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Abstract. This paper sets out to explain Galois theory and at the end prove

the Abel-Ruffini Theorem, which was partially proved in 1799 by Paolo Ruffini

and then completed by Niels Henrik Abel in 1823. Évariste Galois indepen-

dently proved the theorem, with his proof published posthumously in 1846.
This paper will first introduce key concepts of algebra, then build upon these

to introduce Galois Theory and its extensions. Finally, we conclude by proving

the Abel-Ruffini Theorem using previously established mathematical concepts.
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1. Introduction

This paper culminates by proving the Abel-Ruffini Theorem with a few side
quests on the way.

Theorem 1.1. There is no solution in radicals to general polynomial equations of
degree five or greater with arbitrary coefficients.

For there to be a solution in radicals for a general polynomial equation of degree
n, there needs to be an explicit formula for the roots of the polynomial using the
operations +,−, /,×, and n

√
. An example of this would be the quadratic equa-

tion that finds the roots of a second-degree polynomial. The Abel-Ruffini Theorem
proves that there is no explicit formula using our basic operations to find the roots
of a polynomial with a degree of 5 or greater.
Before we begin, I suggest the reader have a good understanding of the basics of
group theory, fields, the Fundamental Theorem of Symmetric Polynomials, polyno-
mial properties, and roots of unity.
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2. Contextual Definitions

Definition 2.1. A polynomial p ∈ F (x1, ..., xn) is symmetric if for every permu-
tation (xr(1), ..., xr(n)) of the variables (x1, ..., xn), we have

p(xr(1), ..., xr(n)) = p(x1, ..., xn).

Definition 2.2. A subgroup N of a group G is normal in G if for all n ∈ N and
g ∈ G, we have gng−1 ∈ N .

Definition 2.3. A group G is defined as solvable if it has a subnormal series whose
factor groups are all abelian. If there are subgroups

1 = G0 ◁ G1 ◁ ... ◁ Gk = G

such that for all j = 1, 2, ...k, Gj−1 is normal in Gj and the quotients Gj/Gj−1 are
all abelian, then G is solvable.

Definition 2.4. The degree of a field extension E/F is the dimension of E as a
vector space over F . If E/F is finite, then [E : F ] denotes the degree of E/F .

Definition 2.5. A polynomial f ∈ F [x] is irreducible over F if it is nonconstant
and cannot be factored into polynomials of strictly lower degree with coefficients in
F .

Definition 2.6. A characteristic of a ring R is the smallest number of the ring’s
multiplicative identity that it takes to add together to get to the additive identity.
If no such number exists, then the ring has characteristic 0. An example of this
is that in 5Zit take 5 ones to get back to 0, and so it is characteristic 5, written
char(5Z) = 5.

Definition 2.7. An nth root of unity z, with n ∈ N, is a number z such that zn = 1
in a given field F that we are working in. An nth root is primitive if for any m ∈ N
and m < n, zm ̸= 1.

3. Finite Extension Fields and Splitting Fields

Definition 3.1. Let F be a field. An extension field E of F is a field such that
F ⊂ E. We call F the ground field with respect to E. This relationship is denoted
by E/F .

Definition 3.2. Let E/F be a field extension, then E may be considered as a vector
space over F , and the dimension of this vector space is called the field extension
and is denoted by [E : F ].

Example 3.3. The complex numbers, C, is an extension field of the real numbers,
R, with R(i) = C. This is due to all elements of C being of the form a + bi with
a, b ∈ R. The degree of the field extension is 2, written as [E : F ] = 2.

Definition 3.4. Let F be a field and S its basis. For an element a /∈ F , we create
a basis B = S ∪a and denote the field with basis B as F (a). For example R(i) = C
as the basis of R is 1 and that of of C is {1, i}.

Definition 3.5. Let F be a field. The set of all polynomials of coefficients in F is
denoted F [X].
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Definition 3.6. An element α ∈ E is algebraic over a field F if it is the root of
some non-zero polynomial over F . The extension E/F is algebraic if all elements
of E are algebraic over F .

Example 3.7. For example, we have
√
5 /∈ Q as algebraic over Q since it is a root

of the polynomial g(x) = x2 − 5 who’s coefficients are all rational numbers.

Definition 3.8. For a field F and its extension E, we have E/F as an algebraic
extension if every element of E is algebraic over F . For example, we have C/R as
an algebraic extension since all polynomials with coefficients in R of degree n will
always have all n of their roots in C but not always in R. A such polynomial is
f(x) = x2 + 1, with roots i and −i.

Definition 3.9. For a field F and its extension E, we call E/F a transcendental
extension if it is not an algebraic extension. We thus have an element in E, δ, such
that there are no polynomial with coefficients in F such that δ is a root of such a
polynomial. We call δ a transcendental element of E/F .

Proposition 3.10. Let α be algebraic over F . We know there exists a polynomial
p(x) such that p(x) is the polynomial of lowest degree with α as a root. A polynomial
has α as a root if and only if it is divisible by p(x).

Proof. We will first show that if a polynomial f(x) has α as a root, it is divisible
by p(x) through a proof by contradiction. Let a polynomial f(x) have α as a root
but is not a multiple of p(x). We can then write f(x) as f(x) = p(x) · q(x) + r(x)
with q(x) and r(x) non-zero polynomials and r(x) of lower degree than p(x). We
then know f(α) = p(α) · q(α) + r(α) = 0 =⇒ r(α) = 0. This contradicts p(x)
being the minimal polynomial with α as a root. We can thus conclude that f(x)
must this be divisible by p(x).

Now showing the other direction, we let a polynomial f(x) be divisible by p(x)
such that f(x) = p(x) · a(x) with a(x) a polynomial. Then f(α) = p(α) · a(α) =
0 · a(α) = 0 so α is a root of f(x). □

Definition 3.11. Let E/F be a field extension, and α an element of E. The
element α has a minimal polynomial when α is algebraic over F . Then the minimal
polynomial of α is defined as the polynomial of least degree among all polynomials
in F [x] having α as a root.

Theorem 3.12. An element α is algebraic over F if and only if [F (α) : F ] is finite.
Using an abuse of notation in the future, this will be said as F (α)/F is finite.

Proof. We first show that if α is algebraic over F then [F (α) : F ] is finite. We know
that if α is algebraic over F , then there exists a lowest degree polynomial that has
α as a root. Let the degree of this polynomial be n. We can then use the elements
1, α, · · · , αn−1 to form a basis for F (α) over F , and so [F (α) : F ] = n and thus
[F (α) : F ] is finite.

We will now show that if [F (α) : F ] is finite then α is algebraic over F . Now let
[F (α) : F ] = n. There exist b0, ..., bn with bi ∈ F and they are not all equal to 0.
Notice that we can have

b0 + b1α+ ...+ bnα
n = 0
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since 1, α, ..., αn are linearly dependent over F (α). It then follows that we can
construct a polynomial g(x) of degree n, such that g(α) = 0. We have thus found
a non-zero polynomial which has α as a root and thus α is algebraic over F . □

Corollary 3.13. If [E : F ] is finite, then E/F is algebraic (every element of E is
algebraic over F ).

