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Abstract. The Stone-Čech Compactification serves as one of the major the-

orems in Point-Set Topology dealing with the construction of the largest com-

pactification, denoted β(X), of a completely regular topological space X. This
compactification is characterized in the following: given any continuous (and

bounded) map f : X → C from X to C, a compact Hausdorff space, f extends
uniquely to another continuous map g : β(X) → C that equals f on X. In this

paper, we will reiterate and define relevant definitions and concepts to build

up to this theorem, utilizing and proving several other important theorems on
the way, such as the Tychonoff Theorem, Urysohn’s Lemma, and Urysohn’s

Metrization Theorem.
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1. Introduction and Motivation

This paper provides an introductory exploration of the topological principles
relevant to the understanding of the Stone-Čech Compactification.

A compactification of the topological space X is the imbedding of X into a
compact space called the compactification of X. A topological space can have
multiple compactifications, changing with respect to its endowed topology. How-
ever, we tend to focus our study of imbeddings from general topological spaces
into compact Hausdorff spaces as it is more interesting and useful. When studying
compactifications on the topological space X, a basic question is often asked:

If Y is a compactification of X and f is a continuous function defined on X,
what are the necessary condition(s) for there to exist a continuous extension of f
to its compactification Y ?
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As shown throughout the paper, there are many possible compactifications that
can be established on a topological space X. The Stone-Čech Compactification
denoted β(X), offers the maximal or largest compactification of X, preserving the
continuous extension on X. This compactification of X is unique up to homeo-
morphism and admits a unique continuous extension of f from X to Y . It serves,
somewhat, in contrast to the minimal compactification of X, namely the (Alexan-
droff) one-point compactification of X, given that X is not already a compact
Hausdorff space.

The Stone-Čech Compactification states that: Given any completely regular
space X, it admits a maximal compactification β(X) such that any continuous
map f : X → C from X into a compact Hausdorff space C extends uniquely to
another continuous map g : β(X) → C. The following diagram visually depicts
the relationship between spaces X,β(X), and C through the maps: iX , f, and g
where iX is the inclusion map from X into β(X).

X
f //

iX
��

C

β(X)

g

==

2. Topological Spaces and Homeomorphisms

This paper assumes intermediate knowledge of Point-Set Topology, including the
Subspace, Product, and Metric Topology, and properties of continuity, closed sets,
and compactness. We will reiterate and define a few basic concepts needed for our
understanding of the Stone-Čech Compactification.

Definition 2.1. Let X and Y be topological spaces; let the map f : X → Y be a
bijection. If f and f−1 are both continuous, we say f is a homeomorphism.

A homeomorphism is especially important in Topology as it provides a corre-
spondence between the topologies on X and Y . Any topological characteristic of
X that is determined by its topology can be effectively carried over to the corre-
sponding topological characteristic on Y through the function f , and vice versa.
Homeomorphisms preserve topological structures and two spaces being homeomor-
phic can be considered as topologically equivalent. It is also worth mentioning that
a homeomorphism is simultaneously an open and closed map.

We can generalize a homeomorphism by the following definition:

Definition 2.2. Let X and Y be topological spaces; let the map f : X → Y be an
injective continuous map. Let Z be the image of X under f , namely Z = f(X),
considered as a subspace of Y . Then f ′ : X → Z is bijective, and if f ′ is a
homeomorphism, we say that f is a topological imbedding of X into Y .

Note that restrictions of injective functions are injective and f ′ : X → f(X) is
trivially surjective by the definition of a function.

Example 2.3. However, a bijective continuous function need not be a homeomor-
phism. Let the function f be defined by f : Rℓ → R be defined by the identity map
i.e. f(x) = x. Here, Rℓ is the lower limit topology generated by the basis collection
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of all half-open intervals in the form of [a, b) for all a, b ∈ R such that a < b. It
follows that f is bijective and continuous, but f−1 is not continuous. To see why
f−1 is not continuous, let U = [a, b), which is open in Rℓ. However f(U) = [a, b) is
not open in R, as there exists no open set containing {a} contained inside f(U).

Homeomorphisms will play an important role in preserving topological proper-
ties. To reiterate, every property that can be defined in an arbitrary topological
space is preserved under homeomorphisms. A topological property is defined to be
a property such that it is preserved under a homeomorphism. Such properties are,
but not limited to, metrizability, compactness, and connectedness, some of which
we will touch on later.

3. Compactifications

To establish a compactification on a topological space X, we must first define the
following relevant details that are crucial to the understanding of compactifications
on spaces.

