VECTOR BUNDLES AND STIEFEL-WHITNEY CLASSES

WILLIAM HOUSTON

Abstract

This paper introduces the basics of vector bundles, including induced bundles, Whitney products, and bundles over projective spaces, before defining Stiefel-Whitney classes based on their axioms. It then uses StiefelWhitney classes as a tool to prove a number of interesting results involving projective space. It then introduces Stiefel-Whitney numbers, and uses those to state the basic idea of cobordism classes. The reader is assumed to have a basic understanding of manifolds, vector spaces, and algebraic topology including cohomology classes.

Contents

1. Vector Bundles 1
2. Projective Space 3
3. Stiefel-Whitney Classes 4
4. Projective Space and Stiefel-Whitney Classes 5
5. Stiefel-Whitney Numbers and Cobordism Classes 7
Acknowledgments 9
References 9

1. Vector Bundles

Definition 1.1. For a given base space B, the vector bundle over B, ξ, is defined to include a total space, $E(\xi)$, and a continuous projection map, $\pi: E \rightarrow B$, such that for every $b \in B, \pi^{-1}(b)$ has the structure of a vector space called the fiber over b, or $F_{b}(\xi)$.

A vector bundle must also fulfill the condition of local triviality: for every $b \in B$, there must exist a neighborhood $U \subseteq B$ of b and a homeomorphism $f: U \times \mathbb{R}^{n} \rightarrow \pi^{-1}(U)$ for some nonnegative integer n such that for every $b \in U$, $x \mapsto f(b, x)$ represents an isomorphism between vector spaces.

If it is possible to meet this condition with $U=B$, the ξ is called a trivial bundle.

Definition 1.2. For a smooth manifold M , the tangent bundle, τ_{M}, is the one whose total space includes all points (x, v), such that $x \in M$ and v is tangent to M at x, with projection map $\pi(x, v)=x$. If this is a trivial bundle then M is parallelizable.

Definition 1.3. A Euclidean vector bundle is a vector bundle ξ and a continuous function $\chi: E(\xi) \rightarrow \mathbb{R}$ such that χ is positive definite and quadratic when restricted to any fiber of the bundle.

WILLIAM HOUSTON

Definition 1.4. Consider two bundles, ξ and η, that share the same base space. They are isomorphic, $\xi \cong \eta$, if there is a homeomorphism $f: E(\xi) \rightarrow E(\eta)$ that when restricted to any fiber $F_{b}(\xi)$ is an isomorphism into the vector space of $F_{b}(\eta)$.

We now want to consider in what situations bundles are isomorphic.
Lemma 1.5. For ξ, η defined as above, if $f: E(\xi) \rightarrow E(\eta)$ is continuous and maps each $F_{b}(\xi)$ isomorphically into $F_{b}(\eta)$, then f is a homeomorphism.
Proof. Pick arbitrary $b_{0} \in B$. There exists a neighborhood U in which local triviality is met for both ξ and η. Then $g: U \times(R)^{n} \rightarrow F_{u}(\xi)$ and $h: U \times(R)^{n} \rightarrow F_{u}(\eta)$ exist and are homeomorphisms.

Now, say $h^{-1}(f(g(b, x)))=(b, y)$ (as f does not move in the base space). Clearly, y varies continuously with x, as this relationship is an isomorphism. Then, since we can likewise see $g^{-1} \circ f^{-1} \circ h$ to be continuous, $h^{-1} \circ f \circ g$ is a homeomorphism because it is bijective and has continuous inverse. Also, since f^{-1} sends $F_{b}(\eta)$ to $F_{b}(\xi)$, it is also continuous, and so since we saw above that g and h are homeomorphisms, f itself is a homeomorphism.

Now, we will consider ways that might generate bundles from other bundles
Definition 1.6. Given a bundle ξ and any space B_{1}, a map $g: B_{1} \rightarrow B$ generates an induced bundle $g^{*} \xi$ over B_{1} with total space $E_{1} \subset B_{1} \times E$ containing all (b, e) such that $g(b)=\pi(e)$ and projection map $\pi_{1}(b, e)=b$.

