VECTOR BUNDLES AND STIEFEL-WHITNEY CLASSES

WILLIAM HOUSTON

ABSTRACT. This paper introduces the basics of vector bundles, including in-
duced bundles, Whitney products, and bundles over projective spaces, before
defining Stiefel-Whitney classes based on their axioms. It then uses Stiefel-
Whitney classes as a tool to prove a number of interesting results involving
projective space. It then introduces Stiefel-Whitney numbers, and uses those
to state the basic idea of cobordism classes. The reader is assumed to have
a basic understanding of manifolds, vector spaces, and algebraic topology in-
cluding cohomology classes.

CONTENTS

1. Vector Bundles 1
2. Projective Space 3
3. Stiefel-Whitney Classes 4
4. Projective Space and Stiefel-Whitney Classes 5
5. Stiefel-Whitney Numbers and Cobordism Classes 7
Acknowledgments 9
References 9

1. VECTOR BUNDLES

Definition 1.1. For a given base space B, the vector bundle over B, ¢,
is defined to include a total space, E(), and a continuous projection map,
7 : E — B, such that for every b € B, 7~ 1(b) has the structure of a vector space
called the fiber over b, or F(£).

A vector bundle must also fulfill the condition of local triviality: for every
b € B, there must exist a neighborhood U C B of b and a homeomorphism
f: Ux R*® = 7= }(U) for some nonnegative integer n such that for every b € U,
x +— f(b, z) represents an isomorphism between vector spaces.

If it is possible to meet this condition with U = B, the ¢ is called a trivial
bundle.

Definition 1.2. For a smooth manifold M, the tangent bundle, 7, is the one
whose total space includes all points (z,v), such that x € M and v is tangent to
M at z, with projection map 7(xz,v) = x. If this is a trivial bundle then M is
parallelizable.

Definition 1.3. A Euclidean vector bundle is a vector bundle £ and a contin-
uous function x : F(£) — R such that y is positive definite and quadratic when
restricted to any fiber of the bundle.
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Definition 1.4. Consider two bundles, £ and 7, that share the same base space.
They are isomorphic, £ & 5, if there is a homeomorphism f : F(§) — E(n) that
when restricted to any fiber F},(§) is an isomorphism into the vector space of Fy(n).

We now want to consider in what situations bundles are isomorphic.

Lemma 1.5. For &, n defined as above, if f : E(§) — E(n) is continuous and maps
each Fy(&) isomorphically into Fy(n), then f is a homeomorphism.

Proof. Pick arbitrary by € B. There exists a neighborhood U in which local trivial-
ity is met for both £ and 1. Then g : U x (R)" — F,,(§) and h: U x (R)™ — F,(n)
exist and are homeomorphisms.

Now, say h =1 (f(g(b,z))) = (b,y) (as f does not move in the base space). Clearly,
y varies continuously with z, as this relationship is an isomorphism. Then, since we
can likewise see g 1o f~1oh to be continuous, h~'o fog is a homeomorphism because
it is bijective and has continuous inverse. Also, since f~1 sends Fy(n) to Fy(€), it
is also continuous, and so since we saw above that g and h are homeomorphisms,
f itself is a homeomorphism. |

Now, we will consider ways that might generate bundles from other bundles

Definition 1.6. Given a bundle ¢ and any space By, a map g : By — B generates
an induced bundle ¢g*¢ over By with total space E; C By X E containing all (b, e)
such that ¢g(b) = m(e) and projection map 71 (b, e) = b.

It can be seen that the function §(b, e) = e isomorphically takes each fiber Fy(g*€)
into the fiber Fy)(£). This alludes to a more general relationship between bundles.

Definition 1.7. A bundle map from 7 to ¢ is any continuous function h : F(n) —
E(¢) such that each fiber Fp(n) is brought isomorphically into Fy,(£) for some
by € B(f)

Lemma 1.8. If h : E(n) — E(§) is a bundle map, and h the corresponding map
between base spaces, then n = h*&.

Proof. Define a function f : E(n) — E(h*¢) such that f(e) = (m,(e), h(e)). (That
by definition h(m,(e)) = m¢(h(e)) proves that this is an accurate codomain.) Then,
f is continuous, as its components are by definition, and takes each Fy(n) isomor-
phically into Fj(h*¢), then Lemma 1.5 means that f is a homeomorphism, and so
the definition of isomorphism is satisfied. ([l

We will now develop another way to generate new vector bundles from other
bundles.

