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Abstract. Stochastic differential equations are essential to modeling the ran-
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1. Introduction

Differential equations are critical to modeling systems that evolve over time,
but oftentimes, these deterministic models cannot accurately describe the many
factors and variables of a system. This necessitates random or stochastic differential
equations.

Consider the deterministic ordinary differential equation

(1.1)

{
ẋ(t) = b(x(t), t) t > 0

x(0) = x0,

where b : Rn × [0, T ] → Rn is a smooth vector field. The solution to this equation
would be the smooth trajectory or path x(·) : [0,∞) → Rn.

Since it is useful to study objects that are not so well-behaved, we define the
stochastic analog of the differential equation above as
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{
ẋ(t) = b(x(t), t) + σ(x(t), t)ξ(t) t > 0

x(0) = x0.

Here, the dynamics of the system are driven by the vector field b(·), and we define
ξ(·) to be our stochastic term, which accounts for all that can not be determined.

More concretely, we think of ξ(·) as equivalent to Ẇ (t), or the time derivative of
Brownian motion, defined in Section 2. Using this intuition, we write our differential
equation in differential form1:

(1.2)

{
dx(t) = b(x(t), t)dt+ σ(x(t), t)dWt t > 0

x(0) = x0.

In this paper, we will prove that the stochastic differential equation in the form
above has a unique solution. We must first, however, rigorously define ξ(·) through
Brownian motion and develop the rules of stochastic calculus, which are distinct
from their deterministic analog.

2. Brownian Motion

Figure 1. An example of a particular type of Brownian motion,
a Brownian bridge.

In essence, “white noise” is the random movement of particle, which can be
modeled by a random walk. Random walks are a discrete stochastic processes that
model the position of a particle after taking a certain amount of random steps.
When we extend the premise of a discrete random walk to an almost surely contin-
uous stochastic process, we get Brownian motion.

Definition 2.1. A stochastic process is a family of random variables indexed by
time.

Definition 2.2. A stochastic process {W (t) : t ≥ 0} is a (linear) Brownian motion
or Wiener process starting at x ∈ R if:

1Here, dWt denotes dW (t), and we use this notation in the interest of brevity. In all other
cases, this paper will use subscripts to notate indices unrelated to time.
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(1) W (0) = x. This process is called a standard Brownian motion if W (0) = 0,
(2) the process has independent increments, that is for all times 0 ≤ t1 ≤ · · · ≤

tn, W (t1),W (t2) −W (t1), . . . ,W (tn) −W (tn−1) are independent random
variables. Intuitively, this can be thought of as the future motion of a
random particle being independent of its motion in the past.

(3) for all times t ≥ s ≥ 0, the incrementsW (t)−W (s) are normally distributed
with mean or expectation zero and variance t−s. This property implies that
Brownian motion has stationary increments, namely that the distribution of
an increment relies only on the amount of change in time and is independent
of the increment’s particular start and end time.

(4) it then follows in particular from properties (2) and (3), that the process
has almost surely continuous sample paths or that t 7→ W (t) is almost
surely continuous.

We omit the proof of the existence of such a process, which can be found in
[2] on page 46 but include a simple sketch. First, we inductively choose normally
distributed random variables W (t) ∼ N(0, t), where t is a dyadic time, with in-
dependent increments. Then, we use Gaussian estimates and the Borel-Cantelli
lemma2 to show that the process we constructed is α-Hölder continuous on the
dyadic rationals for α < 1

2 . Finally, as we have shown that the process is uniformly
continuous, a consequence of Hölder continuity, on a dense set, we uniquely extend
the definition of W (t) to all other times t.

With this definition, we move on to helpful and integral properties of Brownian
motion.

Definition 2.3. A function f : [0,∞) → R is said to be α−Hölder continuous on
its domain if there exists ϵ > 0 and c > 0 such that |f(x)− f(y)| ≤ c|x− y|α for all
x, y ∈ [0,∞) with |y − x| < ϵ.

Theorem 2.4. Any sample path of a Brownian motion t 7→ W (t, ω) is α−Hölder
continuous, if α < 1

2 . Namely, for α < 1
2 , there exists a constant C ∈ R such that

|W (t)−W (s)| ≤ C|t− s|α, for all s, t ∈ [0, T ].

Theorem 2.5. Brownian motion is nowhere differentiable.

This property, whose proof follows from Hölder continuity and can be found in
[1] on page 18, is why Brownian motion, as in Figure 1, looks so jagged and rough.
This theorem also provides the motivation for Itô Calculus as we must define new
rules of calculus to make sense of dWt.

Definition 2.6. A process is called a time-homogeneous Markov process if it has
the same distribution invariant of its starting point. A Markov process is said to
have the Markov property.

Intuitively, a stochastic process, {X(t) : t ≥ 0}, has the Markov property if
knowing its behavior on an interval [0, s) is not useful at all for predicting its future
behavior, i. e. {X(t) : t ≥ s} as the process “forgets its past.” The only factor that
affects the process’ future path is its present state.

Definition 2.7. A filtration on a probability space (Ω,F,P) is a family {F(t) : t ≥
0} of σ−algebras such that F(s) ⊂ F(t) ⊂ F, for all s < t.

2Lemma 5.1
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One should think of the filtration generated by Brownian motion until time t as
the “information” or the past history of the stochastic process until time t.