Proof. Let us take an arbitrary α ∈ E and set [E : F ] = n for some finite n. We
have

F (α) ⊂ E =⇒ [F (α) : F ] ≤ [E : F ] = n.

It this follows from the previous theorem that since [F (α) : F ] is finite, α is algebraic
over F . Due to our arbitrary selection for α, this is the case for all α ∈ E and so
E/F is an algebraic extension. □

Theorem 3.14 (Tower Law). Given three fields, K,L, and M such that K ⊂ L ⊂
M , if L/K and M/L are both finite then M/K is finite. In this case we have

[M : K] = [M : L][L : K].

Proof. We shall first show that if L/K andM/L are both finite thenM/K is finite.
Let us have [M : L] = l and [L : K] = k for some finite l and k in N. We can then
find a basis u1, ..., uk of L over K and a basis w1, ..., wl of M over L. We will now
show that the elements of the form umwn, for m ranging through 1, 2, ..., k and n
ranging through 1, 2, ..., l, of which there are l · k many, form a basis of M/K.
If x is an element of M then since the wn form a basis for M over L, we can find
elements ai in L such that:

x =

l∑
n=1

anwn.

Furthermore, since the um form a basis for L over K, we can find elements bm,n in
K such that for each n,

an =

k∑
m=1

bm,num.

Putting this together we have:

x =

l∑
n=1

(

k∑
m=1

bm,num)wn =

l∑
n=1

k∑
m=1

bm,n(umwn).

Thus, x is a linear combination of coefficients from K and the multiplication of the
other bases, thus they span M over K.
We now check for linear independence. We have

0 =

l∑
n=1

k∑
m=1

bm,n(umwn) =

l∑
n=1

(

k∑
m=1

bm,num)wn

and since the wn are linearly independent over L, we must have

k∑
m=1

bm,num = 0
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for each n, Since the um are linearly independent the only solution is for all bm.n = 0
and thus the elements umwn are linearly independent over K. In conclusion these
elements will form a basis for M/K and so we must have

[M : K] = l · k = [M : L][L : K].

and so if L/K and M/L are both finite then M/K is finite.
□

Definition 3.15. An extension field E of F is called the splitting field for a poly-
nomial p over F if p factors into its linear factors over E, and E is the smallest field
with such a property. We can thus write

p(x) = c ·
deg(p)∏
i=1

(x− αi)

with c ∈ F , (x− ai) ∈ E[x] and ai not necessarily distinct roots of p(x).

Lemma 3.16. Let F be a field. The following are then equivalent:
1) The field F is algebraically closed.
2) Every irreducible polynomial over F is linear.
3) Every non-constant polynomial over F has at least one root.
4) Every non-constant polynomial over F is a product of linear factors.

Proof.
1 =⇒ 2 If F is algebraically closed, we want to show that every irreducible poly-
nomial over F must be linear. We know that if there is an irreducible polynomial
of degree greater than 1, it will generate a nontrivial finite field extension. By this
logic, we can thus conclude that every polynomial over F is linear.

2 =⇒ 3 If every irreducible polynomial over F is linear, then every irreducible
polynomial must have a root. We can factor any non-constant polynomial over F
into linear polynomials and so they must have at least one root.

3 =⇒ 4 Let every non-constant polynomial have at least one root in F and p ∈
F [X] be a non-constant polynomial. If p(α) = 0, with α as a root in F , then we
know that p(x) = (x − a)q(x) for some polynomial q ∈ F [X]. We can generalize
this idea by induction on the degree of a polynomial that any polynomial of degree
≥ 1 can be written as a product of c(x− αi) with the αi as roots and c a constant
in F .

4 =⇒ 1 Let every non-constant polynomial over F be a product of linear factors
and E/F an algebraic extension. We then know that all sub-extensions F (αi)/F
of E are simply F and so we have F = E and thus F is algebraically closed. □

Definition 3.17. Let F be a field and E an extension field of F :
1) We say an irreducible polynomial p over F is separable if it relatively prime to
its derivative p′.
2) For α ∈ E algebraic over F , α is said to be separable over F if its minimal
polynomial is separable over F .
3) If E is an algebraic field extension of F , E is said to be separable over F if every
element of E is seperable over F .
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Corollary 3.18. Let F be a field. An irreducible polynomial p over F is separable
if and only if all roots of p are distinct in the algebraic closure of F , E.

Proof. Suppose p and its derivative p′ have a common root α ∈ E, then p = (x−α)q
for some polynomial q. We then can write p′ as: p′ = q + (x − α)q′. We then also
know α is a root for q, and so this implies that p has a repeated root α. We can
thus conclude if p and p′ are relatively prime, then all roots of p are distinct.
Conversely, if p has a repeated root α, then (x− α)2 divides p and so (x− α) also
divides p′ making α a root of both p′ and p. □

Corollary 3.19. A polynomial p(x) in F [X] is separable if it has no multiple roots
in any field containing F . An algebraic field extension E of F is separable if the
minimal polynomial over every element in E over F is separable.

Proof. For the first part of the statement, this follows directly from the previous
corollary as any elements of F will be in its extensions, and so a repeated root
will remain. Thus for a polynomial p(x) in F [X] to be separable it must have no
multiple roots in any field containing F .
For the second part of the statement, we know that a field extension E of F is
separable if each of its elements is separable over F . In addition, since it is algebraic
we know that for each element α in E there is a polynomial in F [X] with α as a
root and so a minimal polynomial exists. Furthermore, we know that an element
is said to be separable if its minimal polynomial is separable over F is separable.
Using the first statement and the given definitions, it then follows that an algebraic
field extension E of F is separable if the minimal polynomial over every element in
E over F is separable. □

Theorem 3.20. Let f(x) be any polynomial of degree n over F and f(x) the
corresponding polynomial over an isomorphic field F . If E is the splitting field of
f(x) over F and E is the splitting field of f(x) over F , then we can extend the
isomorphism between F and F to E and E.

Proof. Let f have q roots in F , then we can factor f as such:

f(x) = c(x− α1)(x− α2)...(x− αq)P1(x)P2(x)...Ps(x),

with each Pi being an irreducible factor in F of degree greater than 1. Since F and
F are isomorphic we can factorize f similarly over F :

f(x) = c(x− α1)(x− α2)...(x− αq)P 1(x)P 2(x)...P s(x).

We shall use a proof by induction.

Let us first look at the case of F having all roots of f with q = n. It then follows
that E = F is the splitting field of f(x), meaning that E = F is also the splitting
field of f(x), and so the isomorphism is extended to E and E.

