. We will later define a curve for the statement of the Riemann-
Roch Theorem, but for now you can think of it as a dimension 1 scheme with
some added conditions. In this case, the Weil divisors for a curve would be linear
combinations of points, as codimension 1 subsets of a 1-dimensional scheme would
be 0-dimensional.

Definition 4.3. Let X be a scheme. For each open affine subset U = SpecA, let
S denote the set of elements of A which are not zero divisors, and let K(U) be the
localization of A by the multiplicative system S. K(U) is called the total quotient
ring of A. For open U , let S(U) denote the set of elements of Γ(U,OX) which are
not zero divisors in each local ring Ox for x ∈ U . Then the rings S(U)−1Γ(U,OX)
form a presheaf, whose associated sheaf of rings K we call the sheaf of total quotient
rings of O. We denote by K∗ the sheaf of invertible elements in the sheaf of rings
K. Similarly, O∗ is the sheaf of invertible elements in O.

Definition 4.4. A Cartier Divisor on a scheme X is a global section of the sheaf
K∗/O∗. A Cartier divisor on X can be described by giving an open cover {Ui}
of X, and for each i an element fi ∈ Γ(Ui,K∗), such that for each i, j, fi/fj ∈
Γ(Ui ∩ Uj ,O∗).

Definition 4.5. A Cartier divisor on a schemeX is effective if it can be represented
by {(Ui, fi}, where all the fi ∈ Γ(Ui,OUi). We then define the associated subscheme
of codimension 1, Y , to be the closed subscheme defined by the sheaf of ideals J ,
which is locally generated by fi.

4.2. Invertible Sheaves.

Definition 4.6. LetD be a Cartier divisor on a schemeX, represented by {(Ui, fi)}.
Define a subsheaf L(D) of the sheaf of total quotient rings K by taking L(D) to be
the sub-OX -module of K generated by f−1

i on Ui. We call L(D) the sheaf associated
to D.

Proposition 4.7. Let X be a scheme. Then:
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(a) For any Cartier divisor D, L(D) is an invertible sheaf on X. The map
D 7→ L(D) gives a bijection between Cartier divisors on X and invertible subsheaves
of H.

(b) L(D1 −D2) ∼= L(D1)⊗ L(D2)
−1.

Proof. (a) Let D be a Cartier divisor. Then D can be described as {(Ui, fi)} such
that for each fi ∈ Γ(Ui,K∗), the map OUi

→ L(D)|Ui
defined by 1 7→ f−1

i is an
isomorphism. Note that because L(D) can be covered by open sets {Ui} such that
L(D)|Ui

∼= OUi
, L(D) is locally free sheaf of rank 1, so it is an invertible sheaf.

Further, we can recover the Cartier divisor D from L(D) by taking fi on Ui to
be the inverse of a local generator of L(D).

(b) Let D1 and D2 be Cartier divisors. Then for each fi, gi that locally define
D1 and D2 respectively, it follows that f−1

i gi locally generates L(D1 −D2), which
implies L(D1 −D2) = L(D1) · L(D2)

−1, which is isomorphic to the tensor product
L(D1)⊗ L(D2)

−1.
□

Proposition 4.8. Let D be an effective Cartier divisor on a scheme X, and let Y
be the associated locally principal closed subscheme. Then JY

∼= L(−D).

Proof. L(−D) is locally generated by fi. Note that by the definition of JY being
locally generated by fi as well, we have that JY

∼= L(−D). □

Definition 4.9. A scheme X is integral if for all open U ⊂ X, OX(U) is an integral
domain.

Before we can present the definition of a curve, we must lastly define the con-
dition of separatedness for a scheme. This condition is analagous to the Hausdorff
condition for manifolds which, through its exclusion of spaces like the real line with
doubled origin, proves to be extremely useful.

Definition 4.10. A morphism π : X → Y is separated if the diagonal morphism
δπ : X → X ×Y X is a closed embedding.