Definition 2.8. A random variable τ with values in [0,∞), defined on a probability
space with filtration {F(t) : t ≥ 0} is called a stopping time with respect to {F(t) :
t ≥ 0} if {τ ≤ t} ∈ F(t), for every t ≥ 0.

Theorem 2.9. Suppose that {W (t) : t ≥ 0} is a Brownian motion starting at
x ∈ R. For any s > 0, the process {W (t+ s)−W (s) : t ≥ 0} is a Brownian motion
started in the origin and is independent of the process {W (t) : 0 ≥ t ≥ s}.

Proof. We omit the proof that the process above is a Brownian motion, which
can be derived from the properties enumerated in Definition 2.2. The nontrivial
claim that this new process is independent of W (t) follows from the independent
increments of Brownian motion, or intuitively that the change in the Brownian
motion for t > s is independent of W (u), for u ≤ s. □

Theorem 2.10 (Strong Markov Property). For every almost surely finite stopping
time τ , meaning that P(τ < ∞) = 1, the process {W (τ + t) −W (τ) : t ≥ 0} is
a standard Brownian motion independent of F+(τ) := {A ∈ A : A ∩ {τ ≤ t} ∈
F+(t) for all t ≥ 0}.

In essence, this statement builds on Theorem 2.9 and tells us that we can con-
struct a Brownian motion with a random starting point from a standard Brownian
motion, provided that the starting point is adapted to the Brownian motion, im-
plied by the assumption that τ is a stopping time. Intuitively, this property tells us
that even with stochastic time, Brownian motion is independent of its past history.
In particular, it means that the Brownian motion after time τ relies only on W (τ).

Definition 2.11. A stochastic process {X(t) : t ≥ 0} defined on a filtered probabil-
ity space, or a probability space along with a filtration, with filtration {F(t) : t ≥ 0}
is called adapted if X(t) is F(t)−measurable for any t ≥ 0.

Definition 2.12. A real valued stochastic process {X(t) : t ≥ 0} is a martingale
with respect to a filtration {F(t) : t ≥ 0} if it is adapted to the filtration, E(|X(t)|) <
∞ for all t ≥ 0, and for any pair of times 0 ≤ s ≤ t,

E (X(t) | F(s)) = X(s), almost surely.

Morally, martingales describe fair games, in that if X(s) represents the player’s
winnings in a particular game, the player is not expected to win or lose any more as
the game progresses. Conversely, a game that is biased in favor of the house would
have E(X(t) | F(s)) < X(s), as the player is expected to lose more money as time
goes on.

Before we show that Brownian motions are martingales, we must prove the
following lemma.

Lemma 2.13. Define F+(s) =
⋂

t>s F
0(t), where F0(t) = σ(W (s) : 0 ≤ s ≤ t) is

the sigma algebra generated by the Brownian motion up to time t. For every s ≥ 0
the process {W (t+ s) +W (s) : t ≥ 0} is independent of the σ-algebra F+(s)

Proof. Since Brownian motion has continuous paths, almost surely,

W (t+ s)−W (s) = lim
n→∞

W (sn + t)−W (sn)
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for a strictly decreasing sequence (sn) converging to s. By the Markov Property, it
follows that

lim
j↑∞

(W (t1 + sj)−W (sj), . . . ,W (tm + sj)−W (sj))

is independent of F+(s). Evaluating the limit,

(W (t1 + s)−W (s), . . . ,W (tm + s)−W (s))

must be independent of the filtration, implying that the process

{W (t+ s)−W (s) : t ≥ 0}
is also independent of F+(s). □

Theorem 2.14. Brownian motion is a martingale

Proof. Take E(W (t) | F+(s)) = E(W (t) −W (s) | F+(s)) +W (s). Since Brownian
motion is independent of the filtration F+(s),

E(W (t)−W (s) | F+(s)) +W (s) = E(W (t)−W (s)) +W (s).

Finally, since the increment is normally distributed with mean zero, E(W (t) −
W (s)) = 0. Thus, E(W (t) | F+(s)) =W (s). □

So far, we primarily discussed one-dimensional Brownian motion for simplicity
as these properties extend to higher dimensions. In this paper, however, we seek to
prove the n−dimensional stochastic existence and uniqueness theorem, so we will
provide the definition for n−dimensional Brownian motion below.

Definition 2.15. An Rn-valued stochastic process W(·) = (W1(·), . . . ,Wn(·)) is
an n−dimensional Brownian motion if

(1) for each k = 1, . . . , n, Wk(·) is a one-dimensional Brownian motion and
(2) for k = 1, . . . , n, the σ−algebras generated by Brownian motions Wk de-

noted Wk = σ(Wk(t) · t ≥ 0) are independent.

3. Itô Calculus

Revisiting Equation (1.2), we interpret the differential equation in its integrated
form:

X(t) = X0 +

∫ t

0

b(X(s), s)ds+

∫ t

0

σ(X(s), s)dWs.

Before we can discuss this solution, we must first understand what it means to
integrate with respect to a random process and the stochastic integral:∫ t

0

G(s)dWs.

First, we must make sense of dWt. We may consider dW 2
t ≈ dt. One way to see

this is that W (t+h)−W (t) ∼ N(0, h). Then, E((W (t+h)−W (t))2) = h, implying

E
(

(W (t+h)−W (t))2

h

)
= 1. Sending h to zero, we see that

E
(
dW 2

t

dt

)
= 1.