Definition 1.9. Two bundles &1, &5 have a Cartesian product & x &, a bun-
dle with the total space E(&1) x E(&) and projection map m X ma(er,e2) =
(m1(e1), m2(e2)).

If these two bundles share the same base space B, and d : B — B X B denotes
the diagonal embedding, we can define the Whitney sum of the two bundles,

§L@ & =d (& x &)

Lemma 1.10. For a bundle £, let n1,m2 be bundles such that for every b € B, Fp(§)
has Fy(n1) and Fy(n2) as vector subspaces and is equal to their direct sum. Then

§=m ene.
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Proof. We know that 71 @ 1 includes the points (b, e, e2) such that d(b) = m x
ma(e1, ez), i.e., m(e1) = ma(e2) = b. We can define a function f : E(n1 ®n2) — E(&)
such that f(b,e1,e2) = e; + ea. It is obvious that f is continuous, and f is an
isomorphism because for any b € B, F},(§) will be spanned by all sums of elements
of Fy(m), Fp(n2). Then, by Lemma 1.5, f is a homeomorphism, and the proof
follows. U

In general, we can call a bundle ¢ a sub bundle of 7 is they share a base space
B, and for every b € B, F},(€) is a vector subspace of F,(n). This begs the question
of under what conditions a subbundle has an associated bundle with which its
Whitney sum is isomorphic to the original.

Definition 1.11. If 5 is a Euclidean vector bundle (with function ), a subbundle
¢ has an orthogonal complement ¢ with the same base space, defined that
Fy(¢1) includes all points w € Fy(n) such that for every v € Fy(€),

vewi= 2 (x(o +w) = x(v) - x(w)) = 0.

Lemma 1.12. For ¢ a subbundle of n, £ ® &+ = 1.

Proof. Following from Lemma 1.10, we need only to show Fy(n) is the direct sum of
Fy(€) and F,(€1). Tt is known as a property of vector subspaces that every vector
in Fy(n) can be decomposed into a part parallel to F,(§) and a part orthogonal to
it. Then, observing the above construction, this means it is the sum of a vector in
Fy(€) and Fy(&4). O

2. PROJECTIVE SPACE

Definition 2.1. The real projective space P" is a quotient space of S C R*+!
that maps together all pairs z, —x on S™.

Alternatively, this is the set of lines through the origin in R™*!, each of which
intersects S™ on a set of this form.

Definition 2.2. The canonical line bundle over P", v}, has total space E C
P xR"*1 of all pairs (4, v) such that v is a scalar multiple of x and 7(£x,v) = £x.

Lemma 2.3. v} as defined above meets the condition of local triviality (and thus
is, in fact, a bundle).

Proof. For open U C S™ containing no pair of points —z, z, there corresponds a set
U’ in P™. A neighborhood of this sort can be created around any point in P™. Then,
we can have a homeomorphism f : U/ xR — 7= 1(U’) such that f(dx,t) = (£, tr).
Clearly this represents an isomorphism into the vector space, thus satisfying local
triviality. O

We will now approach the question of if 4} is trivial.

Definition 2.4. A nowhere zero cross-section of a bundle ¢ is a continuous
function s : B(§) — E(&) such that for every b € B, s(b) is a nonzero vector in

Fy(§).

Lemma 2.5. The bundle v} defined above is nontrivial for every n > 1.
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Proof. We can first consider that if 4} were trivial, then there would be a homeo-
morphism f : P* xR — E(v}), and thus a nowhere zero cross-section s(b) = f(b,5)
(Is(b)] > 5 > 0). We can therefore prove this lemma by showing that there is not
nowhere zero cross-section.

Consider that, for any cross section s, the composition S* — P* % E (1) takes
each z € S™ to (+a,t(z)z) € E(y}). As the cross-section depends only on the point
in P", we have t(z) = —t(—x), so by the Intermediate Value Theorem, ¢(xg) = 0
for some xg € S™. Then, s(£xz¢) = (£z,0) means that s cannot be a nowhere zero
cross-section. (]

3. STIEFEL-WHITNEY CLASSES

Definition 3.1. The Stiefel-Whitney classes of a vector bundle £ are a sequence
w;(€) ;=01 2,... of the singular cohomology groups of B with coefficients in Z/2, fully
characterized by four axioms.