If the morphism π defined above has the property of separatedness, then the
scheme Y also has the property of separatedness. This formality of defining sepa-
ratedness of schemes by the morphisms between them may seem awkward, but is
an instance of a trend established by Grothendiek to describe properties of schemes
not by the objects themselves, but by mappings between them.

It can be shown that all morphisms between affine schemes are separated. Addi-
tionally, as the above exposition would suggest, the line with doubled origin is not
separated.

Definition 4.11. Let k be an algebraically closed field. A curve over k is an
integral separated scheme X of finite type over k, of dimension 1. If X is proper
over k, we say that X is complete.

For this paper, we will additionally add the conditions that a curve is also com-
plete and nonsingular over k.

4.3. The Čech Cohomology.
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Definition 4.12. Suppose X is a quasi-compact and separated topological space.
Additionally, suppose F is a quasicoherent sheaf, and U = {Ui}ni=1 is a finite col-
lection of affine open sets covering X. Then define the Čech complex as...

0 →
∏

|I|=1,I⊂{1,...,n} F(
⋂

i∈I Ui) → ...

→
∏

|I|=i,I⊂{1,...,n} F(
⋂

i∈I Ui) →
∏

|I|=i+1,I⊂{1,...,n} F(
⋂

i∈I Ui) → ...

where we denote αi0,...,ip ∈ F(Ui0,...,ip), and we define the coboundary map by

setting (dα)i0,...,ip+1 =
∑p+1

k=0(−1)kαi0,...,̂ik,...,ip+1
|Ui0

,...,ip+1 .

Proposition 4.13. The Čech complex is a complex.

Proof. In order to show the Čech complex is actually a complex, we have to show
that d2 = 0.

(d(ds))i0,...,ip+2 =

p+2∑
k=0

(−1)k(ds)i0,...,̂ik,...,ip+2
|Ui0,...,ip+2

=

p+2∑
k=0

(−1)k(

p+2∑
l=0,l ̸=k

(−1)lsi0,...,̂il,...,̂ik,...,ip+2
|Ui0,...,̂ik,...,ip+2

)|Ui0,...,ip+2

=

p+2∑
k=0

(−1)k(

k−1∑
l=0

(−1)k+1si0,...,̂il,...,̂ik,...,ip+2
+

p+2∑
l=k+1

(−1)k+(l−1)si0,...,̂ik,...,̂il,...,ip+2
)

= 0

□

Definition 4.14. for the open cover U as defined above, define Hi
U (X,F) to be

the ith cohomology group of the Čech complex defined above.

Note that because X was chosen to be a quasicompact and separated topological
space, Hi

U (X,F) is independent of the choice of covering, so we will instead use the
notation Hi(X,F) to refer to the ith cohomology group of the complex.

Proposition 4.15. Let X be a projective variety over a field k. Then H0(X,OX) =
k

Proof. Omitted
□

Definition 4.16. Let X be a projective scheme over a field k, and let F be a
coherent sheaf on X. We define the Euler characteristic of F by

χ(F) =
∑

(−1)idimkH
i(X,F).

Proposition 4.17. Suppose 0 → F → G → H → 0 is an exact sequence of coherent
sheaves on a projective k-scheme X. Then χ(X,G) = χ(X,F) + χ(X,H).

Proof. Omitted.
□

Definition 4.18. Let X be a projective scheme of dimension r over a field k. We
define the arithmetic genus pa of X by
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pa(X) = (−1)r(χ(OX)− 1).

Note: The arithmetic genus is also known as the genus, and which is denoted g.

Lemma 4.19. Let X be a nonsingular curve over k with a function field K. Then
X is projective if and only if X is complete.

Proof. Omitted □

Proposition 4.20. Let X be a curve. Then pa(X) = dimkH
1(X,OX).

Proof. Note that since X is complete (we’ve defined a curve to include complete-
ness), it is also projective (Lemma 4.19). Thus, the Euler characteristic is:

χ(X) = dimkH
0(X,OX)− dimkH

1(X,OX)

= dimkk − dimkH
1(X,OX) (Proposition 4.13)

= 1− dimkH
1(X,OX).

