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Abstract. A classical result in graph theory states that a graph is discon-

nected iff its Laplacian matrix has eigenvalue 0, with multiplicity 2. One may
be interested in whether a robust analogue of this statement exists: is a graph

close to being disconnected iff the second smallest eigenvalue of its Laplacian

is close to 0? This is the subject of the discrete Cheeger inequality, which we
prove in this paper [1, 2]. We also prove a higher-order Cheeger inequality

due to [3], which provides a robust analogue of the fact that a graph pos-

sesses k disjoint connected components iff its Laplacian has eigenvalue 0 with
multiplicity k.
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1. Introduction

1.1. Conductance of a Graph. There are several ways to study the connectivity
of a graph. One way is by simply determining whether a graph is connected or
disconnected. A graph is connected iff for every pair of vertices, u and v, there
exists a path with u and v as endpoints. However, this notion of connectivity
does not help us distinguish how well-connected a graph is. In particular, the
complete graph, Kn (Figure 1a) seems very well-connected since separating two
well-connected components of Kn requires removing many edges. On the other
hand, the dumbbell graph, Dn (Figure 1b), which contains two Kn/2 components
connected by a single edge, seems poorly connected as removing a single edge
disconnects the graph into two separate well-connected components.

(a) K5 (b) D10

Figure 1. Comparison of the connectivity of K5 (a) and D10 (b)

Let G = (V,E) be an undirected, unweighted graph. We want a more robust no-
tion of connectivity to distinguish how well-connected G is. One way is to consider
an isoperimetric ratio for a cut S ⊂ V such that the ratio between the size of its
boundary and its volume. For any S ⊂ V we define its boundary size, E(S), as the
number of edges with an endpoint in S and an endpoint in V \S, i.e. the number of
edges cut by S. We define the volume of a cut S as the number of edge-vertex inci-

dence pairs between edges in the graph and vertices in S such that vol(S)
def
=
∑
v∈S

dv

where dv is the degree of vertex v. Let us now define the conductance of S as the
isoperimetric ratio of interest.

Definition 1.1 (Conductance). Given a graph G = (V,E) that is undirected and
unweighted, the conductance of a cut S ⊂ V is defined as the ratio

ϕ(S)
def
=

E(S)

min{vol(S), vol(V \ S)}
.

The conductance of a graph G is defined as

ϕ(G)
def
= min

S⊂V
ϕ(S)

Note that if G is d-regular, for every S ⊂ V , vol(S) = d|S|. Thus, the conduc-

tance simplifies to ϕ(S) = E(S)
d|S| . For the rest of this paper, we will focus on proving

statements for the case where G is undirected, unweighted, and d-regular. Unless
otherwise stated, we will also assume that G is connected. All the results that we
state can be generalized to when G is irregular and arbitrarily weighted without
significant modification, and we provide some discussion of this in Section 7.
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Conductance now allows us to distinguish how well-connected two graphs are.
Let’s apply this to the two graphs we mentioned earlier: Kn and Dn. We will show
Kn has high conductance and Dn has low conductance.

For Kn, choose a cut S ⊂ V such that |S| ≤ n
2 . We will show that for any such

choice of S, ϕ(S) > 1
2 . Let s = |S|. We have E(S) = s(n − s), since each of the

s vertices in S is connected by an edge to all n − s of the vertices in V \ S. So

ϕ(S) = s(n−s)
s(n−1) = n−s

n−1 . Since s ≤ n
2 , setting s = n

2 minimizes ϕ(S), implying that

ϕ(Kn) ≥ n
2n−2 > 1

2 .

On the other hand, we will show that Dn has conductance O( 1
k2 ). Let S be one

of the two copies of Kn/2. We will show that S has conductance O( 1
k2 ). In fact, S

is the conductance-minimizing cut, but since ϕ(G) ≤ ϕ(S), it will not be necessary

for us to prove this fact. We have E(S) = 1 and vol(S) = n
2 ·

n−2
2 +1 ∼ n2

4 = Ω(k2).

So ϕ(Dn) ≤ ϕ(S) = O( 1
k2 ).

Our calculations demonstrate that Kn has much higher conductance than Dn,
indicating that Kn is “much better connected” than Dn.

1.2. The Spectrum of the Laplacian and Conductance. The Laplacian ma-
trix of a d-regular graph, G = (V,E), is the n×n real, positive semi-definite matrix

L
def
= d · I −A where A is the adjacency matrix of G and I is the identity matrix.

A fundamental graph theory result is that G can be separated into two disjoint
components, i.e. G is disconnected, iff λ2 = 0, where λ2 is the second smallest
eigenvalue of L.

Just as how we view conductance as a robust version of connectivity, one might
also hope that a robust analogue of the preceding fact holds. Can a graph be
“almost” separated into two components when the second eigenvalue is “almost”
0? This is the subject of the discrete Cheeger’s inequality, which we state in terms

of the normalized Laplacian, L def
= I− 1

dA:

Theorem 1.2 (Cheeger’s Inequality). Let G = (V,E) be a d-regular graph, and
λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L. Then the following holds.

λ2

2
≤ ϕ(G) ≤

√
2λ2

Cheeger’s inequality [4, 5, 1, 2, 6] is a fundamental tool in spectral graph theory.
The upper bound states that if λ2 is small, then ϕ(G) is also small, and hence a
sparse cut exists. On the other hand, when λ2 is large, the lower bound states that
ϕ(G) is large, and thus no sparse cuts exist.

Cheeger’s inequality was first proved for manifolds by [4]. The theorem for undi-
rected graphs was first proven by [5] and [1]. The inequality has many applications,
including in spectral clustering [7, 8], the construction of expander graphs [9, 10],
approximate coloring [2, 11], and image segmentation [12].
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We provide the proof of Theorem 1.2, given by [13], in Section 3. The lower
bound argument, given in Section 3.1, follows by showing that the variational rep-
resentation of λ2 is a relaxation of minimum conductance. The upper bound, shown
in Section 3.2, is more difficult as it requires proving the existence of a sparse cut.
Consequently, the proof for this side is algorithmic; i.e., we construct a procedure
which, when given the second eigenvector, outputs a cut with small conductance.

Our approach for the upper bound side specifically follows the spectral partition-
ing approach, first provided by [5]. We choose this approach for several reasons.
First, the approach will closely resemble the approach we will take to prove the
upper bound side of the higher-order Cheeger’s inequality in Section 4 and in Sec-
tion 5. In fact, there will be significant overlap in the methodologies for the upper
bound side proofs provided in Section 3 and Section 4.

Second, this spectral partitioning algorithm interestingly has it’s own set of ap-
plications. Specifically, it provides an efficient algorithm for finding sparse cuts, and
consequently has applications in many practical problems such as web search [14,
15], image segmentation [12, 16], graph coloring [17, 18], and the mixing time of
random walks [13].

1.3. The Spectrum of the Laplacian and Multi-Way Conductance. An-
other interesting graph theory fact is that G has k disjoint connected components
iff λk = 0, where λk is the k-th smallest eigenvalue of L. A robust connection
between k-way connectivity, and the k-th eigenvalue of L also exists in the form of
higher-order Cheeger inequalities. One way to state these is via k-way conductance.

Definition 1.3 (k-Way Conductance). Given a graph G = (V,E) and k > 0, the
k-way conductance of G is defined as

ϕk(G) = min
S1,...,Sk⊂V

S1,...,Sk are disjoint

max
i∈[k]

ϕ(Si) .

In particular, ϕk(G) is small when there exists k disjoint cuts each with low
conductance, and hence G is close to being separable into k components. When
ϕk(G) is large, then any collection of k disjoint cuts must have contain least one cut
that is well-connected to all vertices outside of it. We may suspect that when λk

is “almost 0” G can “almost” be separated into k components and therefore ϕk(G)
will be small. This is the subject of the higher-order Cheeger’s Inequalities.

Theorem 1.4 (Higher-Order Cheeger’s Inequality). Let G = (V,E) be a d-regular
graph, and λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L. Then the following holds.

λk

2
≤ ϕk(G) ≤ O(k2)

√
λk

For fixed k, the smaller the value of λk, the smaller the upper bound is on
ϕk(G), indicating that when λk is “almost” 0, we can find k components of G that
are “almost” disconnected from each other.
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Our main goal in this paper will be to prove Theorem 1.4. Theorem 1.4 was first
given in [3], but was first conjectured by [19] to establish a statement of Simon and
Høegh-Krohn [20] conjectured 40 years prior. The algorithm for the upper bound
side of Theorem 1.4 is also inspired by spectral partitioning heuristics used when
performing clustering of high-dimensional point clouds [21, 22]. The proofs in this
paper closely follow [13] to achieve a dependence of O(k3.5), and [3] to reduce this
dependence to O(k3) and subsequently O(k2).

Similar to Theorem 1.2, the proof of the lower bound, provided in Section 4,
follows from a relaxation argument. The upper bound is also proven algorithmically:
given the smallest k eigenvectors, we will provide a procedure that outputs k disjoint
cuts of G each with small conductance.

An important distinction here is that constructing this k-way spectral parti-
tioning algorithm is more difficult than the partitioning algorithm used to prove
Theorem 1.2. In Theorem 1.2, the spectral partitioning algorithm performs a line
embedding of the vertices in G given by the second eigenvector, x(2), of L, where
i 7→ x

(2)
i the i-th coordinate of x(2). The line-embedding then provides a canonical

way of distinguishing two well-separated sets: simply select sets of vertices that are
far apart on the line. In some sense, a crucial consequence of the upper bound side
of Theorem 1.2 is that it shows well-separated sets in the line embedding correspond
to minimum conductance cuts in the graph.

In higher dimensions, one can try to perform an embedding of G into Rk via

i 7→
(
x
(1)
i x

(2)
i · · · x

(k)
i

)⊤
where v1, . . . ,vk are the smallest k eigenvectors of LG. We would then like to
show that “well-separated” sets in Rk correspond to k cuts in G that have low
k-way conductance. A key distinction is that, in higher-dimensions, using different
notions of “well-separated” lead to qualitatively different connections with k-way
conductance that manifest via the dependence on k in the upper bound.

What is the right notion of well-separated that results in the tightest dependence
on k in the upper bound? This paper will show, in sequence, how to prove the upper
bound with an O(k3.5), O(k3), and O(k2) dependence. In Section 4, we provide
the central argument which reduces proving the upper bound down to proving
the existence of a partitioning of Rk with certain “desirable” properties. This is
done by providing an algorithm that rounds k cuts with small k-way conductance
when given a “desirable” partition of Rk. We provide a simple construction of
such a partition to get the initial O(k3.5) bound. In Section 5, we formalize the
“desirable” properties and show the existence of such a partition using the Padded
Partition Theorem in a black-box way to improve the dependence on k to O(k3).
Finally, for the O(k2) bound, we modify the partition properties to better take into
account the fact that there are only finitely many embedded vectors in Rk that we
need to focus on. We use the Lipschitz Partition Theorem, provided in Section 6,
to show the existence of such a partition, and show how it improves the dependence
on k to O(k2).
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Finally, we note that there are, in fact, many different “higher-order Cheeger in-
equalities”. These depend both on how the notion of k-way connectivity is defined,
and which part of the spectrum is used to relate to k-way conductance. For example,
note that in our definition of conductance, Definition 1.3 does not require that the
cuts, S1, · · · , Sk form a partition of V, i.e. that S1 ∪ S2 ∪ · · · ∪ Sk = V . Adding this
requirement results in a looser upper bound. Another example is that rather than
bounding ϕk(G) using λk, we may instead choose to use λ2k, which would improve
the dependence on k. We discuss some of these higher-order Cheeger inequalities
in Section 7.