Definition 3.1. A topological space X is Hausdorff if for each pair of distinct
points x, y ∈ X, there exists disjoint neighborhoods Ux and Uy of x and y, respec-
tively.

Theorem 3.2. Every finite point set in a Hausdorff space X is closed.

Proof. It will suffice to show that every one-point set is closed. Let x0 ∈ X, then
for any y ∈ X such that y ̸= x0, there exist disjoint neighborhoods of x0 and y,
respectively. Since, no points of X is a limit point of {x0}, {x0} is closed, and the
finite union of closed sets is closed; thus the proof is complete. □

The condition that finite point sets are closed is called the T1 axiom. The T1

axiom can be rephrased as given two disjoint points, each point has a neighborhood
that doesn’t contain the other point. Hausdorff spaces are commonly called T2 or
T2 spaces. As shown above, every Hausdorff space is also T1. Hausdorff spaces will
be especially important as they allow us to obtain two disjoint open sets given any
pair of disjoint points. Furthermore, when we require our topological space to be a
compact Hausdorff space, we obtain many more useful properties. Compactness is
useful as it allows us to generalize and represent (possibly infinite) spaces in terms
of a finite collection of elements in the endowed topology. We will return to more
T-axioms in Section 4.

When considering topological spaces with given properties, it is very important
to ask the following question: Are these properties well-behaved with respect to
the subspaces and products? More specifically, is the topological property of a
topological space X preserved when considering a subspace A of X? In addition,
we can also ask if X and Y are two topological spaces with a certain topological
property, does X × Y necessarily inherit this property? These questions bring us
to the following proposition:

Proposition 3.3. Hausdorff spaces are well-behaved with respect to subspaces and
products.

Proof. Let X be a Hausdorff space and let Y be a subspace of X. Take x, y ∈ Y
such that x ̸= y. Then there exist disjoint open sets U and V of X containing x
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and y, respectively. The sets U ∩ Y and V ∩ Y serve as disjoint open sets in Y
containing x and y, respectively.

Let {Xα}α∈J be a collection of Hausdorff spaces and X =
∏

α∈J Xα. Take
x⃗ = (xα)α∈J and y⃗ = (yα)α∈J to be distinct points in X. Since x⃗ and y⃗ are
disjoint, there exists some index β such that xβ ̸= yβ . Choose the disjoint open

sets U and V of Xβ containing xβ and yβ , respectively, then π−1
β (U) and π−1

β (V )

are disjoint open sets of X containing x⃗ and y⃗, respectively. Here, πβ denotes
the projection map from X into its β-th component. It’s easy to see that πβ is a
continuous open map. □

Remark 3.4. The image of a Hausdorff space under a continuous function is not
necessarily Hausdorff. Let X = {0, 1} under the discrete topology and Y = {0, 1}
under the indiscrete topology. Let f : X → Y be the map sending 0 to 0 and 1 to
1. f is continuous and bijective (as you can check), but f(X) is not a Hausdorff
space because there does not exist disjoint open sets in Y containing {0} and {1},
respectively.

Definition 3.5. A space X is locally compact at x if there exists a compact sub-
space C of X that contains a neighborhood U of x. If X is locally compact at every
point of X, we say that X is locally compact.

It’s easy to see that compact spaces are automatically locally compact, as for each
point of x ∈ X, X serves as the compact subspace containing any neighborhood of
x.

Example 3.6. The space Rn is locally compact. For each x⃗ ∈ Rn, there exists
a compact subspace C = [a1, b1] × · · · × [an, bn] containing the basis element B =
(a1, b1)× · · · × (an, bn), which contains x.

Example 3.7. Consider Rω, the countably infinite product of R. Then Rω is not
locally compact. Suppose it is locally compact and take x⃗ ∈ Rω. Then there exists
a compact subspace C that contains a neighborhood of x. Consider the following
basis element in the product topology:

B = (a1, b1)× · · · × (an, bn)× R× · · · × R× . . .

Taking the closure of B, we obtain the following:

B̄ = [a1, b1]× · · · × [an, bn]× R× · · · × R× . . .

Since B̄ is closed and contained in a compact subspace C, B̄ is compact, which is
a clear contradiction.

Definition 3.8. If Y is a compact Hausdorff space and X is a dense subspace of Y ,
then Y is said to be a compactification of X. If {Y \X} consists of a single point,
then Y is the one-point compactification of X. The point ∞ is commonly used to
denote this single point and altogether, we have the compactification Y = X∪{∞}.

