
WHITEHEAD FILTRATIONS FOR COMPUTATIONS IN TOPOLOGICAL
HOCHSCHILD HOMOLOGY

LOGAN HYSLOP

Abstract. We discuss spectral sequences coming from Whitehead filtrations in
the computation of topological Hochschild homology of ring spectra. Using cyclic
invariance, this makes for simple computations of THH of connective rings 𝑅 with
coefficients in discrete ring spectra.a In particular, we show how to use this to com-
pute THH(tmf, F2), and THH(tmf,Z

(2)), where tmf denotes the E∞ ring spectrum
of topological modular forms. Then, we obtain a description of THH(ℓ/𝑣𝑛1) in terms
of THH(ℓ, ℓ/𝑣𝑛1), where the latter can be computed by results of [AHL09]. We next
explain how the methods of this computation generalize to give us information
about THH(cofib(𝑥𝑘 ∶ Σ𝑘∣𝑥∣𝑅 → 𝑅)) for 𝑅 and cofib(𝑥𝑘) suitably structured con-
nective ring spectra, 𝑘 > 1, and 𝑥 ∈ 𝜋∗(𝑅) an arbitrary element in positive degree.
Finally, we examine the general framework to describe the topological Hochschild
homology of 2-local connective self-conjugate K-theory, ksc2.

aWhere discrete means Eilenberg-MacLane.
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§1. Introduction

Topological Hochschild homology was introduced by Bökstedt in 1985 as a generalization
of ordinary Hochschild homology to general homotopy coherent ring spectra, which has lead to
many recent advances in algebraic K-theory [NS18], which in turn, lead to the recent disproof of
Ravenel’s telescope conjecture [Bur+23]. The aim of this paper is to discuss spectral sequences
arising from Whitehead filtrations as a means to compute topological Hochschild homology
(possibly with coefficients) over connective ring spectra. When combined with cyclic invariance,
this recovers the Brun spectral sequence, and we get nice comparison maps for computing THH
with coefficients.

For an E1-ring spectrum 𝑅, the topological Hochschild homology of 𝑅 is defined as
THH(𝑅) = 𝑅 ⊗𝑅⊗S𝑅

𝑜𝑝 𝑅, and the topological Hochschild homology with coefficients in a
𝑅-bimodule 𝑀 is defined as THH(𝑅, 𝑀) = 𝑅 ⊗𝑅⊗S𝑅

𝑜𝑝 𝑀 . Assuming that 𝑅 is connective, we
can apply the Whitehead filtration to 𝑅 to get a filtered 𝑅 ⊗S 𝑅𝑜𝑝-module spectrum 𝜏≥∗𝑅, to
which we can then apply the functor 𝑅⊗𝑅⊗S𝑅

𝑜𝑝 − ∶ Fil(𝑅⊗S 𝑅𝑜𝑝 −Mod𝐿) → Fil(𝑅 −Mod𝐿),
giving us a filtered 𝑅-module spectrum. This gives rise to a spectral sequence with signature

𝐸
𝑠,𝑡
1 = THH−𝑠(𝑅, 𝜋𝑡(𝑅)) Ô⇒ THH𝑡−𝑠(𝑅),
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where we consider 𝜋𝑡(𝑅) as a discrete 𝑅 ⊗S 𝑅𝑜𝑝-module in degree zero. We get a similar
spectral sequence for THH(𝑅, 𝑀) whenever 𝑅 is a connective E1-ring, and 𝑀 an 𝑅-bimodule.
In section 2, we discuss some basic results on spectral sequences of this type, to be used in the
rest of the paper.

In section 3, we will use the results of section 2 in order to compute THH(tmf, F2), and
then combining the Brun spectral sequence with the Bockstein spectral sequence, we compute
THH(tmf,Z(2)), using this result. The main theorem of section 3 is the computation:

Theorem 1.1.

THH∗(tmf,Z(2)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z(2) if ∗ = 0, 9, 13, 22
Z/2𝑘Z if ∗ = 2𝑟𝑘+3 − 1, 2𝑘+3𝑟 − 1 + 9, 2𝑘+3𝑟 − 1 + 13, 2𝑘+3𝑟 − 1 + 22,
0 otherwise,

for all 𝑘 > 0 and 𝑟 odd.

Section 4 uses the results of section 2, together with the spectral sequences constructed by
Lee-Levy [LL23] in order to compute the topological Hochschild homology of quotients of ℓ,
THH(ℓ/𝑣𝑛1), where ℓ is the mod 𝑝 Adams summand for some fixed odd prime 𝑝, and 𝑣1 ∈ 𝜋2(ℓ)
generates 𝜋∗(ℓ) as a polynomial algebra over Z(𝑝). The methods used in this section extend to
prove:

Theorem 1.2. Suppose that 𝑅 is a connective E𝑚-ring spectrum for some𝑚 ≥ 3, and 𝑥 ∈ 𝜋∗(𝑅)
is a positive degree class such that, for some fixed 𝑘 > 1, 𝑅/𝑥𝑘 ∶= cofib(𝑥𝑘 ∶ 𝑅 → 𝑅) admits
an E3-algebra structure. Then, we have an equivalence of 𝜏≤0𝑅-modules THH(𝑅/𝑥𝑘 , 𝜋0(𝑅)) ≃
THH(𝑅, 𝜋0(𝑅)) ⊗𝜋0(𝑅) (𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)).

Under these same hypotheses, this result allows us to construct a spectral sequence with signature

𝐸
∗,∗
1 = THH−∗(𝑅, 𝜋∗(𝑅/𝑥𝑘)) ⊗𝜋0(𝑅) (⊕

𝑖≥0
𝜋0(𝑅) ⋅ 𝑎𝑖) Ô⇒ THH∗(𝑅/𝑥𝑘),

where 𝑎𝑖 is a class in bidegree (−𝑖(2𝑘 ∣𝑥∣+2), 0). The differentials on the classes in THH−∗(𝑅, 𝜋∗(𝑅/𝑥𝑘))
are determined by the spectral sequence THH−∗(𝑅, 𝜋∗(𝑅/𝑥𝑘)) Ô⇒ THH∗(𝑅, 𝑅/𝑥𝑘), so in
order to understand this spectral sequence, one must only understand what the differentials do
to the classes 𝑎𝑖 .

As another sample application, we compute the topological Hochschild homology of 2-local
self-conjugate 𝐾-theory ksc2 in section §6.
Notation/Conventions

• We will say “category” to refer to∞-categories.

• Our filtered objects and spectral sequences will be as in [LL23], in particular, the 𝑑𝑟
differential will go from 𝐸 𝑠,𝑡

𝑟 to 𝐸 𝑠+𝑟+1,𝑡+𝑟
𝑟 .

• 𝑝 will denote a fixed odd prime.

• ℓwill denote the mod 𝑝Adams summand, and tmf will denote the spectrum of topological
modular forms.

• When dealing with divided power algebras, we will use the notation 𝑥(𝑘) for the class
“ 𝑥𝑘

𝑘! .”
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§2. Filtered Objects and Spectral Sequences

We recall the definitions of filtered objects, following the description in [LL23]. For a stable
category C, we can associate the stable categories Fil(C) ∶= Fun(Z𝑜𝑝

≤ , C) and
C𝑔𝑟 ∶=Fun(Z𝑑𝑠,𝑜𝑝, C), of filtered objects and graded objects in C, respectively. Here Z≤ denotes
the poset category on Z with the ≤ order, and Z𝑑𝑠 denotes the discrete category with objects
the integers. For 𝑐 ∈ C, we have the object 𝑐𝑛,𝑚 ∈ Fil(C), where 𝑐𝑛,𝑚 = Σ𝑛𝑐0,𝑛+𝑚, and 𝑐0,𝑖 is
defined as the image of 𝑐 under the left adjoint to 𝑒𝑣𝑖 ∶ Fil(C) → C (i.e., (𝑐0,𝑖) 𝑗 = 𝑐 for 𝑗 ≤ 𝑖,
with the identity map as transition maps, and is 0 for 𝑗 > 𝑖). If C is symmetric monoidal, Fil(C)
and C𝑔𝑟 inherit symmetric monoidal structures by Day convolution, with unit 1 = 10,0, where 1
is the unit in C. In this case, define bigradings on the homotopy groups of a filtered object by
𝜋𝑛,𝑚(𝐴) = 𝜋0 HomFil(C)(1𝑛,𝑚, 𝐴). There is an element 𝜏 ∶ 10,−1 → 10,0, which when tensored
with any filtered object 𝐴, gives a morphism of filtered objects, which is the filtration map
𝐴𝑖+1 → 𝐴𝑖 in degree 𝑖. Modules over the cofiber of 𝜏 are identified with graded objects, and for
any filtered object 𝐴, the cofiber sequence 𝐴 ⊗ 10,−1 𝜏Ð→ 𝐴 → 𝐴𝑔𝑟 ∶= 𝐴/𝜏 gives rise to an exact
couple. Out of this arises a spectral sequence with signature (using the grading conventions
from [LL23]):

𝐸
𝑠,𝑡
1 = 𝜋𝑡−𝑠,𝑠𝐴

𝑔𝑟 Ô⇒ 𝜋𝑡−𝑠(𝐴[𝜏−1]),
where 𝐴[𝜏−1] is the "underlying" object of 𝐴 obtained by inverting 𝜏.