We will now prove that if this theorem is true for q + 1 linear factors, it is also
true for q linear factors, giving us our induction. Let the theorem be true for q+ 1
linear factors and f(x) has q linear factors in F . We have P1(x) that splits in E
and P 1(x) that splits in E which have respective roots αq+1 and αq+1. We can
then construct the extension fields by adjoining each root to the base field and
extend the isomorphism of F and F to these fields by a transformation that sends



AN INTRODUCTION TO GALOIS THEORY AND THE ABEL-RUFFINI THEOREM 7

αq+1 to αq+1 and vice-versa. Since the isomorphism of F (αq+1) and F (αq+1) also

contains that of F and F , the mapping between f(x) and f(x) remains. We now
have F (αq+1) and F (αq+1) as ground fields. We can now factor f(x) and f(x)
once again, but will obtain one new linear factor each, (x − αq+1) and (x − αq+1)
respectively, in their respective new ground fields. We thus see that f(x) possesses
at least q+1 factors in F (αq+1). The splitting field of f(x) over F (αq+1) will be E
since it does not split in any other smaller field. The same ideas can be extended to
f(x) and so we can conclude the isomorphism between F (αq+1) and F (αq+1) can

be extended to E and E which are the respective splitting fields of f(x) and f(x).
We have thus finished our proof by induction.

□

4. Automorphisms

Definition 4.1. An automorphism of a field F is a map σ : F → F that preserves
the field operations. The set of all automorphisms of F, denoted Aut(F ), forms a
group. This is otherwise thought of an isomorphism from F to itself.

Definition 4.2. An automorphism, σ, of E fixes a field F if for all α ∈ F, σ(α) = α.
The set of all automorphisms of E that fix F is denoted AutF (E).

Proposition 4.3. Let E/F be a field extension. Then Aut(E) under composition
forms a group of which AutF (E) is a subgroup.

Proof. We first have an identity which is the identity map as it is an automorphism,
as for any ϕ which is an automorphism, Id ◦ ϕ = ϕ ◦ Id = ϕ. Now to show that we
have closure.
The composition of two bijective maps is also a bijective map, further if both maps
have the same codomain and domain in common (G), the composition of the maps
will also maintain these codomains and domains, so we must have a bijective map
to itself. Now to show it is a homomorphism, with the automorphisms ϕ1 and ϕ2,
we have:

(ϕ1 ◦ ϕ2)(ab) = ϕ1(ϕ2(ab)) = ϕ1(ϕ2(a)ϕ2(b))

= ϕ1(ϕ2(a))ϕ1(ϕ2(b)) = (ϕ1 ◦ ϕ2)(a)(ϕ1 ◦ ϕ2)(b).
This is the case since ϕ2(x) ∈ G as it is an automorphism. We thus have an
isomorphism which maps to itself and so an automorphism. We thus have closure
under composition.
Any element of this group has an inverse which will also be an automorphism since
the domain and codomain are the same and the map is bijective, so the inverse
map is also a bijective map and will exist. It will also be a homomorphism as
it will maintain the properties due to being the inverse. Since we then have an
isomorphism which maps from itself to itself as the codomoain and domain are the
same, it will also be an automorphism. Finally, to show associativity we have the
automorphisns f,g, and h with:

(f ◦ (g ◦ h))(x) = f(g(h(x))) = ((f ◦ g) ◦ h)(x).

We can thus conclude set of automorphisms forms a group under composition.
Let us have any two automorphisms in Aut(E), σ and τ that fix F . It follows that
σ ◦ τ will fix F and furthermore so will σ−1. The identity will necessarily fix F
as well, and we will have associativity as automorphisms are associative as shown
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earlier. We thus conclude that AutF (E) meets the conditions of being a subgroup
of Aut(E). □

Proposition 4.4. Let a polynomial f(x) over F possess an irreducible factor p(x)
with distinct roots α1, ..., αn ∈ E, (n ≥ 2). If we switch any αi and αj by transfor-
mation, we obtain an isomorphism mapping F (αi) to F (αj) and leaving F fixed.
This isomorphism can be extended to give an automorphism of E.

Lemma 4.5. Let us factor any polynomial f(x) of degree n into irreducible poly-
nomials over F which has an arbitrary q distinct roots in F , so

f(x) = c(x− α1)(x− α2)...(x− αq)P1(x)P2(x)...Ps(x),

with Pi as factors of degree greater than 1. If E is the splitting field of f(x) over
F and all Pi(x) have only distinct roots in E, then no elements other than those of
F remain fixed in AutF (E).

Proof. To prove this we shall use a proof by induction.

For q = n we then have F = E and so our lemma holds.
We will now show that if the theorem is true for q+1 roots, then it is also true for
q roots.

We must first show that F (αq+1) meets the criterion for the theorem. Assume
the theorem is true for q+1 linear factors, so we can extend our field F to F (αq+1)
since αq+1 is a root of a polynomial. We will now factorize f(x) in the field F (αq+1),
which gives

f(x) = c(x− α1)...(x− αq+1)(x− β1)...(x− βs)Q1(x)...Qu(x).

Within this, βi are new roots found in our extension and Qk are nonlinear irre-
ducible polynomials that are factors of the Pi(x) of the previous factorization. We
know E is the splitting field of f(x) over F (αq+1) and since Qk(x) is a factor of
Pi(x) the splitting of Qk(x) in E contains distinct roots since no factor appears
twice in the splitting of Pi(x) of which Qk(x) is a factor. Due to the criteria being
met we know that if a ∈ E is fixed by AutF (αq+1)(E) then a ∈ F (αq+1).

Finally, we shall do the inductive step of the theorem. Suppose a ∈ AutF (E),
then we know that a is also fixed under all automorphisms that leave the elements
of F (αq+1) fixed, and so we have a ∈ F (αq+1). Let us create the polynomial P1(x)
of degree m, and since a ∈ F (αq+1) we can write it as

a = c0 + c1αq+1 + ...+ cm−1α
m−1
q+1

for cl ∈ F and αi as the t roots of P1(x). We also know that there are no repeated
factors of P1(x)in E and so we have:

P1(x) = (x− αq+1)(x− αq+2)...(x− αq+m).

By proposition 4.4, the m transformations between αq+1 and αq+j provide auto-
morphisms which leave F fixed. However, we know that a is fixed under all these
automorphisms and thus can be written in m different manners (the αq+1 gets
switched with a αq+j). We can thus create a polynomial

h(x) = (c0 − a) + c1x+ ...+ cm−1x
m−1
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of degree m − 1 with m distinct roots, which is only possible for h(x) = 0. Thus,
all the coefficients of the polynomial are equal to 0 and so we know a = c0 and so
we must have a ∈ F and thus all fixed elements of AutF (E) are in F .