It can be seen that the function $\hat{g}(b, e)=e$ isomorphically takes each fiber $F_{b}\left(g^{*} \xi\right)$ into the fiber $F_{g(b)}(\xi)$. This alludes to a more general relationship between bundles.
Definition 1.7. A bundle map from η to ξ is any continuous function $h: E(\eta) \rightarrow$ $E(\xi)$ such that each fiber $F_{b}(\eta)$ is brought isomorphically into $F_{b_{0}}(\xi)$ for some $b_{0} \in B(\xi)$.
Lemma 1.8. If $h: E(\eta) \rightarrow E(\xi)$ is a bundle map, and \bar{h} the corresponding map between base spaces, then $\eta \cong \bar{h}^{*} \xi$.

Proof. Define a function $f: E(\eta) \rightarrow E\left(\bar{h}^{*} \xi\right)$ such that $f(e)=\left(\pi_{\eta}(e), h(e)\right)$. (That by definition $\bar{h}\left(\pi_{\eta}(e)\right)=\pi_{\xi}(h(e))$ proves that this is an accurate codomain.) Then, f is continuous, as its components are by definition, and takes each $F_{b}(\eta)$ isomorphically into $F_{b}\left(\bar{h}^{*} \xi\right)$, then Lemma 1.5 means that f is a homeomorphism, and so the definition of isomorphism is satisfied.

We will now develop another way to generate new vector bundles from other bundles.

Definition 1.9. Two bundles ξ_{1}, ξ_{2} have a Cartesian product $\xi_{1} \times \xi_{2}$, a bundle with the total space $E\left(\xi_{1}\right) \times E\left(\xi_{2}\right)$ and projection map $\pi_{1} \times \pi_{2}\left(e_{1}, e_{2}\right)=$ $\left(\pi_{1}\left(e_{1}\right), \pi_{2}\left(e_{2}\right)\right)$.

If these two bundles share the same base space B, and $d: B \rightarrow B \times B$ denotes the diagonal embedding, we can define the Whitney sum of the two bundles, $\xi_{1} \oplus \xi_{2}=d^{*}\left(\xi_{1} \times \xi_{2}\right)$.

Lemma 1.10. For a bundle ξ, let η_{1}, η_{2} be bundles such that for every $b \in B, F_{b}(\xi)$ has $F_{b}\left(\eta_{1}\right)$ and $F_{b}\left(\eta_{2}\right)$ as vector subspaces and is equal to their direct sum. Then $\xi \cong \eta_{1} \oplus \eta_{2}$.

Proof. We know that $\eta_{1} \oplus \eta_{2}$ includes the points $\left(b, e_{1}, e_{2}\right)$ such that $d(b)=\pi_{1} \times$ $\pi_{2}\left(e_{1}, e_{2}\right)$, i.e., $\pi_{1}\left(e_{1}\right)=\pi_{2}\left(e_{2}\right)=b$. We can define a function $f: E\left(\eta_{1} \oplus \eta_{2}\right) \rightarrow E(\xi)$ such that $f\left(b, e_{1}, e_{2}\right)=e_{1}+e_{2}$. It is obvious that f is continuous, and f is an isomorphism because for any $b \in B, F_{b}(\xi)$ will be spanned by all sums of elements of $F_{b}\left(\eta_{1}\right), F_{b}\left(\eta_{2}\right)$. Then, by Lemma $1.5, f$ is a homeomorphism, and the proof follows.

In general, we can call a bundle ξ a sub bundle of η is they share a base space B, and for every $b \in B, F_{b}(\xi)$ is a vector subspace of $F_{b}(\eta)$. This begs the question of under what conditions a subbundle has an associated bundle with which its Whitney sum is isomorphic to the original.

