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Abstract

In this expository paper, we define and prove the associativity of the
group law on cubics via the Caley-Bacharach Theorem. To prove Caley-
Bacharach, we introduce and prove Bezout’s Theorem and its corollaries
on families of conics and cubics through some given points over the com-
plex projective plane. As an application of Caley-Bacharach and the as-
sociativity of the group law on cubics, we prove Pascal’s Theorem (which
implies Pappus and Desargues’s theorems).
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1 Introduction

Bezout’s Theorem is a multiplication theorem that generalizes the number of
common roots between two polynomials in n variables of arbitrary degrees. The
theorem was first proposed as a challenge in the seventeenth century when it
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was still a conjecture. The problem was not fully resolved until two centuries
later when the tools of complex projective space and multiplicities were fully
developed. Being one of the oldest important results in algebraic geometry,
Bezout’s Theorem is worth writing a paper for it. In this paper, we will first
introduce an algebraic proof of the theorem and will then discuss its applications:
how it unveils the group properties of roots of cubics, and how its corollary
provides higher-perspective solutions to classical geometry problems.

To provide the necessary tools for exploring this question, we organize this
paper as follows. Section 2 is a review of some basic concepts of points at infin-
ity, projective plane, and homogenized coordinates (Subsection 2.1), as well as
the definition of intersection and multiplicity (Subsection 2.2). These concepts
construct the space the curve lies into and the definition of the ”number” of
intersection, which is the very first step of understanding later proof.

Section 3 to Section 4 involves the development of argument by proving
Bezout’s Theorem, Caley-Bacharach as a lemma of Bezout’s, and the Group
Laws on Cubics as a lemma of Caley-Bacharach consecutively.

Section 5 is the application of the group laws on solving classical geometric
problems, mainly dealing with Pascal’s Mystic Hexagon, including Pappus and
Desargues’s theorems.

2 Preliminaries

2.1 Projective plane and homogeneous coordinates

Definition 2.1. Let n ≥ 0. Define a binary relation∼ on Cn+1 by (a0, . . . , an) ∼
(b0, . . . , bn) if and only if there exists 0 ̸= λ ∈ C such that ai = λbi for all
0 ≤ i ≤ n+ 1. One can check that ∼ gives an equivalence relation on Cn+1.

Define the n-dimensional complex projective space Pn
C as the quotient

(Cn+1−{(0, . . . , 0)})/ ∼. We denote the equivalence class of every (a0, . . . , an) ∈
Cn+1 by [a0 : . . . : an].

Remark 2.1. In general, one cannot “evaluate” polynomials at points of Pn
C.

Given a polynomial F ∈ C[x0, . . . , xn] and a point P = [a0 : . . . : an] ∈ Pn
C

, it is tempting to define the value F (P ) of F at P as F (P ) = F (a0, . . . , an).
However, one can check that unless F is constant, this definition is dependent on
the choice of the representative (a0, . . . , an) of P . In other words, the function
F : Cn+1 → C induces by the polynomial F does not necessarily descend to a
function on Pn

C.
However, below we shall see that if F is homogeneous (Definition 2.2), we

can define what it means for F to “vanish” at a point P ∈ Pn
C.

Remark 2.2. The point (0, . . . , 0) will later be denoted as the distinguished
point O (Definition 2.6).

Definition 2.2. Let n ≥ 0. The polynomial ring C[x0, . . . , xn] has a natural
C-vector space structure. For every d ≥ 0, let Sd := Sn

d := spanC{x
i0
0 · · ·xin

n |
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i0 + · · · + in = d} be the subspace of C[x0, . . . , xn] spanned by the monomials
of degree d. By counting the number of such monomials, we have dimC Sd.

A polynomial F ∈ C[x0, . . . , xn] is called homogeneous is F ∈ Sd for some
d ≥ 0. If 0 ̸= F ∈ Sd, we say that F is homogeneous of degree d.