We now introduce the main spectral sequences that we will be using in this paper. Consider
a connective E1-ring 𝑅, and an 𝑅-bimodule 𝑀 , i.e., a left 𝑅 ⊗S 𝑅𝑜𝑝-module. Working in the
category Fil(LMod𝑅⊗S𝑅

𝑜𝑝), we can take 𝜏≥∗𝑀 to be the Whitehead filtration on 𝑀 , i.e., the
filtered spectrum with 𝑚th graded piece 𝜏≥𝑚𝑀 , with maps 𝜏≥𝑚𝑀 → 𝜏≥𝑚−1𝑀 the obvious ones.
Applying the functor THH(𝑅;−) ∶ Fil(LMod𝑅⊗S𝑅

𝑜𝑝) → Fil(LMod𝑅), we can then form the
associated spectral sequence with signature 𝐸 𝑠,𝑡

1 = THH−𝑠(𝑅, 𝜋𝑡(𝑅)) ⇒ THH𝑡−𝑠(𝑅), where
we are treating 𝜋𝑡(𝑅) as a discrete 𝑅 ⊗S 𝑅𝑜𝑝-module concentrated in degree 0. We find that:

Lemma 2.1. The filtration on THH(𝑅;𝑀) induced by the above construction is complete.

Proof. Since THH(𝑅;−) is right t-exact, the 𝑛th filtered piece of THH(𝑅;𝑀) is 𝑛-connective,
and the result follows. □

We recall that static modules over 𝑅⊗S 𝑅𝑜𝑝 in degree 0 are exactly the modules which live
in the heart of LMod𝑅⊗S𝑅

𝑜𝑝 , and are thus in bĳection with 𝜋0(𝑅⊗S𝑅𝑜𝑝) ≃ 𝜋0(𝑅)⊗Z𝜋0(𝑅)𝑜𝑝-
modules. It is clear that this spectral sequence is functorial in 𝑀 , and we also note that:

Proposition 2.2. Let 𝑅 and 𝑆 be connective E1-ring spectra, and 𝑓 ∶ 𝑅 → 𝑆 a E1-ring map.
If 𝑀 is an 𝑅-bimodule, then the natural map THH(𝑅, 𝑀) → THH(𝑆, (𝑆 ⊗ 𝑆𝑜𝑝 ⊗𝑅⊗𝑅𝑜𝑝 𝑀)
induces a map on the associated spectral sequences.

Proof. It suffices to show that this holds on the level of filtered objects. Using the fact that we
have natural factorizations 𝜏≥𝑛𝑀 → (𝑆⊗𝑆𝑜𝑝)⊗𝑅⊗𝑅𝑜𝑝 𝜏≥𝑛𝑀 → 𝜏≥𝑛(𝑆⊗𝑆𝑜𝑝)⊗𝑅⊗𝑅𝑜𝑝𝑀 , we find
that we have a map of filtered objects THH(𝑅, 𝜏≥•𝑀) → THH(𝑆, (𝑆 ⊗ 𝑆𝑜𝑝) ⊗𝑅⊗𝑅𝑜𝑝 𝜏≥•𝑀) →
THH(𝑆, 𝜏≥•(𝑆 ⊗ 𝑆𝑜𝑝) ⊗𝑅⊗𝑅𝑜𝑝 𝑀), giving the claim. □

To make use of the spectral sequences above, it would be useful to have a point of comparison
so we can start getting some differentials, and to know about the multiplicative structure. On
the side of multiplicative structure, we have:
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Lemma 2.3. Suppose 𝑅 is a connective E𝑛-ring spectrum for some 𝑛 ≥ 4. Then the above
spectral sequence is multiplicative whenever 𝑀 is an E2-𝑅-algebra.

Proof. Suppose 𝑅 is a E𝑛-algebra for some 𝑛 ≥ 4. In particular, 𝑅 ⊗S 𝑅𝑜𝑝 is an E𝑛-algebra
as well, and the canonical multiplication map 𝑅 ⊗S 𝑅𝑜𝑝 → 𝑅 is an E𝑛−1-algebra map. Thus,
the functor 𝑅 ⊗𝑅⊗S𝑅

𝑜𝑝 − ∶ LMod𝑅⊗S𝑅
𝑜𝑝 → LMod𝑅 is E𝑛−2-monoidal, and in particular, E2-

monoidal. Since the Whitehead filtration is compatible with multiplicative structure, this gives
the claim. □

Next, we want to be able to find other useful spectral sequences to compare these to that
will allow us to figure out some of their differentials. This is where cyclic invariance comes in.
We work here in the case where 𝑅 is an E∞-ring, but the setup should work more generally
with minimal modifications:

Proposition 2.4. For 𝑅 anE1-ring, and 𝑆 aE1-𝑅-algebra, we have an equivalence THH(𝑅, 𝑆) ≃
THH(𝑆, 𝑆⊗𝑅 𝑆). If 𝑅 and 𝑆 are both E∞-algebras, then this is an equivalence of E∞-algebras.

Proof. See [LL23] where this equivalence is proven for 𝑅 and 𝑆 E1-algebras. The multiplicative
identification for the E∞ case follows from the string of equivalences THH(𝑅, 𝑆) ≃ 𝑅⊗𝑅⊗𝑅 𝑆 ≃
𝑅⊗𝑅⊗𝑅 ((𝑆⊗ 𝑆)⊗𝑆⊗𝑆 𝑆) ≃ (𝑅⊗𝑅⊗𝑅 (𝑆⊗ 𝑆))⊗𝑆⊗𝑆 𝑆 ≃ (𝑆⊗𝑅 𝑆)⊗𝑆⊗𝑆 𝑆 ≃ THH(𝑆, 𝑆⊗𝑅 𝑆),
where each of these equivalences can be viewed as rewriting the same colimit in E∞-rings,
giving the identification as E∞-rings. □

When we apply the Whitehead filtration to 𝑆 ⊗𝑅 𝑆 in a situation as above, the resulting
spectral sequence has been termed the Brun spectral sequence, introduced by Brun in [Bru00]
and studied by Höning in [Hö20].

For 𝑅 an arbitrary connective E𝑛-ring spectrum, this already gives us a lot to compare 𝑅
with. Namely, it is clear that THH(𝑅, 𝑅⊗S𝑅𝑜𝑝) ≃ 𝑅, so applying the Whitehead filtration to the
coefficients produces a spectral sequence 𝐸 𝑠,𝑡

1 = THH−𝑠(𝑅, 𝜋𝑡(𝑅)) ⇒ 𝜋𝑡−𝑠(𝑅). Furthermore,
the natural map 𝑅 ⊗ 𝑅𝑜𝑝 → 𝑅 provides a map on spectral sequences which is surjective on
the E1-page. Thus, if one could determine the structure of the spectral sequence associated to
THH(𝑅, 𝑅 ⊗ 𝑅𝑜𝑝), one could compute THH(𝑅), although the structure of the former can get
quite complicated in general.
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§3. Topological Hochschild Homology of tmf with Coefficients

In this section, we apply the tools developed in section 2 to study the topological Hochschild
homology of connective topological modular forms with coefficients in F2 and Z(2). These
computations, as well as those with other coefficients, were studied independently by Bruner-
Rognes in a work in progress [BR14]. We begin with THH(tmf, F2), where cyclic invariance
makes this computation easy. As a precursor, we analyze THH(F2, F2 ⊗S F2) ≃ F2:

Example 3.1. We have a spectral sequence 𝐸 𝑠,𝑡
1 = THH−𝑠(F2, 𝜋𝑡(F2 ⊗S F2)) ⇒ F2. By Bökst-

edt’s computation of THH(F2), we know that the signature of this spectral sequence is

𝐸
𝑠,𝑡
1 = F2[𝜉1, 𝜉2, 𝜉3, . . .] ⊗F2 F2[𝑢] Ô⇒ F2,

where 𝜉𝑖 has bidegree (0, 2𝑖 − 1), and 𝑢 has bidegree (−2, 0). Since this spectral sequence
converges to F2, we find that 𝑢 must map to 𝜉1 on the 𝐸1-page, leaving F2[𝜉2, 𝜉3, . . .]⊗F2 F2[𝑢2]
on the 𝐸2-page. Repeating inductively, we find that 𝑢2𝑛−1 maps to 𝜉𝑛 on the 𝐸2𝑛−1-page for degree
reasons, leaving F2[𝜉𝑛+1, 𝜉𝑛+2, . . .]⊗F2 F2[𝑢2𝑛] on the 𝐸2𝑛-page, and these differentials together
with multiplicativity, account for all of the nonzero differentials in the spectral sequence.