Definition 1.11. If η is a Euclidean vector bundle (with function χ), a subbundle ξ has an orthogonal complement ξ^{\perp} with the same base space, defined that $F_{b}\left(\xi^{\perp}\right)$ includes all points $w \in F_{b}(\eta)$ such that for every $v \in F_{b}(\xi)$,

$$
v \cdot w:=\frac{1}{2}(\chi(v+w)-\chi(v)-\chi(w))=0 .
$$

Lemma 1.12. For ξ a subbundle of $\eta, \xi \oplus \xi^{\perp} \cong \eta$.
Proof. Following from Lemma 1.10, we need only to show $F_{b}(\eta)$ is the direct sum of $F_{b}(\xi)$ and $F_{b}\left(\xi^{\perp}\right)$. It is known as a property of vector subspaces that every vector in $F_{b}(\eta)$ can be decomposed into a part parallel to $F_{b}(\xi)$ and a part orthogonal to it. Then, observing the above construction, this means it is the sum of a vector in $F_{b}(\xi)$ and $F_{b}\left(\xi^{\perp}\right)$.

2. Projective Space

Definition 2.1. The real projective space P^{n} is a quotient space of $S^{n} \subset \mathbb{R}^{n+1}$ that maps together all pairs $x,-x$ on S^{n}.

Alternatively, this is the set of lines through the origin in \mathbb{R}^{n+1}, each of which intersects S^{n} on a set of this form.

Definition 2.2. The canonical line bundle over P^{n}, γ_{n}^{1}, has total space $E \subseteq$ $P^{n} \times \mathbb{R}^{n+1}$ of all pairs $(\pm x, v)$ such that v is a scalar multiple of x and $\pi(\pm x, v)= \pm x$.

Lemma 2.3. γ_{n}^{1} as defined above meets the condition of local triviality (and thus is, in fact, a bundle).

Proof. For open $U \subset S^{n}$ containing no pair of points $-x, x$, there corresponds a set U^{\prime} in P^{n}. A neighborhood of this sort can be created around any point in P^{n}. Then, we can have a homeomorphism $f: U^{\prime} \times \mathbb{R} \rightarrow \pi^{-1}\left(U^{\prime}\right)$ such that $f(\pm x, t)=(\pm x, t x)$. Clearly this represents an isomorphism into the vector space, thus satisfying local triviality.

We will now approach the question of if γ_{n}^{1} is trivial.
Definition 2.4. A nowhere zero cross-section of a bundle ξ is a continuous function $s: B(\xi) \rightarrow E(\xi)$ such that for every $b \in B, s(b)$ is a nonzero vector in $F_{b}(\xi)$.

Lemma 2.5. The bundle γ_{n}^{1} defined above is nontrivial for every $n \geq 1$.

Proof. We can first consider that if γ_{n}^{1} were trivial, then there would be a homeomorphism $f: P^{n} \times \mathbb{R} \rightarrow E\left(\gamma_{n}^{1}\right)$, and thus a nowhere zero cross-section $s(b)=f(b, 5)$ $(|s(b)| \geq 5>0)$. We can therefore prove this lemma by showing that there is not nowhere zero cross-section.

Consider that, for any cross section s, the composition $S^{n} \rightarrow P^{n} \xrightarrow{s} E\left(\gamma_{n}^{1}\right)$ takes each $x \in S^{n}$ to $(\pm x, t(x) x) \in E\left(\gamma_{n}^{1}\right)$. As the cross-section depends only on the point in P^{n}, we have $t(x)=-t(-x)$, so by the Intermediate Value Theorem, $t\left(x_{0}\right)=0$ for some $x_{0} \in S^{n}$. Then, $s\left(\pm x_{0}\right)=(\pm x, 0)$ means that s cannot be a nowhere zero cross-section.