2. Preliminaries

Throughout this paper we will denote two vertices of G, u and v as adjacent via
u ∼ v. We use unbolded x to represent scalars, bold-face lowercase x to represent
vectors, and bold-face uppercase X to represent matrices. For any x,y ∈ Rn, we let
⟨x,y⟩ denote the standard Euclidean inner product, and ∥x∥ denote the induced
ℓ2-norm. We will often consider the indicator vector of a cut. If S ⊂ V , then its
indicator vector is 111S where

(111S)v =

{
1 if v ∈ S

0 otherwise

2.1. Rayleigh Quotients and Eigenvalues. Recall that a matrix M ∈ Rn×n

is symmetric if M = M⊤. Given a symmetric matrix M ∈ Rn×n, its Rayleigh
quotient with respect to x ∈ Rn is defined as

RM(x)
def
=

x⊤Mx

x⊤x
.

One property of the Rayleigh quotient is that it is constant under scaling, i.e. for

any constant c ∈ Rn, RM (cx) = cx⊤Mcx
cxcx⊤ = x⊤Mx

x⊤x
= RM (x).

An important fact about symmetric matrices is that all their eigenvalues are real
and can be expressed variationally using the Courant–Fischer theorem.

Lemma 2.1. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of a symmetric matrix
M ∈ Rn×n. For every k ∈ [n], we have

λk = min
U⊂Rn

dimU=k

max
x∈U\0

RM(x)

For the specific case of λ2, we have

Lemma 2.2. We have

λ2 = min
U⊂Rn

dimU=2

max
x∈U\0

RM(x) = min
x∈Rn:x⊥x(1)

RM(x)

where x(1) is an eigenvector associated with eigenvalue λ1 of M.
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Finally, recall that a symmetric matrix M is positive semi-definite if and only if
x⊤Mx ≥ 0 for every x ∈ Rn. In particular, we will prove in Corollary 2.7 that L
is positive semi-definite.

For the normalized Laplacian, L, the smallest eigenvalue is 0, and 1 is an eigen-
vector of eigenvalue 0. So we get the following corollary.

Corollary 2.3. Given a d-regular graph G = (V,E), let λ2 denote the second
smallest eigenvalue of L. Then

λ2 = min
x⊥1

RL(x).

Corollary 2.3 will be a key fact in proving Theorem 1.2.

2.2. The Rayleigh Quotient of the Laplacian. Given a graph G = (V,E),
denote L by its normalized Laplacian. The Rayleigh quotient with respect to L will
be a fundamental tool in studying the conductance of G as it links the eigenvalues
of L and the graph’s conductance. For example, a key fact is that the conductance
of a cut equals the Rayleigh quotient of the corresponding indicator vector.

Lemma 2.4. Given a graph G = (V,E) and a vector x ∈ Rk, we have

RL(x) =

∑
u∼v

(xu − xv)
2

d
∑
v
x2
v

Proof. We start by expanding the Rayleigh quotient via

RL(x) =
x⊤Lx
x⊤x

=
x⊤Ix− 1

dx
⊤Ax

x⊤x

=

∑
v∈V

(xv)
2 − 2

∑
u∼v

xuxv

d

x⊤x

=

d
∑
v∈V

(xv)
2 − 2

∑
u∼v

xuxv

dx⊤x

=

∑
v∈V

(xv)
2
dv − 2

∑
u∼v

xuxv

dx⊤x
.

Let’s calculate the numerator of the Rayleigh quotient. We consider the contri-
bution of each pair of vertices, u and v, to the numerator. If u ̸∼ v, then there is no
contribution to (xu)

2
du, (xv)

2
dv, or

∑
u∼v

xuxv. If u ∼ v, there is a contribution of

(xu)
2
to (xu)

2
du, (xv)

2
to (xv)

2
dv, and 2xuxv to 2

∑
u∼v

xuxv. The total contribution

to the numerator is (xu)
2
+ (xv)

2 − 2xuxv = (xu − xv)
2
.
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The denominator is dx⊤x = d
∑
v∈V

xv
2. Therefore, we have

RL(x) =

∑
u∼v

(xu − xv)
2

d
∑
v∈V

(xv)
2 . □

In the specific case where x is an indicator variable of a cut S ⊂ V , the Rayleigh
quotient of 1S equals the conductance of S.

Corollary 2.5. Given a graph G = (V,E) and a cut S ⊂ V , we have

RL(x) =

∑
u∼v

(xu − xv)
2

d|S|
= ϕ(S)

As a consequence of Corollary 2.5, the conductance of G is equivalent to min-
imizing the Rayleigh quotient over a portion of the Boolean hypercube, i.e. over
{0, 1} vectors.

Corollary 2.6. If G = (V,E) is such that |V | = n, then

ϕ(G) = min
x∈{0,1}n:∥x∥2≤n

2

RL(x) .

We also have that L is positive semidefinite since x⊤Lx =
∑
u∼v

(xu − xv)
2 ≥ 0.

Corollary 2.7. L is positive semi-definite

3. Cheeger’s Inequality

In this section, we prove Cheeger’s Inequality, Theorem 1.2, which states that
for a regular, undirected, and unweighted graph, we have λ2

2 ≤ ϕ(G) ≤
√
2λ2

3.1. Lower Bound. We first aim to prove the lower bound λ2

2 ≤ ϕ(G). The
argument follows by demonstrating that λ2 is a relaxation of ϕ(G).

To begin, note that by Lemma 2.2

λ2 = min
U⊂Rn

dimU=2

max
x∈U\0

{RL(x)} .

So it suffices to find a 2-dimensional space, U , where maxx∈U{RL (x)} ≤ 2ϕ(G).
For this subsection, we will fix S ⊂ V to be the minimum conductance cut, i.e.

ϕ(S) = ϕ(G)

Now, let U = Span(1S ,1V \S). Any vector in U is of the form a1S + b1V \S .
Since the Rayleigh quotient is constant under scaling,

RL(a1S) = RL(1S) = ϕ(G) ,
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while on the other hand

RL(1V \S) = ϕ(V \ S) = E(V \ S)
vol(V \ S)

=
E(S)

vol(V \ S)
≤ E(S)

vol(S)
= ϕ(S) = ϕ(G)

Could it be that because any vector, x, in U is the sum of two vectors whose
individual Rayleigh quotients are at most ϕ(G), that RL(x) ≤ 2ϕ(G)? Since 1S

and 1V \S are orthogonal this is, in fact, the case.

Lemma 3.1. If x ⊥ y, RL(x+ y) ≤ 2 ·max
{
RL(x), RL(y)

}
Proof. We have

RL(x+ y) =

∑
u∼v

(xu − xv + yu − yv)
2

||x+ y||2

=

∑
u∼v

(xu − xv + yu − yv)
2

||x||2 + ||y||2

=

∑
u∼v

(xu − xv)
2
+ (yu − yv)

2
+ 2(xu − xv)(yu − yv)

||x||2 + ||y||2
.

Since 2(xu − xv)(yu − yv) ≤ (xu − xv)
2
+ (yu − yv)

2
, we also have the following.∑

u∼v
(xu − xv)

2
+ (yu − yv)

2
+ 2(xu − xv)(yu − yv)

||x||2 + ||y||2

≤

∑
u∼v

2(xu − xv)
2
+ 2(yu − yv)

2

||x||2 + ||y||2
≤ 2 ·max{RL(x), RL(y)}

where the last inequality follows by Lemma A.1. □

In fact, as shown in [13], Lemma 3.1 applies to the Rayleigh quotient with respect
to any positive semi-definite matrix. In particular, as shown in Corollary 2.7, L is
positive semi-definite.

We now have that every vector in U has Rayleigh quotient at most 2ϕ(G).

Corollary 3.2. ∀w ∈ Span(1S ,1V \S), RL(w) ≤ 2ϕ(S) = 2ϕ(G)

Proof. This fact follows from Lemma 3.1. Let w = a1S+b1V \S , where a, b ∈ R and
w ̸= 0. The Rayleigh quotient is constant under scaling, so RL(a1S) = RL(1S) =
ϕ(1S) = ϕ(G) and RL(b1V \S) = RL(1V \S) = ϕ(V \ S) ≤ ϕ(G). By Lemma 3.1,
RL(w) ≤ 2ϕ(G) □

Since U is a 2-dimensional space, the lower bound side of Cheeger’s inequality
follows from Lemma 2.2.
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Lemma 3.3 (Cheeger’s Lower Bound). λ2

2 ≤ ϕ(G)

Proof. By Lemma 2.2, for all 2-dimensional spaces U ,

λ2 ≤ max
x∈U\0

(xu − xv)
2

d
∑
v∈V

xv
2

So
λ2 ≤ max

v∈Span(1S ,1V \S)\0
RL(x) ≤ 2ϕ(G)

It follows that λ2

2 ≤ ϕ(G), as desired. □

3.2. Upper Bound. In this section, we prove that ϕ(G) ≤
√
2λ2.

3.2.1. Description of Algorithm. Because ϕ(G) is the minimum conductance achiev-
able by any cut S ⊂ V , it suffices to find a cut with conductance at most

√
2λ2. We

do this via a spectral partitioning algorithm known as Fiedler’s Algorithm, which
we outline below:

1. Let x be an eigenvector of eigenvalue λ2. Embed the vertices of the graph
into R via its spectral embedding: v 7→ xv, which embeds each vertex into its
corresponding entry of the second eigenvalue.

2. Consider cuts formed by choosing a threshold, t ∈ R, and then partitioning

V into
(
{v ∈ V : xv < t}, {v ∈ V : xv ≥ t}

)
.

3. Among the cuts considered in (2), output the one with the lowest conductance.

Why would we think to use the spectral embedding v 7→ xv? We have already
seen a strong connection between the eigenvalues of the Laplacian and the conduc-
tance of a graph via the Rayleigh quotient. Additionally, the key idea for the lower
bound side was equating a cut, S, with a vector, 1S , to relate the conductance of
a cut with the eigenvalues of the Laplacian.

For the upper bound, we want to go the other direction. Given a vector of small
Rayleigh quotient, we want to make a cut from that vector with low conductance.
Making a cut from a vector is not as straightforward as making a vector out of a
cut, as the vector we start with is most likely not a {0, 1} vector.

Therefore, the key idea is to use rounding. We assign a threshold value t. We
then round all entries below t to 0, and all entries above t to 1. In other words,
our cut consists of all vertices, v, such that xv ≥ t. Since we want a cut with small
conductance, we can choose a value of t that minimizes the conductance of the cut.

But why do we use an eigenvector of eigenvalue λ2? It may seem logical to use
a vector that minimizes the Rayleigh quotient, i.e. an eigenvector of eignevalue λ1.
There are a few reasons for using λ2 over λ1.
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The main reason is that for the Laplacian of every graph, λ1 = 0, and the first
eigenvector of the Laplacian is always a scalar multiple of 1. Therefore, using λ1

for the embedding would assign the same value to every vertex and not be helpful
in forming low-conductance cuts. Additionally, we make critical use of the fact that
λ2 is orthogonal to 1 in Claim 3.4.1.