Example 3.2. In a similar fashion, we can determine the differentials in the spectral sequence
associated to THH(F 𝑝, F 𝑝 ⊗S F 𝑝) ≃ F 𝑝, which has signature

𝐸
𝑠,𝑡
1 = F 𝑝[𝜉1, 𝜉2, . . .] ⊗Λ[𝜏0, 𝜏1, . . .] ⊗ F 𝑝[𝑢] Ô⇒ F 𝑝

, where ∣𝜉𝑖 ∣ = (0, 2(𝑝𝑖−1)), ∣𝜏𝑖 ∣ = (0, 2𝑝𝑖−1), and ∣𝑢∣ = (−2, 0). We find that the differentials are
determined on multiplicative generators (on respective pages) by 𝑑1(𝑢) = 𝜏0, 𝑑2𝑝−3(𝑢𝑝−1𝜏0) =
𝜉1, and generally, 𝑑2𝑝𝑖−1(𝑢𝑝

𝑖) = 𝜏𝑖 , 𝑑2𝑝𝑖−1(𝑝−1)(𝑢𝑝
𝑖−1(𝑝−1)𝜏𝑖−1) = 𝜉𝑖

Example 3.3. Now, we can compare with the analogous spectral sequence for tmf, recalling
that 𝜋∗(F2 ⊗tmf F2) = F2[𝜉1, 𝜉2, 𝜉3]/(𝜉8

1 , 𝜉
4
2 , 𝜉

2
3) as a quotient of the dual Steenrod algebra. The

signature of this spectral sequence is

𝐸
𝑠,𝑡
1 = F2[𝑢] ⊗F2 F2[𝜉1, 𝜉2, 𝜉3]/(𝜉8

1 , 𝜉
4
2 , 𝜉

2
3) Ô⇒ THH(tmf, F2).

By the comparison map from THH(F2, F2 ⊗S F2), we find that 𝑢 maps to 𝜉1 on the 𝐸1-page,
leaving

𝐸
𝑠,𝑡
2 ≃ F2[𝑢2] ⊗F2 F2[𝜉2, 𝜉3]/(𝜉4

2 , 𝜉
2
3) ⊗F2 Λ[𝜉7

1𝑢],
𝑢2 maps to 𝜉2 on the 𝐸3-page, leaving

𝐸
𝑠,𝑡
4 ≃ F2[𝑢4] ⊗F2 F2[𝜉3]/(𝜉2

3) ⊗F2 Λ[𝜉7
1𝑢, 𝜉

3
2𝑢

2],

and 𝑢4 maps to 𝜉3 on the 𝐸7 page, leaving us with

𝐸
𝑠,𝑡
8 = 𝐸

𝑠,𝑡
∞ = F2[𝑢8] ⊗F2 Λ(𝑢𝜉7

1 , 𝑢
2𝜉3

2 , 𝑢
4𝜉3),

on the 𝐸8-page, where the spectral sequence must degenerate for degree reasons since 𝑢8 cannot
hit any nonzero class. There are no multiplicative extension problems for degree reasons, so we
find that

𝜋∗ THH(tmf, F2) ≃ 𝜋∗ THH(F2, F2 ⊗tmf F2) ≃ F2[𝑢8] ⊗F2 Λ(𝑢𝜉7
1 , 𝑢

2𝜉3
2 , 𝑢

4𝜉3)

is the tensor product of a polynomial algebra with a generator in degree 16 with an exterior
algebra on classes in degrees 9, 13, and 15. For future reference, let us write 𝜋∗(THH(tmf, F2)) =
F2[𝛼] ⊗F2 Λ(𝜆1, 𝜆2, 𝜆3), with ∣𝛼∣ = 16, ∣𝜆1∣ = 9, ∣𝜆2∣ = 13, and ∣𝜆3∣ = 15.
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Before we compute THH(tmf,Z(2)), let’s warm up by redoing the well-known computation
for THH(ℓ,Z(𝑝)) at an odd prime 𝑝:

Example 3.4. Note that in a fashion similar to Example 3.3, using 𝜋∗(F 𝑝 ⊗ℓ F 𝑝) ≃ Λ[𝜏0, 𝜏1],
we find that

THH∗(ℓ, F 𝑝) ≃ F 𝑝[𝑢𝑝
2] ⊗F𝑝 Λ[𝑢𝑝−1𝜉1, 𝑢

𝑝(𝑝−1)𝜉2].
Since 𝜋∗(ℓ) ≃ Z(𝑝)[𝑣1], with ∣𝑣1∣ = 2, it is easy to see that 𝜋∗(Z(𝑝)⊗ℓ Z(𝑝)) ≃ ΛZ

(𝑝)
[𝜌], with

∣𝜌∣ = 2𝑝−1. The 𝐸1-page of our Whitehead spectral sequence for THH(Z(𝑝),Z(𝑝)⊗ℓ Z(𝑝)) is
given by THH∗(Z(𝑝))⊗Λ[𝜌], with 𝜌 in bidegree (0, 2𝑝−1), and 𝑎 ∈ THH𝑖(Z(𝑝)) in bidegree
(−𝑖, 0).
Since we only have one copy of F 𝑝 in 𝜋2𝑝−1(THH(ℓ, F 𝑝)), we find that there must be a
multiplicative extension between 𝜌 and the Z/𝑝Z class in THH2𝑝−1(Z(𝑝)). By examining the
locations where elements of THH(ℓ, F 𝑝) are nonzero, and working inductively, we find that for
all 𝑟 > 1, there is a nonzero differential on the class THH2𝑟 𝑝−1(Z(𝑝)), which ends up giving us
that

THH∗(ℓ,Z(𝑝)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z(𝑝) if ∗ = 0, 2𝑝 − 1
Z/𝑝𝑘Z if ∗ = 2𝑟 𝑝𝑘+1 − 1, 2𝑟 𝑝𝑘+1 − 1 + 2𝑝 − 1 with 𝑘 > 0, gcd(𝑟, 𝑘) = 1
0 otherwise.

The case for THH(tmf,Z(2)) is slightly more complicated. First, we need to know 𝜋∗(Z(2)⊗𝑡𝑚 𝑓

Z(2)). To compute this, we start by looking at 𝜋∗(Z(2) ⊗S tmf).

Proposition 3.5. We haveZ(2)⊗S tmf ≃ Z(2)[𝜉8
1]⊗LZ(2)Z(2)[𝜉

4
2]⊗LZ(2)⊗

L
Z
(2),𝑖>2 Z(2)[𝜉2

𝑖 ]/(2𝜉𝑖)
as a Z(2)-module.

Proof. We know, for instance by [Mat15], that 𝜋∗(F2 ⊗S tmf) ≃ F2[𝜉8
1 , 𝜉

4
2 , 𝜉

2
3 , 𝜉4, 𝜉5, . . .], iden-

tified as a subalgebra of the dual Steenrod algebra via the algebra map tmf → F2. Next, note
that F2 ⊗S tmf ≃ cofib(2 ∶ Z(2) ⊗S tmf → Z(2) ⊗S tmf), and we have a commutative diagram
of ring spectra:

Z(2) ⊗S tmf F2 ⊗S tmf

Z(2) ⊗S Z(2) F2 ⊗S F2.

The long exact sequence associated to the cofiber sequence tells us that we must have torsion-
free classes in 𝜋8(Z(2)⊗S tmf) and 𝜋12(Z(2)⊗S tmf)mapping to 𝜉8

1 and 𝜉4
2 , respectively. Since

Z(2) ⊗S Z(2) ≃ ⊗L
Z
(2),𝑖>0 Z(2)[𝜉2

𝑖 ]/(2𝜉𝑖), we find that the class in degree 8 must map to 𝜉8
1

under the left vertical map, and the class in degree 12 must map to 𝜉4
2 under the same map, and

by abuse, we will give these classes in 𝜋∗(Z(2)⊗S tmf) the same name. For 𝑖 ≥ 1, the fact 𝜉2
𝑖 is

2-torsion in Z(2) ⊗S Z(2) reflects the fact that, under taking the cofiber of 2 on this spectrum,
the class in degree 2(2𝑖 − 1) + 1 = 2𝑖+1 − 1 arising from this torsion is 𝜉𝑖+1. Since we don’t
have any classes in 𝜋∗(F2 ⊗S tmf) of the form 𝜉2𝜉

𝑘
1 or 𝜉3𝜉

𝑘
2 , the powers of 𝜉8

1 and 𝜉4
2 form a

polynomial algebra over Z(𝑝), giving the first two tensor factors above. The other tensor factors
agree with those in Z(2) ⊗S Z(2), which follows from examining the classes in 𝜋∗(F2 ⊗S tmf)
and using commutativity of the above diagram. Since Z(2)⊗S tmf is 2-local, and we don’t have
any more classes showing up on the cofiber of 2, this determines Z(2) ⊗S tmf, as desired. □
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From this, we can deduce:

Proposition 3.6.

𝜋∗(Z(2) ⊗tmf Z(2)) ≃

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z(2) if ∗ = 0, 22,
Z(2) ⊕Z/2Z if ∗ = 9, 13,
Z/2Z if ∗ = 2, 4, 8, 10, 11, 12, 17, 19,
Z/2Z⊕Z/2Z if ∗ = 6, 15
0 otherwise.