□

Theorem 4.6. Let U be a field containing:
1) The ground field, F .
2) The splitting field of any polynomial defined over F , E.
3) An intermediate field between E and F , K
4) An extension field of F which is isomorphic to K in a mapping such that F

remains fixed, K ′.
We then have K ′ ⊂ E and the isomorphism mapping K to K ′ is an automorphism
of E.

Proof. Let us first denote our mapping from K to K ′ that leaves F fixed as ϕ. Let
E be the splitting field of the polynomial f(x) over F such that

E = F (α1, ..., αn),

with αi as a root of f(x). Since F ⊂ K ⊂ E, E is also the splitting field of f(x)
over K. We also know that f(x) is a polynomial in K ′ and the splitting field of
f(x) over K ′ is the field E′, with

E′ = F (α′
1, ..., α

′
n).

Furthermore, by theorem 3.14, we know the isomorphism mapping K to K ′ can be
extended to E and E′, so ϕ(E) = E′. Let us denote any element of K as u, and
ϕ(u) = u′. By definition u ∈ E so u is of the form

u = g(α1, ..., αn),

with ϕ a polynomial with coefficients in F . Similarly, we can express u′ as

u′ = g(α′
1, ..., α

′
n),

with the α′
i = ϕ(αi). Since we have a finite field extension of the fixed field F

through the adjoinment of the α′
i, by Corollary 3.7, they must also be roots of f(x)

and thus our original αi in a different permutation. Thus, we see that for any

u′ ∈ K ′, u′ ∈ E =⇒ K ′ ⊂ E,

and E = E′ since there can only be one splitting field of f(x) over K ′. We can thus
conclude that our isomorphism is an automorphism of E and so ϕ ∈ Aut(E).

□

5. Linear Independence of Characters

Definition 5.1. A primitive element of a finite field Fq of order q is a generator of
the multiplicative group of the field.

Definition 5.2. For an abelian groupG, a character ofG is a group homomorphism
from G to the multiplicative group of a field F :

χ : G→ F×.

Definition 5.3. The characters χ1, ..., χn, with χi : G → F×, of a group G are
said to be linearly independent over F if they are linearly independent as functions
on G. This means that if we have a1χ1(g) + ...+ anχn(g) = 0 for any g ∈ G with
a1, ..., an ∈ F , if and only if a1 = ... = an = 0.
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Lemma 5.4. Let F be a field, G a group, and χ1, ..., χn : G → F be distinct
homomorphisms of monoids where F is regarded as a monoid by multiplication.
Then χ1, ..., χn are linearly independent over F .

Proof. We shall look at linear independence in a slightly different manner. If

a1, ..., an are not all zero, then
∑

aiχi(g) ̸= 0 for some g ∈ G. We shall do a

proof by induction.

For the case of n = 1, we have g = e, with e as the identity element of G and
χ1(e) = 1, and so we must have a1 = 0 if a1χ1(e) = 0.

We notice that if any ai is equal to 0 in
∑

aiχi(g) = 0, we can simply take

off the corresponding χi and relabel to work with one less element and so on until
all ai ̸= 0. We thus only need to look at the case where all ai ̸= 0. Now suppose
we have our lemma stand for n > 1, and from above we can reduce our case to
have all ai ̸= 0. Let us now add the element an+1χn+1(g) ̸= 0, we then have
n+1∑
i=1

aiχi(g) = 0 if and only if −an+1χn+1(g) =

n∑
i=1

aiχi(g). We will now show why

this is not possible through a proof by contradiction. Now let us divide by −an+1

and relabel our ak = ai

−an+1
̸= 0 and χi = χk accordingly. We thus have

χn+1(g) =

n∑
k=1

akχk(g)

for all g ∈ G. Let us now fix an h ∈ G, and due to all χ being homomorphisms we
have χ(h)χ(g) = χ(hg) for any g ∈ G. It then follows that

χn+1(gh) = χn+1(h) ·
n∑

k=1

akχk(g)

and

χn+1(gh) =

n∑
k=1

akχk(gh).

Setting these equal, it then follows that

0 = χn+1(h) ·
n∑

k=1

akχk(g)−
n∑

k=1

akχk(gh) =

n∑
k=1

akχk(g)(χn+1(h)− χk(h)).

Since all our akχ(g) ̸= 0, the only way this sum is equal to 0 is if χn+1(h) = χk(h) =
χi(h) for all k ≤ n, and since h was arbitrarily fixed, this implies that χi = χn+1

for i ≤ n. We thus have reached a contradiction since we had our χi as distinct
homomorphisms which is not the case. We have thus proved our inductive step
since our sum is not equal to 0 unless all our ai = 0. We can thus conclude our
lemma and so our χi are linearly independent over F . □

Theorem 5.5. If χ1, ..., χn : G → F× are distinct characters of G, then they are
linearly independent over F .

Proof. Our characters and F× fulfill the conditions set by lemma 5.4, and thus are
proven to be linearly independent over F . □
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Theorem 5.6. Let E/F and K/F be extension fields, and σ1, ..., σn : K → E
be distinct morphisms of extensions of F . Then σ1, ..., σn are linearly independent
over E.

Proof. Since our σi meet the criteria set by lemma 5.4 when we apply it to the
restriction of σi to the group of units we have linear independence. □

6. Galois Theory

Definition 6.1. For any subset H of AutF (E), the fixed field of H is

EH := {x ∈ E|∀h ∈ H,h(x) = x}.

Lemma 6.2. Let F be a field, α ∈ F be an element in the algebraic closure of F ,
and p(x) its minimal polynomial over F . We then have:

F (α) ∼= F [X]/⟨p(x)⟩.

Proof. Let ψ : F [X] → F (α) be the homomorphisms which fixed F and maps x to
α. We see that the kernel of ψ will be all the polynomials which vanish alpha, and
so those generated by p(x). We thus conclude that Ker(ψ) = ⟨p(x)⟩, and so by the
first isomorphism theorem we must have F (α) ∼= F [X]/⟨p(x)⟩. □

Theorem 6.3. Let F denote the algebraic closure of F . A finite extension E/F is
said to be normal if and only if any of the following equivalent conditions hold:

1) Every irreducible polynomial f(x) over F with a root in E splits into its linear
factors in E.

2) For all α ∈ E, the minimal polynomial of α over F has E as its splitting field.
3) σ(E) = E for all σ ∈ AutF (E), with AutF (E) as the set of embeddings of E

in F which fix F point wise.

Proof. We will show the equivalence of these definitions.
1 =⇒ 2 Since E/F is finite, it is algebraic by Corollary 3.13, and thus we know
every α ∈ E will be a root of some polynomial over F . We thus know the minimal
polynomial of α will split in E. It thus follows that for all α ∈ E, the minimal
polynomial of α over F has E as its splitting field.

2 =⇒ 1 Take any irreducible polynomial f(x) over F with at least one root in E.
It then follows that there must be the roots alphai ∈ E such that f(x) is composed
by the minimal polynomial of the αi. However, by 3, we know that the minimal
polynomial of each of these αi splits in E, and so we must have f(x) splitting in E
as well.