By Corollary 2.3, among vectors orthogonal to 1, an eigenvector of eigenvalue
λ2 minimizes the Rayleigh quotient with respect to L. As a result of this choice for
x, the upper bound of Cheeger’s will be in terms of λ2.

So we now need to show that for any vector, x : x ⊥ 1, Fiedler’s algorithm does
indeed yield a cut with conductance ≤

√
2RL(x). It turns out that it is not easy

to directly show that the cut found via Fiedler’s algorithm has sufficiently small
conductance. So our strategy will be as follows.

First, we find a vector, y, such that:

(1) y is supported on a set of size ≤ n
2

(2) y has only nonnegative entries

(3) y has Rayleigh quotient ≤
√

2RL(x).

Finding such a y will be helpful for two reasons. First, if we let Sy be the cut
found via Fiedler’s algorithm applied to y, it is easier to show that ϕ(Sy, V \Sy) ≤
2RL(y) than it is to show the corresponding result for x.

Additionally, showing ϕ(Sy, V \ Sy) ≤ 2RL(y) is sufficient because:

(1) Let Sx be the cut found via Fiedler’s algorithm applied to x. Because of our
choice of y, the cut Sy is one of the cuts considered by Fiedler’s algorithm
on x, i.e. exist, t, such that the cut formed by applying the threshold t on
x yields the cut Sy.

(2) We also have that RL(y) ≤ RL(x). So collectively, ϕ(Sx) ≤ ϕ(Sy) ≤
RL(y) ≤ RL(x).

Secondly, this approach will provide us with the Vector-Cut Theorem, Theo-
rem 3.5, which will be a critical tool in the proof of the higher-order Cheeger
inequality.

We now begin the proof.

3.2.2. Rigorous Proof. The first goal is to find a vector, y, such that:

(1) y has nonnegative entries
(2) y is supported on a set of size ≤ n

2
(3) RL(y) ≤ RL(x).

(1) and (2) ensure that after setting a threshold, t, {v : xv ≥ t} is a set of size
≤ n

2 . (3) ensures that finding a cut using Fiedler’s Algorithm on y with sufficiently
small Rayleigh quotient guarentees that we can do the same on x.
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Lemma 3.4. ∀x ⊥ 1, we can find y satisfying (1) and (2) and (3).

Proof. The idea is to first shift the entries so that half of them are negative and
half of them are positive. Then, we either (1) set the negative entries to 0 or (2) set
the positive entries to 0 and then take the absolute value of the negative entries.
We will show that either (1) or (2) will produce a vector with Rayleigh quotient
≤ RL(x).

First, let m be the median value of {x1, · · · , xn}. Apply a shift of −m to all
entries of x to obtain the vector x′ = x−m1. If n is even, after the shift, half the
entries will be non-positive and half the entries will be non-negative. If n is odd,
the median entry will be 0, so less than half the entries will be non-negative and
less than half the entries will be non-positive.

Therefore, we can construct two vectors each with support of size ≤ n
2 as follows:

Let x+ be the vector obtained by setting all negative entries of x′ to 0, i.e. for
every i ∈ [n],

x+
i = max{xi, 0}

Let x− be the vector obtained by setting all positive entries of x′ to 0, and taking
the absolute value of all negative entries. In other words, for every i ∈ [n],

x−
i = |min{xi, 0}|

Claim 3.4.1. Either RL(x
+) ≤ RL(x) or RL(x

−) ≤ RL(x).

Proof. First, note that shifting the entries of x by −m does not affect the numerator
of the Rayleigh quotient. But because x ⊥ 1, we have that the denominator of the
Rayleigh quotient of x′ is no smaller than that of x. In particular,

||x′|| = ||x−m1|| = ||x||+ ||m|| ≥ ||x||.

Therefore, the shifted version of x, x′, has Rayleigh quotient ≤ that of x. We
have

RL(x
′) =

∑
u∼v

(x′
u − x′

v)
2

||x′||2
=

∑
u∼v

(xu − xv)
2

||x′||2
≤

∑
u∼v

(xu − xv)
2

||x||2
= RL(x)

So it suffices to show that RL(x
′) ≥ min{(RL(x

+), RL(x
−)}. We have

RL(x
′) =

∑
u∼v

(xu − xv)
2

||x′||2

=

∑
u∼v

(x+
u − x+

v + x−
u − x−

v )
2

||x+||2 + ||x−||2
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=

∑
u∼v

(x+
u − x+

v )
2 + (x−

u − x−
v )

2 − 2(x+
u − x+

v )(x
−
u − x−

v )

||x+||2 + ||x−||2

Note that −2(x+
u −x+

v )(x
−
u −x−

v ) ≥ 0 because (x+
u −x+

v ) ≥ 0 and (x−
u −x−

v ) ≤ 0.
So ∑

u∼v
(x+

u − x+
v )

2 + (x−
u − x−

v )
2 − 2(x+

u − x+
v )(x

−
u − x−

v )

||x+||2 + ||x−||2

≥

∑
u∼v

(x+
u − x+

v )
2 + (x−

u − x−
v )

2

||x+||2 + ||x−||2
.

By Lemma A.1,∑
u∼v

(x+
u − x+

v )
2 + (x−

u − x−
v )

2

||x+||2 + ||x−||2
≥ min{RL(x

+), RL(x
−)} □

By Claim 3.4.1, we can set y to either x+ or x−, proving Lemma 3.4. □

We now need to show that for the spectral embedding, we can find a cut, S ⊂
supp(y), such that ϕ(S) ≤

√
2RL(y).

To do this, we first prove the Vector-Cut Theorem.

Theorem 3.5 (Vector-Cut Theorem). Given y ∈ Rk with non-negative entries,

there exists a cut, S ⊂ supp(y) : ϕ(S) ≤
√
2RL(y).

Theorem 3.5 will imply applying Fiedler’s algorithm on y will yield a cut with
conductance that is small relative to RL(y).

Theorem 3.6, will show that RL(y) ≤ RL(x), which will show the conductance
of the cut is small relative to RL(x) and complete the proof of Cheeger’s inequality.

In addition to proving Cheeger’s inequality, Theorem 3.5 will be a critical tool
in proving the multi-way Cheeger’s inequalities in the later sections.

Proof. We want to prove that using Fiedler’s Algorithm, some threshold value for
t will provide a sufficiently low-conductance cut. We prove that such a t exists via
the probabilistic method.

Pick t ∈ (0,max{y2v}) uniformly. WLOG, we may assume max
v∈V

{yv} = 1 because

the Rayleigh quotient is constant under scaling (i.e. we can scale the spectral
embedding so that max(yv) = 1 without affecting the Rayleigh quotient).

Let St = {v : y2v ≥ t}. The goal will be to show that E[E(St)]
E[d|St|] ≤

√
2RLy.

In particular, we will show that the denominator of the LHS is≥ the denominator
of the Rayleigh quotient, and the numerator of the LHS is ≤ that of the Rayleigh
quotient.
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For the denominator, by linearity of expectation, we can consider the contribu-
tion of each individual vertex to E[d|St|]. We have

E[d|St|] = d
∑
v

P[y2v ≤ t] = d
∑
v

y2v

This is precisely the denominator of the Rayleigh quotient.

For the numerator, we consider the contribution of each individual edge, {u, v}
to E[E(St)]. We have

E[E(St)] =
∑
u∼v

P ({u, v} is cut) =
∑
u∼v

|y2v − y2u| =
∑
u∼v

|yu − yv| · (yu + yv)

We then apply Cauchy-Schwartz:

E[E(St)] =
∑
u∼v

|yu − yv| · (yu + yv) ≥
√∑

u∼v

|yu − yv|2 ·
√∑

u∼v

(yu + yv)
2

Note that (yu + yv)
2 ≤ 2(y2u + y2v), so

E[E(St)] ≥
√∑

u∼v

|yu − yv|2 ·
√∑

u∼v

(yu + yv)
2

≥
√∑

u∼v

|yu − yv|2 ·
√∑

u∼v

2 (y2u + y2v)

=

√∑
u∼v

|yu − yv|2 ·
√
2d
∑
v

y2v

Dividing, we get

E[E(St)]

E[d|St|]
≤

√∑
u∼v

|yu − yv|2 ·
√

2d
∑
v

y2v

d
∑
v
y2v

=

√√√√√2 ·

∑
u∼v

|yu − yv|2

d
∑
v
y2v

=
√
2RL(y)

It may seem that we are done, but to finish the proof, we need to show that
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E[E(St)]

E[d|St|]
≤
√
2RL(y)

implies that the inequality E(St)
d|St| ≤

√
2RL(y) is satisfied for some t. This follows

from Lemma A.2. □

Finally, to complete the proof of Cheeger’s inequality, we will show that ϕ(Sx) ≤
ϕ(Sy) and RL(y) ≤ RL(x) to show that Fiedler’s algorithm applied to x yields a
cut of low conductance relative to RL(x).

Theorem 3.6 (Vector-Cut Theorem for Vectors ⊥ 1). Given x ∈ Rk : x ⊥ 1,

exists a cut, S ⊂ supp(x), such that ϕ(S) ≤
√

2RL(x)

Theorem 3.6 will imply the upper bound of Cheeger’s inequality since the second
eigenvector of the Laplacian is ⊥ 1.

Proof. It follows from Lemma 3.4 that RL(y) ≤ RL(x).

So it suffices to show ϕ(Sx) ≤ ϕ(Sy).

This follows because using a threshold of t on y is equivalent to applying a
threshold on x of either (1) t+m if y = x+, or (2) m− t if y = x−. The cut found
via Fiedler’s algorithm on x has conductance at least as low as the cut found by
setting a threshold of t + m or m − t on x. So it follows that ϕ(Sx) ≤ ϕ(Sy) ≤√
2RL(y) ≤

√
2RL(x). □

Finally, setting x to an eigenvector of eigenvalue λ2 yields the upper bound side
of Cheeger’s inequality.

Theorem 1.2. (Cheeger’s Inequality). λ2

2 ≤ ϕ(G) ≤
√
2λ2

Proof. We proved the lower bound via Lemma 3.3. For the upper bound, use
Theorem 3.6, setting x to the second eigenvector of L. □

4. Higher-Order Cheeger, Upper Bound O(k3.5)

In this section, we will prove higher-order Cheeger, with a dependence of O(k3.5)
in the upper bound:

λk

2
≤ ϕk(G) ≤ O(k3.5)

√
λk
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4.1. Lower Bound. We first show that λk

2 ≤ ϕk(G). The proof is very similar to
the proof for the lower bound side of Cheeger’s inequality, only instead of finding
a 2-dimensional space with low Rayleigh quotient and using Lemma 2.2, we find a
k-dimensional space using Lemma 2.1.

First, let S1, · · · , Sk ⊂ V : ϕ(S1), · · · , ϕ(Sk) ≤ ϕk(G), and for all i ∈ [k], let
x(i) = 1Si . Fix U = Span(x(1), · · · ,x(k)).

We hope that, similar to the lower bound side of Cheeger’s inequality, since
∀i ∈ [k], RL(x

(i)) ≤ ϕk(G), all vectors in U have Rayleigh quotient ≤ 2ϕk(G).
This would prove that λk ≤ 2ϕk(G) since λk ≤ max

x∈U
{RL(x)}.

For a symmetric matrix, M, and orthogonal vectors y(1), · · · ,y(k), we can do no
better than RM

(
y(1) + · · · + y(k)

)
≤ k ·max{RM(y(1)), · · · , RM(y(k))}, where we

lose a factor of k rather than a factor of 2.