To formalize this intuition, we will build the definition of the Itô integral like the
construction of the Riemann-Stieltjes integral.
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Definition 3.1. A partition P of an interval [0, T ] is a finite collection of points
ti ∈ [0, T ] such that

P := {0 = t0 < t1 < · · · < tn = T}.

Recall that when taking the Riemann integral of some function f, we approximate
it with step functions fn(t) = f(sj), tj−1 ≤ t ≤ tj , where tj−1 ≤ sj ≤ tj , as follows:∫ t

0

fn(s)ds =

n∑
i=1

f(sj)(tj − tj−1).

We define the Riemann integral as the limit of the integrals of this sequence of
step functions where the mesh size of the partition gets arbitrarily small, which is
independent of the partitions and step functions that we choose:∫ t

0

f(s)ds = lim
n→∞

∫ t

0

fn(s)ds.

We construct the Itô integral in an identical way, but instead of approximating
a stochastic process with step functions, we use the stochastic analog of simple
processes, or a process that takes a finite number of values. Finally, we show that
any function can be approximated by simple processes, allowing us to pass to limits.

Definition 3.2. A stochastic process G(·) is a simple process if there exist times
0 = t0 < t1 < · · · < tn = t and F(tj)−measurable random variables, Gk such that

G(t) = Gk, tk−1 ≤ t < tk.

Now, we define the stochastic integral as follows

Definition 3.3. Suppose G(·) is a simple process as defined above. Then,∫ t

0

G(s)dWs :=

n∑
k=1

Yk(W (tk)−W (tk−1)).

From this definition, we prove three important properties of the integration of
simple processes, which easily extend to the general case.

Theorem 3.4. Suppose G(·) and H(·) are simple processes. Then,

(1) (Linearity)∫ t

0

aG(s) + bH(s)dWs = a

∫ t

0

G(s)dWs + b

∫ t

0

H(s)dWs,

(2)

E
(∫ t

0

G(s)dWs

)
= 0, and

(3) (Itô Isometry)

E

((∫ t

0

G(s)dWs

)2
)

= E
(∫ t

0

G2(s)dt

)
.
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Proof. (1) The first statement can be proved similarly to the linearity of the Lebesgue
integral, so we omit the proof.

(2) Suppose that G is a simple process where G(t) = Gk for tk−1 ≤ t < tk, Then,

E
(∫ t

0

G(s)dWs

)
= E

 n∑
j=1

Gk(W (tk)−W (tk−1))

 .

We know thatGk is F(tk)−measurable and F(tk) is independent ofW
+(tk). Since

W (tk)−W (tk−1) is W
+(tk)−measurable, Gk is independent of W (tk)−W (tk−1).

Therefore,

E
(∫ t

0

G(s)dWS

)
= E

(
n∑

k=1

Gk(W (tk)−W (tk−1)

)

=

n∑
k=1

E(Gk)E(W (tk)−W (tk−1))

=

n∑
k=1

E(Gk) · 0 = 0.

(3) Let G and Gk be as above. Then,

E

((∫ t

0

G(s)dWs

)2
)

=

n∑
j=1

n∑
k=1

E(GjGk(W (tj)−W (tj−1))(W (tk)−W (tk−1))).

For all j < k, W (tj)−W (tj−1) is independent of W (tk)−W (tk−1) by the inde-
pendent increments of Brownian motion, so GjGk(W (tj)−W (tj−1)) is independent
of W (tk)−W (tk−1). Therefore, for j < k,

E(GjGk(W (tj)−W (tj−1))(W (tk)−W (tk−1)))

=E(GjGk(W (tj)−W (tj−1)))E((W (tk)−W (tk−1))) = 0.

This leaves the terms where k = j. Here we again use the independence of Gk

from W (tk)−W (tk−1) to get

E

((∫ t

0

G(s)dWs

)2
)

=

n∑
k=1

E(G2
k(W (tk)−W (tk−1))

2)

=

n∑
k=1

E(G2
k)E((W (tk)−W (tk−1))

2)

=

n∑
k=1

E(G2
k)(tk − tk−1)

= E
(∫ t

0

G2dt

)
.

This final identity is especially important as it connects stochastic integration to
deterministic integration, and we will leverage the Itô isometry in Section 5. □
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Definition 3.5. L2(0, T ) is the space of all real-valued, progressively measurable
stochastic processes G(·) such that

E

(∫ T

0

G2ds

)
<∞.

Any process G ∈ L2(0, T ) can be approximated by simple processes. Below,
we will prove a weaker proposition, requiring the process to be continuous and
uniformly bounded, but a sketch of the proof for the above statement can be found
in [3] on page 67.

Lemma 3.6. Let G(·) be a continuous process adapted to the filtration F such that,
with probability one, |G(t)| ≤ C, where C < ∞, for all 0 ≤ t ≤ T. Then, there
exists a sequence of bounded simple processes Gn(·) such that

lim
n→∞

∫ t

0

E
(
|Gn(s)−G(s)|2

)
ds −→ 0 = t.

Proof. Define

Gn(t) := n

∫ j/n

(j−1)/n

G(s)ds.

Then, by continuity, Gn(t) converges almost surely to G(t) uniformly. Now set

Yn =

∫ t

0

|Gn(s)−G(s)|2ds.