Axiom 3.2. w;(§) € HY(B(£);Z/2) such that wy(€) = 1 and w;(£) = 0 for i > n,
where n is as seen in the condition of local triviality to be the maximum dimension
of any fiber.

Axiom 3.3. If f : B(§) — B(n) is the restriction to B(£) of a bundle map between
¢ and 7, then w;(§) = f*w;(n). (* here refers to pullback in the cohomology sense.)

Axiom 3.4. If £ and 7 are bundles over the same base space, then wg(§ ®n) =
Zf:o w; (§)wg—;(n). (The product operation here is the cup product, —.)

Axiom 3.5. w(v;) is nonzero.

We can define a ring H''(B;Z/2) of all formal infinite series a = ag + a1 + ...,
where a; € H'(B;Z/2). This ring will have product operation

CLb = (aobo) + (a0b1 + albo) + (CLon + a1b1 + agbo) +

Definition 3.6. The total Stiefel-Whitney class of £ is the element w(§) €
HY(B;Z/2) such that w(&) =1+ w1 (€) + ... + w,(§) + 0+ 0 + ...

We can now state a few very short consequences of these axioms.
Lemma 3.7. If £ and n are bundles such that £ = n, then w;(§) = w;(n).

Proof. Given & = 1), the function f : B(§) — B(n) is a homeomorphism when
defined as in Axiom 3.3. Thus, f* is the identity, so w;(§) = f*wi(n) = wi(n). O

Lemma 3.8. If ¢ is a trivial vector bundle, then w;(§) =0 for i > 0.
Proof. If £ is trivial, then

-1
E©) Lo B xR SR,
where k(b,z) = = and f is as in condition of triviality, represents a bundle map
from £ to a bundle over a single point.
Then g : B(§) — = can be taken as in Axiom 3.3 for some point z, and so g*
brings classes to zero, and thus for i > 0, w;(§) = ¢g*w;(z) = 0. O

Lemma 3.9. If £ is trivial, then w;(§ ®n) = w;(n).
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Proof. By Axiom 3.4 and the above result,

wi€ @) = S wy(Ewis(n) = lwi(n) + 3 Own_s(n) = wa(n).
3=0 j=1

4. PROJECTIVE SPACE AND STIEFEL- WHITNEY CLASSES

The remainder of the paper will use Stiefel-Whitney classes to prove some results
about projective spaces.

Lemma 4.1. The canonical line bundle v\ has total Stiefel-Whitney class w(v}) =
1+a.
Proof. The inclusion map f : P! — P™ is the restriction to P! of a bundle map

from 71 to vt. By Axiom 3.5, f*wi(v}) = wi(yi) # 0, so it must be true that
w1(7y}) = a. Then, Axiom 3.2 fixes all other classes. O

It is obvious that 4} is the subbundle of a trivial bundle £ with total space
P" x R"*1. Then let 4+ denote the orthogonal complement of v} in €.

Lemma 4.2. w(yt)=1+a+a®+..+a"

Proof. Given that v} @~ is trivial, then by Axiom 3.4, w(v})w(y*+) = 1. Then,
given that w(vy}) = 1+a,

wy)=0+a) ' =1+a+..+a"
(|

For two bundles &, n over the same base space B, we can define the bundle
Hom(¢,n) over B such that for every b € B, Fy, consists of all linear transformations
from Fy(&) to Fy(n).

Lemma 4.3. The tangent bundle of P" is isomorphic to the bundle Hom(y},v*).
Proof. Consider the function f : S™ — P™ such that f(x) = 2. This induces a
function df : TS™ — TP"™ that gives (x,v) and (—z, —v) the same image. TP",
then, can be considered the set of pairs (x,v), (—x, —v) such that z-2 =1,2-v = 0.
Such a pair defines a map from the line containing = into the orthogonal n-plane in
R™*+! according to the value of v. Thus, at each point £z of P, the tangent space
is isomorphic to the set of transformations from the fiber of v} at that point to the
fiber of . Then, that 7p» = Hom(y},v*) follows. O

Lemma 4.4. The tangent bundle of P™ has total Stiefel-Whitney class w(Tpn) =
L+ (MTa+ ("30a? 4+ () a"
Proof. Define 7 to be the trivial line bundle over P™. Consider that the bundle

Hom(v},~}) is trivial based on the function f : P" x R — E where f(+x,t) is the
map that multiplies by ¢. Then, applying Lemma 4.3,