However, because x(1), · · · ,x(k) are not only orthogonal, but also disjointly sup-
ported, and because we are dealing specifically with the normalized Laplacian, we
only lose a factor of 2 instead of a factor of k.

Lemma 4.1. If x(1), . . . ,x(k) are disjointly supported vectors, then

RL
(
x(1) + · · ·+ x(k)

)
≤ 2 ·max{RL(x

(i))}

Proof. Let x = x(1) + · · ·+ x(k).

RL
(
x(1) + · · ·+ x(k)

)
=

∑
u∼v

(xu − xv)
2

||x||2
=

∑
u∼v

( ∑
i∈[k]

x
(i)
u − x

(i)
v

)2
∑
i∈[k]

||x(i)||2
.

Additionally, by Lemma A.1,

max
i∈[k]

{RL(x
(i))} = max

i∈[k]


∑
u∼v

(x
(i)
u − x

(i)
v )2

||x(i)||2

 ≥

∑
u∼v

∑
i∈[k]

(x
(i)
u − x

(i)
v )

2

∑
i∈[k]

||x(i)||2

So it suffices to show that

∑
u∼v

( ∑
i∈[k]

x
(i)
u − x

(i)
v

)2

∑
i∈[k]

||x(i)||2
≤ 2

∑
u∼v

∑
i∈[k]

(x
(i)
u − x

(i)
v )

2

∑
i∈[k]

||x(i)||2

Our strategy will be to show that ∀u ∼ v,
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∑
i∈[k]

x(i)
u − x(i)

v

2

≤ 2
∑
i∈[k]

(
x(i)
u − x(i)

v

)2
which will be sufficient.

Note that since the x(i) are disjointly supported, each vertex in the graph is part
of the support of at most one of these vectors. If u and v are in the support of the
same vector, i.e. for some i ∈ [k], u, v ∈ supp(x(i)), the LHS and RHS are equal.

Similarly, if either u or v is not part of the support of any of the vectors, the
LHS and RHS are equal.

If u and v are in the support of different vectors, say x(j) and x(k), then∑
i∈[k]

x(i)
u − x(i)

v

2

= (x(j)
u − x(k)

v )2 ≤ 2

(
(x(j)

u )
2
+ (x(k)

v )
2
)

= 2
∑
i∈[k]

(
x(i)
u − x(i)

v

)2

as required. □

The lower bound of the higher-order Cheeger’s inequality follows.

Corollary 4.2 (Higher-Order Cheeger’s Lower Bound). Let G = (V,E), and λ1 ≤
. . . ≤ λn be the eigenvalues of the normalized Laplacian, L. We have

λk

2
≤ ϕk(G)

Proof. We show that ∀w ∈ U , RL(w) ≤ 2ϕk(G).

Let w ∈ U : w = a1x
(1) + · · ·+ akx

(k). By Lemma 4.1,

RL(w) = RL

(
a1x

(1) + · · ·+ akx
(k)
)
≤ 2max

{
RL(a1x

(1)), · · · , RL(akx
(k))
}

Note that the Rayleigh quotient is constant under scaling, so

RL(w) ≤ 2max{RL(a1x
(1)), · · · , RL(akx

(k))}

= 2max{RL(x
(1)), · · · , RL(x

(k))}
≤ 2ϕk(G)

where the last inequality follows since the x(i) are indicator variables of sets with
conductance ≤ ϕk(G). Finally, since U is k-dimensional,

λk ≤ max
x∈U

{RL(x)} ≤ 2ϕk(G)

implying λk

2 ≤ ϕk(G), as desired. □
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4.2. The Spectral Embedding. To prove the upper bound of the higher-order
Cheeger’s inequality, our goal will be to find k disjoint sets of vertices of low-
conductance.

We will attempt to generalize the strategy we applied in Section 3. To prove the
upper bound of Cheeger’s inequality, the main idea was to map each of our vertices
via v 7→ xv, where x is the second eigenvector of L. We then showed that there
exists a threshold, t, such that the cut S =

{
v : (xv)

2
< t
}

has sufficiently low
conductance.

In this section, we will generalize the embedding v 7→ xv to the k-dimensional
spectral embedding. We will let x(1), · · · ,x(k) be an orthonormal eigenbasis of L,
where x(i) is an eigenvector with eigenvalue λi. We will then embed the vertices via

v 7→ (x
(1)
v , · · · , x(k)

v ), which we will define as the k-dimensional spectral embedding.

Definition 4.3 (k-Dimensional Spectral Embedding). Let G=(V,E) be a regular
graph and let x1,x2, · · · ,xn be an orthonormal eigenbasis of L, where xi is an
eigenvector of eigenvalue λi.

The k-dimensional spectral embedding is defined as

F : V → Rk, F (v)
def
=
(
x1
v,x

2
v, . . . ,x

k
v

)
We will use F̂ (v) to denote F (v) scaled to unit length.

After applying the spectral embedding, we need to find a way to partition Rk in
a way that will guarantee k relatively low-conductance sets. This is not as straight
forward as it was in Section 3. With a 1-dimensional embedding, the logical choice
of partition is to choose some threshold value, t, as we did to prove the upper
bound. But in k dimensions, there is no obvious or canonical way to partition Rk

into k regions.

To create well-separated sets, we need to have a notion of distance for the embed-
ding. We could choose sets that are well-separated in a Euclidean sense. However,
we instead opt for the Radial Projection Distance because we already know that
F “perfectly” spreads out the mass in an isotropic sense. We will still make use
of the Euclidean distance at times, but the Radial Projection Distance will be our
primary distance metric.

Definition 4.4 (Radial Projection Distance). ∀u, v ∈ V , define the Radial Pro-
jection Distance between u and v as:

dist(u, v)
def
=

 ||F̂ (u)− F̂ (v)|| if F (u), F (v) ̸= 0
0 if F (u) = F (v) = 0
∞ otherwise

Further, if S, T ⊂ V , then

dist(v, S)
def
= min

u∈S
{dist(u, v)} and dist(S, T )

def
= min

u∈S,v∈T
{dist(u, v)}

We also define the diameter of a set as follows
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Definition 4.5 (Radial Diameter). ∀S ⊂ V , diam(S)
def
= max

u,v∈S
{dist(u, v)}

Our partitioning strategy will be to first choose k sets that are radially well-
separated, i.e. k sets such that if we project the sets onto the unit sphere, the k
sets are well-separated from each other.

However, vertices whose corresponding vectors have small ℓ2 mass can be prob-
lematic.

Definition 4.6 (Mass of a Vertex). ∀v ∈ V , we define the mass of vertex v as

m(v)
def
= ||F (v)||2. For a set of vertices, S ⊂ V , we define m(S)

def
=
∑
v∈S

m(v).

Since vectors with small mass are close to the origin, even though the radial
distance between these vectors and the vectors in other sets is large, the Euclidean
distance may still be small.

So after getting k well-separated sets, we need to find a good way of setting a
cutoff value such that all vertices with ℓ2 mass below that value get removed. Let’s
first define the ℓ2 mass of a vertex.

Note that removing vertices of small mass is analogous to the “rounding” we
performed in Section 3. In fact, we already have a theorem that can do precisely
this, Theorem 3.5, which will ensure that we can remove vertices with small ℓ2 mass
so that our k sets will have sufficiently small conductance.

At this point, it is important to note that we could have used any embedding
V → Rk and then performed the same procedure of finding well-separated sets and
then removing small mass vertices. The spectral embedding is just one possible
embedding.

However, there are a few good reasons for using the spectral embedding. First,
we have already seen the connection between the eigenvalues of the Laplacian and
conductance via the Rayleigh quotient, and the spectral embedding allows us to
make use of this connection.

Second, our eventual goal will be to find k well-separated regions each with large
ℓ2 mass. The separation between the regions will give us an upper bound on the
numerator of the Rayleigh quotient, and the large ℓ2 mass will give us a lower
bound on the denominator. If we hope to achieve this we need an embedding that
spreads out the ℓ2 mass in all directions. F is such an embedding as it satisfies the
following isotropy property which we state without proof.

Lemma 4.7 (Isotropy Condition of F ). For every unit vector u ∈ Rk,∑
v∈V

⟨u, F (v)⟩2 = 1

In other words, no matter what direction, u, we pick, the sum of the projections
of all vectors F (v) onto u is 1. The full proof can be found in [13].
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Additionally, note that since the xi are unit vectors, m(V ) = k because

m(V ) =
∑
v∈V

m(v) =
∑
v∈V

∑
i∈[k]

(xi
v)

2
=
∑
i∈[k]

∑
v∈V

(xi
v)

2
=
∑
i∈[k]

||xi||2 = k

This makes the isotropy condition particularly ideal as it shows that we cannot
“concentrate” the mass in fewer than k directions, i.e. F spreads the vertices
“perfectly” in k dimensions in an isotropic sense.

As a result of the isotropy condition, a key fact about F is that sets of small radial
diameter have small mass. Sets of large mass cannot have small radial diameter
as otherwise they would “concentrate” too much of the mass in one direction. We
formalize this concept as follows.

Definition 4.8 (Spreading Property of a Function). For any map f : V → Rk, f
is (R, η)-spreading with respect to G if for any S ⊂ V with diam(S) ≤ R, we have
m(S) ≤ η.

So for a function that is well-spreading, for every R > 0, the function will have
a correspondingly low value of η. Indeed, our spectral embedding, F , satisfies this
property.

Lemma 4.9 (Spreading Property of the Spectral Embedding). Let F : V → Rk be
the k-dimensional spectral embedding. For every R > 0, F is

(
R, 1

1−R2

)
-spreading

with respect to G. In other words, ∀S ∈ Rk such that diam(S) ≤ R, m(S) ≤ 1
1−R2 .

Proof. The main idea for the proof is to use the isotropy property of the spectral
embedding along with the law of cosines.

Let s ∈ Rk, and denote ŝ to be s scaled to unit-length. We have∑
v∈S

(⟨F (v), s⟩)2 ≤
∑
v∈V

(⟨F (v), s⟩)2 = ||s||2
∑
v∈V

(⟨F (v), ŝ⟩)2 = ||s||2 .

Additionally,

(⟨F (v), s⟩)2 = m(v)||s||2(⟨F̂ (v), ŝ⟩)
2

= m(v)||s||2(⟨F̂ (v), ŝ⟩)
2

= m(v)||s||2 cos2 θ

where θ is the angle formed between F̂ (v) and ŝ.

By the law of cosines,

cos θ =
||F̂ (v)||

2
+ ||ŝ||2 − ||F̂ (v)− ŝ||

2

2||F̂ (v)|| · ||ŝ||

=
12 + 12 − ||F̂ (v)− ŝ||

2

2



GRAPH PARTITIONING AND MULTI-WAY CHEEGER INEQUALITIES 21

= 1− 1

2
||F̂ (v)− ŝ||

2
.