Observation 2.1. Let F ∈ C[x0, . . . , xn]. It is not hard to show that F is ho-
mogeneous of degree d if and only if for every (a0, . . . , an) ∈ Cn+1−{(0, . . . , 0)}
and every 0 ̸= λ ∈ C, we must have F (λa0, . . . , λan) = λdF (a0, . . . , an).

In particular, F (a0, . . . , an) = 0 ⇐⇒ F (λa0, . . . , λan) = 0 for all λ ∈ C∗.
This motivates the following definition.

Definition 2.3. Let F ∈ C[x0, . . . , xn] be homogeneous of degree d and P =
[a0 : . . . : an] ∈ Pn

C. We say that F vanishes at P , written F (P ) = 0 if
F (a0, . . . , an) = 0. (This notion is well-defined by the observation above.) If F
vanishes at P , we say that P is a zero of F (in Pn

C). We denote the set of zeroes
of F (in Pn

C) by V(F ).
Given P1, . . . , Pm ∈ Pn

C, let Sd(P1, . . . , Pm) := {F ∈ Sd | F (Pi) = 0 ∀i} be
the set of all homogeneous polynomials in C[x0, . . . , xn] of degree d vanishing
at all of the Pi’s. Clearly, Sd(P1, . . . , Pm) is a C-subspace of Sd.

Definition 2.4. A subset C ⊂ P2
C is called a (complex) projective plane

curve if C = V(F ) for some homogeneous 0 ̸= F ∈ F [X,Y, Z]. Such a curve C
can also be written as C(F ). The degree of C is defined as degC := min{d ∈
Z | ∃0 ̸= F ∈ Sd such that C = V(F )}.

From now on, by curves, we always mean (complex) projective plane
curves. In this paper, we will use C and C(F ) to denote the curve interchange-
ably, depending on whether we consider it beneficial to emphasize the curve’s
relation to the homogeneous polynomial F ∈ F [X,Y, Z] of degree 2.

Definition 2.5. Let F be some homogeneous polynomial such that 0 ̸= F ∈
C[X,Y, Z] of degree 2, and C(F ) ⊂ P2

C be its zero set. Let f(x, y) ∈ C2 be a
new polynomial obtained by plugging Z = 1 into F .The curve C is singular if

there exists (x0, y0) ∈ C2 so that f(x0, y0) = 0 and ∂f(x0,y0)
∂x = 0, ∂f(x0,y0)

∂y = 0.

If C is not singular, it is nonsingular (or smooth).

Remark 2.3. f is nonconstant and has no repeated factors.

Definition 2.6. A conic (resp. cubic curve) is a curve of degree two (resp.
three). For our purpose, an elliptic curve is a nonsingular conic with a distin-
guished point O ∈ P2

C.

Definition 2.7. Multiplicity refers to the power of a factor appearing in the
factorization of a polynomial.

3 Bezout’s Theorem and its proof

This chapter is devoted to the development of the proof of Bezout’s theorem.
In the first section, we introduce an articulated version of Bezout’s Theorem,
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and explain the necessary constraints on it. In the second section, we introduce
the invention of Sylvester Matrix and the resultant as our main tool. The main
result needed is Definition 3.1 and Proposition 3.1. In the last section, we show
how to apply Proposition 3.1 to finally prove Bezout’s Theorem.

3.1 Bezout’s Theorem

Theorem 3.1 (Bezout). Suppose that polynomials f(x, y), g(x, y) ∈ C[x, y] have
degrees m and n respectively and that f · g has no repeated factors. Let F and
G be the homogenized polynomials ∈ P2

C of f, g in P2
(C), and denote C(F ) and

C(G) as their curve. Then C(F ) and C(G) intersect in mn points, counted with
multiplicity (Definition 2.7).

Remark 3.1. The theorem holds only if C(F ) and C(G) intersect at finitely
many points, i.e. F and G share no common factors. f and g themselves contain
no repeated factors as well.

3.2 Proof of Bezout’s Theorem

In this subsection, we will provide proof of Bezout’s Theorem for the intersection
of two projective curves of degree m and n. Bezout’s Theorem is a collective
effort of mathematicians of centries, its motivation, however, is to simply answer
this question: given two polynomials not necessarily having the same degree,
when do they have a common root?