Proof. Note that S → Z(2) factors as S → tmf → Z(2). Thus, we have a diagram of pushout
squares of E∞-ring spectra:

S tmf Z(2)

Z(2) Z(2) ⊗S tmf Z(2) ⊗S Z(2)

Z(2) Z(2) ⊗tmf Z(2),

i.e., Z(2) ⊗tmf Z(2) ≃ Z(2) ⊗Z(2)⊗Stmf (Z(2) ⊗S Z(2)). This square splits up further by writing
Z(2) ⊗S tmf and Z(2) ⊗S Z(2) as an infinite (derived) tensor product of Z(2)-algebras, as in
Proposition 3.5. For 𝑖 ≥ 3, since Z(2)[𝜉2

𝑖 ]/(2𝜉2
𝑖 ) → Z(2)[𝜉2

𝑖 ]/(2𝜉2
𝑖 ) is an equivalence, this only

contributes a Z(2) to the final tensor product, and can be ignored. We are left to compute

Z(2)[𝜉2
1]/(2𝜉2

1) ⊗Z
(2)[𝜉 8

1 ] Z(2)

and
Z(2)[𝜉2

2]/(2𝜉2
2) ⊗Z

(2)[𝜉 4
2 ] Z(2).

For the first case, note that

Z(2)[𝜉2
1]/(2𝜉2

1) ≃ Σ2Z(2)[𝜉8
1]/2⊕ Σ

4Z(2)[𝜉8
1]/2⊕ Σ

6Z(2)[𝜉8
1]/2⊕𝑇

as a Z[𝜉8
1]-module, where 𝑇 = cofib(2𝜉8

1 ∶ 𝜎8Z(2)[𝜉8
1] → Z(2)[𝜉8

1]). It is then easy to compute
with these free resolutions that

Z(2)[𝜉2
1]/(2𝜉2

1) ⊗Z
(2)[𝜉 8

1 ] Z(2) ≃ Z(2) ⊕ Σ
2Z/2Z⊕ Σ

4Z/2Z⊕ Σ
6Z/2Z⊕ Σ

9Z(2).

Similar considerations give us

Z(2)[𝜉2
2]/(2𝜉2

2) ⊗Z
(2)[𝜉 4

2 ] Z(2) ≃ Z(2) ⊕ Σ
6Z/2Z⊕ Σ

13Z(2).

Computing the derived tensor product over Z(2) of these two Z(2)-modules gives the desired
result. □

With this in hand, we can finally compute THH∗(tmf,Z(2)):

Theorem 3.7 (Theorem 1.1).

THH∗(tmf,Z(2)) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z(2) if ∗ = 0, 9, 13, 22
Z/2𝑘Z if ∗ = 2𝑟𝑘+3 − 1, 2𝑘+3𝑟 − 1 + 9, 2𝑘+3𝑟 − 1 + 13, 2𝑘+3𝑟 − 1 + 22,
0 otherwise,
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for all 𝑘 > 0 and 𝑟 odd.

Proof. First, note that, by Proposition 3.6, the Brun spectral sequence for THH(Z(2),Z(2)⊗tmf
Z(2)) has 𝐸1-page with THH∗(Z(2)) in degrees (−∗, 0), (−∗, 22), THH∗(Z(2),Z(2)⊕Z/2Z) in
degrees (−∗, 9), (−∗, 13), THH∗(Z(2),Z/2Z) in degrees (−∗, 2), (−∗, 4), (−∗, 8), (−∗, 10),
(−∗, 11), (−∗, 12), (−∗, 17), (−∗, 19), THH∗(Z(2),Z/2Z ⊕ Z/2Z) in degrees (−∗, 6) and
(−∗, 15), and is zero otherwise.

This spectral sequence has a lot of terms, so would be difficult to deal with on its own.
Instead, we examine also the Bockstein spectral sequence, with 𝐸1-page THH∗(tmf, F2)[𝑣0],
with ∣𝑣0∣ = (1, 1). Since every term of the Brun spectral sequence in negative 𝑠 degree is torsion,
the Z(2)-classes in degrees 0,9,13, and 22 must survive to the 𝐸∞-page, giving the respective
classes in THH∗(tmf,Z(2)). This is reflected in our Bockstein spectral sequence by the fact
that our 𝑣0-towers on the classes 1, 𝜆1, 𝜆2 and 𝜆1𝜆2 must survive the spectral sequence. Thus,
we must have that 𝜆3 is a permanent cycle. Since the spectral sequence is multiplicative, we
either have that it has degenerated, or else 𝑑1(𝛼) = 𝑣0𝜆3. The Brun spectral sequence shows
that 𝜋15(THH(tmf,Z(2))) is finite, so we cannot be in the first case, and thus 𝑑1(𝛼) = 𝑣1𝜆3,
and 𝛼𝜆3 cannot support any differentials since anything it could hit is either a permanent cycle,
or was killed off on the first page.

Inductively, we find that 𝛼2𝑛𝜆3 cannot support any differentials, and the only multiplicative
generator that can support a differential on or past the 𝐸𝑛+2-page, is 𝛼2𝑛+1 , which can only
possibly support the differential 𝑑𝑛+2(𝛼2𝑛+1) = 𝑣0

𝑛+2𝛼2𝑛𝜆3. If we did not have this differential,
the spectral sequence would be degenerate, but again, the Brun spectral sequence shows this
cannot be the case, so we have 𝑑𝑛+2(𝛼2𝑛+1) = 𝑣0

𝑛+2𝛼2𝑛𝜆3 for all 𝑛. By looking at the cofiber
of 2, we find that THH∗(tmf,Z(2)) is either Z(2) or finite cyclic in any given degree, which
determines the multiplicative extensions in the Bockstein spectral sequence. The classes in
degree 2𝑘+3𝑟 − 1 are the classes 𝛼𝑟2𝑘−1

𝜆3, and the other classes in the second item come from
multiplying by 𝜆1, 𝜆2 and 𝜆1𝜆2. □
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§4. THH of Quotients of ℓ

In this section, we compute the topological Hochschild homology of quotients ℓ/𝑣𝑛1 of ℓ,
in terms of the topological Hochschild homology of ℓ, which was computed by Angeltveit-
Hill-Lawson in [AHL09]. We will show that 𝜋∗ THH(ℓ/𝑣𝑛1) ≃ 𝜋∗ THH(ℓ, ℓ/𝑣𝑛1) ⊗Z(𝑝) Γ[𝑥],
the tensor product of the topological Hochschild homology of ℓ with coefficients in ℓ/𝑣𝑛1 with
a divided power algebra on a generator 𝑥 in degree 2𝑛(𝑝 − 1) + 2. We start by computing
THH(ℓ/𝑣𝑛1 ,Z(𝑝)).

Lemma 4.1. For 𝑛 > 1, we have thatZ(𝑝)⊗ℓ/𝑣𝑛1 Z(𝑝) ≃ (Z(𝑝)⊗ℓZ(𝑝))⊗Z(𝑝) (Z(𝑝)⊗Z(𝑝)⊗ℓℓ/𝑣𝑛1
Z(𝑝)) as E∞-algebras.

Proof. We have a diagram of E∞-rings where all squares are pushouts:

ℓ ℓ/𝑣𝑛1 Z(𝑝)

Z(𝑝) Z(𝑝) ⊗ℓ ℓ/𝑣𝑛1 Z(𝑝) ⊗ℓ Z(𝑝)

Z(𝑝) Z(𝑝) ⊗ℓ/𝑣𝑛1 Z(𝑝).

The map Z(𝑝)⊗ℓ ℓ/𝑣𝑛1 → Z(𝑝)⊗ℓ Z(𝑝) factors over 𝜏≤2(𝑝−1)+1Z(𝑝)⊗ℓ ℓ/𝑣𝑛1 ≃ Z(𝑝), so that the
cospan Z(𝑝) ← Z(𝑝)⊗ℓ ℓ/𝑣𝑛1 → Z(𝑝)⊗ℓ Z(𝑝) may be rewritten as the tensor product over Z(𝑝)
of the cospans Z(𝑝) ← Z(𝑝)⊗ℓ ℓ/𝑣𝑛1 → Z(𝑝) and Z(𝑝) ← Z(𝑝) → Z(𝑝)⊗ℓZ(𝑝). Since colimits
commute, we find that the pushout of our original square, Z(𝑝)⊗ℓ/𝑣𝑛1 Z(𝑝) is isomorphic to the
pushout of our first cospan tensored over Z(𝑝) with the pushout of our second cospan, which is
precisely (Z(𝑝) ⊗Z

(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)) ⊗Z(𝑝) (Z(𝑝) ⊗ℓ/𝑣𝑛1 Z(𝑝)), as claimed. □

Next, we examine Z(𝑝) ⊗Z
(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝). By an easy computation, its homotopy groups

are

𝜋∗(Z(𝑝) ⊗ℓ ℓ/𝑣𝑛1) =
⎧⎪⎪⎨⎪⎪⎩

Z(𝑝) if ∗ = 0, 2𝑛(𝑝 − 1) + 1,
0 otherwise.

In order to figure out the multiplicative structure of 𝜋∗(Z(𝑝)⊗Z
(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)), we must figure

out the structure of Z(𝑝) ⊗ℓ ℓ/𝑣𝑛1 as an algebra. We may note that this is a E∞-Z(𝑝)-algebra,
which is a square zero extension of Z(𝑝) in E∞-Z(𝑝)-algebras by [Lur17] Corollary 7.4.1.27.