So

(⟨F (v), s⟩)2 = m(v)||s||2 cos2 θ

= m(v)||s||2
(
1− 1

2
||F̂ (v)− ŝ||

2
)2

≥ m(v)||s||2
(
1− 1

2
R2

)2

≥ m(v)||s||2(1−R2)

Now consider the specific case where s = F (v) for some v ∈ S. In this case, we

have ||F̂ (v)− ŝ|| ≤ R, and it follows that

||s||2 ≥
∑
v∈S

(⟨F (v), s⟩)2

||s||2 ≥
∑
v∈S

m(v)||s||2(1−R2)

1 ≥
∑
v∈S

m(v)(1−R2)

1

1−R2
≥
∑
v∈S

m(v) = m(S) □

Our eventual goal is to bound the conductance by λk. One way to do this is to
bound the conductance via

avg{RL(x
1), RL(x

2), . . . , RL(x
k)} = avg{λ1, λ2, . . . , λk} ≤ λk

where avg denotes the arithmetic mean. The purpose of this is that

avg{RL(x
1), RL(x

2), . . . , RL(x
k)} =

∑
i∈[k]

∑
u∼v

||xi
u − xi

v||2

k

=

∑
u∼v

∑
i∈[k]

||xi
u − xi

v||2

m(v)

=

∑
u∼v

||F (u)− F (v)||2

m(V )
.

This expression strongly resembles the Rayleigh quotient of the Laplacian. In
fact, we define this quantity as the Rayleigh quotient of F .

Definition 4.10. Let F be the k-dimensional spectral embedding.

RL(F )
def
=

∑
u∼v

||F (u)− F (v)||2

m(V )
= avg{RL(x

1), RL(x
2), . . . , RL(x

k)}



22 WILLIAM HU

We are now ready to provide an outline for our algorithm.

4.3. Upper Bound Algorithm.

(1) Embed the vertices into Rk using the spectral embedding
(2) Find k well-separated sets, i.e. sets with large mass and large pairwise

radial distance, as follows:
(a) Partition Rk into parallel cubes. Then shrink all cubes slightly so that

the cubes still cover a mass of at least k− 1
4 (the total mass is k), and

are now separated from each other by a Euclidean distance of Ω(k−3).
(b) To ensure our sets are radially separated by Ω(k−3), we can partition

our vertices based on which cube F̂ (v) lands in (rather than F (v)).
(c) Since the cubes have bounded radial diameter, by Lemma 4.9, the

mass of each cube is at most 1− 1
4k

(d) To conslidate our cube sets into sets of large mass, combine any two
sets of mass < 1

2 and repeat this until we have k sets of mass ≥ 1
2

radially separated by Ω(k−3).
(3) From the k well-separated sets, generate k disjointly supported vectors,

y(1), . . . ,y(k) as follows: For each set Ai, let y(i) = τ(v) · ||F (v)||, where
τ(v) = 1 for v ∈ Ai, and smoothly decreases to 0 as dist(v,Ai) increases.

(4) We have RL(y
(i)) ≤ O(k7) · max{RL(F )} ≤ O(k7) · max{RL(x

(k))}. For
each y(i) use Theorem 3.5 to find S ⊂ supp(y(i)) such that

ϕ(S) ≤
√

2RL(y) = O(k3.5) ·
√
λk

4.4. Rigorous Proof. Our first goal is to find k well-separated sets. To do this,
we first show that we can find t well-separated sets such that, in total, they capture
most of the mass, while separately, each has a small amount of mass.

Lemma 4.11 (Well-Separated Sets). We can find t sets, A1, . . . , At such that

(1) ∀i, j ∈ [t], i ̸= j, dist(Ai, Aj) ≥ Ω(k−3)
(2)

∑
i∈[k] m(Ai) ≥ k − 1

4

(3) ∀i ∈ [k], m(Ai) ≤ 1 + 1
4k

Proof. We will partition Rk as follows. Tile Rk with cubes of the form [x1, x1 +
L)× [x2, x2 + L)× · · · × [xk, xk + L), where xi ∈ R and L = 1

4k is the side-length
of the cubes. To induce separation between the cubes, dilate each cube about its
center by a factor of 1 − 1

8k2 to obtain its core. This assures that the Euclidean
distance between any two cube cores is at least

L · 1

8k2
=

1

4k
· 1

8k2
=

1

32k3
= Ω(k−3) .

But we want the radial distance to be Ω(k−3), not just the Euclidean distance.
This is not a problem as we can project all vectors onto the unit sphere via F (v) →
F̂ (v) and then partition each vertex v based on which cube F̂ (v) lands in. If F̂ (v)
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does not lie in the core of any cube, then v will not be placed into any set. This will
guarantee that the vertices are partitioned into sets with pairwise radial distances
of Ω(k−3).

Next, we need to prove there is a way to place our parallel cubes such that they
cover most (≥ k − 1

4 ) of the mass. We prove this using the probabilistic method
and show that for a random placement of the cubes, on expectation, the cubes will
capture a mass of ≥ k − 1

4 .

To formalize this, we start with a default cube placement, where all cubes are of
the form [x1, x1 + L)× [x2, x2 + L)× · · · × [xk, xk + L); here xi are multiples of L.

Then we will shift the cubes by a random vector, w. Note that the coordinates
of w can be considered (mod L) since a shift of length L in any of the k directions
does not affect the tiling. So we let w = (w1, . . . , wk), where for every i ∈ [k], wi is
chosen from [0, L) uniformly at random.

Let C be the union of all cube cores. By linearity of expectation, after we perform
the shift,

E
[ ∑

v∈V :
F (v)∈C

m(v)

]
=
∑
v∈V

P[F (v) ∈ C] · m(v) .

We claim that for every v ∈ V , P[F (v) ∈ C] > 1− 1
4k

Claim 4.11.1. ∀x ∈ Rk, P[x ∈ C] > 1− 1
4k

Proof. Let I =
[
L · 1

16k2 , L · (1− 1
16k2 )

)
. P[x ∈ C] after shifting the cubes by w is

the same as P[x ∈ C] after shifting x by −w. Mod L, after shifting by −w, each
coordinate of x will land uniformly at random in [0, L).

Let x̄i = xi (mod L). We then have for all i ∈ [k]:

P[x̄i /∈ I] =
1

8k2

By a union bound, P (∃ i ∈ [k] : x̄i /∈ I) ≤ k
8k2 = 1

8k . Consequently, P[x ∈ C] ≥
1− 1

8k > 1− 1
4k , proving the claim. □

By Claim 4.11.1, ∀v ∈ V , P[F̂ (v) ∈ C] > 1− 1
4k , so

E

 ∑
F̂ (v)∈C

m(v)

 =
∑
v∈V

P
[
F̂ (v) ∈ C

]
·m(v)

>
∑
v∈V

(
1− 1

4k

)
·m(v)
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=

(
1− 1

4k

)
·
∑
v∈V

m(v)

=

(
1− 1

4k

)
· k

= k − 1

4

Suppose S1, · · · , St are the cube cores that contain at least one vector F̂ (v). For

all i ∈ [t], let Ai = {v ∈ V : F̂ (v) ∈ Si}. In particular, every Ai satisfies:

(1) ∀v ∈ V , v ∈ Ai if F̂ (v) ∈ Ai

(2) ∀i ∈ [t], Ai is nonempty
(3) ∀i, j ∈ [t],dist(Ai, Aj) = Ω(k−3)

The final thing we need to show is that the sets Ai have mass ≤ 1 + 1
4k . Note

that the cubes have diameter ≤
√
k

4k = 1
4
√
k
, and since the Ai are subsets of their

respective cubes, for every i ∈ [t], diam(Ai) ≤ 1
4
√
k
. Note that for every i ∈ [t], by

Lemma 4.9, m(Ai) ≤ 1
1− 1

16k

= 16k
16k−1 = 1 + 1

16k−1 ≤ 1 + 1
4k

We conclude that Ai satisfy the conditions of the lemma, as desired. □

Because we can produce t well-separated sets such that they capture most of the
mass, as guaranteed by (2) in Lemma 4.11, and all have relatively small mass, as
guaranteed by (3) in Lemma 4.11, we can consolidate them into k well-separated
sets, each of large mass. We will provide an algorithm for this procedure in the
next lemma.

Lemma 4.12 (k well-separated sets). We can pick k sets S1, . . . , Sk ⊂ V , such
that

(1) ∀i, j ∈ [t], i ̸= j, dist(Si, Sj) ≥ Ω(k−3)
(2) ∀i ∈ [k],m(Si) ≥ 1

2

Proof. Pick t sets, A1, . . . , At as in Lemma 4.11. We consolidate these sets to
produce at least k sets that are still well-separated sets and that each have mass
≥ 1

2 as follows:

As long as there are ≥ 2 sets with mass < 1
2 combine them. Repeat

this until at most one set of mass < 1
2 remains.

First, note that when the algorithm terminates, the sets produced will still be
radially separated from each other by a distance of Ω

(
k−3

)
. We then claim that,

when this algorithm terminates, there will be at least k sets of mass at least 1
2 .

At each step of the algorithm, when two sets are combined, their combined mass
is < 1 since their individual masses are < 1

2 . So when the algorithm terminates,

each set still has mass ≤ 1 + 1
4k .
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Now suppose for the sake of contradiction that the algorithm terminates with
≤ k − 1 sets of mass ≥ 1

2 . The combined mass of these k − 1 sets is at most

(k − 1)

(
1 +

1

4k

)
= k − 1 +

1

4
− 1

4k
< k − 3

4

Besides these k − 1 sets, there is at most one additional set whose mass is < 1
2 ,

so the total mass of all sets is < k − 1
4 , which is a contradiction. □

Now that we have k well-separated sets, our plan is to remove vertices with small
mass using Fiedler’s Algorithm. To show that this yields k disjoint and sufficiently
low-conductance cuts, we need to form disjointly supported vectors, y1, . . . ,yk,
from our sets and then use Theorem 3.5.

Logically, we would like to assign entries via

y(i)v =

{
||F (v)|| if v ∈ Ai

0 if v ̸∈ Ai

Our goal is to bound RL(y
i) by a factor of RL(F ), where we recall that RL(F ) =

avg{RL(xi)}. For every i ∈ [k], we have

RL(y
i) =

∑
u∼v

(yiu − y
(i)
v )

2

m(yi)

Since the mass of the well-separated sets is bounded below, it suffices to show

that
∑
u∼v

(yiu − y
(i)
v )

2
= O (RL(F )).

Note that

RL(F ) =

∑
u∼v

||F (u)− F (v)||2

d
∑
v
m(v)

The denominator is dk since all vertices are embedded into unit vectors by design,
so it suffices to show that

∑
u∼v

(yiu − y(i)v )
2
≤
∑
u∼v

||F (u)− F (v)||2

We use casework to determine whether this inequality is satisfied.

(1) u, v ∈ Ai. In this case,(
y(i)u − y(i)v

)2
=
(
||F (u)|| − ||F (v)||

)2 ≤ ||F (u)− F (v)||2
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where the last inequality follows by Cauchy-Schwartz.

(2) u, v ̸∈ Ai. In this case,
(
y
(i)
u − y

(i)
v

)2
= 0 ≤ ||F (u)− F (v)||2.

(3) u ∈ Ai, v ̸∈ Ai, or vice versa. WLOG, suppose u ∈ Ai, v ̸∈ Ai. In this

case,
(
y
(i)
u − y

(i)
v

)2
= ||F (u)||2.

Unfortunately, in case (3), even if ||F (u) − F (v)|| is large, ||F (u)|| can be arbi-
trarily large. In particular, it is possible that u and v have large mass, but that the
radial distance between F (u) and F (v) may be very small.

