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Abstract. We discuss the dimension drop conjecture and the background

needed to understand it. This includes iterative function systems, existence
and uniqueness of their attractors, exact overlaps, and Hausdorff dimension.

We also discuss some recent progress made by Hochman on the conjecture, and

briefly introduce the concept of entropy. We prove one corollary of Hochman’s
theorem involving algebraic parameters, and explain why it is not enough to

prove the conjecture.
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1. Introduction

In fractal geometry, one way to generate fractal sets is via an iterative function
system. The dimension drop conjecture concerns the dimension of those fractal sets
generated by iterative function systems.

Definition 1.1. An iterative function system (IFS) Φ = (φi)i∈Λ is a finite col-
lection of contractions on R, where φi(x) = rix+ ai, with |ri| ≤ 1. The symbol Λ
refers to an indexing set, so it can be thought of as {1, ...,m}. Note that all the φi

are continuous.

Definition 1.2. We call a set X the attractor of the IFS Φ if it is invariant under
Φ, meaning

X =
⋃
i∈Λ

φi(X).

Proposition 1.3. Every IFS has an attractor that is unique.

Proof. (We follow Falconer’s proof, see [2]) Let Φ = (φi)i∈Λ be an IFS. If E is a
compact set, define

S(E) =

m⋃
i=1

φi(E),
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and for k ∈ N, define
Sk(E) = S(Sk−1(E)),

with S0(E) := S(E). We will show that the set

X =

∞⋂
k=1

Sk(E)

is the unique attractor of the IFS if E is a nonempty compact set such that φi(E) ⊂
E for every φi ∈ Φ. Such an E always exists because our IFS is made up of
contractions, and there are finitely many, so there exists some radius r where the
interval [−r, r] suffices.

By our choice of E, φi(E) ⊂ E for all φi ∈ Φ, so S(E) ⊂ E. Similarly, be-
cause our φi are contractions, Sk(E) ⊂ Sk−1(E). Thus, the sequence of Sk(E) is
decreasing.

Since all of the φi are continuous, iterating them preserves the compactness of
E, so all of the Sk(E) are also compact. Since Sk(E) is a decreasing sequence
of nonempty compact sets, they converge to a nonempty compact set, so their
intersection X is compact and nonempty.

X is invariant, since S(X) ⊂ X due to fact that Sk(E) are decreasing, so S(X) ⊂
Sk(E) for all k, implying that S(X) ⊂ X. For the other direction, applying S to
any of the Sk(E) increments k, so X ⊂ S(X).

Next, we will show uniqueness of this attractor. To do this we will need to define
a metric on the space of compact subsets of R. Call this space S . If A,B ∈ S
then let

d(A,B) = inf{δ : B ⊂ Aδ and A ⊂ Bδ}

where Aδ is the δ-parallel body of A, defined as

Aδ =
⋃
x∈A

B(x, δ).

This is called the Hausdorff metric, and it equips the space of compact subsets of
Rn with a metric.

Note that if M = sup{|x− y| : x ∈ A, y ∈ B}, then B ⊂ AM and A ⊂ BM , since
every element of B is within M of some element of A. Thus, d(A,B) ≤ M .

Now, suppose A and B are both attractors of the same IFS. Consider

d

(
S(A), S(B)

)
= d

( m⋃
i=1

φi(A),

m⋃
i=1

φi(B)

)
≤ max

1≤i≤m
d

(
φi(A), φi(B)

)
.

The inequality follows because if δ = max1≤i≤m d(φi(A), φi(B)), then φi(A) ⊂
φi(B)δ for all 1 ≤ i ≤ m. This means that

m⋃
i=1

φi(A) ⊂ φi(B)δ ⊂
( m⋃

i=1

φi(B)

)δ

.

By an identical argument, replacing A with B, the inequality follows. Now suppose
i is such that d(φi(A)φi(B)) is maximum. Because φi is a contraction, for all
x ∈ A, y ∈ B,

|φi(x)− φi(y)| ≤ ri|x− y| ≤ ri max
x∈A,
y∈B

|x− y|.
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Thus,

max
1≤i≤m

d

(
φi(A), φi(B)

)
≤ max

1≤i≤m
ri · d(A,B).

Now, if A and B are both attractors, S(A) = A and S(B) = B, so we have

d(A,B) ≤ max
1≤i≤m

ri · d(A,B).