Tpn @12 Hom(v:, ) @ Hom(v), )

According to Lemma 1.10, this is isomorphic to the bundle whose fibers are direct
sums of maps from v} to v+ and maps from 7} to .. These, we see, are just maps
from v} to v+ @ v}, so it follows that

Tpn ® 1 = Hom(v,, v @ 7ph) = Hom(v,,, €),
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where ¢ is defined as in Lemma 4.2.
However, it follows from their being trivial bundles that

E=nd..Bn.
—_———
n+1
Thus, as above,
Tpn @1 = Hom(yL,n) @ ... ® Hom(yL,n).

n+1

Now, the fact that v} = Hom(v},n) proves that
Tpn @n%’y}t@...@’ﬁl.
—_———

n+1
Thus,
w(rpn) = w(rps ®n) = wly,) & ... ©w(y,) = (1+a)",
n+1
which along with the binomial theorem completes the proof. O

Lemma 4.5. A projective space P™ can be parallelizable only if n + 1 is a power
of 2.

Proof. In mod 2, (a + b)? = a® + b% + 2ab = a® + b%. Thus, (1 + a)zk =1+a*". If,
then, n 4+ 1 = 2%,

w(tpn) = (1+a)" ™' =1+a"" =1
(because Axiom 3.2 requires w,,,1(P") = 0). However, if n4+1 =b-2* for b > 1
odd, then

w(rpn) = (1+ an)b =1+b-a2 + e
and because 2% < n + 1 and b is odd, w(7pn) # 1. Thus, w(7p~) = 1 if and only if
n + 1 is a power of 2, and the lemma follows from Lemma 3.8. (]

Definition 4.6. Nowhere zero cross-sections si,..., s, are nowhere dependent
if for every b € B, s1(b), ..., sn(b) are linearly independent vectors. (The nowhere
zero condition becomes redundant here.)

This allows us to relate projective space to the existence of real division algebras.

Lemma 4.7. If there exists a bilinear product operation p : R™ x R™ — R™ without
zero divisors, then P"~' is parallelizable.

Proof. If by,...,b, are the standard basis vector of R™, then because p is with-
out zero divisors, we can take the formula v;(p(y,b1) = p(y,b;) to define a linear
transformation v; : R® — R™. Imagine there were a point = p(y,b;) such that
> Aivi(x) = 0. Then, p(y, >, Aib;) = 0,50 \; = 0 for every 7. Thus, v1(x), ..., v, (2)
are linearly independent for x # 0.

We then see that vy (x) = , so vg, ..., v, yield n—1 linearly independent vectors in
the (n—1) plane orthogonal to x, and thus (because this can be done at any x # 0),
n — 1 nowhere dependent cross-sections of the bundle Hom(vy._;,7%)
Now, define a function

= TPnfl .

f:P U X R 5 E(1pn-1)
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such that

f(£z, 2) sz+1 (+2)z

=1
f is a continuous map that takes fibers isomorphically between the trivial bundle
over P"~1! and 7pn-1. Thus, by Lemma 1.5, Tpn—1 is isomorphic to a trivial bundle,
thus trivial itself. O

It follows from Lemma 4.5 that for such a division algebra to exist, n must be a
power of 2. Now, we will prove one last fact about projective spaces.

Definition 4.8. A smooth map between manifolds is an immersion if the Jacobian
dfy : Ty M — T,y N is an injective mapping at every x € M.

Lemma 4.9. If P2" can be immersed on R"™, then n > ok+1 _ 1,

Proof. If there is an immersion f : p? R™, then f*7gn has 7. as a subbundle.
Then, by Lemma 1.12, f*Tgn = 7px @ 7. Thus, 7+ must have Stiefel-Whitney
classes of 0 for i > n—2*. However, since Tgn is evidently trivial, w(7pox Jw () = 1.
Given that
k k

w(Tpor) = (14+a)* TP =14a+a?

(as can be derived from Lemma 4.4), it follows that
witt)=14+a+a®+..+ a1,
Therefore, w;(7+) = 0 only if i > 2% — 1, and so it must be true that n > 2-2% —
for these previous conditions to be met. ([l
5. STIEFEL-WHITNEY NUMBERS AND COBORDISM CLASSES

Consider M to be a compact, smooth, n-dimensional manifold.