Since Z(𝑝) is initial in CAlg(Z(𝑝)), L
CAlg(Z

(𝑝))
Z
(𝑝)

vanishes, so there is a unique such square zero
extension of Z(𝑝).

Since we have a dga model for an E∞-Z(𝑝)-algebra with the prescribed homotopy groups,
we can take the tensor product Z(𝑝)⊗Z

(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝) with respect to this dga model, and it will
tell us the structure of Z(𝑝)⊗Z

(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝) as an E1-algebra, and in particular will tell us the
multiplicative structure of the homotopy groups. But it is easy to show that this just returns a
ring with homotopy groups 𝜋∗(Z(𝑝) ⊗Z

(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)) = Γ[𝑥] with 𝑥 in degree 2𝑛(𝑝 − 1) + 2,
as desired.

Lemma 4.2. THH∗(ℓ/𝑣𝑛1 ,Z(𝑝)) ≃ THH∗(ℓ,Z(𝑝)) ⊗Z(𝑝) 𝜋∗(Z(𝑝) ⊗Z(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)).
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Proof. This follows from

THH(ℓ/𝑣𝑛1 ,Z(𝑝)) ≃ THH(Z(𝑝),Z(𝑝) ⊗ℓ/𝑣𝑛1 Z(𝑝))
≃ Z(𝑝) ⊗Z(𝑝)⊗SZ(𝑝) (Z(𝑝) ⊗ℓ/𝑣𝑛1 Z(𝑝))
≃ Z(𝑝) ⊗Z(𝑝)⊗SZ(𝑝) ((Z(𝑝) ⊗ℓ Z(𝑝)) ⊗Z(𝑝) (Z(𝑝) ⊗Z(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)))
≃ (Z(𝑝) ⊗Z(𝑝)⊗SZ(𝑝) (Z(𝑝) ⊗ℓ Z(𝑝))) ⊗Z(𝑝) (Z(𝑝) ⊗Z(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝))
≃ THH(ℓ,Z(𝑝)) ⊗Z(𝑝) (Z(𝑝) ⊗Z(𝑝)⊗ℓℓ/𝑣𝑛1 Z(𝑝)).

□

Now, we are finally in a position to analyze the spectral sequence associated to THH(ℓ/𝑣𝑛1).
We have that 𝐸 𝑠,𝑡

1 = Z(𝑝)[𝑣1]/𝑣𝑛1 ⊗Z(𝑝) THH∗(ℓ,Z(𝑝)) ⊗Z(𝑝) Γ[𝑥], where 𝑣1 has bidegree
(0, 2(𝑝−1)), 𝑥 has bidegree (−(2𝑛(𝑝−1)+2), 0), and THH𝑠(ℓ,Z(𝑝)) lives in degree (−𝑠, 0).
There is a comparison map 𝜌 from the spectral sequence associated to THH(ℓ, ℓ/𝑣𝑛1) to this
one, which determines many of the differentials. In fact,

Theorem 4.3. All of the differentials vanish on the classes coming from Γ[𝑥] in the THH(ℓ/𝑣𝑛1)
spectral sequence. In particular, the comparison map 𝜌, together with multiplicativity, de-
termine all of the differentials in this spectral sequence, and we have that THH∗(ℓ/𝑣𝑛1) ≃
THH∗(ℓ, ℓ/𝑣𝑛1) ⊗Z(𝑝) Γ[𝑥], where 𝑥 is in degree 2𝑛(𝑝 − 1) + 2.

Proof. First, we note that in the case 𝑛 ≠ 1 mod 𝑝2, the theorem can be proven by looking only
at the spectral sequences we have already constructed. To prove this theorem in general, we use
the filtrations coming from [LL23]. Explicitly, we work over the filtered modules over the E∞-
algebra 𝜏≥∗(ℓ/𝑣𝑛1) in filtered spectra, where 𝜏≥∗(ℓ/𝑣𝑛1) denotes ℓ/𝑣𝑛1 with the Whitehead filtra-
tion. We can then apply the construction of THH to get the filtered spectrum THH(𝜏≥∗(ℓ/𝑣𝑛1)),
with underlying spectrum THH(ℓ/𝑣𝑛1), and associated graded THH(Z(𝑝)[𝑣1]/(𝑣1

𝑛)), where
∣𝑣1∣ = 2𝑛(𝑝 − 1) + 2. To understand the 𝐸1-page of this spectral sequence, we use the following
lemma, the proof of which is adapted from lemma 4.1 in [LL23]:

Lemma 4.4. Suppose 𝑘 is a discrete ring, and 𝑅 is a connective (possibly graded) E2-𝑘-algebra
with 𝜋∗(𝑅) = 𝑘[𝑥]/𝑥𝑛, on some class 𝑥 in positive even degree, and 𝑅 admits an E2-algebra
map from a ring 𝑆 with 𝜋∗(𝑆) = 𝑘[𝑥]. Then, we have an equivalence of (graded) E1-𝑘-algebras
THH(𝑅) = THH(𝑘) ⊗𝑘 HH(𝑅/𝑘).

Proof of lemma. We have, as in 4.1 of [LL23] 𝑘[𝑥] = 𝑘 ⊗S S[𝑥]. Now, as an E1-algebra
𝑅 = 𝑘[𝑥] ⊗𝑘[𝑥𝑛] 𝑘 ≃ (𝑘 ⊗S S[𝑥]) ⊗𝑘⊗SS[𝑥𝑛] (𝑘 ⊗S S) ≃ 𝑘 ⊗S S[𝑥]/𝑥𝑛, where S[𝑥]/𝑥𝑛 denotes
S[𝑥] ⊗S[𝑥𝑛] S. Since THH commutes with tensor products, there are equivalences of (graded)
spectra,

THH(𝑅) ≃ THH(𝑘)⊗STHH(S[𝑥]/𝑥𝑛) ≃ THH(𝑘)⊗𝑘𝑘⊗STHH(S[𝑥]/𝑥𝑛) ≃ THH(𝑘)⊗𝑘HH((𝑘[𝑥]/𝑥𝑛)/𝑘).

𝑘[𝑥]/𝑥𝑛 = 𝜏≤𝑛∣𝑥∣−1𝑘[𝑥], so that 𝑅 inherits a canonical E2-𝑘-algebra structure as this truncation.
We can give 𝑥 a new (positive) grading 1, to make S[𝑥] a nonnegatively graded E2-ring
spectrum, so an E2-algebra in SpZ

𝑑𝑠
≥0 . There is a thick ⊗-ideal I of SpZ

𝑑𝑠
≥0 generated by elements

concentrated in grading ≥ 𝑛. Quotienting out this ⊗-ideal gives a symmetric monoidal functor
SpZ

𝑑𝑠
≥0 → SpZ

𝑑𝑠
≥0 /I, whose right adjoint is then lax symmetric monoidal by [Lur17] Corollary

7.3.2.7. Composing these two functors gives a functor which sends our graded S[𝑥] to a graded
E2-algebra with underlyingE2-ringS[𝑥]/𝑥𝑛, as desired. Using this grading, we can get, from the
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E2-map in SpZ
𝑑𝑠
≥0 , S[𝑥] → 𝑘[𝑥]. Applying the endofunctor we just described, we get a E2-map

S[𝑥]/𝑥𝑛 → 𝑘[𝑥]/𝑥𝑛, which upgrades our isomorphism above to an E2-algebra isomorphism,
which ensures the induced map on THH is an isomorphism of E1-algebras. □

We wish to apply this in our case. By [LL23] lemma 2.6, the 𝑡-structure on graded spectra
given by saying 𝑥• is connective if 𝑥𝑖 is 𝑚𝑖-connective for some 𝑚 is compatible with the
multiplicative structure. In particular, choosing 𝑚 sufficiently large (𝑚 > 2𝑛(𝑝 − 1) + 2), we get
a 𝑡-structure on graded spectra such that 𝜏≥0(𝜋∗(ℓ/𝑣𝑛1)) = Z(𝑝) concentrated in degree 0, which
shows that 𝜋∗(ℓ/𝑣𝑛1) is a graded E∞-Z(𝑝)-algebra. Now, we can apply the above theorem to get
the 𝐸1-page of the spectral sequence as

𝐸
𝑠,𝑡
1 = THH∗(Z(𝑝)) ⊗Z(𝑝) HH∗((Z(𝑝)[𝑣1]/𝑣1

𝑛)/Z(𝑝)).

A standard calculation shows that

HH∗((Z(𝑝)[𝑣1]/𝑣1
𝑛)/Z(𝑝)) ≃ ΛZ

(𝑝)
[𝑑𝑣1] ⊗ ΓZ

(𝑝)
[𝜎2𝑣1

𝑛] ⊗Z(𝑝)[𝑣1]/(𝑣1
𝑛),

where𝜎2𝑣1
𝑛 is a class in bidegree (−2, 2𝑛(𝑝−1)), and 𝑑𝑣1 is a class in bidegree (−1, 2(𝑝−1)).