Since |ri| < 1 for all i ∈ Λ, the above inequality can only be true if d(A,B) = 0,
implying that A = B. Thus, the attractor of an IFS is unique. □

Now that we can be assured that an attractor always exists and is unique for
any IFS, what can we say about attractors in general? In fact, it is often the case
that the attractor of an IFS defines a fractal set. Fractal sets have the following
properties: they contain detail at arbitrarily fine scales, they are sometimes self-
similar, and their dimension can be fractional. Generally, they behave weirdly
compared to objects from classical geometry. As such, we need stronger tools to
study them, such as Hausdorff dimension.

The reason a more sophisticated notion of dimension is necessary to study fractal
sets is that otherwise, there is no way to distinguish between null sets. What
this means is if the ambient space is equipped with the wrong measure, lower
dimensional sets always have measure 0, even when it is clear that they are distinct,
and we are interested in distinguishing between them. For example, if we are trying
to “measure” a line and a plane using cubes, they would both appear to be null
sets because we can cover them using cubes that get arbitrarily thin. However,
a line and a plane are not the same, and clearly the plane has more “thickness”.
Operating in the correct dimension distinguishes the objects of different dimension.
With fractal sets especially, which often have fractional dimension, we want a way
to find this dimension, which is defined as follows.

Definition 1.4. For a subset X ⊂ Rn and δ > 0, we say {Ui} is a δ-cover of X if

X ⊂
⋃

Ui

and |Ui| < δ for all i, where |Ui| := sup{|x− y| : x, y ∈ Ui} is the diameter of Ui.

Definition 1.5. If X ⊂ Rn, we define

H s
δ = inf

∞∑
i=1

|Ui|s

where the infimum is taken over all countable δ-covers of X. H s
δ defines an outer

measure on Rn.

Definition 1.6. For a subset X ⊂ Rn, we define the Hausdorff s-dimensional
measure of X as

H s(X) = lim
δ→0

H s
δ .

Since H s
δ increases as δ decreases, it is also equivalent to define H s as the supre-

mum over all δ of H s
δ .

This defines a measure on Rn, but since we are restricting our attention to the
real line, note that on R, H 1 has an identical defintion to Lebesgue measure on the
real line, and in general Hausdorff measure in Rn is equivalent to Lebesgue outer
measure.
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Proposition 1.7. For every X ⊂ Rn there is a unique number s such that if
0 ≤ t < s, H t(X) = ∞, and if t > s, H t = 0. This s is called the Hausdorff
dimension of X, or dimX.

Proof. If s < t,

H t
δ (X) = inf

∞∑
i=1

|Ui|t ≤ inf

∞∑
i=1

|Ui|s · δt−s = δt−sH s
δ (X).

Suppose H t(X) > 0. Then, H s(X) must be infinite, since the term δs−t → ∞ as
δ → 0. Now, suppose H s(X) < ∞. This implies that H t(X) = 0, since the term
δt−s → 0 as δ → 0. □

All this implies that there must be some unique threshold where this transition
from infinite to zero measure happens. This threshold is the Hausdorff dimension.

Returning to the attractor of an IFS, we have a result that relates the Hausdorff
dimension of the attractor to the so-called similarity dimension, a number which
depends only on the parameters of the IFS.

Definition 1.8. If X is the attractor of the IFS Φ, then the similarity dimension
of X, dimsim(X) is the unique number s satisfying

m∑
i=1

rsi = 1,

where the ri s are the contraction ratios of Φ.

Note that although the notation is dimsim(X), the similarity dimension depends
on the parameters of the IFS only. Since the same set X can be the attractor for
different IFSs, this notation is slightly imprecise.

Proposition 1.9. If X is the attractor of the IFS Φ, then

(1.10) dimX ≤ dimsim X.

Proof. Let s = dimsim X. We will show that H s(X) < ∞, so by definition of
Hausdorff dimension, dimX ≤ s.

