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Abstract. This paper introduces the basics of vector bundles, including in-

duced bundles, Whitney products, and bundles over projective spaces, before

defining Stiefel-Whitney classes based on their axioms. It then uses Stiefel-
Whitney classes as a tool to prove a number of interesting results involving

projective space. It then introduces Stiefel-Whitney numbers, and uses those

to state the basic idea of cobordism classes. The reader is assumed to have
a basic understanding of manifolds, vector spaces, and algebraic topology in-

cluding cohomology classes.
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1. Vector Bundles

Definition 1.1. For a given base space B, the vector bundle over B, ξ,
is defined to include a total space, E(ξ), and a continuous projection map,
π : E → B, such that for every b ∈ B, π−1(b) has the structure of a vector space
called the fiber over b, or Fb(ξ).

A vector bundle must also fulfill the condition of local triviality: for every
b ∈ B, there must exist a neighborhood U ⊆ B of b and a homeomorphism
f : U × Rn → π−1(U) for some nonnegative integer n such that for every b ∈ U ,
x 7→ f(b, x) represents an isomorphism between vector spaces.

If it is possible to meet this condition with U = B, the ξ is called a trivial
bundle.

Definition 1.2. For a smooth manifold M, the tangent bundle, τM , is the one
whose total space includes all points (x, v), such that x ∈ M and v is tangent to
M at x, with projection map π(x, v) = x. If this is a trivial bundle then M is
parallelizable.

Definition 1.3. A Euclidean vector bundle is a vector bundle ξ and a contin-
uous function χ : E(ξ) → R such that χ is positive definite and quadratic when
restricted to any fiber of the bundle.
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Definition 1.4. Consider two bundles, ξ and η, that share the same base space.
They are isomorphic, ξ ∼= η, if there is a homeomorphism f : E(ξ) → E(η) that
when restricted to any fiber Fb(ξ) is an isomorphism into the vector space of Fb(η).

We now want to consider in what situations bundles are isomorphic.

Lemma 1.5. For ξ, η defined as above, if f : E(ξ) → E(η) is continuous and maps
each Fb(ξ) isomorphically into Fb(η), then f is a homeomorphism.

Proof. Pick arbitrary b0 ∈ B. There exists a neighborhood U in which local trivial-
ity is met for both ξ and η. Then g : U × (R)n → Fu(ξ) and h : U × (R)n → Fu(η)
exist and are homeomorphisms.

Now, say h−1(f(g(b, x))) = (b, y) (as f does not move in the base space). Clearly,
y varies continuously with x, as this relationship is an isomorphism. Then, since we
can likewise see g−1◦f−1◦h to be continuous, h−1◦f◦g is a homeomorphism because
it is bijective and has continuous inverse. Also, since f−1 sends Fb(η) to Fb(ξ), it
is also continuous, and so since we saw above that g and h are homeomorphisms,
f itself is a homeomorphism. □

Now, we will consider ways that might generate bundles from other bundles

Definition 1.6. Given a bundle ξ and any space B1, a map g : B1 → B generates
an induced bundle g∗ξ over B1 with total space E1 ⊂ B1×E containing all (b, e)
such that g(b) = π(e) and projection map π1(b, e) = b.

It can be seen that the function ĝ(b, e) = e isomorphically takes each fiber Fb(g
∗ξ)

into the fiber Fg(b)(ξ). This alludes to a more general relationship between bundles.

Definition 1.7. A bundle map from η to ξ is any continuous function h : E(η) →
E(ξ) such that each fiber Fb(η) is brought isomorphically into Fb0(ξ) for some
b0 ∈ B(ξ).

Lemma 1.8. If h : E(η) → E(ξ) is a bundle map, and h̄ the corresponding map
between base spaces, then η ∼= h̄∗ξ.