Since all Gn are uniformly bounded in t, it follows from the dominated convergence
theorem that

lim
n→∞

Yn =

∫ t

0

lim
n→∞

|Gn(s)−G(s)|2ds = 0.

Since all Yn are uniformly bounded as for any n ∈ N,

Yn ≤
∫ t

0

(|Gn(s)|+ |G(s)|)2ds ≤ 4TC2,

we again apply the dominated convergence theorem to get that

lim
n→∞

E(Yn) = E
(
lim
n→∞

Yn

)
= 0.

□

As a result of the stronger version of this Lemma, holding for all continuous,
adapted processesG(·) ∈ L2(0, T ), we can now define the general stochastic integral.

Definition 3.7. Suppose G(·) ∈ L2(0, T ),∫ t

0

G(s)dWs = lim
n→∞

∫ t

0

Gn(s)dWs.

This definition is well defined as any two step processes approximating G(·)
converge to zero, which can be seen by applying Itô isometry and then the Cauchy-
Schwartz inequality.

Finally, we get to Itô’s chain rule or Itô’s lemma, which is the stochastic analog
to the fundamental theorem of calculus and the chain rule. Critical in the proof of
Itô’s chain rule is Itô’s product rule, below.
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Theorem 3.8 (Itô’s Product Rule). Suppose X1(·) and X2(·) are stochastic pro-
cesses such that {

dX1 = F1dt+G1dWt (0 ≤ t ≤ T )

dX2 = F2dt+G2dWt (0 ≤ t ≤ T ),

where Fi ∈ L1(0, T ) and Gi ∈ L2(0, T ). Then,

d(X1X2) = X2dX1 +X1dX2 +G1G2dt.

Remark 3.9. Analogous to Definition 3.5, L1(0, T ) is the space of all real-valued,

progressively measurable stochastic processes F such that E(
∫ t

0
|F (s)|ds <∞).

Notice that Itô’s product rule is nearly identical to the deterministic product
rule but with the addition of Itô’s correction term at the end. The complete proof
can be found in [3] on page 73.

Theorem 3.10 (Itô’s Chain Rule). Suppose that a stochastic process X(·) has the
stochastic differential

dX = Fdt+GdWt,

where F ∈ L1(0, T ) and G ∈ L2(0, T ). Assume u : R × [0, T ] −→ R is continuous

and that ∂u
∂t ,

∂u
∂x ,

∂2u
∂x2 exist and are continuous. Define

Y (t) := u(X(t), t).

Then,

dY =
∂u

∂t
dt+

∂u

∂x
dX +

1

2

∂2u

∂x2
G2dt

=

(
∂u

∂t
+
∂u

∂x
F +

1

2

∂2u

∂x2
G2

)
dt+

∂u

∂x
GdWt.

Proof. We begin by using induction along with Itô’s product rule to prove that
Itô’s chain rule holds for polynomials. Then, we use the integrated form of the
Stone-Weierstrass theorem, which states that we can approximate in the uniform
norm any continuous function (and therefore any differentiable function) on a closed
interval with polynomials. After establishing uniform convergence through Stone-
Weierstrass, we pass to limits.

Let X be as above3. We claim that

d(Xm) = mXm−1dX +
1

2
m(m− 1)Xm−2G2dt.

The cases where m = 0, 1 trivially follow from the definition of dX. The case
m = 2 follows from the Itô Product formula, where

d(X ·X) = 2XdX +G2dt.

Now, suppose our statement holds for m− 1 :

d(Xm−1) = (m− 1)Xm−2dX +
1

2
m(m− 1)Xm−2G2dt

=

(
(m− 1)Xm−2F +

1

2
(m− 1)(m− 2)Xm−3G2

)
dt+ (m− 1)Xm−2GdWt

3To aid with the legibility of the proof, we drop the argument of X(·).
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Then,

d(Xm) = d(X ·Xm−1)

= XdXm−1 +Xm−1dX + (m− 1)Xm−2G2dt

= X[((m− 1)Xm−2F +
1

2
(m− 1)(m− 2)Xm−3G2)dt

+ (m− 1)Xm−2GdWt] +Xm−1dX + (m− 1)Xm−2G2dt

= ((m− 1)Xm−1 +Xm−1)dX

+

(
1

2
(m− 1)(m− 2)Xm−2G2 + (m− 1)Xm−2G2

)
dt

= mXm−1dX +
1

2
m(m− 1)Xm−2G2dt.

Since the differential operator is linear, we can apply Itô’s formula to all poly-
nomials u in X. Now, we want to extend that definition to include polynomials in
both X and t. Suppose that u(X, t) = f(X)g(t), where f and g are polynomials.
Then,

d(u(X, t)) = d(f(X)g(t))

= f(X)dg(t) + gdf(X)

= f(X)g′dt+ g(f ′(X)dX +
1

2
f ′′(X)G2dt)

=
∂u

∂t
dt+

∂u

∂x
dX +

1

2

∂2u

∂x2
G2dt.