However, if the radial distance between F (u) and F (v) is small, i.e. as long as
dist(u, v) is sufficiently large, we should suspect that ||F (u)|| cannot be much larger
than ||F (u) − F (v)||. This is the case, and we will show that if we fix dist(u, v),

||F (u)|| is bounded by a factor of (||F (u)|| − ||F (v)||)2. This follows through a
clever use of the triangle inequality.

Lemma 4.13. ||F (u)|| · dist(u, v) ≤ 2 · ||F (u)− F (v)||

Proof. We have ||F (u)|| ·dist(u, v) = ||F (u)−F (v)|| · ||F (u)||
||F (v)|| . If we let F

′(v) be the

vector F (v) scaled to the same magnitude as F (u), i.e.

F ′(v)
def
= F (v) · ||F (u)||

||F (v)||

then the LHS of the statement of the lemma is the Euclidean distance between
F (u) and F ′(v). We can use the triangle inequality with the vector F (v). This
gives us

||F (u)− F ′(v)|| ≤ ||F (u)− F (v)||+ ||F (v)− F ′(v)|| .

||F (v)−F ′(v)|| ≤ ||F (u)−F (v)|| since F (u) and F ′(v) have the same magnitude
and F ′(v) and F (v) are scalar multiples of each other. In particular, since F (v)
and F ′(v) “point in the same direction”,

||F (v)− F ′(v)|| =
∣∣∣||F (v)|| − ||F (u)|||

∣∣∣ ≤ ||F (v)− F (u)||

Therefore,

||F (u)− F (v)||+ ||F (v)− F ′(v)|| ≤ 2||F (u)− F (v)||
and

||F (u)|| dist(u, v) ≤ 2||F (u)− F (v)|| □

Let A = A1 ∪ A2 ∪ . . . ∪ Ak. Since the Ai are well-separated, dist(u, v) cannot
get arbitrarily small as long as u, v ∈ A, so Lemma 4.13 resolves case (3) for when
u, v ∈ A.
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However, this still does not resolve the case for when u ∈ Ai, but v /∈ A or vice
versa. In this case, no matter how close F̂ (u) and F̂ (v) are to each other, ||F (u)||
can still be arbitrarily large, so we cannot bound ||F (u)||2 by a constant factor of
||F (u)− F (v)||2.

To resolve this issue, we need to find a way to deal with vertices that are not
contained in any of the well-separated sets.

Rather than assigning y
(i)
v = ||F (v)|| if v ∈ Ai and y

(i)
v = 0 if v ̸∈ Ai, we can let

y
(i)
v decrease linearly toward 0 as dist(v,Ai) decreases. This will ensure

(
y
(i)
u −y

(i)
v

)2
is bounded by a factor of dist(v,Ai) · ||F (u)||, which by Lemma 4.13 means it is also
bounded by a factor of ||F (u)−F (v)||2. This is given via the Localization Lemma.

Lemma 4.14 (Localization Lemma). Let A1, . . . , Ak be k sets such that m(Ai) ≥ 1
2

for all i ∈ [k], and dist(u, v) ≥ δ for all u, v in different sets. There exist k disjointly
supported vectors, y1, . . . ,yk, such that for every i ∈ [k]:

RL
(
yi
)
= O

(
k

δ2

)
·RL(F )

Note that Lemma 4.14 gives the main result for this section. By Lemma 4.12,
we have k sets where for all u, v in different sets, dist(u, v) = Ω(k−3). Lemma 4.14
then guarantees we can find k vectors, y1, . . . ,yk, such that RL(y

i) ≤ O
(

k
k−6

)
·

RL(F ). RL(F ) ≤ max{RL(x
1, . . . ,xk)} = λk, so RL(y

i) ≤ O(k7)λk. From there,
Theorem 3.5 provides the desired result.

Proof of Lemma 4.14. We want y
(i)
v to decrease linearly as dist(v,Ai) increases. We

also need to make sure that for every v ∈ V , y
(i)
v is nonzero for at most one value

of i. To ensure this, we let y
(i)
v decrease linearly from ||F (v)|| to 0 as dist(v,Ai)

increases from 0 to δ
2 . Since every pair of sets is separated by δ, no vertex can be

within δ
2 of more than one set.

So define y
(i)
v = gi(v) · ||F (v)||, where gi(v) is defined as follows.

gi(v)
def
=


1 if v ∈ Ai

0 if dist(v,Ai) ≥ δ
2

1− 2
δ dist(v,Ai) otherwise

We now show that the y(i) have sufficiently low Rayleigh quotient, i.e. that
RL
(
y(i)

)
≤ O( 1

δ2 ) ·RL(F ). We have

RL(y
i) =

∑
u∼v

(
y
(i)
u − y

(i)
v

)2
m(y(i))

RL(F ) =

∑
u∼v

||F (u)− F (v)||2

d
∑
v
m(v)
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The denominator of RL(y
(i)) is bounded below since m(y(i)) ≥ m(Ai) ≥ 1

2 . The
denominator of RL(F ) is dk, so it suffices to show∑

u∼v

(
y(i)u − y(i)v

)2 ≤ O

(
1

δ

)∑
u∼v

||F (u)− F (v)||2

We show that for all u, v ∈ V , y
(i)
u − y

(i)
v ≤ O( 1δ ) · ||F (u)− F (v)||.

Case 1: u, v ∈ Ai. In this case, y
(i)
u − y

(i)
v = ||F (u)|| − ||F (v)|| ≤ ||F (u)− F (v)||

Case 2: u ̸∈ Ai, or v ̸∈ Ai. WLOG, suppose v ̸∈ Ai and dist(u,Ai) ≥ dist(v,Ai).
First, we claim that we can assume dist(v,Ai) ≤ δ

2 also WLOG.

Claim 4.14.1. It suffices to show the result for when dist(v,Ai) ≤ δ
2

Proof. If dist(v,Ai) ≥ δ
2 , we may pick F (v)′ such that dist(v′, Ai) = δ

2 and such
that F (v)′ is closer to F (u) than F (v) is, i.e. ||F (v)′ − F (u)|| ≤ ||F (v) − F (u)||.
Replacing F (v) by F (v)′ in the inequality y

(i)
u − y

(i)
v ≤ ||F (u) − F (v)|| does not

affect the LHS but decreases the RHS, implying that if the inequality holds for
F (v)′, it holds for F (v). □

Now, to bound
∣∣g(u) · ||F (u)|| − g(v) · ||F (v)||

∣∣, we use the triangle inequality

with g(u) · ||F (v)||. This is because we can bound
∣∣g(u) · ||F (u)|| − g(u) · ||F (v)||

∣∣
by ||F (u)− F (v)|| and bound ||F (v)|| − g(v) · ||F (v)|| using Lemma 4.13. We have

y(i)u − y(i)v =
∣∣g(u) · ||F (u)|| − g(v) · ||F (v)||

∣∣
≤
∣∣g(u) · ||F (u)|| − g(u) · ||F (v)||

∣∣+ ||F (v)|| − g(v) · ||F (v)||
= g(u) ·

∣∣||F (u)|| − ||F (v)||
∣∣+ (1− g(v)

)
· ||F (v)||

≤ g(u) · ||F (u)− F (v)||+
(
1− g(v)

)
· ||F (v)||

≤ ||F (u)− F (v)||+
(
1− g(v)

)
· ||F (v)||

= ||F (u)− F (v)||+ 2

δ
· dist(u, v) · ||F (v)||

By Lemma 4.13,

2

δ
· dist(u, v)||F (v)|| ≤ 4

δ
· ||F (u)− F (v)||

giving us

y(i)u − y(i)v ≤ ||F (u)− F (v)||+ 2

δ
· dist(u, v)||F (v)||

≤
(
1 +

δ

4

)
· ||F (u)− F (v)||

= O

(
1

δ

)
· ||F (u)− F (v)||

It follows that RL(y
i) ≤ O

(
1
δ2

)
·RL(F ) as required. □
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The higher-order Cheeger inequality follows from this result.

Theorem 4.15 (Higher-Order Cheeger’s Inequality O(k3.5) bound). Let G =
(V,E) be a d-regular graph, and λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of L. Then the
following holds.

λk

2
≤ ϕk(G) ≤ O(k3.5)

√
λk

Proof. We proved the lower bound side in Corollary 4.2.

For the upper bound side, first find k well-separated sets via Lemma 4.12. The
well-separated sets satisfy the conditions in Lemma 4.14 with δ = Ω( 1

k3 ). Thus, we
can use the well-separated sets to find k disjointly supported vectors

y(1),y(2), . . . ,y(k)

such that for all i ∈ [k], we have

RL(y
(i)) ≤ O(k7) ·RL(F ) .

Note that

RL(F ) = avg
{
RL
(
x(1)

)
, RL

(
x(2)

)
, . . . , RL

(
x(k)

)}
= avg{λ1, λ2, . . . , λk}
≤ λk

So RL
(
y(i)

)
≤ O(k7) ·λk. Finally, by Theorem 3.5, for every i ∈ [k], we can find

a cut Si such that Si ⊂ supp(y(i)) and ϕ(Si) ≤
√
2 ·RL(y(i)) = O(k3.5)

√
λk. This

proves the upper bound side and the theorem. □

5. Higher-Order Cheeger, Upper Bound O(k3)

In this section, we provide an overview of how to reduce the upper bound from
O(k3.5)

√
λk to O(k3)

√
λk. The details of this improvement can be found in [3].

The success of the cube partition was 2-fold.

(1) The cubes had small diameter, ensuring that they also have small mass
and allowing us to consolidate our cube cores to create at least k sets of
sufficiently large mass.

(2) After shrinking the cubes sufficiently to create separation, on expectation
with respect to the choice of vector shift, w, the cube cores still captured
the majority of the mass.

We would like to abstract these properties. The first step in abstracting the cube
partition is by noting that we proved that there exists a “desirable” cube partition
using the probabilistic method via a random vector shift. This can be formalized
via a random partition.
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Definition 5.1 (Random Partition). A random partition, P, of a metric space X
is a probability space, where the sample space is a set of partitions.

For a partition, P of X, for all x, y ∈ X, define x ∼P y if x and y are partitioned
into the same set, and x ̸∼P y otherwise. Similarly, for sets S, T ⊂ X, define
S ∼P T if for all x, y ∈ S ∪ T , x ∼P y, and define S ̸∼P T otherwise.

To satisfy property (1), we want to partition Rk into low diameter sets. So let
us define a partition as R-bounded if all sets in the partition have diameter ≤ R.

Definition 5.2. A partition, P = S1 ∪ S2 ∪ · · · ∪ Sm, is R-bounded if for every
i ∈ [m], diam(Si) ≤ m. A random partition P is R-bounded if this property holds
with probability 1.

Next, let’s generalize property (2). We want a random partition such that after
shrinking the sets in our partition via a dilation, on expectation, the majority of
the mass remains within the sets.

One way to quantify this is by determining how likely it is that for a given vector,
x ∈ Si, after dilating Si by a certain factor, x remains in Si.

But how can we determine whether x stays inside Si. To do this, we can consider
whether vectors “near” x also lie inside Si. If they do, then x is sufficiently far
from the boundary of Si so that after dilating Si, x will remain inside Si. On the
other hand, if there are vectors “near” x that get partitioned into different sets, x
is near the boundary of Si and will not remain inside Si following the dilation.

We can quantify how efficient our random partition is at achieving both of these
properties as follows.

Definition 5.3 (Padded Partition). A random partition, P, of X is (R,α, δ)-
padded if P is R-bounded and for every x ∈ X, P

[
BR/α(x) ∼ {x}

]
≥ δ.