3. Stiefel-Whitney Classes

Definition 3.1. The Stiefel-Whitney classes of a vector bundle ξ are a sequence $w_{i}(\xi)_{i=0,1,2, \ldots}$ of the singular cohomology groups of B with coefficients in $\mathbb{Z} / 2$, fully characterized by four axioms.

Axiom 3.2. $w_{i}(\xi) \in H^{i}(B(\xi) ; \mathbb{Z} / 2)$ such that $w_{0}(\xi)=1$ and $w_{i}(\xi)=0$ for $i>n$, where n is as seen in the condition of local triviality to be the maximum dimension of any fiber.
Axiom 3.3. If $f: B(\xi) \rightarrow B(\eta)$ is the restriction to $B(\xi)$ of a bundle map between ξ and η, then $w_{i}(\xi)=f^{*} w_{i}(\eta)$. (* here refers to pullback in the cohomology sense.)

Axiom 3.4. If ξ and η are bundles over the same base space, then $w_{k}(\xi \oplus \eta)=$ $\sum_{i=0}^{k} w_{i}(\xi) w_{k-i}(\eta)$. (The product operation here is the cup product, \smile.)

Axiom 3.5. $w_{1}\left(\gamma_{1}^{1}\right)$ is nonzero.
We can define a ring $H^{\Pi}(B ; \mathbb{Z} / 2)$ of all formal infinite series $a=a_{0}+a_{1}+\ldots$, where $a_{i} \in H^{i}(B ; \mathbb{Z} / 2)$. This ring will have product operation

$$
a b=\left(a_{0} b_{0}\right)+\left(a_{0} b_{1}+a_{1} b_{0}\right)+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)+\ldots
$$

Definition 3.6. The total Stiefel-Whitney class of ξ is the element $w(\xi) \in$ $H^{\Pi}(B ; \mathbb{Z} / 2)$ such that $w(\xi)=1+w_{1}(\xi)+\ldots+w_{n}(\xi)+0+0+\ldots$.

We can now state a few very short consequences of these axioms.
Lemma 3.7. If ξ and η are bundles such that $\xi \cong \eta$, then $w_{i}(\xi)=w_{i}(\eta)$.
Proof. Given $\xi \cong \eta$, the function $f: B(\xi) \rightarrow B(\eta)$ is a homeomorphism when defined as in Axiom 3.3. Thus, f^{*} is the identity, so $w_{i}(\xi)=f^{*} w_{i}(\eta)=w_{i}(\eta)$.

Lemma 3.8. If ξ is a trivial vector bundle, then $w_{i}(\xi)=0$ for $i>0$.
Proof. If ξ is trivial, then

$$
E(\xi) \xrightarrow{f^{-1}} B(\xi) \times \mathbb{R}^{n} \xrightarrow{k} \mathbb{R}^{n},
$$

where $k(b, x)=x$ and f is as in condition of triviality, represents a bundle map from ξ to a bundle over a single point.

Then $g: B(\xi) \rightarrow x$ can be taken as in Axiom 3.3 for some point x, and so g^{*} brings classes to zero, and thus for $i>0, w_{i}(\xi)=g^{*} w_{i}(x)=0$.

Lemma 3.9. If ξ is trivial, then $w_{i}(\xi \oplus \eta)=w_{i}(\eta)$.

Proof. By Axiom 3.4 and the above result,

$$
w_{i}(\xi \oplus \eta)=\sum_{j=0}^{i} w_{j}(\xi) w_{i-j}(\eta)=1 w_{i}(\eta)+\sum_{j=1}^{i-1} 0 w_{i-j}(\eta)=w_{i}(\eta)
$$

4. Projective Space and Stiefel-Whitney Classes

The remainder of the paper will use Stiefel-Whitney classes to prove some results about projective spaces.
Lemma 4.1. The canonical line bundle γ_{n}^{1} has total Stiefel-Whitney class $w\left(\gamma_{n}^{1}\right)=$ $1+a$.
Proof. The inclusion map $f: P^{1} \rightarrow P^{n}$ is the restriction to P^{1} of a bundle map from γ_{1}^{1} to γ_{n}^{1}. By Axiom 3.5, $f^{*} w_{1}\left(\gamma_{n}^{1}\right)=w_{1}\left(\gamma_{1}^{1}\right) \neq 0$, so it must be true that $w_{1}\left(\gamma_{n}^{1}\right)=a$. Then, Axiom 3.2 fixes all other classes.