Then, the statement above holds for any polynomial in X and t.
Now, for any given function u, satisfying the assumption of Itô’s formula, there

exists a sequence of polynomials (un) such that

un −→ u,
∂un
∂t

−→ ∂u

∂t
,
∂un
∂x

−→ ∂u

∂x
,
∂2un
dx2

−→ ∂2u

∂x2

uniformly on compact subsets of R× [0, T ].
After verifying the formula for polynomials, we know then that almost surely

un(X(r), r)− un(X(0), 0) =

∫ r

0

∂un
∂t

+
∂un
∂x

+
1

2

∂2un
∂x2

G2dt+

∫ r

0

∂un
∂x

GdWt

for all 0 ≤ r ≤ T. Passing to limits as (un) converge uniformly, we prove Itô’s chain
rule in one dimension. □

4. The Deterministic Existence and Uniqueness Theorem

Now, we return to our consideration of deterministic differential equations, as
the proof of the existence of a unique solution extends nicely to its stochastic
counterpart. Integrating the differential form of Equation (1.1), we know that our
solution must be some path x(·) that satisfies

x(t) = x0 +

∫ t

0

b(x(s))ds.

The classical way of proving such path exists is by using Picard iteration, where we
inductively define a sequence of functions and show that they must converge to our
solution. Then, we implement Gronwall’s inequality to show that the given solution
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is unique. An alternate proof that can also extend to our stochastic equation uses
the Banach fixed point theorem and can be found in [5].

Lemma 4.1 (Gronwall). If ϕ(t) ≤ a + b
∫ t

0
ϕ(s)ds, where a ≥ 0, b > 0, then

ϕ(t) ≤ aebt. In particular, if a = 0 and ϕ ≥ 0, ϕ ≡ 0.

Proof. Let Φ(t) =
∫ t

0
ϕ(s)ds. Then, by our assumption above, Φ′(t) ≤ a + bΦ(t).

Multiplying by the integrating factor e−bt,

(Φe−bt)′ = Φ′(t)e−bt − bΦ(t)e−bt ≤ ae−bt.

Noting that Φ(0) =
∫ 0

0
ϕ(s)ds = 0, we integrate to get

Φ(t)e−bt − Φ(0) ≤ −a
b
e−bt +

a

b

Φ(t)e−bt ≤ −a
b
(e−bt − 1)

Φ(t) ≤ −a
b
(1− ebt).

Finally,
ϕ(t) ≤ a+ bΦ(t) ≤ a− a+ aebt = aebt.

□

Theorem 4.2. Suppose b : Rd× [0, T ] −→ Rd is globally Lipschitz continuous, that
is |b(x, t) − b(y, t)| ≤ M |x − y| for all x, y ∈ Rd, M ∈ R. Then, the deterministic
ordinary differential equation{

ẋ(t) = b(x(t), t) t > 0

x(0) = x0,

has a unique solution.

Proof. (1) Existence.
We first define continuous xi ∈ X := C

(
[0, δ], Rd

)
, the space of continuous

(vector-valued) paths on [0, δ], equipped with the uniform norm defined as

∥x− y∥X = sup
0≤t≤δ

|x(t)− y(t)|.

We set x0(t) = x0, and inductively define

xn+1(t) = x0 +

∫ t

0

b(xn(s), s)ds, t ∈ [0, δ].

We now aim to show that this sequence must be Cauchy and therefore, will
converge in the complete space, X. Take |xn+1(t)− xn(t)|. Using the definition of
xi, the Cauchy-Schwartz inequality, and the Lipschitz continuity of b, we get

|xn+1(t)− xn(t)| =
∫ t

0

b(xn(s), s)ds−
∫ t

0

b(xn−1(s), s)ds

≤
∫ t

0

|b(xn(s), s)− b(xn−1(s), s)|ds

≤
∫ t

0

M∥xn − xn−1∥ds

≤ δM∥xn − xn−1∥.
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If we choose δ so that δM < 1
2 ,

∥xn+1 − xn∥ ≤ 1

2
∥xn − xn−1∥.

Iterating, we get ∥xn+1 − xn∥ ≤ 2−n+1∥x1 − x0∥. We now use inequality to prove
that the sequence is Cauchy. Let C = ∥x1 − x0∥ and suppose n ≥ m. Then,

∥xn − xm∥ ≤
n−1∑
k=m

∥xk+1 − xk∥

≤ C

n−1∑
k=m

2−k+1

≤ C

∞∑
k=m

2−k+1

Since the series converges, this sequence must be Cauchy, so (xn) converges uni-
formly to some path x(·). Thus, by the uniform convergence theorem, we pass to
limits through the integral to find

x(t) = x0 +

∫ t

0

b(x(s), s)ds.

Since b(·) is smooth and x(·) is continuous, the right hand side is differentiable by the
fundamental theorem of calculus. Therefore, x(·) is differentiable. Differentiating,
we see that x is a classical solution:

ẋ(t) = b(x(s), s).

(2) Uniqueness.
Suppose x and y are solutions with the same initial condition. Then, again using
the Lipschitz property of b,

|x(t)− y(t)| =
∫ t

0

b(x(s), s)− b(y(s), s)ds ≤M

∫ t

0

|x(s)− y(s)|ds.

If ϕ = |x(t)− y(t)|, we can see that the inequality above satisfies the assumption
of Gronwall’s inequality with a = 0 and b = M. Thus, |x(t) − y(t)| ≡ 0, implying
that our solution must be unique. □

5. The Stochastic Existence and Uniqueness Theorem

Before we introduce the stochastic Existence and Uniqueness Theorem, we state
a lemma vital to the proof.

Lemma 5.1 (Borel-Cantelli). Suppose (An) is a sequence of events. If

∞∑
n=1

P(An) <∞

then,

P(An infinitely often) = 0.