Since X is invariant under Φ, we can iterate the contractions, and X will still
be invariant, so

X =
⋃

j∈Λn

φj(X),

where φj = φi1 ◦ ... ◦ φin , for j = {i1, ..., in} ∈ Λn. Thus, we can cover X with the
images of itself under φj for all j ∈ Λn. Because the φi are contractions, for all
i ∈ Λ, |φi(X)| ≤ ri · |X|. If we compose them,

|φj(X)| ≤ ri1 ...rin · |X|.
Then,

H s(X) ≤ lim
n→∞

∑
j∈Λn

(ri1 ...rin · |X|)s = lim
n→∞

|X|
(∑

i∈Λ

rsi

)n

,

with the equality following from Vieta’s formulas. But s was chosen such that∑
i∈Λ

rsi = 1,
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so

H s(X) ≤ |X| < ∞,

since X is compact. □

The dimension drop conjecture concerns the inequality in Proposition 1.9. When
do we have equality in (1.10), and when is the inequality strict? Let us examine an
example.

Example 1.11. One simple example of a fractal set arising from an IFS is the
middle-third Cantor Set.

If our IFS is made up of the contractions φ1 = 1
3x and φ2 = 1

3x + 2
3 , then its

attractor is exactly the middle-third Cantor set F . This is evident from the fact
that the self-similarities of the middle-third Cantor Set are exactly described by
the two contractions of this IFS, so we have

F = φ1(F ) ∪ φ2(F ),

with the union disjoint.
We also know that the Hausdorff dimension of F is log 2/ log 3. Without getting

into a rigorous calculation, notice that because our union above is disjoint, we
can use finite additivity and scaling properties of s-dimensional Hausdorff measure,
where s = log 2/ log 3. Then,

H s(F ) = H s(φ1(F )) + H s(φ2(F ))

= H s

(
1

3
F

)
+ H s

(
1

3
F +

2

3

)
= 2

(
1

3

)s

H s(F ).

Then, assuming that 0 < H s(F ) < ∞, we can divide out to get

1

2
=

(
1

3

)s

=⇒ s =
log 2

log 3
.

This argument is non-rigorous because of our assumption that H s(F ) is non-zero
and finite. A better calculation of dimF requires justification of this assumption
by bounding H s.

However, the reason this heuristic argument works is that the IFS for the Cantor
set satisfies a necessary separation assumption. What we are secretly doing above
is calculating the similarity dimension of F , but because the IFS is sufficiently
separated, we actually have that dimF = dimsim F . In the case of the Cantor set,
the IFS is completely separated, meaning that the image of the attractor under
every contraction in the IFS is disjoint. However, as long as the contractions in the
IFS don’t overlap “too much”, we are guaranteed equality between the Hausdorff
dimension and the similarity dimension of the attractor.

In general, dimX = dimsim X if a condition called the open set condition is
satisfied.
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Definition 1.12. An IFS (φi)i∈Λ satsifies the open set condition if there exists a
nonempty open set U such that for all i, j ∈ Λ,

φi(U) ⊂ U

and

φi(U) ∩ φj(U) = ∅
if i ̸= j.

The open set condition means that the contractions in Φ are sufficiently sepa-
rated, i.e. they can overlap, but the overlaps have bounded multiplicity. The Can-
tor set satsifies the open set condition, as well as a special case called the strong
separation condition, meaning that the images of each contraction are disjoint.

For IFSs not satisfying the open set condition, which have “too much” overlap,
the dimension of their attractors becomes very difficult to calculate.

However, if there are so-called exact overlaps in the IFS, we know that the
inequality in (1.10) is strict.

Definition 1.13. Let Φ = (φi)i∈Λ be an IFS. The n-th generation cylinders of Φ
are the set of compositions of n contractions in Φ. If j = {i1, ..., in} ∈ Λn, then

φj := φi1 ◦ ... ◦ φin

is the cylinder corresponding to j.

Definition 1.14. We say Φ = (φi)i∈Λ has exact overlaps if there exist distinct
j,k ∈ Λn such that

φj = φk.

Note that if Φ has exact overlaps for some n, then exact overlaps exist for all
sufficiently large n, because we can always add an identical sequence of any length
to both j and k and they would still be distinct.

Proposition 1.15. If Φ = (φi)i∈Λ has exact overlaps, and X is the attractor of
Φ, then dimX < dimsim X.

Proof. There is some n such that there exist j ̸= k ∈ Λn with φj = φk. Define a
new IFS as follows:

Φn := (φi)i∈Λn .

This IFS contains all possible compositions of length n of the contractions of Φ.
Because of the exact overlaps, we can chose Φ′ which is a proper subset of Φn by
simply discarding one of the overlapping cylinders. However, X is still the attractor
of Φ′, because we are just composing the functions from Φ.