It is obvious that γ_{n}^{1} is the subbundle of a trivial bundle ξ with total space $P^{n} \times \mathbb{R}^{n+1}$. Then let γ^{\perp} denote the orthogonal complement of γ_{n}^{1} in ξ.
Lemma 4.2. $w\left(\gamma^{\perp}\right)=1+a+a^{2}+\ldots+a^{n}$
Proof. Given that $\gamma_{n}^{1} \oplus \gamma^{\perp}$ is trivial, then by Axiom 3.4, $w\left(\gamma_{n}^{1}\right) w\left(\gamma^{\perp}\right)=1$. Then, given that $w\left(\gamma_{n}^{1}\right)=1+a$,

$$
w\left(\gamma^{\perp}\right)=(1+a)^{-1}=1+a+\ldots+a^{n}
$$

For two bundles ξ, η over the same base space B, we can define the bundle $\operatorname{Hom}(\xi, \eta)$ over B such that for every $b \in B, F_{b}$ consists of all linear transformations from $F_{b}(\xi)$ to $F_{b}(\eta)$.
Lemma 4.3. The tangent bundle of P^{n} is isomorphic to the bundle $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right)$.
Proof. Consider the function $f: S^{n} \rightarrow P^{n}$ such that $f(x)= \pm x$. This induces a function $d f: T S^{n} \rightarrow T P^{n}$ that gives (x, v) and $(-x,-v)$ the same image. $T P^{n}$, then, can be considered the set of pairs $(x, v),(-x,-v)$ such that $x \cdot x=1, x \cdot v=0$. Such a pair defines a map from the line containing x into the orthogonal n-plane in \mathbb{R}^{n+1} according to the value of v. Thus, at each point $\pm x$ of P^{n}, the tangent space is isomorphic to the set of transformations from the fiber of γ_{n}^{1} at that point to the fiber of γ^{\perp}. Then, that $\tau_{P^{n}} \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right)$ follows.
Lemma 4.4. The tangent bundle of P^{n} has total Stiefel-Whitney class $w\left(\tau_{P^{n}}\right)=$ $1+\binom{n+1}{1} a+\binom{n+1}{2} a^{2}+\ldots+\binom{n+1}{n} a^{n}$.
Proof. Define η to be the trivial line bundle over P^{n}. Consider that the bundle $\operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)$ is trivial based on the function $f: P^{n} \times \mathbb{R} \rightarrow E$ where $f(\pm x, t)$ is the map that multiplies by t. Then, applying Lemma 4.3,

$$
\tau_{P^{n}} \oplus \eta \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp}\right) \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma_{n}^{1}\right)
$$

According to Lemma 1.10, this is isomorphic to the bundle whose fibers are direct sums of maps from γ_{n}^{1} to γ^{\perp} and maps from γ_{n}^{1} to γ_{n}^{1}. These, we see, are just maps from γ_{n}^{1} to $\gamma^{\perp} \oplus \gamma_{n}^{1}$, so it follows that

$$
\tau_{P^{n}} \oplus \eta \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \gamma^{\perp} \oplus \gamma_{n}^{1}\right) \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \xi\right)
$$

where ξ is defined as in Lemma 4.2.
However, it follows from their being trivial bundles that

$$
\xi=\underbrace{\eta \oplus \ldots \oplus \eta}_{n+1}
$$

Thus, as above,

$$
\tau_{P^{n}} \oplus \eta \cong \underbrace{\operatorname{Hom}\left(\gamma_{n}^{1}, \eta\right) \oplus \ldots \oplus \operatorname{Hom}\left(\gamma_{n}^{1}, \eta\right)}_{n+1} .
$$