Proof. This is a critical lemma in probability theory, the proof of which can be
found in [3] on page 20. □
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Theorem 5.2 (Existence and Uniqueness). Suppose that b : Rn × [0, T ] → Rn and
σ : Rn × [0, T ] →Mm×n are globally uniformly Lipschitz continuous, namely that

|b(x, t)− b(y, t)| ≤ L|x− y|
|σ(x, t)− σ(y, t)| ≤ L|x− y|

for all x, y ∈ Rn and 0 ≤ t ≤ T, where L is some constant.
Next, let X0 be any Rn−valued random variable such that

E(|X0|2) <∞

and

X0 is independent of σ(0),

where W (·) is a given m−dimensional Brownian motion.
Then, almost surely, there exists a unique solution X ∈ L2

n(0, T ) of the stochastic
differential equation in the form of Equation (1.2).

Proof. (1) Existence. We begin by inductively defining a sequence of random vari-
ables, and then show that they uniformly converge in probability to a solution, as
in the deterministic case.

Let X0(t) = X0, and define

Xn+1(t) = X0 +

∫ t

0

b(Xn(s), s)ds+

∫ t

0

σ(Xn(s), s)dWs.

Like the proof of Theorem 4.2, we wish to prove that the sequence (Xn) is almost
surely Cauchy. First, we note from the definition above that for any n ∈ N,

Xn(t) = X0 +

n−1∑
j=0

(Xj+1(t)−Xj(t)),

and thus, for n ≥ m

Xn(t)−Xm(t) =

n∑
j=n−m

(Xj+1(t)−Xj(t)).

We aim to show that the difference between two consecutive terms for a sufficiently
large enough n is arbitrarily small or that

P
(

max
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

2n
infinitely often

)
= 0.

We will prove the statement above by showing that the assumption of the Borel-
Cantelli Lemma holds. To do so, we will use Doob’s martingale inequality, proved
in the appendix.

We first claim that

E(|Xn+1(t)−Xn(t)|2) ≤
(Mt)n+1

(n+ 1)!
,

which we will prove by induction. First, we know that since b is uniformly Lipschitz,
|b(x, t)| ≤ C(1 + |x|), where C := max{b(0, t), L}. This inequality similarly applies
to σ. The short proof is as follows:

|b(x, t)| ≤ |b(x, t)− b(0, t)|+ |b(0, t)| ≤ L|x|+ |b(0, t)| ≤ C(|x|+ 1).
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With this inequality, we consider our base case

E(|X1(t)−X0(t)|2) = E

(∣∣∣∣∫ t

0

b(X0(s), s)ds+

∫ t

0

σ(X0(s), s)dWs

∣∣∣∣2
)
.

Using the inequality (a+ b)2 ≤ 2a2 + b2 along with Itô Isometry,

E(|X1(t)−X0(t)|2) = E

(∣∣∣∣∫ t

0

b(X0(s), s)ds+

∫ t

0

σ(X0(s), s)dWs

∣∣∣∣2
)

≤ 2E

(∣∣∣∣∫ t

0

b(X0(s), s)ds

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t

0

C(|X0(s)|+ 1)dWs

∣∣∣∣2
)

≤ 2E

(∣∣∣∣∫ t

0

C(|X0(s)|+ 1)ds

∣∣∣∣2
)

+ 2E
(∫ t

0

C2(|X0(s)|+ 1)2ds

)
≤Mt,

where M is some large constant. In this last step, we rely on the assumption that
E(|X2

0 |) is finite as well as the fact that when integrating a random variable with a
deterministic integral, we treat the random variable as a constant.

Now, assume E(|Xn(t)−Xn−1(t)|2) ≤
Mntn

n!
. Then, applying the same identity

as before along with the Cauchy-Schwartz inequality

E(|Xn+1(t)−Xn(t)|2) = E

(∣∣∣∣∫ t

0

b(Xn(s), s)− b(Xn−1(s), s)ds+

∫ t

0

σ(Xn(s), s)− σ(Xn−1(s), s)dW

∣∣∣∣2
)

≤ 2E

(∣∣∣∣∫ t

0

b(Xn(s), s)− b(Xn−1(s), s)ds

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t

0

σ(Xn(s), s)− σ(Xn−1(s), s)dW

∣∣∣∣2
)

≤ 2TE
(∫ t

0

L2|Xn(s)−Xn−1(s)|2ds
)
+ 2E

(∫ t

0

|σ(Xn(s), s)− σ(Xn−1(s), s)|2ds
)

≤ 2TL2E
(∫ t

0

|Xn(s)−Xn−1(s)|2ds
)
+ 2L2E

(∫ t

0

|Xn(s)−Xn−1(s)|2ds
)
.