The terms coming from THH𝑛(Z(𝑝)) live in bidegree (−𝑛, 0), and 𝑣1 lives in bidegree
(0, 2(𝑝 − 1)). Examining the above spectral sequence, we find that 𝜎2(𝑣1

𝑛) is the only class
in total degree (−2, 2𝑛(𝑝 − 1)) and nothing lives in degree (0, 2𝑛(𝑝 − 1) + 1). 𝜎2(𝑣1

𝑛) must
vanish under the differentials on every page, so this is the same class corresponding to 𝑥 in our
other spectral sequence. Now, it is clear that for all classes 𝑎, with bigrading ∣𝑎∣ = (𝑠, 𝑡), we
have that 𝑡 ≤ −𝑛(𝑝 − 1)𝑠 + 2(𝑛 − 1)(𝑝 − 1) for 𝑠 even, and 𝑡 ≤ −𝑛(𝑝 − 1)(𝑠 + 1) + 2𝑛(𝑝 − 1) for
𝑠 odd. Further, 𝑡 is maximized with respect to 𝑠 for 𝑠 ≤ 0 even by 𝑣1

𝑛−1𝑥(−
𝑠
2 ), and for 𝑠 odd by

𝑑𝑣1𝑣1
𝑛−1𝑥(−

𝑠+1
2 ). In particular, any differential off of 𝑥(𝑘) on the 𝐸𝑟 -page would have to hit a

class in bidegree (−2𝑘+𝑟+1, 2𝑘𝑛(𝑝−1)+𝑟). But, we have that, for 𝑟 odd, −2𝑘+𝑟+1 ≥ −2𝑘+2,
and then every class with 𝑡 > 2𝑛(𝑝 − 1)(𝑘 − 1) + 2(𝑛 − 1)(𝑝 − 1) vanishes in this 𝑠 degree. In
particular, the target of 𝑑𝑟 on 𝑥(𝑘) is 0. If 𝑟 is even, then −2𝑘 + 𝑟 + 1 ≥ −2𝑘 + 3, and thus if
𝑡 > 2𝑛(𝑝−1)(𝑘−2)+2𝑛(𝑝−1) = 2𝑛(𝑝−1)(𝑘−1), the classes in degree (−2𝑘+𝑟+1, 𝑡) vanish,
and again, the target of 𝑑𝑟((𝜎2(𝑣1

𝑛))(𝑘)) vanishes. We have shown that the (𝜎2(𝑣1)𝑛)(𝑘), are
all permanent cycles, and then so are the 𝑥(𝑘) from the first spectral sequence.

Note that there are no other nonzero terms in the above spectral sequence with total degree
𝑘(2𝑛(𝑝 − 1) + 2), and higher filtration degree than (𝜎2(𝑣1

𝑛))(𝑘). Thus, there can be no
nontrivial multiplicative extensions supported on these classes, and 𝑥 ↦ 𝜎2(𝑣𝑛1) determines a
map of graded commutative Z(𝑝)-algebras ΓZ

(𝑝)
[𝑥] → THH∗(ℓ/𝑣𝑛1), with 𝑥 a class in degree

2𝑛(𝑝 − 1) + 2. This gives us a map of graded commutative Z(𝑝)-algebras

THH∗(ℓ, ℓ/𝑣𝑛1) ⊗Z(𝑝) ΓZ(𝑝)[𝑥] → THH∗(ℓ/𝑣𝑛1).

Since the 𝐸1-page of the Whitehead spectral sequence for THH(ℓ/𝑣𝑛1) is multiplicatively
generated by the image of THH∗(ℓ, 𝜋∗(ℓ/𝑣𝑛1)) and the classes 𝑥(𝑘) (which have just been shown
to be permanent cycles), all of the nontrivial differentials appearing in this spectral sequence
come from the map THH∗(ℓ, 𝜏≥∗ℓ/𝑣𝑛1) → THH∗(ℓ/𝑣𝑛1 , 𝜏≥∗ℓ/𝑣𝑛1) together with the Leibniz rule.
In particular, it follows that the algebra map THH∗(ℓ, ℓ/𝑣𝑛1) ⊗Z(𝑝) ΓZ(𝑝)[𝑥] → THH∗(ℓ/𝑣𝑛1)
must be an isomorphism, as claimed. □
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§5. The General Case

We remark that many of the constructions in the last section admit a generalization.

Theorem 5.1. Suppose that 𝑅 is a connective E𝑚-ring spectrum for some𝑚 ≥ 3, and 𝑥 ∈ 𝜋∗(𝑅)
is a positive degree class such that, for some fixed 𝑘 > 1, 𝑅/𝑥𝑘 ∶= cofib(𝑥𝑘 ∶ 𝑅 → 𝑅) admits
an E3-algebra structure. Then, we have an equivalence of 𝜏≤0𝑅-modules THH(𝑅/𝑥𝑘 , 𝜋0(𝑅)) ≃
THH(𝑅, 𝜋0(𝑅)) ⊗𝜋0(𝑅) (𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)).
Proof. Suppose we have a connective E𝑚-ring spectrum 𝑅 such that we have a class 𝑥 and an
integer 𝑘 with the desire properties. We then have that, by Proposition 2.2, THH(𝑅/𝑥𝑘 , 𝜋0(𝑅)) ≃
THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)). Now, we have equivalences

𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅) ≃ (𝜋0(𝑅) ⊗ 𝜋0(𝑅)) ⊗𝑅/𝑥𝑘⊗𝑅/𝑥𝑘 𝑅/𝑥𝑘

≃ (𝜋0(𝑅) ⊗ 𝜋0(𝑅)) ⊗𝑅/𝑥𝑘⊗𝑅/𝑥𝑘 (𝑅/𝑥𝑘 ⊗𝑅 𝑅/𝑥𝑘) ⊗(𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘) 𝑅/𝑥
𝑘

≃ ((𝜋0(𝑅) ⊗ 𝜋0(𝑅)) ⊗𝑅/𝑥𝑘⊗𝑅/𝑥𝑘 ((𝑅/𝑥𝑘 ⊗ 𝑅/𝑥𝑘) ⊗𝑅⊗𝑅 𝑅)) ⊗(𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘) 𝑅/𝑥
𝑘

≃ ((𝜋0(𝑅) ⊗ 𝜋0(𝑅)) ⊗𝑅⊗𝑅 𝑅) ⊗(𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘) 𝑅/𝑥
𝑘

≃ (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗(𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘) 𝑅/𝑥
𝑘

≃ (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 (𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘) ⊗(𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘) 𝑅/𝑥
𝑘

≃ (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅).

Now, by assumption, 𝑥𝑘 is such that 𝑅/𝑥𝑘 → 𝜋0(𝑅) factors as 𝑅/𝑥𝑘 → 𝑅/𝑥𝑘−1 → 𝜋0(𝑅),
so, 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘 → 𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅) factors as 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘 → 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘−1 →
𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅). 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘−1 has homotopy groups given by

𝜋∗(𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘−1) =
⎧⎪⎪⎨⎪⎪⎩

𝜋0(𝑅) if ∗ = 0, (𝑘 − 1)∣𝑥∣ + 1,
0 otherwise.

In particular, 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘 → 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘−1 factors over 𝜏≤(𝑘−1)∣𝑥∣+1(𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘) ≃
𝜋0(𝑅). This implies that 𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅), as a right 𝜋0(𝑅) ⊗𝑅 𝑅/𝑥𝑘-module, is equivalent to
(𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅) 𝜋0(𝑅), with the induced right module structure on 𝜋0(𝑅). Thus,

𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅) ≃ (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)
≃ ((𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅) 𝜋0(𝑅)) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)
≃ (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜋0(𝑅) (𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)).

This derived tensor product in 𝜋0(𝑅)-modules can be computed as a tensor product on under-
lying modules, since the second module is flat (in fact free). Indeed, from the cofiber sequence

Σ𝑘∣𝑥∣𝑅 𝑥𝑘Ð→ 𝑅, we can tensor this with 𝜋0(𝑅) to find that 𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 ≃ 𝜋0(𝑅)⊕Σ𝑘∣𝑥∣+1𝜋0(𝑅)
as a 𝜋0(𝑅)-module. We then have a periodic resolution of 𝜋0(𝑅) from this class in degree 2,
which allows us to see that 𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅) ≃ ⊕𝑟≥0 Σ

𝑟(𝑘∣𝑥∣+2)𝜋0(𝑅) as a 𝜋0(𝑅)-
module.

Now, we apply the Whitehead filtration to 𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅), and examine the spec-
tral sequence associated to THH(𝜋0(𝑅), 𝜏≥∗(𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅))). Note that this spectral
sequence is multiplicative, since by assumption, 𝑅/𝑥𝑘 is an E3-algebra, so that the maps
𝑅/𝑥𝑘 → 𝜋0(𝑅)/𝑥𝑘 ≃ 𝜋0(𝑅) are E3-algebra maps, which implies (𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)) is an
E2-𝜋0(𝑅)-algebra. We have a map

THH(𝜋0(𝑅), 𝜏≥∗(𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅))) → THH(𝜋0(𝑅), 𝜏≥∗(𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)))
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which descends to a map on the associated spectral sequences. By what we said above, the
𝐸1-page of the target is multiplicatively generated by the classes in the image of this map,
together with classes generating copies of 𝜋0(𝑅) in degrees (0, 𝑟(𝑘 ∣𝑥∣ + 2)) for 𝑟 > 0. Since
there are no nonzero classes in bidegree (𝑠, 𝑡) for 𝑠 > 0, so the differentials vanish on these
classes, and there are no multiplicative extension problems between them. The map from
THH(𝜋0(𝑅), 𝜏≥∗(𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅))) determine the multiplicative extension problems on the
classes in its image, and this determines all of the multiplicative extension problems, since any
nonzero class 𝑎 in the image of this map multiplies with any nonzero class 𝑏 coming from
(𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)) to a nonzero class.