Now, the fact that $\gamma_{n}^{1} \cong \operatorname{Hom}\left(\gamma_{n}^{1}, \eta\right)$ proves that

$$
\tau_{P^{n}} \oplus \eta \cong \underbrace{\gamma_{n}^{1} \oplus \ldots \oplus \gamma_{n}^{1}}_{n+1}
$$

Thus,

$$
w\left(\tau_{P^{n}}\right)=w\left(\tau_{P^{n}} \oplus \eta\right)=\underbrace{w\left(\gamma_{n}^{1}\right) \oplus \ldots \oplus w\left(\gamma_{n}^{1}\right)}_{n+1}=(1+a)^{n+1}
$$

which along with the binomial theorem completes the proof.
Lemma 4.5. A projective space P^{n} can be parallelizable only if $n+1$ is a power of 2.
Proof. In $\bmod 2,(a+b)^{2}=a^{2}+b^{2}+2 a b=a^{2}+b^{2}$. Thus, $(1+a)^{2^{k}}=1+a^{2^{k}}$. If, then, $n+1=2^{k}$,

$$
w\left(\tau_{P^{n}}\right)=(1+a)^{n+1}=1+a^{n+1}=1
$$

(because Axiom 3.2 requires $w_{n+1}\left(P^{n}\right)=0$). However, if $n+1=b \cdot 2^{k}$ for $b>1$ odd, then

$$
w\left(\tau_{P^{n}}\right)=\left(1+a^{2^{k}}\right)^{b}=1+b \cdot a^{2^{k}}+\ldots
$$

and because $2^{k}<n+1$ and b is odd, $w\left(\tau_{P^{n}}\right) \neq 1$. Thus, $w\left(\tau_{P^{n}}\right)=1$ if and only if $n+1$ is a power of 2 , and the lemma follows from Lemma 3.8.

Definition 4.6. Nowhere zero cross-sections s_{1}, \ldots, s_{n} are nowhere dependent if for every $b \in B, s_{1}(b), \ldots, s_{n}(b)$ are linearly independent vectors. (The nowhere zero condition becomes redundant here.)

This allows us to relate projective space to the existence of real division algebras.
Lemma 4.7. If there exists a bilinear product operation $p: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ without zero divisors, then P^{n-1} is parallelizable.
Proof. If b_{1}, \ldots, b_{n} are the standard basis vector of \mathbb{R}^{n}, then because p is without zero divisors, we can take the formula $v_{i}\left(p\left(y, b_{1}\right)=p\left(y, b_{i}\right)\right.$ to define a linear transformation $v_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Imagine there were a point $x=p\left(y, b_{1}\right)$ such that $\sum_{i} \lambda_{i} v_{i}(x)=0$. Then, $p\left(y, \sum_{i} \lambda_{i} b_{i}\right)=0$, so $\lambda_{i}=0$ for every i. Thus, $v_{1}(x), \ldots, v_{n}(x)$ are linearly independent for $x \neq 0$.

We then see that $v_{1}(x)=x$, so v_{2}, \ldots, v_{n} yield $n-1$ linearly independent vectors in the $(n-1)$ plane orthogonal to x, and thus (because this can be done at any $x \neq 0$), $n-1$ nowhere dependent cross-sections of the bundle $\operatorname{Hom}\left(\gamma_{n-1}^{1}, \gamma^{\perp}\right) \cong \tau_{P^{n-1}}$. Now, define a function

$$
f: P^{n-1} \times \mathbb{R}^{n-1} \rightarrow E\left(\tau_{P^{n-1}}\right)
$$

such that

$$
f(\pm x, z)=\sum_{i=1}^{n-1} v_{i+1}(\pm x) z_{i}
$$

f is a continuous map that takes fibers isomorphically between the trivial bundle over P^{n-1} and $\tau_{P^{n-1}}$. Thus, by Lemma $1.5, \tau_{P^{n-1}}$ is isomorphic to a trivial bundle, thus trivial itself.