1 =⇒ 3 Suppose every irreducible polynomial f(x) over F with a root in E splits
completely in E, we want to show this implies σ(E) = E for all σ ∈ AutF (E). Now
let us have an arbitrary α ∈ E and σ : E → F an abritrary embedding of E fixing
F . We want to show that σ(α) ∈ E. Let p(x) be the minimal polynomial of α over
F . Since σ fixes F , we must have σ(α) as a root of p(x). since α ∈ E, we have
all the roots of p(x) in E, and consequently, σ(α) ∈ E. We can thus conclude that
we would then have σ(E) = E for all σ ∈ AutF (E) due to our abritrary choices of
α ∈ E and σ ∈ AutF (E).
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3 =⇒ 1 We will now show that if for all σ ∈ AutF (E), σ(E) = E, then every
irreducible polynomial f(x) over F with a root in E splits completely in E. Let us
once again take an arbitrary α ∈ E and let p(x) be it minimal polynomial over F .
We want to show that for every root β of p(x), there exists an embedding σβ of E

in F such that σβ(α) = β. Let us consider the intermediate field K = F (α) ⊂ E,
by the previous Lemma, we know that we have an automorphism τβ for each β
such that τβ(α) = β and τβ fixes F . We can then extend these isomorphisms to an

embedding σβ of E in F such that σβ ↾ K = τβ with ↾ denoting the truncation of
σβ to K. Since we have σβ(E) = E for each root β, it thus follows that all roots of
p(x) are in E. □

Theorem 6.4. The correspondence between field extensions to groups and groups
to field extensions is inclusion reversing;

1) if F1 ⊂ F2 ⊂ E, then AutF2(E) ≤ AutF1(E).
2) if H2 ≤ H1 ≤ Aut(E) with respective fixed fields F2 and F1, then F1 ⊂ F2.

Proof. 1) Since any automorphism, σ fixing F2 will also fix F1, we have σ ∈
AutF1

(E) and so AutF2
(E) ≤ AutF1

(E).

2) We have H2 ≤ H1 with H1 fixing F1. It then follows that all elements of H2

will also fix F1. However, we do not necessarily have all elements of H1 fixing F2.
It then follows that all the elements fixing F2 fix F1, but not all the elements fixing
F1 fix F2. We can thus conclude F1 ⊂ F2. □

Theorem 6.5. Let G be a finite group of automorphisms σ1, ..., σn of the field E,
and EG = F . Then any element of α ∈ E is a root of a polynomial equation over
F , so E is an algebraic field extension of F .

Proof. Consider our group of automorphisms σ1, ..., σn and the image of α through
them, σi(α). Let us take all αi such that αi = σi(α) with each αi distinct (let us
say there are m ≤ n of them). By definition, α will be one of the αi since we will
have one of our σi as the identity. Let us now look at

σiσ1(α), σiσ2(α), ..., σiσm(α)

for an arbitrary i ≤ n. Notice that σiσk for k ≤ m will simply be another element of
the group σ1, ..., σn. It then follows that σiσ1(α), σiσ2(α), ..., σiσm(α) will simply
be another permutation of our αk which will all be distinct since if not we would
have two σk same which is not possible. We thus have the distinct elements of αk

in a different arrangement. Let us create the polynomial

ϕ(x) =

n∏
k=1

(x− αk).

Using the fact that σiσ1(α), σiσ2(α), ..., σiσm(α) is a different arrangement of the
αk, we now know

σi(ϕ(x))

m∏
k=1

σi(x− αk) =

m∏
k=1

(x− σi(αk)) = ϕ(x).

The coefficients of ϕ(x) remain unchanged and so they must be fixed elements
and thus elements of F , and the roots of ϕ(x) are the αk. We thus have them as
algebraic, and we know that our arbitrary α ∈ E is amongst them, and so α is
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the root of some polynomial equation over F . Due to the arbitrary nature of our
chosen α we conclude any element of α ∈ E is a root of a polynomial equation over
F and E is an algebraic field extension. □

Theorem 6.6. The extension E/F is normal if and only if E is the splitting field
of a separable polynomial over F .

Proof. Assume E is the splitting field of a separable polynomial p(x) over F . By
lemma 4.5, we know that F is the fixed field under the group of all automorphisms
which leave every element of F fixed, thus we know that E/F is normal.

Assume E/F is normal, with [E : F ] = n, then there is a basis B of n elements
of E/F and E is obtained from F by adjoining each of the n elements of B. Since
the degree of E/F is finite, each element of B serves as a root of an irreducible
separable polynomials pi(x) over F . The polynomial f(x) = p1(x)p2(x)...pn(x)
splits in E since each factor will also split in E among the roots denoted by the
elements of B. We can thus see that E must be the smallest field than can split
f(x) and thus is the splitting field.

□

Corollary 6.7. If E/F is normal and if K is any field such that F ⊂ K ⊂ E then
E/K is normal.

Proof. E is the splitting field of p(x) over F and thus is the splitting field of the same
seprable polynomial over K which as shown above indicates E/K is normal. □

Lemma 6.8. For any finite group of automorphisms H of E the following hold:
1) E/EH is separable
2) E/EH is normal
3) [E : EH ] = |H|
4) H = AutEH (E).

Proof. 1) Let us take any α ∈ E/EH and α1, ..., αn as its orbit by H. It then
follows that α will be a root of the polynomial

g(x) =
∏
i

(x− αi) ∈ EH [X]

since all the αi are unique, g(x) is relatively prime to its derivative and thus sep-
arable. We thus have α as a root of a separable polynomial over EH . Since our
choice of α was arbitrary, it thus follows that this is the case for any α ∈ E/EH

and so we have E/EH as separable.

2) Let us consider an arbitrary polynomial p(x) ∈ EH [X] with a root α ∈ E.
For any automorphism σ ∈ H, we must have σ(α) as another root of p(x) since the
coefficients of p(x) in EH are fixed by σ. Since H is a finite group, all roots must
lie in E and so p(x) split into its linear factors in E. Thus by Theorem 6.3 we know
that E/EH must be normal.

3) We know that automorphisms act transitively on the roots of polynomials,
and by the orbit-stabilizer theorem, the size of H is equal to the number of distinct
images of an element α ∈ E under the action of H. This will be the degree of the
minimal polynomial of α over EH which will be equal to [E : EH ]. We can thus
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conclude that |H| = [E : EH ].