Theorem 3.9. Let X be a topological space. Then X is locally compact Hausdorff
space if and only if there exists a space Y satisfying the following conditions:
(1) X is a subspace of Y .
(2) The set {Y \X} consists of a single point.
(3) Y is a compact Hausdorff space.
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The compactification Y of X is uniquely constructed up to homeomorphism, i.e.
if Y1 and Y2 are two one-point compactifications of X, there exists a homeomor-
phism f between Y1 and Y2.

Proof. Refer to [1] Chapter 3: Section 29 for the full proof. □

Corollary 3.10. Let X be a locally compact Hausdorff space. Take a subspace A
of X. If A is open or closed in X, then A is locally compact.

Remark 3.11. It follows from Theorem 3.9 and Corollary 3.10 that every locally
compact Hausdorff space is an open subspace or homeomorphic to an open subspace
of a compact Hausdorff space through the one-point compactification.

Example 3.12. The following provides a visual example of a compactification on
a topological space. Essentially, compactifications turn our initial topological space
X into a nicer space Y with more useful properties. It is also easy to see that
X ⊂ Y and X̄ = Y .

YX

Example 3.13. A simple compactification of (0, 1) is the closed unit interval [0, 1]
constructed from adding {0} and {1} via the two-point compactification.

10 0 1

We shall see more examples of compactifications of (0, 1) in the upcoming section
when we introduce multiple ways to induce compactifications on topological spaces.

4. Countability and Separation Axioms

In this section, we will introduce the countability and separation axioms. These
concepts or conditions help give important properties of topological spaces. Impos-
ing these on a topological space allows one to prove stronger theorems in Topology.
As we impose more conditions, we effectively restrict the overall range of topological
spaces to which these theorems can be applied to. The countability axioms provide
an important condition in Uysohn’s Metrization Theorem and are necessary for fu-
ture discussion of the conditions for a topological space to be metrizable. Similarly,
the separation axioms are essential for Urysohn’s Lemma and for constructing con-
tinuous functions that separate disjoint sets in a topological space. The separation
axioms are commonly denoted by the letter T with a numerical subscript, indicat-
ing the strength of the axiom. The larger the numerical subscript the stronger the
properties of the space. The notation for the separation axioms is derived from the
German word: ”Trennungsaxiom” or ”separation axiom”.

We have seen T1 and T2 spaces in previous sections, and now introduce new
topological spaces with increasingly useful properties.
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Definition 4.1. A space X has a countable basis at x if there is a countable col-
lection denoted B of neighborhoods of x such that each neighborhood of x contains
at least one of the element of B. If X has a countable basis for all its points, we
say that X is first-countable.

Definition 4.2. If a space X has a countable basis for its topology, then we say
that X is second-countable.

Note that all second-countable spaces are first-countable because the countable
basis for its topology serves as the countable basis for each point x ∈ X. It’s
important to observe that first-countable and second-countable spaces are also well-
behaved with respect to the subspaces and products.

Example 4.3. Rn with the standard order topology admits a countable basis. It
suffices to show that R admits a countable basis. Since Q is countable, then the
collection:

B = {(r, s) | r, s ∈ Q}
serves as a countable basis as every point of R is contained in an interval of rational
endpoints, and the intersection of two basis elements contains another basis element.

Definition 4.4. Suppose one point sets are closed in X. Then X is regular or T3 if
for each pair of a point x ∈ X and closed set B disjoint from x, there exist disjoint
open sets containing x and B, respectively. Similarly, X is normal or T4 if for each
pair of disjoint closed sets A and B, there exist disjoint open sets containing A and
B, respectively.

It’s easy to see that normal spaces are regular and regular spaces are Hausdorff.

Lemma 4.5. Assume X is a topological space and one-point sets in X are closed,
then:
(1) X is regular if and only if given x ∈ X and a neighborhood U of x, there exists
a neighborhood V of x such that V̄ ⊂ U .
(2) X is normal if and only if given a closed set A and an open set U containing
A, there exists a open set V containing A such that V̄ ⊂ U .

Regular spaces have many useful properties such as subspaces of regular spaces
are regular and products of regular spaces are regular. However, these properties
do not necessarily hold for all normal spaces. Therefore, we can impose another
stronger condition to guarantee the hereditary property with the following:

Definition 4.6. X is said to be completely normal or T5 if every subspace of X is
normal.

It’s trivial to see that completely normal spaces are normal, as X is, in fact, a
subspace of itself.