It follows from Lemma 4.5 that for such a division algebra to exist, n must be a power of 2 . Now, we will prove one last fact about projective spaces.
Definition 4.8. A smooth map between manifolds is an immersion if the Jacobian $d f_{x}: T_{x} M \rightarrow T_{f(x)} N$ is an injective mapping at every $x \in M$.
Lemma 4.9. If $P^{2^{k}}$ can be immersed on \mathbb{R}^{n}, then $n \geq 2^{k+1}-1$.
Proof. If there is an immersion $f: P^{2^{k}} \rightarrow \mathbb{R}^{n}$, then $f^{*} \tau_{\mathbb{R}^{n}}$ has $\tau_{P^{2^{k}}}$ as a subbundle. Then, by Lemma $1.12, f^{*} \tau_{\mathbb{R}^{n}} \cong \tau_{P^{2}} \oplus \tau^{\perp}$. Thus, τ^{\perp} must have Stiefel-Whitney classes of 0 for $i>n-2^{k}$. However, since $\tau_{\mathbb{R}^{n}}$ is evidently trivial, $w\left(\tau_{P^{2}}\right) w\left(\tau^{\perp}\right)=1$. Given that

$$
w\left(\tau_{P 2^{k}}\right)=(1+a)^{2^{k}+1}=1+a+a^{2^{k}}
$$

(as can be derived from Lemma 4.4), it follows that

$$
w\left(\tau^{\perp}\right)=1+a+a^{2}+\ldots+a^{2^{k}-1}
$$

Therefore, $w_{i}\left(\tau^{\perp}\right)=0$ only if $i>2^{k}-1$, and so it must be true that $n \geq 2 \cdot 2^{k}-1$ for these previous conditions to be met.

5. Stiefel-Whitney Numbers and Cobordism Classes

Consider M to be a compact, smooth, n-dimensional manifold.
Definition 5.1. We can define M to have fundamental homology class $\mu_{M} \in$ $H_{n}(M ; \mathbb{Z})$ such that for any point $x \in M$, the isomorphism $\rho_{x}: H_{n}(M) \rightarrow$ $H_{n}(M, M-x)$ is such that $\rho_{x}\left(\mu_{M}\right)=\mu_{x}$ is one of the two possible generators of $H_{n}(M, M-x ; \mathbb{Z})$. We then call μ_{x} a local orientation at x.

For our purposes, we can change the coefficients so that $\mu_{M} \in H_{n}(M ; \mathbb{Z} / 2)$.
Definition 5.2. For any cohomology class $v \in H^{n}(M ; \mathbb{Z} / 2)$, the Kronecker index, $v[M] \in \mathbb{Z} / 2$, is defined as the output of v acting on μ_{M}, or $\left\langle v, \mu_{M}\right\rangle$.

Now, take nonnegative integers $r_{1}, r_{2}, \ldots, r_{n}$ such that $\sum_{i=1}^{n} r_{i} i=n$. For a vector bundle ξ, each such set corresponds to a monomial class

$$
w_{1}(\xi)^{r_{1}} w_{2}(\xi)^{r_{2}} \cdots w_{n}(\xi)^{r_{n}} \in H^{n}(B(\xi) ; \mathbb{Z} / 2)
$$

Definition 5.3. A Stiefel-Whitney number of M is a value

$$
w_{1}\left(\tau_{M}\right)^{r_{1}} \cdots w_{n}\left(\tau_{M}\right)^{r_{n}}[M] \in \mathbb{Z} / 2
$$

for a monomial as constructed above.
Two manifolds, M, M^{\prime}, are considered to have the same Stiefel-Whitney numbers when

$$
w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}[M]=w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}\left[M^{\prime}\right]
$$

for every suitable monomial. (That the classes are of the tangent bundle is implied here.)