3.2.1 Sylvester Matrix and resultant

Lemma 3.1. If 0 ̸= f(x) ∈ C[x] is a degree n polynomial and 0 ̸= g(x) ∈ C[x]
is a degree m polynomial, they have a common root if and only if there exist
polynomials 0 ̸= r(x) ∈ C[x] of degree ≤ (m−1) and 0 ̸= s(x) of degree ≤ (n−1)
such that

r(x)f(x) + s(x)g(x) = 0

Proof. Suppose that f and g have a common root (x− a). We can set

r(x) = g(x)/(x− a)

s(x) = −f(x)/(x− a)

Then the Lemma is proven for one direction. Now suppose there exist polyno-
mials r(x) of degree ≤ (m − 1) and s(x) of degree at most (n − 1) such that
r(x)f(x) = −s(x)g(x). It follows that the degree of new polynomials r(x)f(x)
and −s(x)g(x) can be denoted as t ≤ (n + m − 1) and they have the same t
factors x − a1, . . . , x − at. This set of factors of size t includes the n factors of
f(x) and the m factors of g(x). The pigeonhole principle implies that at least
one of these factors must be common to f(x) and g(x). Thus the proof is done.

Based on Lemma 3.1, a new technique should be proposed. The new tech-
nique is to construct a matrix whose entries are coefficients in f(x). This n×m
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matrix M1 sends the vector whose entries are coefficients in r(x) to the co-
efficients of r(x)f(x). Similarly, there exists m × n matrix M2 whose entries
are coefficients in g(x) and which send coefficients to s(x) to the coefficients of
s(x)g(x). If we combine M1 and M2 together, we get an (m + n) × (m + n)
matrix

S =

[
M1

M2

]
with the property that

[
u v

]
S =

[
c+ d

]
, where u =

[
um−1 · · · u0

]
and v

=
[
un−1 · · · u0

]
. Thus, S reduces the common root problem between two

polynomials to linear algebra: the equation
[
u v

]
S = 0 has nontrivial solution

when det(S) = 0.

Definition 3.1. If
f(x) = amxm + · · ·+ a0

g(x) = bnx
n + · · ·+ b0

are two polynomials, their Sylverster matrix is the ((m+n)) × (m+n) matrix

S(f, g, x) =



am am−1 · · · a0 0 · · · 0

0 am am−1 · · · a1
. . . 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 am am−1 · · · a0
bn bn−1 · · · b0 0 · · · 0

0 bn bn−1 · · · b1
. . . 0

...
. . .

. . .
...

. . .
. . .

...
0 · · · 0 bn bn−1 · · · b0


and its determinant det(S(f, g, x)) = Res(f, g, x) is called the resultant of f
and g.

Proposition 3.1. The polynomials f(x) ∈ C[x] and g(x) ∈ C[x] have a common
root if and only if their resultant Res(f, g, x) = 0.

Proof. The above equations are satisfied only when Res(f, g, x) = 0.

3.2.2 Application to Bezout’s Theorem

We now will apply Proposition 3.1 to prove Bezout’s Theorem. In this sub-
section, all F (X,Y, Z), G(X,Y, Z) ∈ C[X,Y, Z] are homogeneous polynomials
of degree m and n respectively, and their curves C(F ) and C(G) are elliptic
curves in P 2

C.

Lemma 3.2. Any homogeneous equation of degree d ∈ C can be factored into
d linear factors in P 2

C.
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Theorem 3.2. Suppose F [X,Y, Z] and G[X,Y, Z] are polynomials of degree m
and n respectively. Then Res(F,G, z)is a homogeneous equation of degree mn.

Proof. If R(x,y) is the resultant, we can prove that R(tx, ty) = tmnR(x, y)
for all t ∈ C, which proves the theorem.

Corollary 3.1. The resultant (Definition 3.1) of the polynomials F and G
factors into mn linear factors.

Res(F,G, z) =
∏

(aix− biy)

Proof. This follows directly from Lemma 3.2 and Theorem 3.2.
Thus, we complete the proof for Bezout’s theorem.