4) We want to show that AutEH (E) ⊂ H. Let us consider any σ ∈ AutEH (E)
which will permute the roots of any polynomial over EH in E. SinceH is the full set
of automorphisms fixing EH , and all elements of AutEH (E) fix EH , it thus follows
that AutEH (E) ⊂ H. Similarly, all elements in H fix EH and are automorphisms
of E, and so H ⊂ AutEH (E) which concludes that AutEH (E) = H. □

Theorem 6.9 (Definition of Galois extensions and groups). *
Let us have a finite field extension E/F and G = AutF (E), then all the following
conditions imply each other and when they hold E/F is called a Galois extension
and G its Galois group (denoted by Gal(E/F )):

1) E/F is normal and separable
2) E is the splitting field of a separable polynomial p ∈ F [X]
3) |G| = [E : F ]
4) F is the fixed field of G,

Proof.
1 ⇐⇒ 2 If E is normal then by definition it is the splitting field of a polynomial
F [X] which will have no multiple factors over F and so is also separable. Con-
versely, if E is the splitting field then E/F is normal and E = F [α1, ..., αn] with α
as the n distinct roots and so E/F is separable.

1 =⇒ 4 By the definition, we know that G will fix F . We now want to show that
only the elements of F are fixed and those that aren’t will be moved. We assume
that E/F is normal and separable. By Theorem 6.6, we know that since E/F
is normal, E is the splitting field of an irreducible polynomial p(x) over F . Fur-
thermore, since it is separable, we know that the minimal polynomial of any of its
elements is separable (so have no repeated roots as per Corollary 3.19). We can now
use Lemma 4.5 as we know if E is the splitting field of p(x) over F and it is separa-
ble. It thus follows that no elements other than those of F remain fixed in AutF (E).

4 =⇒ 1 We have F as the fixed field ofG = AutF (E) and so it follows that EG = F .
In addition,G is a finite group of automorphisms of E, so we can then apply Lemma
6.8 and so we know that in this case E/EG is normal and separable.

4 =⇒ 3 As in the previous part, we can apply Lemma 6.8 and so we know that
E/F is of degree |G|, otherwise written as [E : F ] = |G|.

3 =⇒ 4 We know that [E : F ] = |G| = [E : EG], and so it directly follows that F
and EG are equivalent up to isomorphism, thus F = EG is the fixed field of G. □

Corollary 6.10. Let F ⊂ K ⊂ E with E/F Galois, then E/K is Galois.

Proof. We know that if E/F is a Galois extension. By Theorem 6.9 part 2 it then
follows that E is the splitting field of a separable polynomial p(x) over F . Since
F ⊂ K ⊂ E, E is the splitting field of the same p(x) over K as well and so using
Theorem 6.9 it thus follows that E/K is Galois. □
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Theorem 6.11 (Fundamental Theorem of Galois Theory). *
Let E/F be a Galois extension, with Galois group G = Gal(E/F ). To each inter-
mediary field K of E/F , we associate the group GK = AutK(E) = Gal(E/K) and
to each subgroup H < G we associate the fixed field EH . The following 4 statements
hold:

1) There is a bijection between the set of intermediary fields and the set of sub-
groups of G.

2) If K ⊂ K ′ are subfields of E/F , then [K ′ : K] = [GK : G′
K ],

3) If H ′ < H < G are subgroups of G, then [H : H ′] = [EH′
: EH ].

4) If K is an intermediary field of E/F and σ ∈ G, then σ(K) is an interme-
diary field of E/F and Gg(K) = σGKσ

−1, otherwise written as Gal(E/σ(K)) =

σGal(E/K)σ−1

5) If H < G, then EgHg−1

= g(EH).
6) For F ⊂ K ⊂ E, we have K/F is normal if and only if GK is a normal

subgroup of G, in which case Gal(K/F ) ∼= G/GK .

Proof. .
1) From Lemma 6.8, we can see that we can map any group of automorphisms,

H, so any subgroup of G, to the field EH . In our specific case, using Theorem 6.3 we
know that H ⊂ G and so it follows that F ⊂ EH ⊂ E and so it is an intermediary
field of E/K. This is a one to one mapping, so injective, and for every intermediary
field, there will exist a subgroup of G that fix it, so we have surjectivity as well.
We have thus constructed a bijection between the set of intermediary fields and the
set of subgroups of G.

2) We know that for any intermediary fields, K and K ′, since E/F is Galois,
we have E/K and E/K ′ as Galois as well by Corollary 6.10. It then follows from
Theorem 6.9 part 3 that GK = [E : K] and GK′ = [E : K ′]. Furthermore, using
the Tower Law (Theorem 3.14) and Lagrange’s Theorem (Theorem TBD), we know
that

[K ′ : K] =
[E : K]

[E : K ′]
=

GK

GK′
= [Gk : G′

k].

We can thus conclude [K ′ : K] = [GK : G′
K ].

3) By part 1, we have established a bijection between the set of intermediary fields
and the set of subgroups of G. We can thus map H ′ and H to their respective inter-
mediary fields, EH′

and EH , where using Theorem 6.3 we know that EH ⊂ EH′
.

Having fulfilled the conditions, we can apply part 2 to get [H : H ′] = [EH′
: EH ].

4) We know that for any σ ∈ G, σ(K) will leave F fixed and might permute the
elements of K with other elements in E but not in F . It would then follows that
all elements of F will be in σ(K) as it was fixed, σ(K) maps to some sub-field of
E. We thus conclude that F ⊂ σ(K) ⊂ E and so σ(K) is an intermediary field of
E/F for any σ ∈ G.

We now set out to prove the second part of the statement. We know that σ
sends K to σ(K), and so σ−1 send σ(K) to K, in addition any element h ∈ GK
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will fix K. Knowing this, let us look at how σhσ−1 acts on σ(K) for any h ∈ GK :

σhσ−1(σ(K)) = σh(K) = σ(K).

We thus see this leaves σ(K) for any h ∈ GK and so it follows that σGKσ
−1 ⊂

Gσ(K). We now want to show that Gσ(K) ⊂ σGKσ
−1. Let us take an arbitrary

automorphism τ ∈ Gσ(K). We know that τ will fix every element of σ(K), now let

us look at how σ−1τσ acts on K:

σ−1τσ(K) = σ−1σ(K) = K =⇒ σ−1τσ ∈ GK =⇒ τ ∈ σGKσ
−1.

Since our choice of τ was arbitrary, we thus know that Gσ(K) ⊂ σGKσ
−1 and can

conclude Gσ(K) = σGKσ
−1, otherwise written as Gal(E/σ(K)) = σGal(E/K)σ−1.

5) As it is defined, we know that H = Gal(E/EH), furthermore, using part 4 we
know that gHg−1 = Gal(E/g(EH)). Due to the bijective nature of of the mapping
between the set of subgroups of G and the intermediary fields, we know that if
two groups are the same, so are their fixed fields. Equipped with this, we can thus

cocnlude that EgHg−1

= g(EH) since gHg−1 = Gal(E/g(EH)).