Proof. Define a function f : E(η) → E(h̄∗ξ) such that f(e) = (πη(e), h(e)). (That
by definition h̄(πη(e)) = πξ(h(e)) proves that this is an accurate codomain.) Then,
f is continuous, as its components are by definition, and takes each Fb(η) isomor-
phically into Fb(h̄

∗ξ), then Lemma 1.5 means that f is a homeomorphism, and so
the definition of isomorphism is satisfied. □

We will now develop another way to generate new vector bundles from other
bundles.

Definition 1.9. Two bundles ξ1, ξ2 have a Cartesian product ξ1 × ξ2, a bun-
dle with the total space E(ξ1) × E(ξ2) and projection map π1 × π2(e1, e2) =
(π1(e1), π2(e2)).

If these two bundles share the same base space B, and d : B → B × B denotes
the diagonal embedding, we can define the Whitney sum of the two bundles,
ξ1 ⊕ ξ2 = d∗(ξ1 × ξ2).

Lemma 1.10. For a bundle ξ, let η1, η2 be bundles such that for every b ∈ B, Fb(ξ)
has Fb(η1) and Fb(η2) as vector subspaces and is equal to their direct sum. Then
ξ ∼= η1 ⊕ η2.
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Proof. We know that η1 ⊕ η2 includes the points (b, e1, e2) such that d(b) = π1 ×
π2(e1, e2), i.e., π1(e1) = π2(e2) = b. We can define a function f : E(η1⊕η2) → E(ξ)
such that f(b, e1, e2) = e1 + e2. It is obvious that f is continuous, and f is an
isomorphism because for any b ∈ B, Fb(ξ) will be spanned by all sums of elements
of Fb(η1), Fb(η2). Then, by Lemma 1.5, f is a homeomorphism, and the proof
follows. □

In general, we can call a bundle ξ a sub bundle of η is they share a base space
B, and for every b ∈ B, Fb(ξ) is a vector subspace of Fb(η). This begs the question
of under what conditions a subbundle has an associated bundle with which its
Whitney sum is isomorphic to the original.

Definition 1.11. If η is a Euclidean vector bundle (with function χ), a subbundle
ξ has an orthogonal complement ξ⊥ with the same base space, defined that
Fb(ξ

⊥) includes all points w ∈ Fb(η) such that for every v ∈ Fb(ξ),

v · w :=
1

2
(χ(v + w)− χ(v)− χ(w)) = 0.

Lemma 1.12. For ξ a subbundle of η, ξ ⊕ ξ⊥ ∼= η.

Proof. Following from Lemma 1.10, we need only to show Fb(η) is the direct sum of
Fb(ξ) and Fb(ξ

⊥). It is known as a property of vector subspaces that every vector
in Fb(η) can be decomposed into a part parallel to Fb(ξ) and a part orthogonal to
it. Then, observing the above construction, this means it is the sum of a vector in
Fb(ξ) and Fb(ξ

⊥). □

2. Projective Space

Definition 2.1. The real projective space Pn is a quotient space of Sn ⊂ Rn+1

that maps together all pairs x,−x on Sn.

Alternatively, this is the set of lines through the origin in Rn+1, each of which
intersects Sn on a set of this form.

Definition 2.2. The canonical line bundle over Pn, γ1
n, has total space E ⊆

Pn×Rn+1 of all pairs (±x, v) such that v is a scalar multiple of x and π(±x, v) = ±x.

Lemma 2.3. γ1
n as defined above meets the condition of local triviality (and thus

is, in fact, a bundle).

Proof. For open U ⊂ Sn containing no pair of points −x, x, there corresponds a set
U ′ in Pn. A neighborhood of this sort can be created around any point in Pn. Then,
we can have a homeomorphism f : U ′×R → π−1(U ′) such that f(±x, t) = (±x, tx).
Clearly this represents an isomorphism into the vector space, thus satisfying local
triviality. □

We will now approach the question of if γ1
n is trivial.