4 Caley-Bacharach and Group Laws on Cubics

This chapter is devoted to the proof of Caley-Bacharach and group laws on
cubics in complex projective plane. This is the transitioning part in this paper:
it first proves Caley-Bacharach as a Lemma of Bezout’s Theorem in subsection
4.1, and then it presents an important result achieved by Caley-Bacharach:
proof of group laws on elliptic curves in projective plane in subsection 4.2, which
equivalently meaning the group laws on the common solutions to systems of two
polynomials of the same variables. In this section, in all corollaries, Pi ∈ P2

C for
all i, and the precise definition of Sd can be checked at Definition 2.2.

4.1 Proof of Caley-Bacharach

Corollary 4.1.
dimSd(P1, ..., Pn) ≥ dimSd − n

A Sketch of the Proof. For any F ∈ Sd, we can rewrite its systems of linear
equations given the n points as follows: (Matrix in which each row represents a
unique variable part of a monomial of F with (X: Y: Z) plugged in)*(a column
vector v)=0. Therefore, {v}=ker(Sd), and dim(ker(Sd))=d. The rank of the
first matrix should be at most m because there are only m points. Therefore,

dimSd(P1, ..., Pn) ≥ dimSd − n

.

Proposition 4.1. If no four of P1, ..., P5 are collinear, then

dimCS2(P1, ..., P5) = 1

, and there exists a unique conic passing through P1, ..., P5.
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Proof. Suppose for contradiction that

dimCS2(P1, ..., P5)) ≥ 2

by Corollary 4.1. Then there must exist at least two distinct conics C1 and C2

that go through P1, ..., P5. By Bezout’s Theorem, if C1 ∩ C2 does not exist, then
the number of intersection points = dim(C1)dim(C2) ≤ 4(= 4 when none of C1,
C2 are degenerate), contradicting the fact that C1 and C2 share at least five
points of intersection. Therefore, the curves C1 and C2 must overlap somewhere,
which is only possible when C1 and C2 are both a pair of lines and they share
a common line. Denote P1, P2, P3 as the intersection of C1 and C2, C2 and C3,
C3 and C1 respectively. Since C1 and C2 intersect at five points, the other two
points of intersections should lie on C1, contradicting the hypothesis that no
four of P1, ..., P5 are collinear. Therefore, we have proven that

dimCS2(P1, ..., P5) = 1

.
Since then, there exists some F ∈ S2 so that F (Pi) = 0 for all i, and that for

every G ∈ S2, G = aF for some a ∈ C. Since in P 2 C(F = 0) and C(aF = 0)
is the same conic, we conclude that every five points determine a unique conic.

Proposition 4.2. If no four of P1, ..., P8 are collinear, no seven of P1, ..., P8

are conconic, then
dimCS2(P1, ..., P8) = 2

, and there exists a unique conic passing through P1, ..., P9.

Proof. We know from the Corollary that

dimCS2(P1, ..., P8) ≥ 2

. Case 1: When three of the points are collinear
Suppose P1, P2, P3 all lie on a unique line L. Choose another point Q on L.

Then we have

dimCS2(P1, ..., P8) ≥ dimCS2(P1, ..., P8, Q)− 1

by Corollary 4.1. Let E be the elliptic curve that contains P1, ..., P8, andQ. By
Bezout’s Theorem, if E does not contain L, then the number of intersections
between E and L should be three instead of nine. Therefore, E = L ∪ C for
some conic C which contains P4, ..., P8. By the last proposition, such conic C
should be unique. Therefore, the conic E is unique, equivalently meaning that

dimCS3(P1, ..., P8, Q) = 1

, and
dimCS3(P1, ..., P8) ≤ 2
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. We know from the Corollary 4.1 that

dimCS3(P1, ..., P8) ≥ 2

, so we conclude that
dimCS3(P1, ..., P8) = 2

.
Case 2: When six of the points are conconic
Suppose P1, ..., P6 lie on the conic C. Take another point Q on E. Simi-