Now, let s′ be the similarity dimension coming from Φ′, and let s be the similarity
dimension coming from Φ. By definition, s′ is such that∑

i∈Λn\{j}

(ri1 · ... · rin)s
′
= 1

But since we are excluding j,∑
i∈Λn\{j}

(ri1 · ... · rin)s
′
<

∑
i∈Λn

(ri1 · ... · rin)s
′
=

(∑
i∈Λ

ri

)s′

,
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by Vieta’s formulas. Now, by definition of s,∑
i∈Λ

(ri)
s = 1 <

(∑
i∈Λ

ri

)s′

<
∑
i∈Λ

(ri)
s′ ,

implying s′ < s, since 0 < ri < 1. Finally, by Proposition 1.9,

dimX ≤ s′ < s,

so there is a dimension drop. □

The dimension of attractors of IFSs are relatively well-understood if there are
either exact overlaps in the IFS, or the IFS satisfies the open set condition or other
specific assumptions. However, in full generality, much less is understood if either
exact overlaps or sufficient separation assumptions are not satisfied, and it is not
even know whether or not the inequality in Proposition 1.9 is strict.

Conjecture 1.16. (Dimension Drop) If X is the attractor of an IFS Φ, then
dimX < dimsim X if and only if there are exact overlaps.

If the conjecture were true, then the dimension and the similarity dimension
would be equal in all cases besides those with exact overlaps. Hochman’s result
does not prove the conjecture, but it does make some progress, and gives rise to a
corollary that proves the conjecture if the IFS has parameters which are algebraic
numbers.

2. Results of Hochman

We can now state the main result of Hochman’s 2014 paper which lends some
support to the conjecture. First, we need some notation.

Recall the definition of the cylinders of Φ. To characterize the existence of exact
overlaps, define a distance between cylinders as follows:

Definition 2.1. For i, j ∈ Λn,

d(i, j) =

{
∞ if ri ̸= rj

|φi(0)− φj(0)| if ri = rj
,

where ri is the contraction ratio of φi, i.e. ri = ri1 · ... · rin .

Note that if d(i, j) = 0, this means φi(0) = φj(0) and ri = rj, implying that
φi = φj. Now, we can characterize exact overlaps with the following:

Definition 2.2. For n ∈ N, let

∆n = min{d(i, j) : i, j ∈ Λn}.

The reason this definition is useful is because there exist exact overlaps in our
IFS if and only if ∆n = 0 for some n, that is, if there exists some n such that
d(i, j) = 0 for some i, j ∈ Λn, meaning that φi = φj. This definition of ∆n has to
do with the existence of exact overlaps, and the main result of Hochman’s paper
links this definition with the strict inequality in (1.10), hence the dimension drop
connection. Here is the main result:
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Theorem 2.3. (Hochman) If X is the attractor of an IFS, and if dimX <
dimsim X, then

lim
n→∞

(
− 1

n
log∆n

)
= ∞.

This result is important is because it lends support to the conjecture by knocking
out certain specific cases, and in fact giving rise to a corollary that proves the
conjecture in the case that the parameters of the IFS are algebraic numbers.

However, the result is not enough to prove the conjecture, and in fact there are
counterexamples. It was shown by Bárány and Käenmäky that there exist attrac-
tors of IFSs with super-exponential condensation, meaning lim

n→∞
(− 1

n log∆n) = ∞,

but no exact overlaps. If such sets did not exist, then the conjecture would be
proved, since super-exponential condensation would imply exact overlaps, so it
would follow immediately from Hochman’s result. However, this is not the case, so
it is necessary to study overlaps in a more nuanced way.

To prove this result, Hochman used results about entropy, which is, loosely, a
way to measure the “randomness” of a probability measure.

Definition 2.4. If µ is a probability measure and E is a countable partition, then
the entropy of µ with respect to E is

H(µ, E) = −
∑
E∈E

µ(E) logµ(E).

where the convention is that 0 log 0 = 0.

If our probability measure µ is only supported on one element of the partition E ,
then H(µ, E) = 0. However, if µ behaves more chaotically, the entropy increases,
though we always have the bound H(µ, E) ≤ log k if µ is supported on k elements
of E , with equality if µ is uniform on these k elements.

To prove the result, Hochman uses properties of entropy with respect to self-
similar measures which arise from IFSs.