It then follows that

pa(X) = (−1)r(χ(OX)− 1)

= (−1)1(1− dimkH
1(X,OX)− 1)

= dimkH
1(X,OX).

□

5. The Riemann-Roch Theorem

This last section is dedicated to the proof of the Riemann-Roch Theorem. In
order to prove the result, we must establish a couple final definitions and state
a major result known as the Serre Duality (Lemma 5.5). The proof of the Serre
duality is very challenging and beyond the scope of this paper, but a proof can be
found in Vakil’s class notes (which will be linked in the references below).

Definition 5.1. Suppose A is a B-algebra. Define ΩA/B to be the finite A-linear
combination of da for a ∈ A, such that:

• da+ da′ = d(a+ a′)
• d(aa′) = ada′ + a′da
• db = 0 for b ∈ ϕ(B), where ϕ : B → A is the morphism that comes with A
being a B-algebra.

Example 5.2. Let A = k[x, y, z], B = k. Then 5z2xdz + 3yxdy ∈ ΩA/B , and

d(5z2x) = 5z2dx+ 10zxdz.

Definition 5.3. Let X be a nonsingular variety over k and n = dimX. Define the
canonical sheaf of X to be ωX := ∧nΩX/k

Definition 5.4. Two divisors are linearly equivalent if their difference is a divisor
of a rational function. Any divisor in the linear equivalence class that corresponds
to the canonical sheaf is called a canonical divisor, denoted K.
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Lemma 5.5. Let X be a projective nonsingular variety of equidimension 1 over
an algebraically closed field k. Then for any locally free sheaf F on X, there are
natural isomorphisms,

Hi(X,F) ∼= Hn−i(X,F∗ ⊗ ωX)∗.

Proof. Omitted □

Theorem 5.6. Let D be a divisor on a curve X of genus g. Then

dimkH
0(X,L(D))− dimkH

0(X,L(K −D)) = degD + 1− g.

Proof. Given the isomorphism established in the Proposition 4.7, it follows that
the divisor K −D corresponds to the invertible sheaf ωX ⊗ L(D)∗.

Additionally, X is a curve, so it is complete and thus projective (Lemma 4.19),
so we can use the Serre duality (Lemma 5.5) to conclude that H0(X,ωX ⊗L(D)∗)
is dual to H1(X,L(D)) as a vector space. Hence, we are trying to show that
χ(L(D)) = dimH0(X,L(D)) − dimH1(X,L(D)) = degD + 1 − g, where χ(L(D))
is the Euler characteristic.

first, suppose D = 0. To prove Riemann-Roch for this case, we are trying to
show that dimH0(X,OX)−dimH1(X,OX) = 0+1−g. Note that H0(X,OX) = k
(Proposition 4.15), and dimH1(X,OX) = pa(X) = g (Proposition 4.20). This
completes the case there D = 0.

The next step is to show that for any arbitrary divisor D, the Riemann-Roch
theorem holds for D if and only if it holds to D+P , where P is an arbitrary point.
The reason for this being the more general case has to do with the structure of
Weil divisors, as Weil divisors on curves are finite Z-linear combinations of points,
so it is possible to get from D = 0 to any divisor by adding a finite number of points.

Then consider P as a closed subscheme of X, whose sheaf is the skyscraper sheaf
(Example 1.5), which we will denote k(P ). Then its ideal sheaf is isomorphic to
L(−P ) (Proposition 4.8). We can then construct the exact sequence

0 → L(−P ) → OX → k(P ) → 0, which when tensored with L(D + P ) gives

0 → L(D) → L(D + P ) → k(P ) → 0. Then given the additivity of the Eu-
ler characteristic on short exact sequences (Proposition 4.17) and the fact that
χ(k(P )) = 1, we get χ(L(D + P )) = χ(L(D)) + 1.

Combine this with the fact that deg(D + P ) = degD + 1, and the proof is
complete, as assuming the forward direction, χ(L(D)) = degD + 1 − g becomes
χ(L(K − D)) = deg(K − D) + 1 − g through substitution, and likewise for the
backwards direction.

□
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