By Fubini’s theorem, allowing us to interchange integrals, and finally applying our
induction hypothesis

E(|Xn+1(t)−Xn(t)|2) ≤ 2TL2E
(∫ t

0

|Xn(s)−Xn−1(s)|2ds
)
+ 2L2E

(∫ t

0

|Xn(s)−Xn−1(s)|2ds
)

= 2TL2

(∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds
)
+ 2L2

(∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds
)

≤ 2L2(T + 1)

(∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds
)

≤ 2L2(T + 1)

(∫ t

0

Mnsn

n!
ds

)
≤ Mn+1tn+1

(n+ 1)!
,
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provided we choose M ≥ 2L2(1 + T ). With that, we have proven our claim.
Now, consider that

max
0≤t≤T

|Xn+1(t)−Xn(t)|2 ≤ 2 max
0≤t≤T

∣∣∣∣∫ t

0

b(Xn(s), s)− b(Xn−1(s), s)ds

∣∣∣∣2
+ 2 max

0≤t≤T

∣∣∣∣∫ t

0

σ(Xn(s), s) + σ(Xn−1(s), s)dWs

∣∣∣∣2
≤ 2TL2

∫ t

0

|Xn(s)−Xn−1(s)|2ds

+ 2 max
0≤t≤T

∣∣∣∣∫ t

0

σ(Xn(s), s) + σ(Xn−1(s), s)dWs

∣∣∣∣2.
We then take the expectation of both sides of the inequality and apply our result

above along with the the martingale inequality to get

E
(

max
0≤t≤T

|Xn+1(t)−Xn(t)|2
)

≤ 2TL2

∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds

+ 8E

(∣∣∣∣∫ t

0

σ(Xn(s), s) + σ(Xn−1(s), s)dWs

∣∣∣∣2
)

≤ 2TL2

∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds

+ 8L2

∫ t

0

E(|Xn(s)−Xn−1(s)|2)ds

≤ C
MnTn

n!
.

Applying Chebyshev’s inequality

P
(

max
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

2n

)
≤ 22nE

(
max
0≤t≤T

|Xn+1(t)−Xn(t)|2
)

≤ 22nC
MnTn

n!

Since
∞∑

n=1

22nC
MnTn

n!
<∞,

∞∑
n=1

P
(

max
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

2n

)
<∞.

Therefore, applying Borel-Cantelli lemma, we know that

P
(

max
0≤t≤T

|Xn+1(t)−Xn(t)| >
1

2n
infinitely often

)
= 0,

and thus, the sequence must converge uniformly on [0, T ] to some process X(t).
Passing to limits in our definition of Xn+1, we prove there exists

X(t) = X0 +

∫ t

0

b(X(s), s)ds+

∫ t

0

σ(X(s), s)dWs,

and in differential form
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{
dX = b(X(t), t)dt+ σ(X(t), t)dWt

X(0) = X0.

2. Uniqueness. Similar to the deterministic case, this proof will rely on Gron-
wall’s inequality, and setting up the assumption for the inequality will be very
similar to the techniques used for the proof of the existence.

Suppose that X and Y are solutions to the differential equation defined above.
Then, we estimate

E(|X(t)− Y (t)|2) ≤ 2E

(∣∣∣∣∫ t

0

b(X(s), s)− b(Y (s), s)ds

∣∣∣∣2
)

+ 2E

(∣∣∣∣∫ t

0

σ(X(s), s)− σ(Y (s), s)dWs

∣∣∣∣2
)

≤ 2TE(
∫ t

0

|b(X(s), s)− b(Y (s), s)|2ds) + 2E(
∫ t

0

|σ(X(s), s)− σ(Y (s), s)|2ds)

≤ 2L2T

∫ t

0

E(|X(t)− Y (t)|2)ds+ 2L2

∫ t

0

E(|X(t)− Y (t)|2)ds

≤ C

∫ t

0

E(|X(t)− Y (t)|2)ds,

where C ≥ 2L2(T + 1).
This now satisfies the assumption of Gronwall’s inequality with a = 0 and b = C.

Therefore, E(|X(t)− Y (t)|2) ≡ 0, implying that

P
(

max
0≤t≤T

|X(t)− Y (t)| > 0

)
= 0,

for all X(t), Y (t), almost surely. Thus, our solution must be unique. □

6. Applications

Stochastic differential equations are useful in mathematical finance, and one
way we can apply this is deriving the Black-Scholes-Merton PDE, which models
the price of European call options.

A derivative is a financial instrument whose payoff depends on the value of an
underlying security. A call option is a contract which allows the buyer the right to
buy a share of the stock S at a strike price p at an expiration time. A European
call option only allows the buyer to exercise the option at the expiration time.

Let S(t) denote the price of a given security at time t, and suppose that S evolves
according to a geometric Brownian motion, as discussed above:{

dSt = µStdt+ σStdWt

S(0) = s0.

We position ourselves as a financial firm that wishes to sell a European call
option of S at strike price p and expiration time T . Assume that the interest rate
r is constant. We now ask what is appropriate price we should sell the option for.

While constructing an appropriate model, we want to create no opportunities for
arbitrage or risk-free profits for others in the market. To do this, we will consider
a hedging strategy where we replicate the option.
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First, take C(t) := u(S(t), t) to represent the price of the option at time t. Since
it relies on a random variable, C(t) is random, so we use Itô’s formula to get the
differential of C

dC(t) =

(
∂C

∂t
+ µS(t)

∂C

∂S
+

1

2
σ2S2(t)

∂2C

∂S2

)
dt+ σS(t)

∂C

∂S
dWt.

We will replicate C by a portfolio, P with shares of our stock S and shares of
our bond B, which we assume is a risk-free investment. Note that this implies that{

dB(t) = rB(t)dt

B(0) = 1,

and therefore, B(t) = ert. We represent the units of stock S by the random process
ϕ(·) and the units of stock B by ψ(·). So,

P (t) = ϕ(t)S(t) + ψ(t)B(t) (0 ≤ t ≤ T ).