6) As per Theorem 6.3, we know that K/F is normal if and only if for every
σ ∈ G, σ(K) = K. Suppose that K/F is normal. We then define the map

ψ : G→ GK

by sending σ to the restriction ϕ of σ toK. AsK/F is normal, ϕ is an automorphism
of F/K. It is quite apparent and easy to check that ψ is a homomorphism of groups,
and GK is clearly the kernel, and thus normal in G. It then follows that G/GK is
isomorphic to a subgroup of Gal(K/F ). However by the Tower Law and Theorem
6.9 we see:

|Gal(K/F )| = [K : F ] =
[E : F ]

[E : K]
=

|G|
|GK |

.

We can thus conclude that Gal(K/F ) ∼= G/GK .

Now going the other way, suppose GK is normal in G. Take an arbitrary x ∈ K,
let ϕ ∈ G, and set y = ϕ(x). As GK stabilizes x, then GK = ϕGKϕ

−1 stabilizes
y. However, as GK = AutK(E), the only elements of E stabilized by all of GK are
only those of K. Thus we must have y ∈ K, and so ϕ(K) = K for every ϕ ∈ GK

and so K/F is normal. □

7. Radical Extensions

Definition 7.1. Let E be a field and F and K subfields of E. The composite of
F and K is said to be the intersection of all subfields of E containing both F and
K. This relationship is denoted FK.

Definition 7.2. Let K/F be a separable field extension. If K is contained in a
field extension E which is Galois over F and is the smallest field to do so, then E
is the Galois closure of K over F .

Definition 7.3. The extension E/F is a cyclic extension if its Galois group is
cyclic.



AN INTRODUCTION TO GALOIS THEORY AND THE ABEL-RUFFINI THEOREM 17

Definition 7.4. A radical extension is a field extension obtained by adjoining roots
of elements. For example Q(

√
2) is a radical extension of Q. More generally, if F

is a field and α ∈ F , the field F (α1/n) obtained by adjoining an nth root of α is a
radical extension of F .
Let E be an extension of F generated by a sequence of radical extensions:

F ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn = E,

where each Fi+1 = Fi(α
1/ni

i ) for some αi ∈ Fi and ni ∈ Z. Then E is a radical
extension of F .

Theorem 7.5. Let E/F be a Galois extension of fields whose Galois group is Z/nZ.
Let us assume that the characteristic of F is relatively prime with n and that F
contains a primitive nth root of 1. We then know that E = F (zn) with zn ∈ F .

Proof. Let ξ ∈ F be a primitive nth root of 1 and σ a generator of Gal(E/F ).
We can consider our σ as a linear operator in F , and so σn − 1 = 0. Applying
lemma 5.4, we know that there cannot be a polynomial p over F of degree less
than n such that p(σ) = 0. We thus know that the minimal polynomial of σ is
xn − 1. Since ξ is a root of xn − 1, there exists a z ∈ E such that σ(z) = ξz.
Furthermore, this z will satisfy zn ∈ F since σ(zn) = (ξz)n = zn. In addition, we
see the that z, σ(z), ..., σn−1(z), ξz, ..., ξn−1z are all distinct. This helps us conclude
that z generates E over F and thus we know E = F (z). □

Lemma 7.6. Let F be a field containing the nth roots of unity. Then the extension
F ( n

√
a) for a ∈ F is a cyclic extension over F of degree dividing n.

Proof. Since F contains the nth roots of unity, it is the splitting field of xn −
a and thus the extension F ( n

√
a) is Galois over F . For any automorphism σ ∈

Gal(F ( n
√
a)/F ), we know σ(F ( n

√
a)) as a root of the polynomial and so

σ(F ( n
√
a)) = ξσF (

n
√
a)

where ξσ is some nth root of unity. Let us now consider the map Gal(F ( n
√
a)/F ) →

un given by σ → ξσ with un as the group of the nth root of unity. We can also see
that this map is a homomorphism since

σaσb = ξaξb = σab.

This map is also an injection since its kernel is the identity map due to it fixing
n
√
a. □

Definition 7.7. For α ∈ E and any nth root of unity ξ, we have the Lagrange
resolvent (α, ξ) ∈ E by (α, ξ) = α+ ξσ(α) + ...+ ξn−1σn−1(α) for σ ∈ Gal(E/F )

Corollary 7.8. The Lagrange resolvent (α, ξ)n will be fixed by all elements of
Gal(E/F ) and in (α, ξ)n ∈ F .

Proof. Let σ ∈ Gal(E/F ), then we know:

σ(α, ξ) = σ(α) + ξσ2(α) + ...+ ξn−1σn(α)

= σ(α) + ξσ2(α)...+ ξ−1(α)

= ξ−1(α+ ξσ(α) + ...+ ξn−1σn−1(α))

= ξ−1(α, ξ).
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Thus, σ(α, ξ)n = (ξ−1)n(α, ξ)n = (α, ξ)n.
We have thus shown that for any σ ∈ Gal(E/F ), (α, ξ)n is fixed, and thus (α, ξ)n ∈
F .

□

Theorem 7.9. Let α be contained in a root extension such that α is an element of
a field K that can be obtained by a succession of radical extensions:

F = K0 ⊂ ... ⊂ Kq = E,

where each Ki+1 = Ki( n
√
ai) for αi ∈ K. Then, α is contained in a root extension

which is Galois over F such that each Ki+1/Ki is cyclic.

Proof. Let C be the Galois closure of K over F . We then have

σ(F ) = σ(K0) ⊂ ... ⊂ σ(Kq) = σ(K),

for any σ ∈ Gal(C/F ) with each σ(Ki+1)/σ(Ki) is a radical extension generated
by σ( ni

√
ai). The composite of root extensions is a root extension so the composite

of all σ(K)∀σ ∈ Gal(E/F ) is a root extension with E as the composite of these
fields. We must then have α contained in a root extension. We then extend the
Nith roots of unity for all roots ni

√
ai) of the radical extension K/F to F which we

will now call F ′ and obtain the composite extensions

F ′ = K0F ⊂ ... ⊂ KqF = KF ′ = E′

which is composition of Galois extensions by definition and so E′/F is also a
Galois extension. By lemma 7.5 we know, since the base field of each extension
F ′Ki+1/F

′Ki is a radical extension which contains the roots of unity, each exten-
sion F ′Ki+1/F

′Ki is cyclic. We have thus shown that for each α as described, we
have E′/F as a Galois extension that fits the criteria demanded.

□

8. Abel-Ruffini Theorem

Lemma 8.1. The symmetric group, An, is simple for n ≥ 5.