Example 4.7. Every metrizable space and regular space equipped with a countable
basis is a completely normal space. Note that every metrizable space and every
regular space with a countable basis are normal, and since both types of spaces are
well-behaved with respect to subspaces, their subspaces are normal. In Section 6,
we prove that metrizable spaces are actually perfectly normal, a stronger condition
than complete normality.

Proposition 4.8. If X is compact Hausdorff, then X is normal.
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With the above properties on normal spaces established, we can now begin our
first important theorem in topology called the Urysohn Lemma.

Theorem 4.9. (Urysohn Lemma). Let X be a normal space, A and B be
disjoint closed subsets of X, and [a, b] be a closed interval in the real line. Then
there exists a continuous map:

f : X → [a, b]

such that f(x) = a,∀x ∈ A and f(y) = b,∀y ∈ B.

Proof. Refer to [1] Chapter 4: Section 33 for the full proof. □

The Urysohn Lemma proves the existence and constructs a continuous function
on a normal space X, which lets us define a new way of separating spaces as shown
in the following definition:

Definition 4.10. Let X be a topological space. If A and B are two subsets of X
and if there exists a continuous function f : X → [0, 1] such that f(A) = {0} and
f(B) = {1}, then we say that A and B can be separated by a continuous function.

However, we can strengthen the Urysohn Lemma by proving the converse. If we
have a continuous function f : X → [0, 1] that separates the disjoint closed sets A
and B of X, then f−1([0, 1

2 )) and f−1(( 12 , 1]) are disjoint open sets containing A
and B, respectively.

The Urysohn Lemma establishes yet another equivalent definition of a normal
space. We can now summarize the expanded conditions for a topological space to
be considered normal.

Definition 4.11. A topological space X is said to be normal if one of the following
equivalent cases holds:
(1) For each pair of disjoint closed sets A and B, there exist disjoint open sets
containing A and B, respectively, as stated in Definition 4.4.
(2) Given a closed set A and an open set U containing A, there exists a open set V
containing A such that V̄ ⊂ U , as stated in (2) of Lemma 4.5.
(3) If A and B are two subsets of X and if there exists a continuous function f :
X → [0, 1] such that f(A) = {0} and f(B) = {1}, as stated in Definition 4.10.

Definition 4.12. X is completely regular or Tychonoff if one-point sets are closed
in X and for each point x and closed set A not containing x, there is a continuous
function: f : X → [0, 1] such that f(x) = 1 and f(A) = {0}

By Urysohn Lemma, we have that normal spaces are completely regular. And
completely regular spaces are regular, since the preimage of [0, 1

2 ) and (12 , 1] under
the continuous function f are disjoint open sets containing the A and x, respectively.
It’s important to note that the choices of the values 0 and 1 and the order for the
assignment of values in the image of f are arbitrary.

Completely regular spaces will be essential in the later construction of the Stone-
Čech Compactification. They also admit well-behaved properties with respect to
subspaces and products, similar to regular spaces, but unlike normal spaces. Be-
cause of its relationship to regular and normal spaces, completely regular spaces
are denoted as the T3 1

2
axiom.

To reiterate, we have the following separation axioms, listed in increasing order
with respect to their strength: T1, T2 (Hausdorff), T3 (regular), T3 1

2
(completely
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regular / Tychonoff), T4 (normal), and T5 (completely normal).

Now, we begin another important theorem that establishes the necessary con-
ditions for a topological space to be metrizable. A topological space X is said to
be metrizable if and only if there exists a metric d : X ×X → [0,∞) such that d
induces the endowed topology on X.

Theorem 4.13. (Urysohn Metrization Theorem). Every regular space X with
a countable basis is metrizable.

Proof. Refer to [1] Chapter 4: Section 34 for the full proof. □

Here, it’s worth noting that, showing metrizability is equivalent to imbedding
X into a metrizable space Y . Since metrizability is defined in terms of a space’s
topology, it is preserved under homeomorphisms.

Definition 4.14. X is locally metrizable if each x ∈ X has a neighborhood Ux

that is metrizable in the subspace topology.

Proposition 4.15. If X is compact Hausdorff and locally metrizable, then X is
metrizable.

Proof. Let x ∈ X and Ux be the metrizable neighborhood of x. By Lemma 4.5,
there exists a neighborhood Vx of x such that Vx ⊂ Ux. Vx is compact and thus
admits a countable basis, as every compact metrizable space admits a countable
basis. Trivially, Vx also has a countable basis since Vx ⊂ Vx. Then the collection
{Vx}x∈X is an open cover of the compact Hausdorff space X, and thus admits a
finite subcover {Vxi

}Ni=1. The finite collection of countable bases for each Vxi
serves

as a countable basis for X. It follows from Urysohn Metrization Theorem that X
is metrizable. □

Proposition 4.16. Let X be a compact Hausdorff space. Then X is metrizable if
and only if X has a countable basis.