larly, after using Bezout’s Theorem to prove that F contains E, we reach the
conclusion

dimCS3(P1, ..., P8, Q) = 1

and thus
dimCS3(P1, ..., P8) = 2

.
Case 3: the general case where no three points collinear and no six points

conconic By Corollary 4.1 we know that

dimCS3(P1, ..., P8) ≥ dimCS3(P1, ..., P8, A,B)− 2

, for any other two points A,B on the line L joining P1, P2. We want to show
that dimCS3(P1, ..., P8) = 2 by contradiction. Suppose for contradiction that
dimCS3(P1, ..., P8) ≥ 3. Thus,

dimCS3(P1, ..., P8) ≥ 1

, which means that there exists a cubic E passing through the ten points
P1, ..., P8, A, and B. By Bzout’s Theorem, E is the union of the line L and the
conic C joining P3, ..., P8. Since no three points among P1, ..., P8 are collinear,
P3, ..., andP8 lie on the conic part, contradicting the hypothesis that no six of
the points are conconic. Thus, it is only possible that dimCS3(P1, ..., P8) = 2
by Corollary.

Theorem 4.1 (Caley-Bacharach). Let E1, E2 ∈ P 2
C be the projective (cubic)

curves of two distinct polynomials F1, F2 ∈ S3P1, ..., P8, P9, and E1 ∩ E2 =
P1, P2, ..., P9. Then any cubic E ∈ P 2

C passing through P1, P2, ..., P8 also passes
through P9.

Proof. If four of the points P1, ..., P4 were on a line L, then each of E1

and E2 would meet L in ≥ 4 points, and thus contain L, which contradicts the
assumption on E1 ∩ E2. For the same reason, no seven of the points can be
conconic. Therefore, the assumptions of the two Propositions are satisfied, so
we can conclude that

dimCS3(P1, ..., P8) = 2

which means that there exist two distinct cubic polynomials F1, F2 ∈ S3(P1, ..., P8)
that form a basis of S3(P1, ..., P8). Hence, S3(P1, ..., P8) = {aF1+bF2 | a, b ∈ C}.
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Then, for every cubic E passing through P1, ..., P8, we have some a, b such that
F3(X : Y : Z) = aF1(X : Y : Z) + bF2(X : Y : Z) = 0. Since E1 and E2 both
contain P9 by Bezout’s Theorem, E should also pass through P9 as F3(P9) = 0.
Thus, any cubic curve E passing through P1, ..., P8 must pass through P9 as
well.

4.2 Group laws among points on elliptic curves

Elliptic curves are nonsingular curve that is not empty set in P 2
C. Nonsingularity

can be briefly understood as having a well-defined tangent line at every point.
As a result, an elliptic curve contains no line, or else the tangent line is undefined
for the part of a line. The aim of this section is to show that the elliptic curve
under our construction of addition is a commutative group. In this section, we
will show one particular geometric structure on the elliptic curve that grants
group laws on it. The aim of this section is to show that the elliptic curve under
our construction of addition is a commutative group. Just as a reminder, a group
with a binary operation or addition should satisfy commutativity, associativity,
the existence of an identity, and the existence of an inverse.

4.2.1 Construction of Addition

We first use the identity O to define the addition. In the construction of the
addition, it does not matter where O is. Let P and Q be two distinct points.
There exists a unique line L connecting P and Q. By Bezout’s Theorem, L
would intersect E at one more point. We denote this point as P ·Q. When P
and Q are the same, the line is tangential to E at P but still intersects E at
one more point. After finding P · Q, we connect O and P · Q and denote the
unique line as L′. The third point of intersection between L′ and E is defined
to be the result of point addition, P +Q.

Through such a construction, commutativity is naturally satisfied because
the line passing through two points is unique. It is also not hard to find an
inverse for each P . Take the tangent line of E at O, and name its third inter-
section with O as P ·P−1. Then, joining P and K, at the third intersection, we
obtain an inverse of P , denoted as P−1. We only have one property to prove:
the associativity among the points on the elliptic curve.