Proof. Let us show that An is a simple group for n ≥ 5. I will first show that
A5 is a simple group. Let us first look at the elements inside A5. We have the
identity, 20 3-cycles, 24 5-cycles, and 15 order 2. Let us now look at the centrilizers
of elements for each order type. For order 3, we look at (1, 2, 3) who’s centralizer is
e, (1, 2, 3), (1, 3, 2) in A5 which is 3 elements and so the conjugacy class of (1, 2, 3)
has 60/3 = 20 elements and so is the set of all the 3 − cycles. Similarly, for the
product of our 2 cycles, take for example (1, 2)(3, 4) will have 4 elements in the
centralizer and so the conjugacy class will be 15 elements and so all the other
order 2 elements. For our order 5 we look at the centralizer of (1, 2, 3, 4, 5) who’s
centralizer will have 5 elements, and so the conjugacy class of this has 12 elements.
We can get the other 12 elements through some creative shifting to get the whole
class other conjugacy class of another element of order 5. We thus have classes with
1, 12, 12, 15, and 20 elements. Now we know that for N normal subgroup of G
then N is equal to the union of the disjoint conjugacy classes. We know that the
order of N must divide the order of A5 so 60 and will be made from a sum of 1,
12, 12, 15, and 20 with a need for the identity element in it so we need to add the
1. This only divides 60 for |N | = 1 or |N | = 60 and so the only possible normal
subgroups are the trivial subgroup and A5.
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Now moving on to the general case of An for n > 5. We first quickly show that
An is generated by the 3 − cycles, which is the case since the product of any 2
transpositions is a product of 3− cycles and since any element in An is a product
of even number of transpositions this solves. Let τ1 and τ2 be transpositions which
move a common number a so τ1τ2 = (a, b)(a, c) = (a, c, b) and so we are done. No
supposing that they have no moving elements in common, with τ1τ2 = (a, b)(c, d) =
(d, a, c)(a, b, d) and so we are done. We thus have An generated by the 3− cycles.
We next show that the 3-cycles form their own class. We see the number of 3−cycles
will be n(n−1)(n−2)

3 and we then look at the centralizer of (1, 2, 3). We know it will
be in Sn ⊂ S3×Sn−3 ∩An = Z/3×An−3, and so it follows that the centralizer has
3(n−3)!

2 elements and so the order of the class of (1, 2, 3) is n!
2 /

3(n−3)!
2 = n(n−1)(n−2)

3
and so the class of (1, 2, 3) is all the 3-cycles and form their own class. Now suppose
we have a normal subgroup, N , of G with N ̸= {e}. Let σ ∈ N with |σ| = m > 1.

Choose smallest p|m, if p ̸= m then replace σ
m
p , and so we now have |σ| = p prime,

thus σ is the product of disjoint p − cycles. If any of these is a 2,3, or 5 cycle we
are done since if there is a 3− cycle, then the 3-cycles class is in N and so N = An,
if there is a 5 cycle as done for A5 we can transform it into 3-cycles, and finally if
there is a 2 cycle this isn’t possible since that is an odd permutation so we can rule
it out. Now if this is not the case, we will conjugate and multiply since a normal
subgroup is closed under both.

Now for p = 2, we conjugate by (a, b, c) with σ = (a, b)(c, d)... and so w =
(b, c)(a, d).... For the cycles not showing they will be their own inverse, and so
σw = (a, b)(c, d)(b, c)(a, d) = (a, c)(b, d) which we know how to turn into 3− cycles
and so we are done.

For p = 3, we have σ = (abd)(def)... which we conjugate by (abd) to get w =
(bdc)(aef)... and w−1 = (bcd)(afe)()−1... and so since the terms not shown cancel
w−1σ = (bcd)(afe)(abc)(def) = (acfbd) and so we are done.

Now for p > 3, we know that we can break the larger elements such that a 3-
cycle must appear. We thus have a 3− cycle and so for all the case where we have
N ̸= {e} we must have N = An and thus An must be simple for n ≥ 5.

□

Lemma 8.2. The symmetric group, Sn, is not solvable for n ≥ 5.

Proof. To show that Sn is not solvable for n ≥ 5, we use the fact that the alternating
group An is simple for n ≥ 5. The derived series of Sn starts with An, because
An is generated by commutators in Sn. Since An is simple for n ≥ 5, it has no
nontrivial normal subgroups other than itself. This implies that the derived series
of Sn is Sn ▷ An ▷ e, where An cannot be further decomposed into simpler normal
subgroups. As An is non-abelian and cannot be reduced to the trivial group through
commutators, Sn cannot be broken down into a series of abelian groups, hence Sn

is not solvable for n ≥ 5.
□

Lemma 8.3. A polynomial f is solvable by radicals if and only if its Galois group
is solvable.

Proof. Let p(x) be a solvable polynomial by radicals. For each root of p, there
exists an extension field F (α). Through the composition of these fields we have an
extension field that is Galois and will have all the roots of our polynomial, let us
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call such a field E. By theorem 6.11, we can attribute to each Hi < G, subgroup
of Gal(E/F ), a corresponding subfield Ki of E/F , and we know

Gal(Ki+1/Ki) = Hi+1/Hi,

and thus our group G is solvable since each quotient will be abelian due to it being
cyclic.

Let p(x) have a Galois group G which is solvable. By the fundamental Theorem
of Galois theory, we will have a chain of fixed subfields each fixed by a subgroup of
G, with

F = K0 ⊂ ... ⊂ Kq = E

where by definition 2.2 since each group is solvable then each group is cyclic and
thus by the Galois correspondence each extension Ki+1/Ki is cyclic. We then
extend by the nith roots of unity to F and obtain the field F ′ and after composing
this with the chain of subfields, we have

F ′ = F ′K0 ⊂ ... ⊂ F ′Kq = F ′E

and the cyclicity remains of degree dividing ni. We have a base field which contains
the roots of unity, so each extension is a radical extension and so our p(x) must be
solvable by radicals. □

Theorem 8.4 (Abel-Ruffini Theorem). *
For n ≥ 5, the general polynomials of degree n is not solvable in the radicals.

Proof. The general polynomial equation of degree n is of the form

0 = xn + a1x
n−1 + ...+ an−1x+ an

where ai are the distinct indeterminates and the equation defined over the field

F = Q(a1, ..., an).

We will now show that the Galois group over F of the equation is the symmetric
group Sn which is not solvable for n ≥ 5.

Let us have the xi be new indeterminates aimed to be our roots, now consider
the polynomial

p(x) = xn + b1x
n−1 + ...+ bn−1x+ bn = (x− x1)...(x− xn).

Let us now look at the fields H = Q(x1, ..., xn) and its subfield K = Q(b1, ..., bn).
The permutation of the xi induce automorphisms of H, and by Vieta’s formulas,
every element of K us a symmetric function of the xi and thus will be the fixed
field of all the automorphisms and so we conclude that Gal(H/K) = Sn. By the
fundamental Theorem of Symmetric Polynomials, we know that bi are algebraic
independent and so the map will send each ai to the corresponding bi and so there
is an isomorphism from F to K. Thus the Galois group of a general equation is the
symmetric group and thus unsolvable. We can now conclude the general polynomial
equation of degree n ≥ 5 cannot be solved in radicals. □
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