Proof. Suppose X is metrizable, then for every n ∈ N, define {Bd(xn,
1
n )}x∈X ,

where d is the metric on X. This collection is an open cover for X and, thus, admits
a finite subcover. Let x1, . . . xNn

be the centers of the elements in this finite sub-

cover, which can be expressed as {Bd(xn,i,
1
n )}

Nn
i=1. Let B =

⋃
n∈N{Bd(xn,i,

1
n )}

Nn
i=1.

It is clear that B is a countable basis for X.
Conversely, suppose X has a countable basis. By Proposition 4.8, X is normal

and thus regular. By Urysohn Metrization Theorem, X is metrizable. □

Proposition 4.17. Let X be a locally compact Hausdorff space. Then X is com-
pletely regular.

Proof. Let Y be the one-point compactification of X. Y is compact Hausdorff, thus
normal by Proposition 4.8, and also completely regular. Since completely regular
spaces are well-behaved with respect to subspaces, it follows that X is completely
regular. □

Theorem 4.18. (Imbedding Theorem). Let X be a topological space where one-
point sets are closed. Let {fα}α∈J be an indexed collection of continuous functions
fα : X → R satisfying the following condition: for each x ∈ X and for each
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neighborhood Ux of x, there exists an index α ∈ J such that fα(x) > 0 and f(X \
Ux) = {0}. Then the following function F : X → RJ defined by:

F (x) = (fα(x))α∈J

is an imbedding of X into RJ .

Proof. Consider RJ endowed with the product topology. We can define a map
F : X → RJ as follows:

F (x) = (f1(x), f2(x), . . . , fn(x), . . .)

Firstly, F is continuous because each of its components, fn, is continuous, and RJ

is equipped with the product topology. Furthermore, F is an injective map because
given any x ̸= y, we have that, by hypothesis, there exists an index α ∈ J such
that fα(x) > 0 and fα(y) = 0 since the set {y} is closed.

It remains to show that F−1 is continuous. Let Z = F (X) ⊂ RJ . Take an open
set U in X, then it suffices to show that F (U) is open in RJ . Choose z0 ∈ F (U),
then there exists x0 ∈ X such that F (x0) = z0. By the hypothesis assumption,
there exists an index N ∈ J for which fN (x0) > 0 and fN (X \ U) = {0}. Take the
open set (0,∞) and define:

V = π−1
N ((0,∞))

Since V is open in RJ , W = V ∩ Z is open in Z by definition of the subspace
topology.

Now we want to show the following relations: z0 ∈ W and W ⊂ F (U). To start,
z0 ∈ V because

πN (z0) = πN (F (x0)) = fN (x0) > 0

and trivially z0 ∈ Z, therefore z0 ∈ W .
Lastly, W ⊂ F (U). Choose y ∈ W , then y = F (x) for some x ∈ X. Since y ∈ V ,

we have that πN (y) ∈ (0,∞) and

πN (y) = πN (F (x)) = fN (x)

Since fn(x) > 0, it follows that x ∈ U because fN vanishes outside of U . Al-
together, we have y = F (x) ⊂ F (U). Therefore F−1 is continuous and F is a
homeomorphism, imbedding X into RJ . □

5. The Tychonoff Theorem and the Stone-Čech Compactification

Here, we describe and prove two very important theorems in Topology with
extensive use in mathematical analysis, geometry, and topology.

Before we begin, we need to establish properties of a maximal set with respect
to certain properties. This lemma utilizes results from Zorn’s Lemma.

Lemma 5.1. Let X be a set and D be a collection of subsets of X that is maximal
with respect to the finite intersection property. Then:

(a) Any finite intersection of elements in D is an element in D
(b) If A is a subset of X, that intersects ever element of D, then A is an element
of D.