Definition 2.5. If we have a probability vector (pi)i∈Λ and an IFS Φ, then the
self-similar measure associated with Φ and (pi) is the unique probability measure
defined on the Borel sets that satisfies

µ =
∑
i∈Λ

pi · (µ ◦ φ−1
i )

.

To prove that ∆n goes to 0 super-exponentially, we can approximate µ, and
then examine the entropy of this approximation at smaller scales, i.e. using smaller
partitions of R. Then, it is possible that there is “excess entropy” from a smaller
scale partition compared to a discrete partition. Then, we can get super-exponential
condensation by controlling this excess entropy.

3. A corollary for algebraic parameters

Following Hochman’s main result is a corollary which confirms the dimension
drop conjecture, in the special case where the parameters of the IFS are algebraic
numbers.
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Theorem 3.1. If X is the attractor of an IFS with algebraic parameters, that is,
ri and ai are algebraic numbers for each contraction, then there are exact overlaps
if and only if dimX < dimsim X.

This is the statement of the dimension drop conjecture restricted to IFS’s with
algebraic parameters. The proof of this corollary relies on an algebraic lemma,
which we will prove first.

Lemma 3.2. If A is a set of algebraic numbers, then there exists some constant
0 < s < 1 such that for any any polynomial expression x of these numbers with
degree n and x ̸= 0, then x ≥ sn.

Proof. (Following the proof of Hochman, see [5], Lemma 5.10). Let α be an al-
gebraic integer such that A ⊂ Q(α), i.e. all elements of A can be expressed as
polynomials with rational coeffieicnets in α. Now, by multiplying by integers, we
can make every element of A expressible as an integer polynomial in α, and since our
set is finite, these polynomials must have degree bounded by some d and bounded
coefficients.

Thus, we can write all y ∈ A as follows:

y =

d∑
k=0

akα
k

where ak ∈ Z and the ak are bounded. Now, substituting, we can write any
polynomial expression x of degree n in elements of A as

x =

dn∑
k=0

nkα
k

where the nk come from expanding our expression for y, so they are still integers
and still bounded, so we can say |nk| ≤ N for some N .

Now, let α2, ..., αd be the algebraic conjugates of α, writing α1 := α, and let
σ1, ..., σd be the automorphisms of Q(α), with σiα := αi. Being automorphisms,
the σi fix all the rationals, but interchange the αi. But what do the σi do to our

polynomial x? By a fact from Galois theory, if x ̸= 0, then
∏d

i=1 σi(x) is a nonzero
integer. Now we can establish an inequality for x. Since all nonzero integers have
absolute value greater than or equal to 1,

1 ≤
∣∣∣∣ d∏
i=1

σi(x)

∣∣∣∣ = d∏
i=1

∣∣∣∣ dn∑
k=0

σi(nkα
k)

∣∣∣∣ = |x| ·
d∏

i=2

∣∣∣∣ dn∑
k=0

nkα
k
i

∣∣∣∣.
We can distribute the σi in this way because they are automorphisms, so they
respect the structure of Q(α), and we can take out the x because the first term in
the product is simply our expression for x, since α1 = α.

Finally, by the triangle inequality and some simple bounds,

1 ≤ |x| ·
d∏

i=2

dn∑
k=0

|nk||αi|k ≤ |x| ·
d∏

i=2

Ndn|αi|dn ≤ |x|(Ndnαdn
max)

d,

so now,

|x| ≥ ((Ndn)−
d
nα−d2

max)
n,
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which gives the lower bound for x if x ̸= 0. □

We can now prove Theorem 3.1 using the lemma.

Proof. Examining the cylinders for our IFS, if i, j ∈ Λn, then the cylinders φi and
φj are just compositions of the linear contractions of the IFS. Thus φi(0) and φj(0)
are both polynomials of degree n in ri and ai, implying that ∆n is also such a
polynomial.

By the lemma, either ∆n = 0 or ∆n ≥ sn for some constant s. If ∆n = 0 , we
know what this means: exact overlaps. But if ∆n ̸= 0,

∆n ≥ sn

log∆n ≥ n log s

− 1

n
log∆n ≤ − log s.

This means that lim
n→∞

(− 1
n log∆n) ̸= ∞, so by the contrapositive of Theorem 2.3,

dimX = dimsim X. Thus, for the case of algebraic parameters in the IFS, there are
exact overlaps if and only if dimX < dimsim X. □
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