The R-bounded condition ensures the sets within the partition have low diameter
and thus low mass.

The condition that for every x ∈ X, P[BR/α(x) ∼ {x}] ≥ δ ensures that for every

vector, x ∈ Rk, vectors “near” x in a Euclidean sense will “usually” be partitioned
into the same set as “x”. Therefore, if x ∈ Si, x will “usually” be far enough from
the boundary of Si to ensure that it remains inside Si following a dilation.

The Padded Partition Theorem ensures the existence of such a partition, and a
proof is provided in [23].

Theorem 5.4 (Padded Partition Theorem). For every Euclidean metric space X ∈
Rk, for every ∆ > 0, there exists a random partition of X that is

(
∆, O

(
k
δ

)
, 1− δ

)
-

padded

Let’s compare how well the cube partition provided in Section 4 satisfies property
(2) compared to the partition guaranteed by Theorem 5.4.
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Lemma 5.5. The cube partition provided in Section 4 is a
(

1
2
√
k
, 32 ·k2

√
k, 1− 1

8k

)
-

padded partition

Proof. The cubes have side length 1
4k . Since we dilated each cube by a factor of

1 − 1
8k2 to get the cube cores, we have that for every x ∈ Rk, B1/64k3(x) ∼ x iff

x ∈ C, where C is the union of all cube cores.

It remains to show that P[B1/64k3(x) ∼ x] = P[x ∈ C] ≥ 1 − 1
8k . Since we

dilated the cubes by a factor of 1− 1
8k2 , we have P[x ∈ C] = (1− 1

8k2 )
k
. One way

to prove that this is ≥ 1− 1
8k is by using the union bound.

Let x = (x1, · · · , xk). For every S ∈ Rk, let πi : Rk → R denote the projection
of the i-th coordinate of S. If we let S be the cube containing x, we have that for
every i ∈ [k], P[xi ̸∈ πi(S)] =

1
8k2 . So

∑
i∈[k]

P[xi ̸∈ πi(S)] ≤ k
8k2 = 1

8k , implying that

P[x ∈ C] ≥ 1− 1

8k

Therefore, we have P[B1/64k3(x) ∼ x] ≥ 1
8k , as desired. □

Note that Theorem 5.4 guarantees a
(

1
2
√
k
, O(k2), 1− 1

8k

)
-padded partition, once

we have chosen α = O(k2). This, compared to the
(

1
2
√
k
, O(k2.5), 1− 1

8k

)
-padded

partition in Lemma 5.5 is the key improvement that reduces the dependence on k
in the higher-order Cheeger upper bound from O

(
k3.5

)
to O

(
k3
)
.

Because there is a reduction of α by a factor of k1/2, rather than shrinking our
sets by a factor of 1 − Ω( 1

k3 ), we can shrink them by a factor of 1 − Ω( 1
k2.5 ) and

still guarantee, via the probabilistic method, that we can retain at least k − 1
4 of

the total mass.

We can then find well-separated sets where the pairwise distance is Ω(k−2.5)
instead of Ω(k−3). This allows us to form vectors with Rayleigh quotient O(k6)λk

instead of O(k7)λk. And by exactly the same argument as above, we can round
cuts with conductance O(k3) ·

√
λk instead of O(k3.5) ·

√
λk.

6. Higher-Order Cheeger’s Upper Bound O(k2)

In the previous two sections, our approach involved partitioning Rk into well-
separated sets, consolidating the well-separated sets into k well-separated sets with
large mass, and then removing sets of low ℓ2 mass from each of the k sets via
Fiedler’s Algorithm. The O(k2) bound takes a different approach.

The purpose of the Padded Partition Theorem from Section 5 was to partition
Rk into sets of low diameter and such that for every x ∈ Rk, all vectors near x in a
Euclidean sense are partitioned into the same set as x with probability close to 1.
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But rather than thinking locally around each vector x, we may want to take a
more pointwise approach. After all, we only have finitely many embedded vectors
in Rk that we are working with. Instead of partitioning Rk such that for every
x, vectors locally near x “usually” get partitioned into the same set as x, we can
instead partition Rk such that for all x,y ∈ Rk, if x and y are radially close to each
other, then with probability “close to 1”, they will be partitioned into the same set.

A random partition with this property is called a Lipschitz Partition.

Definition 6.1. A random partition, P, of X is (R,L)-Lipschitz if P is R-bounded
and, for all x, y ∈ X

P[x ̸∼P y] ≤ L · dist(x, y)
R

If dist(u, v) is small, L · dist(x,y)
R is small, so P[u ∼P v] will be “close to 1”.

Therefore, in a Lipschitz Random Partition, vertices located near each other will
“most likely” be partitioned into the same set.

Additionally, note that we want our partition to be R-bounded. This is because
we still need to make sure our sets have sufficiently low diameter so that we can
later consolidate them into at least k sets of sufficiently large mass.

To achieve such a partition, will use the Lipschitz Partition Theorem. Com-
pared to the Padded Partition Theorem, the Lipschitz Partition Theorem will both
simplify the algorithm and provide a tighter upper bound on the conductance.

Theorem 6.2 (Lipschitz Partition Theorem). For every Euclidean metric space,

X ∈ Rk, for every R > 0, exists a (R,O(
√
k))-Lipschitz Random Partition of X,

i.e. a random partition P that is R-bounded and such that for all x, y ∈ X

P[x ̸∼P y] = O(
√
k) · dist(x, y)

R

The proof is provided in [24]. After partitioning Rk using a Lipschitz Partition,
we will have t sets that collectively cut relatively few edges.

Next, we need to consolidate the sets into sets that each have relatively large
mass. We do this using essentially the same method we used in Section 4.

How will we ensure that at least k of these sets have sufficiently low conductance?

The idea will be to use an argument involving Lemma A.1. We will bound the
expected number of edges that are cut by at least 1 of the sets in our Lipschitz
Partition. So on expectation, the ratio between the number of cut edges and the
ℓ2 mass will be small. In particular, one of the partitions within the sample space
must achieve such a small ratio. Then, we will consolidate the sets in the partition
to sets of large mass, and then show that at least k of the large mass sets have
sufficiently small conductance.
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We still want to remove vertices with small mass from our sets. We will prove
via the probabilistic method that for each of our k low-conductance sets, there
exists some mass threshold that will guarantee that our sets have sufficiently small
Rayleigh quotient.

Let us start by choosing a random mass threshold, τ . Pick τ uniformly at random
within the interval (0,max{m(v) : v ∈ V }). Then, for every S ⊂ V , let Ŝ be the
threshold cut

Ŝ
def
= {v ∈ S : m(v) ≥ τ}

Let’s now show that there exists some partition, P , such that on expectation
with respect to τ , the number of edges cut by at least one of the sets within the
partition, i.e. E[E(Ŝ1) + · · ·+ E(Ŝm)], is small relative to

√
RL(F ) ≤

√
λk.

Lemma 6.3. Let τ be sampled uniformly from
(
0,max{m(v) : v ∈ V }

)
. For all

R > 0, there exists a partition, V = S1 ∪ S2 ∪ . . . ∪ Sm such that for all i ∈ [m],
we have diam(Si) ≤ R and, on expectation with respect to τ ,

E[E(Ŝ1) + · · ·+ E(Ŝm)] = O

(
k3/2

R

)√
RL(F )

Proof. The proof will closely mirror the proof of Theorem 3.5. First, WLOG,
we may assume max{m(v)} = 1 because the Rayleigh quotient is constant under
scaling (i.e. we can scale the embedding such that max{m(v)} = 1 without affecting
the Rayleigh quotient).

Let P = S1 ∪ S2 ∪ . . . ∪ Sm be a Lipschitz Random Partition guaranteed by
Theorem 6.2. The goal will be to show that at least one of the partitions within
the sample space of P satisfies the desired property.

Fix X = E(Ŝ1) + · · ·+ E(Ŝm), and let

U = {u ∼ v : {u, v} is cut by at least one of the Ŝi}

We bound E[X], by considering the contribution of each edge, {u, v}, to E[X].
We have E[X] =

∑
u∼v

P[{u, v} ∈ U ]. If {u, v} is cut, there are two possibilities.

(1) First, suppose u ̸∼P v. Then {u, v} will be cut as long as either m(u) ≥ τ
or m(v) ≥ τ . So we have {u, v} cut as long as m(u) ≥ τ or m(v) ≥ τ .

(2) Second, suppose u ∼P v, with u, v ∈ Si. If {u, v} is cut by Ŝi, it must

be that m(u) < τ ≤ m(v), which would imply u ̸∈ Ŝi and v ∈ Ŝi, or

m(v) < τ ≤ m(u), which would imply v ̸∈ Ŝi and u ∈ Ŝi.

Note that the two cases provided above are mutually exclusive. So we have

P
[
{u, v} ∈ U

]
≤ P

[
u ̸∼P v and max{m(u),m(v)} ≥ τ ]

+ P[u ∼P v and τ ∈ [min{u, v},max{u, v}]
]

= P[u ̸∼P v] · [P[max{m(u),m(v)} ≥ τ ]] | (u ̸∼P v)] + |m(v)−m(u)|.



34 WILLIAM HU

The events (max{m(u),m(v)} ≥ τ) and (u ̸∼P v) are not independent. This is
not a problem as we can use the union bound. Given u ∼P v, we still have that

P[m(u) ≥ τ ] = m(u)

and
P[m(v) ≥ τ ] = m(v)

So for the probability that either m(u) ≥ τ or m(v) ≥ τ , we have

P [ (max{m(u),m(v)} ≥ τ) | (u ̸∼P v) ] ≤ m(u) +m(v)

So

P [u ̸∼P v] · P
[
max{m(u),m(v)} ≥ τ | (u ̸∼P v)

]
≤ P[u ̸∼P v] (m(u) +m(v))

By Theorem 6.2, P[u ̸∼P v] ≤ O(
√
k)

R dist(u, v). Implying

P[{u, v} ∈ U ] = P[u ̸∼P v] · [m(u) +m(v)] + |m(v)−m(u)|

=
O(

√
k)

R
dist(u, v) ·

(
m(u) +m(v)

)
+ |m(v)−m(u)|

Additionally, note that WLOG, we may now assume m(v) ≥ m(u) and that

P[{u, v} ∈ U ] =
1

k

[
O(

√
k)

R
dist(u, v)

(
m(u) +m(v)

)
+m(v)−m(u)

]

We want to factor out ||F (u)||+ ||F (v)||, which we do via
√
k

R
dist(u, v) ·

(
m(u) +m(v)

)
+m(v)−m(u)

≤
√
k

R
dist(u, v) · (||F (u)||+ ||F (v)||)2 + ||F (v)||2 − ||F (u)||2

= {||F (u)||+ ||F (v)||}
√
k

R
dist(u, v)(||F (u) + ||F (v)||) + ||F (v)|| − ||F (u)||}

We have
dist(u, v)||F (u)|| ≤ 2||F (u)− F (v)||

and
dist(u, v)||F (v)|| ≤ 2||F (u)− F (v)||

by Lemma 4.13.