Theorem 5.2. (The Tychonoff Theorem) The arbitrary product of compact
spaces is compact with respect to the product topology.
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Proof. Let:

X =
∏
α∈J

Xα

where each Xα is compact and J is an indexing set for an arbitrary collection.
Proving the compactness of X is equivalent to showing that every collection C of
closed sets of X with the finite intersection property has a nonempty intersection.
Let A be an arbitrary collection of subsets of X having the finite intersection
property. We will show that:

(5.3)
⋂
A∈A

Ā ̸= ϕ

Choose a collection D of subsets of X that is maximal with respect to the finite
intersection property and D ⊃ A. Showing

⋂
D∈D D̄ is nonempty will prove 5.3

holds
⋂

D∈D D̄ ⊂
⋂

A∈A Ā.
Fix α ∈ J , then let πα : X → Xα be the projection map from X into its α-th

component. Since D has the finite intersection property, the following collection

{πα(D) | D ∈ D}

also inherits this property as
⋂N

i=1 Di is nonempty and πα

(⋂N
i=1 Di

)
⊂

⋂N
i=1 πα(Di)

for every N ∈ N. Since Xα is compact, we can choose a xα ∈ Xα such that:

xα ∈
⋂

D∈D
πα(D)

Let x⃗ = (xα)α∈J . It suffices to show that x⃗ ∈ D̄ for every D ∈ D.
Since X has the product topology, x⃗ is contained in some subbasis element,

π−1
β (Uβ), where Uβ is a neighborhood of xβ . From our above choice of xβ , there

exists yβ ∈ Uβ ∩ πα(D), thus y⃗ ∈ π−1
β (Uβ) ∩D for every D ∈ D.

By Lemma 5.1(b), we have that every subbasis element containing x⃗ is an element
in D. And from (a) of Lemma 5.1(a), every basis element containing x⃗ is also an
element in D, since every basis element is formed through finite intersections of
subbasis elements. Since D has the finite intersection property, every basis element,
and thus every open set, containing x⃗ intersects every element of D. Altogether,
x⃗ ∈ D̄ for each D ∈ D and the proof is complete. □

The Tychonoff Theorem will be very important in the construction of a topo-
logical imbedding function that induces a compactification in the Stone-Čech Com-
pactification, as constructed later in this section. Here, we reiterate the generalized
definition of a compactification of a topological space.

Definition 5.4. A compactification of the topological space X is a compact Haus-
dorff space Y such that X is a dense subspace of Y .

It is important to note that compactifications are not necessarily uniquely de-
termined by the initial topological space X.

Definition 5.5. Two compactifications Y1 and Y2 are equivalent if there exists a
homeomorphism f : Y1 → Y2 such that f equals the identity of X.

Example 5.6. Two compactifications can be homeomorphic without equaling the
identity on X. Consider the following example: Let X = [0, 1] × {0, 1}. Then the
following are two compactifications of X:

Z1 = (S1 × {0}) ∪ ([0, 1]× {1})
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Z2 = ([0, 1]× {0}) ∪ (S1 × {1})

A homeomorphism exists through the map f : Z1 → Z2 defined by f(x, y) =
x× (X \ y) but trivially f does not equal the identity on X.

Remark 5.7. X has a compactification Y if and only if X is completely regular.
Observe that if Y is a compact Hausdorff space, it is completely regular, so X is,
in fact, completely regular.

Before we prove the Stone-Čech Compactification, we must first establish a result
that expands the possible compactifications on a topological space by allowing
compactifications to arise from imbeddings into another topological space.

Lemma 5.8. Let X be a topological space. Suppose that h : X → Z is an imbedding
of X into a compact Hausdorff space Z. Then there exists a compactification Y of X
such that there is an imbedding H : Y → Z that equals h on X. This compactifica-
tion is uniquely determined up to equivalence and we say that this compactification
Y of X is induced by the imbedding h.

Now after the establishment of compactifications induced by imbeddings, we can
return to the discussion of our previous example of compactifications on the open
unit interval with the following two examples:

Example 5.9. Consider S1 = {(x, y) | x2 + y2 = 1}, or the unit circle in R2, and
define the map f : (0, 1) → S1 by:

f(t) = (cos(2πt), sin(2πt))

Then the compactification induced by the imbedding f is equivalent to the one-
point compactification of X because f adds the one-point, namely (1, 0), to the
punctured unit circle. The following diagram provides a visual display of this com-
pactification process:

10

S1

f

Example 5.10. Consider the function h : (0, 1) → [−1, 1]2 defined by:

h(x) = x× sin
( 1

x

)
This graph is commonly referred to as the topologist’s sine curve. Let Y = h(X).