Definition 2.4. A nowhere zero cross-section of a bundle ξ is a continuous
function s : B(ξ) → E(ξ) such that for every b ∈ B, s(b) is a nonzero vector in
Fb(ξ).

Lemma 2.5. The bundle γ1
n defined above is nontrivial for every n ≥ 1.
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Proof. We can first consider that if γ1
n were trivial, then there would be a homeo-

morphism f : Pn×R → E(γ1
n), and thus a nowhere zero cross-section s(b) = f(b, 5)

(|s(b)| ≥ 5 > 0). We can therefore prove this lemma by showing that there is not
nowhere zero cross-section.

Consider that, for any cross section s, the composition Sn → Pn s−→ E(γ1
n) takes

each x ∈ Sn to (±x, t(x)x) ∈ E(γ1
n). As the cross-section depends only on the point

in Pn, we have t(x) = −t(−x), so by the Intermediate Value Theorem, t(x0) = 0
for some x0 ∈ Sn. Then, s(±x0) = (±x, 0) means that s cannot be a nowhere zero
cross-section. □

3. Stiefel-Whitney Classes

Definition 3.1. The Stiefel-Whitney classes of a vector bundle ξ are a sequence
wi(ξ)i=0,1,2,... of the singular cohomology groups of B with coefficients in Z/2, fully
characterized by four axioms.

Axiom 3.2. wi(ξ) ∈ Hi(B(ξ);Z/2) such that w0(ξ) = 1 and wi(ξ) = 0 for i > n,
where n is as seen in the condition of local triviality to be the maximum dimension
of any fiber.

Axiom 3.3. If f : B(ξ) → B(η) is the restriction to B(ξ) of a bundle map between
ξ and η, then wi(ξ) = f∗wi(η). (

∗ here refers to pullback in the cohomology sense.)

Axiom 3.4. If ξ and η are bundles over the same base space, then wk(ξ ⊕ η) =∑k
i=0 wi(ξ)wk−i(η). (The product operation here is the cup product, ⌣.)

Axiom 3.5. w1(γ
1
1) is nonzero.

We can define a ring HΠ(B;Z/2) of all formal infinite series a = a0 + a1 + ...,
where ai ∈ Hi(B;Z/2). This ring will have product operation

ab = (a0b0) + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + ....

Definition 3.6. The total Stiefel-Whitney class of ξ is the element w(ξ) ∈
HΠ(B;Z/2) such that w(ξ) = 1 + w1(ξ) + ...+ wn(ξ) + 0 + 0 + ....

We can now state a few very short consequences of these axioms.

Lemma 3.7. If ξ and η are bundles such that ξ ∼= η, then wi(ξ) = wi(η).

Proof. Given ξ ∼= η, the function f : B(ξ) → B(η) is a homeomorphism when
defined as in Axiom 3.3. Thus, f∗ is the identity, so wi(ξ) = f∗wi(η) = wi(η). □

Lemma 3.8. If ξ is a trivial vector bundle, then wi(ξ) = 0 for i > 0.

Proof. If ξ is trivial, then

E(ξ)
f−1

−−→ B(ξ)× Rn k−→ Rn,

where k(b, x) = x and f is as in condition of triviality, represents a bundle map
from ξ to a bundle over a single point.

Then g : B(ξ) → x can be taken as in Axiom 3.3 for some point x, and so g∗

brings classes to zero, and thus for i > 0, wi(ξ) = g∗wi(x) = 0. □

Lemma 3.9. If ξ is trivial, then wi(ξ ⊕ η) = wi(η).
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Proof. By Axiom 3.4 and the above result,

wi(ξ ⊕ η) =

i∑
j=0

wj(ξ)wi−j(η) = 1wi(η) +

i−1∑
j=1

0wi−j(η) = wi(η).

□

4. Projective Space and Stiefel-Whitney Classes

The remainder of the paper will use Stiefel-Whitney classes to prove some results
about projective spaces.