The replicating assumption then implies that this is self financing or that

dP (t) = ϕ(t)dSt + ψ(t)dBt

= (rψ(t)B(t) + ϕ(t)µS(t)) dt+ ϕ(t)σS(t)dWt.

We now wish to set dP to dC, so we see that

ϕt =
∂C

∂S

rψtBt =
∂C

∂t
+

1

2
σ2S2 ∂

2C

∂S2
.

If we set C0 = P0, knowing that the dynamics of C and P are the same means
that C(t) = P (t) for all t. Thus,

rS(t)
∂C

∂S
+
∂C

∂t
+

1

2
σ2S2(t)

∂2C

∂S2
− rC(t) = 0.

The PDE above is the Black-Scholes-Merton PDE, and the solution is

C(S(t), t) = S(t)Φ(d1)− e−r(T−t)KΦ(d2)

where d1 =
log
(

S(t)
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

, d2 = d1 − σ
√
T − t,

and Φ is the cumulative distribution function of the standard normal distribution.
From the Black-Scholes PDE, we can derive the Black-Scholes formula, which,

with some adjustments, is widely used in the options market. The application above
is just one of the many ways we can use stochastic differential equations to model
the dynamics of financial markets.
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7. Appendix: Martingale Inequality

We begin this section with three helpful lemmas.

Lemma 7.1 (Doob’s Stopping Theorem or Optional Stopping Theorem). Let
{F(t) : t ≥ 0} be a filtration defined on a probability space (Ω,F,P), and let
{M(t) : t ≥ 0} be a martingale adapted to the above filtration with right continuous
and locally bounded paths. Then, for any almost surely bounded stopping time τ of
the filtration such that E(|M(t)|) < +∞,

E(M(τ)) = E(M(0)).

Lemma 7.2 (Jensen’s Inequality). Let X be a random variable and g a convex
function, then

g(E(X)) ≤ E(g(X)).

Lemma 7.3 (Fubini’s Theorem). Suppose a function f is integrable over X × Y.
Then, ∫

X×Y

f(x, y)dµ =

∫
Y

∫
X

f(x, y)dxdy =

∫
X

∫
Y

f(x, y)dydx.

Theorem 7.4 (Doob’s Martingale Inequality). If X(·) is a martingale and 1 <
p <∞, then

E
(
max
0≤s≤t

|X(s)|p
)

≤
(

p

p− 1

)p

E(|X(t)|p).

Proof. Let p ≥ 1 and T > 0. If E(|MT |p) < +∞, by Jensen’s inequality with
g(x) = xp, {|Mt|p : 0 ≤ t ≤ T} is a submartingale4. Let λ > 0 and τ = inf{s ≥
0 | |Ms| ≥ λ} ∧ T, where ∧ denotes the minimum. Here, we can see that τ is a
stopping time, bounded by T . Then, applying the optional stopping theorem,

E(|M(τ)|p) ≤ E(|M(T )|p).
Denote X := sup0≤t≤T |M(t)|. By the definition of τ,

1X≥λλ
p + 1X<λ|M(T )|p ≤ |M(τ)|p.

Then,

P
(

sup
0≤t≤T

|M(t)| ≥ λ

)
≤ 1

λp
E(|M(T )|p1X>λ) ≤

1

λp
E(|M(T )|p).

Multiplying the inequality above by λ and integrating, we deduce that∫ +∞

0

λp−1P
(

sup
0≤t≤T

|M(t)| ≤ λ

)
dλ ≤

∫ +∞

0

λp−2E(|M(T )|1X≥λdλ.

Applying Fubini’s theorem,

∫ +∞

0

λp−1P
(

sup
0≤t≤T

|M(t)| ≤ λ

)
dλ =

∫
Ω

∫ X

0

λp−1dλdP(ω) =
1

p
E
((

sup
0≤t≤T

|M(t)|
)p)

.

Similarly,∫ +∞

0

λp−2E(|M(T )|1X≥λ)dλ =
1

p− 1
E

((
sup

0≤t≤T
|M(t)|

)p−1

|M(T )|

)
.

4If a process X is a submartingale, E(X(t) | F(s)) ≥ X(s).
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Thus,

E
((

sup
0≤t≤T

|M(t)|
)p)

≤ p

p− 1
E

((
sup

0≤t≤T
|M(t)|

)p−1

|M(T )|

)
.

Using Hölder’s inequality, we see that

E

((
sup

0≤t≤T
|M(t)|

)p−1

|M(T )|

)
≤ E(|M(T )|p)

1
pE
((

sup
0≤t≤T

|M(t)|
)p) p−1

p

.

Then, if E((sup0≤t≤T |M(t)|)p) < +∞, applying the optional stopping theorem
once again,

E
((

sup
0≤t≤T

|M(t)|
)p)

≤
(

p

p− 1

)p

E(|M(T )|p).

If E
((
sup0≤t≤T |M(t)|

)p)
= +∞, we consider for N ∈ N the stopping time

τN = inf{t ≥ 0 | |M(t)| ≥ N} ∧ T. If we consider the above inequality instead with
respect to the martingale {M(t ∧ τN )}, we obtain

E
((

sup
0≤t≤T

|M(t ∧ τN )|
)p)

≤
(

p

p− 1

)p

E(|M(T )|p).

By the monotone convergence theorem, we get our desired result on the left hand
side. □
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