This compactification of X is obtained by adding a singular point and an entire
vertical line on the y-axis from −1 to 1. Explicitly, this compactification can be
expressed as the following:

Y = h(X) =
{
x× sin

( 1

x

)}
∪ (1, sin(1)) ∪ {(0, y) | y ∈ [−1, 1]}
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0.5 1

−1

−0.5

0.5

1

h(X)

As shown above, compactifications can arise from the addition of a singular point
(Example 5.9) or even by adding unaccountably many points (Example 5.10).

Now, we are ready to explore more compactifications that serve as continuous
extensions for a continuous function defined on our initial space. Here, we reiterate
and go back to the initial question we asked in Section 1:

If Y is a compactification of X and f is a continuous function defined on X,
what are the necessary conditions for there to exist a continuous extension of f to
its compactification Y ?

The following example will provide some additional insight into the motivation
behind the Stone-Čech Compactification, which, in some sense, serves as the max-
imal or largest compactification of a topological space X, preserving a continuous
extension of a continuous function defined on X.

Example 5.11. Using the map f in Example 5.9, f is a bounded continuous real-
valued function and can be continuously extended to its compactification if and
only if the following limits exist and are equal:

lim
x→0+

f(x) = lim
x→1−

f(x)

Theorem 5.12. (Stone-Čech Compactification) Let X be a completely regular
topological space. Then there exists a compactification Y of X such that every
bounded continuous function f : X → R extends uniquely to a continuous map
g : Y → R.

Proof. Let {fα}α∈J be the indexed collection of all bounded continuous real-valued
functions on X. Since each fα is bounded, for each α ∈ J , define the following
closed interval Iα:

Iα = [inf fα(X), sup fα(X)]

Define the map h : X →
∏

α∈J Iα by h(x) = (fα(x))α∈J . By Tychonoff Theorem,∏
α∈J Iα is compact.
To show that h is an imbedding, fix x ∈ X and fix a neighborhood Ux of x. Let

A = X\Ux, which is closed. SinceX is completely regular, there exists a continuous
function fβ : X → [0, 1] such that f(x) = 1 > 0 and f(A) = f(X \ Ux) = {0}.
Since fβ is trivially bounded, it is, therefore, an element of the collection {fα}α∈J .
It follows from the Imbedding Theorem that h is an imbedding of X.
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Let Y be the compactification of X induced by the imbedding h. Then by
Lemma 5.8 there exists an imbedding H : Y →

∏
α∈J Iα that equals h on X.

Now, given a bounded function fβ , we must show it extends uniquely to Y . Let
πβ :

∏
α∈J Iα → Iβ be the projection map of

∏
α∈J Iα to its β-th component. Then

g = πβ ◦H is our desired continuous extension of fβ . g also equals fβ on X as:

πβ(H(x)) = πβ(h(x)) = πβ

(
{fα}α∈J

)
= fβ(x)

Altogether, g is our desired continuous extension of f from X to its compactifi-
cation Y .

The uniqueness of this continuous extension can be shown in the following gen-
eralized lemma. □

Lemma 5.13. Let X be a topological space and f : X → Z be a continuous map
from X into a Hausdorff space Z. Then f admits at most one continuous extension,
namely g : X̄ → Z.

Proof. Suppose g and g′ are two continuous extensions ofX such that g, g′ : X̄ → Z.
Choose x such that g(x) ̸= g′(x), since there exists at least one x ∈ X because
g ̸= g′. Then there exist disjoint open sets U and U ′ containing the points g(x) and
g′(x), respectively. By continuity of g and g′, we have a neighborhood V of x, such
that g(V ) ⊂ U and g(V ) ⊂ U ′. V intersects X at some point y. Then g(y) ∈ U and
g′(y) ∈ U ′. But since y ∈ X, we have that g(y) = f(y) = g′(y), which contradicts
the disjointedness of the open sets U and U ′. □

This compactification satisfying the conditions stated in Theorem 5.12 is called
the Stone-Čech Compactification of X, denoted by β(X). The following theorem
shows we can effectively replace the image R under our continuous function f with
a compact Hausdorff space C.

Theorem 5.14. Let X be a completely regular space and β(X) be its Stone-Čech
Compactification. Given any continuous map, f : X → C of X into a compact
Hausdorff space C, f extends uniquely to a continuous map g : β(X) → C.

Proof. By Proposition 4.8, C is normal. C is also completely regular, and thus
homeomorphic to a subset of [0, 1]J ⊂ RJ for some J . For simplicity, let us assume
that C ⊂ [0, 1]J . Observe that for each component function fα of f , fα is a
bounded continuous real-valued function defined on X. Because β(X) is the Stone-
Čech Compactification of X, we can continuously extend each fα to the continuous
map gα : β(X) → R. Now define the map g : β(X) → RJ by g(x) = (gα(x))α∈J .
Then g is continuous because each of its components gα is continuous and RJ is
endowed with the product topology.