Lemma 4.1. The canonical line bundle γ1
n has total Stiefel-Whitney class w(γ1

n) =
1 + a.

Proof. The inclusion map f : P 1 → Pn is the restriction to P 1 of a bundle map
from γ1

1 to γ1
n. By Axiom 3.5, f∗w1(γ

1
n) = w1(γ

1
1) ̸= 0, so it must be true that

w1(γ
1
n) = a. Then, Axiom 3.2 fixes all other classes. □

It is obvious that γ1
n is the subbundle of a trivial bundle ξ with total space

Pn × Rn+1. Then let γ⊥ denote the orthogonal complement of γ1
n in ξ.

Lemma 4.2. w(γ⊥) = 1 + a+ a2 + ...+ an

Proof. Given that γ1
n ⊕ γ⊥ is trivial, then by Axiom 3.4, w(γ1

n)w(γ
⊥) = 1. Then,

given that w(γ1
n) = 1 + a,

w(γ⊥) = (1 + a)−1 = 1 + a+ ...+ an.

□

For two bundles ξ, η over the same base space B, we can define the bundle
Hom(ξ, η) over B such that for every b ∈ B, Fb consists of all linear transformations
from Fb(ξ) to Fb(η).

Lemma 4.3. The tangent bundle of Pn is isomorphic to the bundle Hom(γ1
n, γ

⊥).

Proof. Consider the function f : Sn → Pn such that f(x) = ±x. This induces a
function df : TSn → TPn that gives (x, v) and (−x,−v) the same image. TPn,
then, can be considered the set of pairs (x, v), (−x,−v) such that x ·x = 1, x ·v = 0.
Such a pair defines a map from the line containing x into the orthogonal n-plane in
Rn+1 according to the value of v. Thus, at each point ±x of Pn, the tangent space
is isomorphic to the set of transformations from the fiber of γ1

n at that point to the
fiber of γ⊥. Then, that τPn ∼= Hom(γ1

n, γ
⊥) follows. □

Lemma 4.4. The tangent bundle of Pn has total Stiefel-Whitney class w(τPn) =
1 +

(
n+1
1

)
a+

(
n+1
2

)
a2 + ...+

(
n+1
n

)
an.

Proof. Define η to be the trivial line bundle over Pn. Consider that the bundle
Hom(γ1

n, γ
1
n) is trivial based on the function f : Pn ×R → E where f(±x, t) is the

map that multiplies by t. Then, applying Lemma 4.3,

τPn ⊕ η ∼= Hom(γ1
n, γ

⊥)⊕Hom(γ1
n, γ

1
n).

According to Lemma 1.10, this is isomorphic to the bundle whose fibers are direct
sums of maps from γ1

n to γ⊥ and maps from γ1
n to γ1

n. These, we see, are just maps
from γ1

n to γ⊥ ⊕ γ1
n, so it follows that

τPn ⊕ η ∼= Hom(γ1
n, γ

⊥ ⊕ γ1
n)

∼= Hom(γ1
n, ξ),
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where ξ is defined as in Lemma 4.2.
However, it follows from their being trivial bundles that

ξ = η ⊕ ...⊕ η︸ ︷︷ ︸
n+1

.

Thus, as above,

τPn ⊕ η ∼= Hom(γ1
n, η)⊕ ...⊕Hom(γ1

n, η)︸ ︷︷ ︸
n+1

.

Now, the fact that γ1
n
∼= Hom(γ1

n, η) proves that

τPn ⊕ η ∼= γ1
n ⊕ ...⊕ γ1

n︸ ︷︷ ︸
n+1

.

Thus,

w(τPn) = w(τPn ⊕ η) = w(γ1
n)⊕ ...⊕ w(γ1

n)︸ ︷︷ ︸
n+1

= (1 + a)n+1,

which along with the binomial theorem completes the proof. □

Lemma 4.5. A projective space Pn can be parallelizable only if n + 1 is a power
of 2.