4.2.2 Proof of Associativity

We want to show that (A+B)+C = A+(B+C) on E. In order to show that
(A+B) +C = A+ (B +C), it suffices to show that A · (B +C) = (A+B) ·C.
Let L1 be a line on which A,B,A ·B lie, L2 for (A+B) and (A+B) ·C, L3 for
B ·C,O, and(B+C), L4 for A, (B+C), andA ·(B+C), L5 for B,C, andB ·C, L6

for A ·B,O, and(A+B). Write E1 = L1∪L2∪L3, E2 = L4∪L5∪L6. E1 passes
through eight points A,B,A · B,O, (A + B), C,B · C, (B + C), thus it passes
through a ninth point of intersection with E as well, which in this case can only
be A · (B +C) by Caley-Bacharach Theorem since no three points are collinear
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and no six points are conconic. Similarly, E2 also passes the same right points
with (A+B)·C. Again, by Caley-Bacharach Theorem, (A+B)·C = A·(B+C),
and thus (A+B) + C = A+ (B + C).

5 Application of Caley-Bacharach: Pascal’s Mys-
tic Hexagon

This chapter is devoted to the discussion of application of Caley-Bacharach in
providing higher-perspective solution to classical geometric problem: Pascal’s
Mystic hexagon. Even though these results are proven in complex projective
plane P 2

C, they can still be used to solve classical geometric problems as geo-
metric properties of curves are preserved. Thus, we would not specify which
plane we are talking about in this chapter. There are in total three theorems
poroven in this chapter: Pascal’s Theorem, Pappus’s Theorem, and Desargue’s
Theorem. We will first prove Pascal’s Theorem, and then show that Pappus’s
Theorem is a subcase of Pascal’s Theorem, and Descargue’s Theorem a subcase
of Pappu’s Theorem.

Theorem 5.1 (Pascal’s Theorem). Suppose A,B,C,A′, B′, C ′ six points lie on
the same conic. Let P,Q,R be points of intersection between lines joining two
of the six points. Then P,Q,R have to be collinear.

Proof. Denote the conic as C. Connect the points in accordance with the
graph. Let E1(F1 = 0) = AB ∪ BD ∪ ER, and F1 ∈ S3(A,B,C,D,E,R). Let
E2(F2 = 0) = AB ∪ ED ∪ CB, and F2 ∈ S3(A,B,C,D,E,R). E1 ∩ E2 =
{A,B,C,D,E, F,R}. Let E3(F3 = 0) = C ∪ HI so that F3 ∈ S3(A, ..., R).
Then, by Caley Bacharach, G ∈ E3, so either G ∈ C or G ∈ HI. It is impossible
that G ∈ C because we have shown that no seven of the nine points can be
conconic in the proof of Caley-Bacharach Theorem. Thus, G ∈ HI, which
means G,H, I are collinear.

When the conic C degenerate into a pair of line, we get a special case of Pas-
cal’s Theorem: Pappus’s Theorem. The nice thing about projective geometry
and Caley-Bacharach is that they unveil the underlying connections between
classical geometric results by changing perspective.

Pappus Theorem: Let L,L′ be two distinct lines, let A,B,C be distinct points
on L that do not lie on L′, and let A′, B′, C ′ be distinct points on L’ that do not
lie on L. Suppose that H = AB′ ∩ A′B,Q = AC ′ ∩ A′C, and P = BC ′ ∩B′C.
Then R,Q, P are collinear.

Proof. Write C(F = 0) = L ∪ L′, and F ∈ S2(A,B,C,A′, B′, C ′). Then we
complete the proof by Pascal’s Theorem.

Desargue’s Theorem If the three straight lines joining the corresponding
vertices of two triangles ABC and A′B′C ′ all meet in a point then the three in-
tersections of pairs of corresponding sides lie on a straight line (the perspective).
Equivalently, if two triangles are perspective from a point, they are perspective
from a line. Being a perspective from a line means that the intersections of lines
are collinear.
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Proof. This can be proven by the Pappus Theorem by connecting the points
in the graph in a different way.
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