Definition 5.1. We can define M to have fundamental homology class uj; €
H,(M;Z) such that for any point z € M, the isomorphism p, : H,(M) —
H,(M,M — z) is such that p,(up) = p is one of the two possible generators
of H,(M,M — z;Z). We then call y, a local orientation at x.

For our purposes, we can change the coefficients so that uy € H,(M;Z/2).

Definition 5.2. For any cohomology class v € H"(M;Z/2), the Kronecker in-
dex, v[M] € Z/2, is defined as the output of v acting on ups, or (v, par).

Now, take nonnegative integers rq, ro, ..., 7, such that 2?21 r;i = n. For a vector
bundle &, each such set corresponds to a monomial class

w1 (&) w2 (€)™ - wn(§)™ € H"(B(£); Z/2).
Definition 5.3. A Stiefel-Whitney number of M is a value
wy (Tan)™ - wp(Tar) ™ [M] € Z)2
for a monomial as constructed above.

Two manifolds, M, M’, are considered to have the same Stiefel-Whitney numbers
when

Wit cwl [M] = wf ey (]

n
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for every suitable monomial. (That the classes are of the tangent bundle is implied
here.)

Deriving from Lemma 4.4, we can compute all Stiefel-Whitney numbers of a
projective space P"™. For example, if n is a power of 2, w(7pn) = 1+ a + a”, so
w}[P"] and w,[P™] are nonzero, but all other Stiefel-Whitney numbers are zero.

On the other hand, if n is off, i.e. n = 2k—1, then w(7p») = (14+a)?* = (1+a?)*,
so w;(tpn) = 0 for all odd j. However, every monomial, then, must contain some
factor of odd dimension. Thus, each of these monomials must multiply to zero, and
therefore every Stiefel-Whitney number of P™ must be odd.

We will now prove an important result involving Stiefel-Whitney numbers.

Theorem 5.4. If M is the boundary of a smooth compact (n+1)-manifold K, then
every Stiefel-Whitney number of M is zero.

Proof. We can construct a fundamental homology class pux € Hp1 (K, M;7Z/2)
such that the boundary homomorphism

0 Hyy (K, M) — H,(M)

maps pr to ppa. Then, by the definition of cohomology classes, we can note
that for any v € H"(M), (v,0ux) = (0v, px), where d denotes the coboundary
homomorphism from H"(M) to H"*1(K, M).

Consider now the bundle 75 restricted to M. 7 is clearly a subbundle of this
bundle. Further, because M represents the boundary of K, it can be seen that
Ti; = &, where € is a trivial line bundle. (Simply, the portion of 7|y not in
7p will be that which points out, away from the boundary.) Thus, it follows that
U)(TK|M) = U)(TM)

Taking ¢* as the restriction homomorphism, it follows from the exact sequence

HY(K) S g (M) 2 B (K, M)

that d(wi*---wir) = 0, as the class is kept the same through the restriction.
Therefore,

Wit (M) = () = (] w Op) = (Gl ) =

O

We will also state the converse; for a proof see [1].

Theorem 5.5. If all Stiefel-Whitney numbers of M are zero, then M is the bound-
ary of some smooth compact manifold.

For example, then projective space P™ is the boundary of some manifold for
every n odd.
We can introduce one more concept based on these results.

Definition 5.6. Smooth compact n-manifolds M;, Ms are said to share a cobor-
dism class is their disjoint union is the boundary of a smooth compact (n+1)-
manifold.

Thus, manifolds belong to the same cobordism class if and only if all of their
Stiefel-Whitney numbers are equal.



VECTOR BUNDLES AND STIEFEL-WHITNEY CLASSES 9

ACKNOWLEDGMENTS

It is a pleasure to thank my mentor, Catherine Li, for her support and direction
during the process of writing this paper. I would also like to thank the UChicago
REU program, especially Dr. Peter May, for giving me a setting in which to do so.

REFERENCES

[1] Marco Bernagozzi. Stiefel-Whitney Classes and Thom’s Theorem.
https://kurser.math.su.se/pluginfile.php/16103 /mod _folder/content /0/2017/2017_14_report.pdf
[2] J.W. Milnor and J.D. Stasheff. Characteristic Classes. Princeton University Press. 1974.



	1. Vector Bundles
	2. Projective Space
	3. Stiefel-Whitney Classes
	4. Projective Space and Stiefel-Whitney Classes
	5. Stiefel-Whitney Numbers and Cobordism Classes
	Acknowledgments
	References