Proof. In mod 2, (a+ b)2 = a2 + b2 + 2ab = a2 + b2. Thus, (1 + a)2
k

= 1+ a2
k

. If,
then, n+ 1 = 2k,

w(τPn) = (1 + a)n+1 = 1 + an+1 = 1

(because Axiom 3.2 requires wn+1(P
n) = 0). However, if n + 1 = b · 2k for b > 1

odd, then

w(τPn) = (1 + a2
k

)b = 1 + b · a2
k

+ ...,

and because 2k < n+ 1 and b is odd, w(τPn) ̸= 1. Thus, w(τPn) = 1 if and only if
n+ 1 is a power of 2, and the lemma follows from Lemma 3.8. □

Definition 4.6. Nowhere zero cross-sections s1, ..., sn are nowhere dependent
if for every b ∈ B, s1(b), ..., sn(b) are linearly independent vectors. (The nowhere
zero condition becomes redundant here.)

This allows us to relate projective space to the existence of real division algebras.

Lemma 4.7. If there exists a bilinear product operation p : Rn×Rn → Rn without
zero divisors, then Pn−1 is parallelizable.

Proof. If b1, ..., bn are the standard basis vector of Rn, then because p is with-
out zero divisors, we can take the formula vi(p(y, b1) = p(y, bi) to define a linear
transformation vi : Rn → Rn. Imagine there were a point x = p(y, b1) such that∑

i λivi(x) = 0. Then, p(y,
∑

i λibi) = 0, so λi = 0 for every i. Thus, v1(x), ..., vn(x)
are linearly independent for x ̸= 0.

We then see that v1(x) = x, so v2, ..., vn yield n−1 linearly independent vectors in
the (n−1) plane orthogonal to x, and thus (because this can be done at any x ̸= 0),
n − 1 nowhere dependent cross-sections of the bundle Hom(γ1

n−1, γ
⊥) ∼= τPn−1 .

Now, define a function

f : Pn−1 × Rn−1 → E(τPn−1)
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such that

f(±x, z) =

n−1∑
i=1

vi+1(±x)zi.

f is a continuous map that takes fibers isomorphically between the trivial bundle
over Pn−1 and τPn−1 . Thus, by Lemma 1.5, τPn−1 is isomorphic to a trivial bundle,
thus trivial itself. □

It follows from Lemma 4.5 that for such a division algebra to exist, n must be a
power of 2. Now, we will prove one last fact about projective spaces.

Definition 4.8. A smooth map between manifolds is an immersion if the Jacobian
dfx : TxM → Tf(x)N is an injective mapping at every x ∈ M .

Lemma 4.9. If P 2k can be immersed on Rn, then n ≥ 2k+1 − 1.

Proof. If there is an immersion f : P 2k → Rn, then f∗τRn has τ
P 2k as a subbundle.

Then, by Lemma 1.12, f∗τRn ∼= τ
P 2k ⊕ τ⊥. Thus, τ⊥ must have Stiefel-Whitney

classes of 0 for i > n−2k. However, since τRn is evidently trivial, w(τ
P 2k )w(τ

⊥) = 1.
Given that

w(τP2k) = (1 + a)2
k+1 = 1 + a+ a2

k

(as can be derived from Lemma 4.4), it follows that

w(τ⊥) = 1 + a+ a2 + ...+ a2
k−1.

Therefore, wi(τ
⊥) = 0 only if i > 2k − 1, and so it must be true that n ≥ 2 · 2k − 1

for these previous conditions to be met. □

5. Stiefel-Whitney Numbers and Cobordism Classes

Consider M to be a compact, smooth, n-dimensional manifold.

Definition 5.1. We can define M to have fundamental homology class µM ∈
Hn(M ;Z) such that for any point x ∈ M , the isomorphism ρx : Hn(M) →
Hn(M,M − x) is such that ρx(µM ) = µx is one of the two possible generators
of Hn(M,M − x;Z). We then call µx a local orientation at x.