Additionally, ||F (v)||−||F (u)|| ≤ ||F (u)−F (v)|| by Cauchy-Schwartz. Summing
these inequalities gives

P[{u, v} ∈ U ] ≤ O(
√
k)

δ

(
||F (u)||+ ||F (v)||

)(
||F (u)− F (v)||

)
So

E[X] =
O(

√
k)

R

∑
u∼v

(
||F (u)||+ ||F (v)||

)(
||F (u)|| − ||F (v)||

)
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To get the RHS to look like RL(F ), we use Cauchy-Schwartz to get

E[X] ≤ O(
√
k)

R

√∑
u∼v

(||F (u)||+ ||F (v)||)2 ·
√∑

u∼v

(||F (u)− F (v)||)2

Note that∑
u∼v

(||F (u)||+ ||F (v)||)2 ≤
∑
u∼v

2(||F (u)||2 + ||F (v)||2) = 2k

So

E[X] = O

(√
k

R

)
·
√
2k ·

√∑
u∼v

||F (u)− F (v)||2

= O

(
k

R

)√∑
u∼v

||F (u)− F (v)||2

= O

(
k

R

)√∑
u∼v

||F (u)− F (v)||2

= O

(
k3/2

R

)√ ∑
u∼v

||F (u)− F (v)||2

k

= O

(
k3/2

R

)√
RL(F )

In particular, there must exist a single partition, P ∈ Ω(P) such that on expec-

tation with respect to τ , E[X] = O(k
3/2

R )RL(F ). □

Next, we consolidate our sets into sets of large mass and prove that at least k of
the sets, on expectation with respect to τ , have sufficiently small conductance.

Theorem 6.4. For any graph G, ϕk(G) = O(
√
k

δ3/2
)
√
λk.

Proof. We first show that WLOG, we may assume δ is not arbitrarily small. This
will make it easier for us to show that we can form sufficiently many sets of large
mass.

Claim 6.4.1. It suffices to show the result for when δ + δ2

4 ≥ 1
k .

Proof. Suppose we have proven the theorem for when δ + δ2

4 ≥ 1
k . We will show

that this implies the result for all δ ∈ (0, 1).

Let δ + δ2

4 < 1
k . Pick δ′ = 1

k + ϵ where ϵ > 0 is sufficiently small such that

δ′ + δ′2

2 ≥ 1
k . Note that r′ = (1− δ′)k > (1− 1

k )k = k − 1, so r′ = ⌈(1− δ′)k⌉ = k.

Since F is (R, 1 + δ
4 ) spreading, F is also (R, 1 + δ′

4 ) spreading as δ′ > δ. So using
Theorem 6.4 for δ′, we can pick k disjoint sets satisfying the desired property. Since
r = ⌈(1− δ)k⌉ ≤ k, this proves the claim. □
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The proof will strongly resemble the proof of Lemma 4.12. The main idea is to
start with the partition guaranteed by Lemma 6.3. We want to consolidate the
sets so that their mass is sufficiently large, i.e. ≥ 1

2 , which will put a lower bound
on the denominator of the Rayleigh quotient. We will then use the bound on the
numerator provided by Lemma 6.3 to bound the conductance.

Let P be the partition guaranteed by Lemma 6.3. Before we begin combining
sets with low mass, we need to make sure that there is no single set with too much
mass, which would prevent us from making ≥ k sets with mass ≥ 1

2 .

Luckily, our sets have low mass since they are R-bounded. By Lemma 4.9, F
is (R, 1

1−R2 )-spreading. Choose R = ϵ
√
δ, where ϵ is sufficiently small so that

1
1−R2 ≤ 1 + δ

4 . Using this value for R in Lemma 4.9 gives us that F is (R, 1 + δ
4 )-

spreading. We then let S1, . . . , Sm be the partition guaranteed by Lemma 6.3. Since
the Si have diameter ≤ R, they have mass at most 1 + δ

4 .

Next, we consolidate the sets as follows. Whenever we have at least two sets with
mass ≤ 1

2 , combine them. Continue this procedure until at most one set remains

with mass ≤ 1
2 .

When the procedure terminates, all sets have mass ≤ 1 + δ
4 , because combining

two sets of mass ≤ 1
2 creates a set with mass < 1 + δ

4 .

Claim 6.4.2. At least k(1− δ
2 ) of the sets have mass ≥ 1

2

Proof. At most one set has mass < 1
2 . So the number of sets with mass ∈

(
1
2 , 1+

δ
4

)
is

≥
k − 1

2

1 + δ
4

= k

(
1− 1

2k

1 + δ
4

)

≥ k

(
1− 1

2

(
δ + δ2

4

)
1 + δ

4

)

= k

((
1 + δ

4

)(
1− δ

2

)
1 + δ

4

)

= k

(
1− δ

2

)

where we use the assumption that δ + δ2

4 ≥ 1
k from Claim 6.4.1. □

Let T1, · · · , Tt be the sets of mass ≥ 1
2 . We claim that, on expectation with

respect to τ , at least r of these sets have sufficiently low conductance. First, note
that since the mass of these sets is ≥ 1

2 , we already have an upper bound for the
denominator and suffices to bound the numerator.

Order the t sets in increasing order of the expected number of edges cut, i.e.
such that E[E(T̂i)] ≤ E[E(T̂i+1)]. We will bound E[E(T̂r)]. Note that as k → ∞
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there are asymptotically kδ sets that, on expectation, cut more edges than T̂r. It
follows that

E[E(T̂r)] ≤
E[E(Ŝ1) + · · ·+ E(Ŝm)]

kδ

By Lemma 6.3, E[E(Ŝ1) + · · ·+ E(Ŝm)] = O(k
3/2

R )
√
RL(F ), so

E[E(Ŝ1) + · · ·+ E(Ŝm)]

kδ
≤ k3/2

kδR

√
RL(F ) ≤

√
k

δR

√
RL(F )

Combining this with m(Tr) ≥ 1
2 gives

E[E(T̂r)]

m(Tr)
≤ O(

√
k

δR
)
√
RL(F )

Note that m(Ti) = E[vol(T̂i)] because for every vertex, P[v ∈ T̂i] = m(v). There-

fore, for every i ∈ [r], since R = ϵ
√
δ,

E[E(T̂i)]

E(vol((̂Ti)))
= O(

√
k

δ3/2
)
√

RL(F )

So for all i ∈ [r], by Lemma A.2 exists some τ ∈ (0, 1) such that ϕ(T̂i) =

O(
√
k

δ3/2
)
√

RL(F ), as desired. □

We have now essentially proven the desired result.

Theorem 1.4. λk

2 ≤ ϕk(G) ≤ O(k2)
√
λk.

Proof. We proved the lower bound side in Corollary 4.2. The upper bound side
follows by setting δ = 1

2k in Lemma 6.3. □

7. Conclusion

This paper provided a proof of both the discrete Cheeger inequality, and the
higher-order Cheeger inequality concerning k-way conductance ϕk(G). There are
a number of generalizations, and results related to the statements in this paper,
which we now discuss.

7.1. Generalization to Irregular, Weighted Graphs. All results provided in
Section 3 through Section 6 also hold for irregular and arbitrarily weighted graphs.
We provide an overview of how to generalize the results to irregular graphs. See [3]
for details on generalizing the results to weighted graphs and [13] for a more in-
depth discussion on generalizing the results to irregular graphs.

To generalize to the case of irregular graphs, we need to relate the Rayleigh
quotient with respect to L to the conductance of the graph in a similar manner
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to what we did for regular graphs. For irregular graphs, we can define the L def
=

I−D−1/2AD−1/2, where D is the degree matrix and A is the adjacency matrix

For any S ⊂ V , we would hope that ϕ(S) = RL(1S). Although this is not quite
the case, the result holds with a slight adjustment.

Lemma 7.1. Let G=(V,E) be a simple, unweighted, undirected, and not necessarily
regular graph. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of L. Then for every
S ⊂ V ,

ϕ(S) = RL(D
1/21S)

where D is the degree matrix.

Proof. Let x = 1S .

RL(D
1/2x) =

Dx⊤x− (1S)
⊤
D1/2D−1/2AD−1/2D1/21S

x⊤x

=
Dx⊤x− (1S)

⊤
A1S

x⊤x

=

∑
v∈V

(xv)
2
dv − 2

∑
u∼v

xuxv

vol(S)

We now calculate the numerator. We consider the contribution of each pair of
vertices, u and v, to the numerator.

If u ̸∼ v, then there is no contribution to (xu)
2
du, (xv)

2
dv, or

∑
u∼v

xuxv.

If u ∼ v, there is a contribution of (xu)
2
to (xu)

2
du, (xv)

2
to (xv)

2
dv, and 2xuxv

to 2
∑
u∼v

xuxv. The total contribution to the numerator is

(xu)
2
+ (xv)

2 − 2xuxv = (xu − xv)
2
.

It follows that RL(D
1/2x) =

∑
u∼v

(xu−xv)
2

vol(S) = ϕ(S). □

All expressions involving RL(x) can now be reframed using Lemma 7.1 to gen-
eralize our results to the case of irregular graphs.

7.2. Further Higher-Order Cheeger Inequalities. There are multiple ways to
state higher-order Cheeger inequalities. For example, rather than only stipulating
that our k cuts are disjoint, we can also enforce that k-way conductance is quantified
over a partitioning of the vertices in G. For this notion of conductance, [3] proves
there is always a way to find a partition of V with conductance O(k4)

√
λk.

Another higher-order Cheeger statement bounds k-way conductance with respect
to the Rayleigh quotient of the 2k-th smallest eigenvalue. For example Theorem
1.2 in [3] demonstrates that
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Theorem 7.2. For every graph G and for every k ∈ N,

ϕk(G) ≤ O
(√

λ2k log k
)

Notice the dependence on k is significantly tighter. Such an inequality is useful
for certifying that a graph is a small-set expander [3].

Finally, there exists a higher-order Cheeger statement that relates standard con-
ductance, rather than k-way conductance, to λk [25].

Theorem 7.3. For every undirected graph G,

λ2

2
≤ ϕ(G) ≤ O

(
k√
λk

)
· λ2

This inequality demonstrates that for constant k and λk, the second eigenvector
provides a constant factor approximation to the minimum conductance cut, and
was motivated by empirical observations in image segmentation that the second
eigenvector provides an excellent k-way partition when there’s a large gap in the
spectrum [12, 26].

7.3. Tightness of Bounds and Future Research. It is known that both sides
of Cheeger’s inequality are tight. For the upper bound, equality is achieved via the
path graph, and for the lower bound, equality is achieved via the balanced binary
tree graph. The lower bound of the higher-order Cheeger’s inequality is also tight.

Improving the dependence on k for the upper bound in Theorem 1.4, as well as
some of the higher-order Cheeger inequalities stated in the previous section, remain
an interesting open problem. [3] showed that the noisy hypercube graph satisfies
ϕk/2(G) > O

(√
k log k

)
·
√
λk, which suggests that Theorem 7.2 is tight. Otherwise,

it remains admissible that ϕk(G) ≤ O
(
logO(1) k

)
·
√
λk.
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Appendix A. Appendix

In this section, we provide some fundamental facts that we use throughout the
paper.

Lemma A.1. Suppose a1

b1
≤ a2

b2
≤ · · · ≤ an

bn
.

Then a1

b1
≤ a1+a2+···+an

b1+b2+···+bn
≤ an

bn

The next lemma, Lemma A.2 is used to prove the Theorem 3.5 and Theorem 6.4

Lemma A.2. Let X and Y be random variables such that P[Y > 0] = 1. Then

P
[
X

Y
≤ EX

EY

]
> 0

.

The full proof of Lemma A.2 is provided by [13] in fact 5.2.
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