This establishes the claim on the level of homotopy groups. For the full claim, note
that we have a map THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)) → THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘
𝜋0(𝑅)) → 𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅) ≃ ⊕𝑟≥0 Σ

𝑟(𝑘∣𝑥∣+2)𝜋0(𝑅), which admits a splitting 𝜑 ∶
⊕𝑟≥0 Σ

𝑟(𝑘∣𝑥∣+2)𝜋0(𝑅) → THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)). Since THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅/𝑥𝑘
𝜋0(𝑅)) admits a THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅))-module structure coming from the natural
map, 𝜑 extends to a map THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) ⊗𝜏≥0𝑅 𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅) →
THH(𝜋0(𝑅), 𝜋0(𝑅) ⊗𝑅/𝑥𝑘 𝜋0(𝑅)), which provides our desired equivalence. □

Remark 5.2. As the proof indicates, we can replace 𝑥𝑘 by any class 𝑥 in even positive degree
such that 𝑅/𝑥 is an E3-algebra, and such that (𝑅/𝑥 ⊗𝑅 𝜋0(𝑅)) → (𝜋0(𝑅) ⊗𝑅 𝜋0(𝑅)) factors
over (𝑅/𝑥 ⊗𝑅 𝜋0(𝑅)) → 𝜏≤0((𝑅/𝑥 ⊗𝑅 𝜋0(𝑅))) ≃ 𝜋0(𝑅).

Corollary 5.3. Let 𝑅, 𝑥 and 𝑘 be as in Theorem 5.1. Then, the 𝐸1-page of the spectral
sequence coming from THH(𝑅/𝑥𝑘 , 𝜏≥∗(𝑅/𝑥𝑘)) converging to THH(𝑅/𝑥𝑘) is isomorphic to the
𝐸1-page of the spectral sequence coming from THH(𝑅, 𝜏≥∗(𝑅/𝑥𝑘)) tensored over 𝜋0(𝑅) with
⊕𝑟≥0 𝜏≥0𝑅 ⋅ 𝑎𝑟 , where 𝑎𝑟 is a class in bidegree (−𝑟(𝑘 ∣𝑥∣ + 2), 0).

Proof. This follows from the proposition together with the fact that if 𝑀 is any 𝜋0(𝑅)-module,
then

THH(𝑅/𝑥𝑘 , 𝑀) ≃ THH(𝑅/𝑥𝑘 , 𝜋0(𝑅)) ⊗𝜋0(𝑅) 𝑀

≃ THH(𝑅, 𝜋0(𝑅)) ⊗𝜋0(𝑅) (𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)) ⊗𝜋0(𝑅) 𝑀

≃ THH(𝑅, 𝑀) ⊗𝜋0(𝑅) (𝜋0(𝑅) ⊗𝜋0(𝑅)⊗𝑅𝑅/𝑥𝑘 𝜋0(𝑅)).

□

Remark 5.4. We don’t know whether or not this isomorphism extends to THH∗(𝑅/𝑥𝑘) ≃
THH∗(𝑅, 𝑅/𝑥𝑘) ⊗ 𝜋∗(𝑅/𝑥𝑘 ⊗𝑅/𝑥𝑘⊗𝑅𝑅/𝑥𝑘 𝑅/𝑥

𝑘) in general, although this does seem to hold in
many cases.

Together with the map from THH(𝑅, 𝜏≥∗(𝑅/𝑥𝑘)), this means that in nice cases, if we
understand THH(𝑅, 𝑅/𝑥𝑘), we need only understand the differentials on the classes 𝑎𝑟 in order
to understand THH(𝑅/𝑥𝑘).
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§6. The THH of ksc2

Using the results of section §5, we will compute THH(ksc2) and show that it fits into the same
overall framework as above. Recall that self-conjugate 𝐾-theory, ksc is the E∞-ring defined
as the cofiber cofib(𝜂2 ∶ Σ2 ko → ko), or alternatively defined as the connective cover of the
Z-homotopy fixed points of the periodic complex 𝐾-theory spectrum KU, where Z acts as 𝜓−1.
We have:

Theorem 6.1. THH∗(ksc2) ≃ THH∗(ko2, ksc2)⊗Z
(2) Γ[𝜎2𝜂2], where𝜎2𝜂2 is a class in degree

4.

Proof. Since ksc2 = cofib(𝜂2 ∶ Σ2 ko2 → ko2), the results of §5 give us a spectral sequence with
signature

𝐸
𝑠,𝑡
1 = THH∗(ko2, 𝜋∗(ksc2)) ⊗ Γ[𝜎2𝜂2] Ô⇒ THH∗(ksc2).

Our goal is to show that the classes coming from Γ[𝜎2𝜂2] are permanent cycles. By similar
results to §2, we can recover the known fact that THH∗(ko2,Z(2)) is Z(2) in degrees 0 and 5;
Z/2𝑘Z in degrees 𝑟2𝑘+2 − 1 and 𝑟2𝑘+2 − 1 + 5 for 𝑟 > 0 odd; and is zero otherwise. Similarly,

THH∗(ko2, F2) ≃ F2[𝑢4] ⊗Λ[𝑢𝜉3
1 , 𝑢

2𝜉2].

In particular, when we run the Whitehead spectral sequence for THH(ksc2), the class 𝜎2𝜂2

in bidegree (−4, 0) cannot hit anything for degree reasons, and is thus a permanent cycle. In
order to prove the theorem, it suffices to see that the classes (𝜎2𝜂2)(2𝑛) do not hit any 2-torsion
classes in the spectral sequence, since then the differentials on the divided power classes will
all be trivial.

Similar to Theorem 4.3, we start with the filtration of ko2 from [LL23] Definition 2.12. This
has associated graded given by Z(2)[𝑣2

1, 𝜂]/(2𝜂), where 𝜂 is in filtration degree 2, and 𝑣2
1 is in

filtration degree 4. Taking the cofiber of 𝜂2 on ko 𝑓 𝑖𝑙

2 gives a filtered spectrum ksc 𝑓 𝑖𝑙

2 with under-
lying spectrum ksc2, and associated graded with 𝜋∗,∗(ksc𝑔𝑟2 ) = Z(2)[𝑣2

1, 𝜂, 𝜌]/(2𝜂, 𝜂2, 𝜌𝜂, 𝜌2),
where 𝜌 is in topological degree 3 and filtration degree 4. We wish to understand what
THH(ksc𝑔𝑟2 ) looks like. To accomplish this task, we start by examining THH(ko𝑔𝑟2 ,Z(2)).
Recall that 𝜋∗(ko𝑔𝑟2 /2) = F2[𝑣1, 𝜂], and 𝜋∗(ko𝑔𝑟2 /𝜂) = Z(2)[𝑣1], coming from the fact ko𝑔𝑟2 /𝜂
is the associated graded for the Whitehead filtration on ku2. It follows that

Z(2) ⊗ko𝑔𝑟2
Z(2) ≃ Z(2) ⊗ko𝑔𝑟2

ko𝑔𝑟2 /𝜂 ⊗ko𝑔𝑟2 /𝜂 Z(2)
≃ ΛZ

(2)[𝜎𝜂] ⊗ko𝑔𝑟2 /𝜂 Z(2).

Using that Z(2) = (ko𝑔𝑟2 /𝜂)/𝑣1, and noting that 𝑣1 takes 1 to 2𝜎𝜂, we find that

𝜋∗(Z(2) ⊗ko𝑔𝑟2
Z(2)) = Z(2)[𝜎𝜂, 𝜎𝑣2

1]/(𝜎𝜂𝜎𝑣2
1, 2𝜎𝜂, (𝜎𝜂)2, (𝜎𝑣2

1)2).

Running the Brun spectral sequence for THH(ko𝑔𝑟2 ,Z(2)) shows that the only class that may
appear in topological degree ≤ 4 in THH(ko𝑔𝑟2 ,Z(2)) is a Z/2Z class in topological degree 3
and filtration degree 0 (which we will temporarily denote by 𝛼 if it survives); and the class 𝜎𝜂
from above.