For our purposes, we can change the coefficients so that µM ∈ Hn(M ;Z/2).

Definition 5.2. For any cohomology class v ∈ Hn(M ;Z/2), the Kronecker in-
dex, v[M ] ∈ Z/2, is defined as the output of v acting on µM , or ⟨v, µM ⟩.

Now, take nonnegative integers r1, r2, ..., rn such that
∑n

i=1 rii = n. For a vector
bundle ξ, each such set corresponds to a monomial class

w1(ξ)
r1w2(ξ)

r2 · · ·wn(ξ)
rn ∈ Hn(B(ξ);Z/2).

Definition 5.3. A Stiefel-Whitney number of M is a value

w1(τM )r1 · · ·wn(τM )rn [M ] ∈ Z/2

for a monomial as constructed above.

Two manifolds,M ,M ′, are considered to have the same Stiefel-Whitney numbers
when

wr1
1 · · ·wrn

n [M ] = wr1
1 · · ·wrn

n [M ′]
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for every suitable monomial. (That the classes are of the tangent bundle is implied
here.)

Deriving from Lemma 4.4, we can compute all Stiefel-Whitney numbers of a
projective space Pn. For example, if n is a power of 2, w(τPn) = 1 + a + an, so
wn

1 [P
n] and wn[P

n] are nonzero, but all other Stiefel-Whitney numbers are zero.
On the other hand, if n is off, i.e. n = 2k−1, then w(τPn) = (1+a)2k = (1+a2)k,

so wj(τPn) = 0 for all odd j. However, every monomial, then, must contain some
factor of odd dimension. Thus, each of these monomials must multiply to zero, and
therefore every Stiefel-Whitney number of Pn must be odd.

We will now prove an important result involving Stiefel-Whitney numbers.

Theorem 5.4. If M is the boundary of a smooth compact (n+1)-manifold K, then
every Stiefel-Whitney number of M is zero.

Proof. We can construct a fundamental homology class µK ∈ Hn+1(K,M ;Z/2)
such that the boundary homomorphism

∂ : Hn+1(K,M) → Hn(M)

maps µK to µM . Then, by the definition of cohomology classes, we can note
that for any v ∈ Hn(M), ⟨v, ∂µK⟩ = ⟨δv, µK⟩, where δ denotes the coboundary
homomorphism from Hn(M) to Hn+1(K,M).

Consider now the bundle τK restricted to M . τM is clearly a subbundle of this
bundle. Further, because M represents the boundary of K, it can be seen that
τ⊥M

∼= ξ, where ξ is a trivial line bundle. (Simply, the portion of τK |M not in
τM will be that which points out, away from the boundary.) Thus, it follows that
w(τK |M) = w(τM ).

Taking i∗ as the restriction homomorphism, it follows from the exact sequence

Hn(K)
i∗−→ Hn(M)

δ−→ Hn+1(K,M)

that δ(wr1
1 · · ·wrn

n ) = 0, as the class is kept the same through the restriction.
Therefore,

wr1
1 · · ·wrn

n [M ] = ⟨wr1
1 · · ·wrn

n , µM ⟩ = ⟨wr1
1 · · ·wrn

n , ∂µK⟩ = ⟨δwr1
1 · · ·wrn

n , µK⟩ = 0.

□

We will also state the converse; for a proof see [1].

Theorem 5.5. If all Stiefel-Whitney numbers of M are zero, then M is the bound-
ary of some smooth compact manifold.

For example, then projective space Pn is the boundary of some manifold for
every n odd.

We can introduce one more concept based on these results.

Definition 5.6. Smooth compact n-manifolds M1,M2 are said to share a cobor-
dism class is their disjoint union is the boundary of a smooth compact (n+1)-
manifold.

Thus, manifolds belong to the same cobordism class if and only if all of their
Stiefel-Whitney numbers are equal.
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