Deriving from Lemma 4.4, we can compute all Stiefel-Whitney numbers of a projective space P^{n}. For example, if n is a power of $2, w\left(\tau_{P^{n}}\right)=1+a+a^{n}$, so $w_{1}^{n}\left[P^{n}\right]$ and $w_{n}\left[P^{n}\right]$ are nonzero, but all other Stiefel-Whitney numbers are zero.

On the other hand, if n is off, i.e. $n=2 k-1$, then $w\left(\tau_{P^{n}}\right)=(1+a)^{2 k}=\left(1+a^{2}\right)^{k}$, so $w_{j}\left(\tau_{P^{n}}\right)=0$ for all odd j. However, every monomial, then, must contain some factor of odd dimension. Thus, each of these monomials must multiply to zero, and therefore every Stiefel-Whitney number of P^{n} must be odd.

We will now prove an important result involving Stiefel-Whitney numbers.
Theorem 5.4. If M is the boundary of a smooth compact ($n+1$)-manifold K, then every Stiefel-Whitney number of M is zero.

Proof. We can construct a fundamental homology class $\mu_{K} \in H_{n+1}(K, M ; \mathbb{Z} / 2)$ such that the boundary homomorphism

$$
\partial: H_{n+1}(K, M) \rightarrow H_{n}(M)
$$

maps μ_{K} to μ_{M}. Then, by the definition of cohomology classes, we can note that for any $v \in H^{n}(M),\left\langle v, \partial \mu_{K}\right\rangle=\left\langle\delta v, \mu_{K}\right\rangle$, where δ denotes the coboundary homomorphism from $H^{n}(M)$ to $H^{n+1}(K, M)$.

Consider now the bundle τ_{K} restricted to $M . \tau_{M}$ is clearly a subbundle of this bundle. Further, because M represents the boundary of K, it can be seen that $\tau_{M}^{\perp} \cong \xi$, where ξ is a trivial line bundle. (Simply, the portion of $\left.\tau_{K}\right|_{M}$ not in τ_{M} will be that which points out, away from the boundary.) Thus, it follows that $w\left(\tau_{K} \mid M\right)=w\left(\tau_{M}\right)$.

Taking i^{*} as the restriction homomorphism, it follows from the exact sequence

$$
H^{n}(K) \xrightarrow{i^{*}} H^{n}(M) \xrightarrow{\delta} H^{n+1}(K, M)
$$

that $\delta\left(w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}\right)=0$, as the class is kept the same through the restriction. Therefore,

$$
w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}[M]=\left\langle w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}, \mu_{M}\right\rangle=\left\langle w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}, \partial \mu_{K}\right\rangle=\left\langle\delta w_{1}^{r_{1}} \cdots w_{n}^{r_{n}}, \mu_{K}\right\rangle=0
$$

We will also state the converse; for a proof see [1].
Theorem 5.5. If all Stiefel-Whitney numbers of M are zero, then M is the boundary of some smooth compact manifold.

For example, then projective space P^{n} is the boundary of some manifold for every n odd.

We can introduce one more concept based on these results.
Definition 5.6. Smooth compact n-manifolds M_{1}, M_{2} are said to share a cobordism class is their disjoint union is the boundary of a smooth compact ($\mathrm{n}+1$)manifold.

Thus, manifolds belong to the same cobordism class if and only if all of their Stiefel-Whitney numbers are equal.

Acknowledgments

It is a pleasure to thank my mentor, Catherine Li, for her support and direction during the process of writing this paper. I would also like to thank the UChicago REU program, especially Dr. Peter May, for giving me a setting in which to do so.

References

[1] Marco Bernagozzi. Stiefel-Whitney Classes and Thom's Theorem. https://kurser.math.su.se/pluginfile.php/16103/mod_folder/content/0/2017/2017_14_report.pdf
[2] J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press. 1974.