In the spectral sequence associated to the Whitehead filtration on the E∞-Z-algebra ksc𝑔𝑟2 ,
the only possible classes in topological degree 4 in THH(ksc𝑔𝑟2 ) are 𝜎2𝜂2, in filtration degree
4, and 𝛼𝜂, in topological degree 4 and filtration degree 2. Furthermore, for all 𝑥 ∈ THH(ksc𝑔𝑟2 ),
deg𝑡𝑜𝑝(𝑥) ≥ deg 𝑓 𝑖𝑙(𝑥) − 1.
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These results tell us that in the spectral sequence for our filtration, with𝐸1-page THH∗(ksc𝑔𝑟2 ),
the class 𝜎2𝜂2, which has (𝑠, 𝑡)-degree (0, 4), cannot support any nonzero differentials, and
is a permanent cycle. To see that this 𝜎2𝜂2 corresponds to the class with the same name in
THH(ksc), we have to see that there are no multiplicative extensions. But the only possible
multiplicative extension is with the class 𝛼𝜂, should it have survived. But if 𝛼 survived to
THH(ksc𝑔𝑟2 ,Z(2)), it would also survive to THH(ksc𝑔𝑟2 ) for degree reasons, giving a class in
(𝑠, 𝑡)-degree (−3, 0) on the 𝐸1-page. Then there would be no classes for 𝛼 to hit, and 𝛼 would
either give a new Z/2Z class in THH3(ksc2), or would sit in a multiplicative extension with 𝜌.
Since the map ksc2 → THH(ksc2) splits, the second case cannot happen, and the Whitehead
spectral sequence for THH(ksc2) shows that the first case cannot happen, so in fact 𝛼 does not
survive to THH(ksc𝑔𝑟2 ), and there are no possible multiplicative extensions for 𝜎2𝜂2, showing
that this is the desired class. Now, if all of the classes in Γ[𝜎2𝜂2] survive to THH(ksc𝑔𝑟2 ), then
(𝜎2𝜂2)(2𝑛) sits in (𝑠, 𝑡)-degree (0, 2𝑛+2), and thus cannot support any differentials, giving us
the desired classes Γ[𝜎2𝜂2] in THH(ksc2). We therefore shift our focus to proving this fact.

Lemma 6.2. The classes Γ[𝜎2𝜂2] ⊆ THH∗(ksc𝑔𝑟2 ,Z(2)) can be lifted to divided power algebra
classes on 𝜎2𝜂2 in THH∗(ksc𝑔𝑟2 ).

Proof of Lemma. We start with the filtered spectrum Z
𝑓 𝑖𝑙

(2), given in the 2-adic filtration, with
underlying spectrum Z(2) and associated graded F2[𝑣0]. Tensoring this with the E∞-Z(2)-
algebra ksc𝑔𝑟2 gives us a filtered spectrum with associated graded F2[𝑣1, 𝜂, 𝑣0]/(𝜂2), where
𝑣1, 𝜂 are in graded degree 0, and 𝑣0 is in graded degree 1. This filtration gives rise to the
2-Bockstein spectral sequence

𝐸
𝑠,𝑡
1 = THH∗(F2[𝜂, 𝑣1, 𝑣0]/(𝜂2)) Ô⇒ THH∗(ksc𝑔𝑟2 ).

By monoidality of THH, we have

THH(F2[𝜂, 𝑣1, 𝑣0]/𝜂2) ≃ THH(F2[𝜂]/𝜂2) ⊗THH(F2) THH(F2[𝑣1]) ⊗F2 THH(F2[𝑣0]).

Using that F2[𝜂]/𝜂2 is a square zero extension of F2 in E∞-F2-algebras, we find that

THH∗(F2[𝜂]/𝜂2) = THH∗(F2) ⊗ F2[𝜂]/𝜂2 ⊗Λ[𝜎𝜂] ⊗ Γ[𝜎2𝜂2].

From this, it follows that

THH∗(F2[𝜂, 𝑣1, 𝑣0]/𝜂2) = THH∗(F2) ⊗ F2[𝜂, 𝑣1, 𝑣0]/𝜂2 ⊗Λ[𝜎𝜂, 𝜎𝑣1, 𝜎𝑣0] ⊗ Γ[𝜎2𝜂2].

In the 2-Bockstein spectral sequence, all of the above multiplicative generators have 𝑡-degree
0 except for 𝑣0, in (𝑠, 𝑡)-degree (1, 1), and 𝜎𝑣0, in (𝑠, 𝑡)-degree (0, 1). We begin by examining
the class 𝜎2𝜂2 in degree (−4, 0). Almost all of the classes in the 𝑣0-tower on this class must
survive the spectral sequence in order to give the Z(2) ⋅𝜎2𝜂2 class in degree 4 of THH∗(ksc𝑔𝑟2 ).
We find that 𝜎2𝜂2 cannot support any differentials, since any nontrivial differentials would kill
the entire tower. First, let’s study this spectral sequence a little bit more:

We claim that if 𝑎 is a class on the 𝐸𝑘-page with 𝑎 ≠ 0, but 𝑣0𝑎 = 0, then deg𝑡(𝑎) ≤ 𝑘 − 1.
For 𝑘 = 1, this is vacuous, since there is no 𝑣0-torsion on the 𝐸1-page of this spectral sequence.
We proceed by induction. Suppose that 𝑎 ≠ 0 is a class on the 𝐸𝑘-page with 𝑣0𝑎 = 0, and
deg𝑡(𝑎) ≥ 𝑘 . The fact that 𝑣0𝑎 = 0 means that at some point earlier in the spectral sequence, say
on the 𝐸𝑘−𝑖-page (𝑖 > 0), we had a class 𝑏 with 𝑑𝑘−𝑖(𝑏) = 𝑣0𝑎. 𝑏 then necessarily has 𝑡-degree
𝑖 + 1 > 1. In particular, 𝑣0 must divide 𝑏 for degree reasons, so 𝑏 = 𝑐𝑣0, for some class 𝑐 (or
more accurately, comes from a class on 𝐸1 divisible by 𝑣0, and by our inductive hypothesis,
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there cannot be a differential taking 𝑐 to a nonzero class which multiplies with 𝑣0 to zero). Now,
𝑑(𝑐) ≠ 𝑎, but 𝑑(𝑣0𝑐) = 𝑑(𝑏) = 𝑣0𝑎, so that 𝑎 − 𝑑(𝑐) ≠ 0, but 𝑣0(𝑎 − 𝑑(𝑐)) = 0. Since 𝑎 − 𝑑(𝑐)
is a 𝑣0-torsion class on 𝐸𝑘−𝑖 with 𝑡-degree 𝑘 ≥ 𝑘 − 𝑖, it must be 0 by induction, so that 𝑎 = 𝑑(𝑐),
contradicting the choice of 𝑎.

This claim implies that if the differential of any class in 𝑡-degree 0 or 1 is nontrivial, then
the entire 𝑣0-tower on that class dies. Let 𝑛 be the smallest natural such that (𝜎2𝜂2)(2𝑛) does
not live in THH∗(ksc𝑔𝑟2 ). In particular, we must have that the entire 𝑣0-tower on the analogous
class in the mod 2 Bockstein must vanish. Since (𝜎2𝜂2)(2𝑛−1) squares to a torsion-free class,
there must be a nonvanishing 𝑣0 tower in total degree 2𝑛−1 ⋅ 4 = 2𝑛+1 in the Bockstein spectral
sequence. However, considering the map from the spectral sequence associated to THH(Z 𝑓 𝑖𝑙

(2))
shows that the classes divisible by 𝑢 and 𝜎𝑣0 are all 𝑣0-torsion. In order for 𝜂 to be 2-torsion,
we need a differential to hit 𝜂𝑣0, and this can be checked to come from 𝜎𝜂. Thus, the only
classes that can contribute to a nonvanishing 𝑣0-tower are the (𝜎2𝜂2)(2𝑘), for 𝑘 < 𝑛, powers of
𝑣1, and 𝜎𝑣1. Since no power of 𝑣1 divides any element of Γ[𝜎2𝜂2], the only contribution can
come from 𝜎𝑣1 and the (𝜎2𝜂2)(2𝑘). But the total degree of 𝜎𝑣1 ⋅ ∏𝑘<𝑛(𝜎2𝜂2)(2𝑘) is 2𝑛+1, but
the tower we need is in total degree 2𝑛+2, and thus must come from (𝜎2𝜂2)(2𝑛)! This shows
that all of our (𝜎2𝜂2)(2𝑛) classes have to survive this Bockstein spectral sequence, proving that
they survive to give the divided power classes in THH∗(ksc𝑔𝑟2 ) that we were looking for. □

□

Remark 6.3. THH∗(ko2, ksc2) can be computed as a graded abelian group from the work of
[AHL09], noting that they prove that 𝜂2 acts as zero on THH∗(ko2), which determines

THH(ko2, ksc2) ≃ cofib(𝜂2 ∶ Σ2THH(ko2) → THH(ko2))

up to extension problems. Since the only classes in ¯THH∗(ko2) in odd degrees are copies of
Z(2) living in what [AHL09] call 𝐹ko, there can only be nontrivial extension problems if the
map from

THH5+4𝑛(ko2) → THH5+4𝑛(ko2, ksc2)
is not surjective on the torsion-free parts. However, we know from the computations in [AHL09]
7.2-7.3 that

THH5+4𝑛(ko2) → THH5+4𝑛(ko2, ku2)
induces an isomorphism on the torsion-free part, and this map factors as

THH5+4𝑛(ko2) → THH5+4𝑛(ko2, ksc2) → THH5+4𝑛(ko2, ku2).

Thus, we find that, as a graded abelian group,

THH∗(ko2, ksc2) ≃ THH∗(ko2) ⊕ THH∗−3(ko2).

Combined with the above, we have completely determined THH∗(ksc2).
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