Finally, to replace the range of g with C, we use the fact that g is continuous
and C is a compact Hausdorff space. Then the following relationship holds:

g(β(X)) = g(X̄) ⊂ g(X) = f(X) ⊂ C̄ = C

□

Proposition 5.15. Let X be a completely regular space. If β(X)1 and β(X)2
are two Stone-Čech Compactifications of X, then the compactifications β(X)1 and
β(X)2 are equivalent, which implies that the Stone-Čech Compactification of X is
unique up to homeomorphism.
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Proof. Let i2 : X → β(X)2 be the inclusion map from X into β(X)2. Since i2 is a
continuous map from X into a compact Hausdorff space β(X)2, by Theorem 5.14,
i2 admits an extension to a continuous map g2 : β(X)1 → β(X)2. Define i1 and g1
similarly. Consider g1 ◦ g2 : β(X)1 → β(X)1 which sends x ∈ X to g1(g2(x)) = x.
Observe that g1 ◦ g2 is a continuous extension of the identity map IdX : X → X.
However, Idβ(X)1 is also a continuous extension of IdX . By Lemma 5.13, the com-
posite map g1 ◦ g2 is equal to the identity map Idβ(X)1 . Similarly, we have that
the composite map g2 ◦ g1 is equal to the identity map Idβ(X)2 . In summary, we
have that g1 ◦ g2 = Idβ(X)1 and g2 ◦ g1 = Idβ(X)2 . Therefore, β(X)1 and β(X)2 are
homeomorphic and equal the identity on X, thus they are equivalent. The following
diagram displays the relationship between the two Stone-Čech Compactifications
of X and its inclusion and continuous maps:

X ⊂

i2

��

β(X)1

g2zz
β(X)2

X ⊂

i1

��

β(X)2

g1zz
β(X)1

□

Corollary 5.16. Given an arbitrary compactification Y of X, there exists a con-
tinuous surjective closed map h : β(X) → Y , that equals the identity on X.

Proof. Let iX : X → Y be the inclusion map from X into Y . Since Y is a compact
Hausdorff space, we can compactify X via the Stone-Čech Compactification. Then
there exists the following continuous extension h : β(X) → Y . By definition, if
x ∈ X, then h(x) = iX(x) = x, which is precisely the identity on X.

Now we need to show that h is a closed surjective map. Take a closed set C
of β(X), then C is compact, and thus g(C) is compact. Since Y is a compact
Hausdorff space, g(C) is closed. To prove surjectivity, we note that h equals iX on

X and Y = iX(X) ⊂ h(β(X)) ⊂ Y . Since β(X) is compact, h(β(X)) is compact

and, thus closed. Therefore h(β(X)) = h(β(X)) = Y . □

6. Implications of Conditions on Topological Spaces

In this section, we will visually summarize the relationships between the sepa-
ration axioms, as well as the properties endowed on them. Through this paper,
we have established most of the separation axioms notably: T1, T2 (Hausdorff), T3

(regular), T3 1
2
(completely regular), T4 (normal), and T5 (completely normal). We

have additionally introduced and expanded on many characteristics and properties
these topological spaces might be endowed with such as, but not limited to, being:
second-countable, metrizable (and locally), and compact (and locally). Here, we
will introduce new definitions, reiterate previous relationships between topological
spaces, as well as prove some new additional theorems.

Definition 6.1. X is perfectly normal or T6 if X is normal and every closed set in
X is a Gδ set. A set A is a Gδ set if A is the intersection of a countable collection
of open sets of X.
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Lemma 6.2. Let X be a normal space and A be a subset of X. Then there exists a
continuous function f : X → [0, 1] such that f(x) = 0 for each x ∈ A and f(x) > 0
for each x /∈ A if and only if A is a Gδ set.

Theorem 6.3. If X is perfectly normal, then X is completely normal.

Proof. Suppose A and B are separated sets in X. Then there exists the following
continuous functions: f, g : X → [0, 1] such that f(Ā) = g(B̄) = 0 and f(X \Ā) > 0
and g(X \ B̄) > 0 by Lemma 6.2 because Ā and B̄ are closed, thus Gδ sets. Let
h : X → [−1, 1] be defined by h = f − g. If x ∈ Ā, then x /∈ B, which implies
that h(x) < 0. Similarly, if x ∈ B̄, then x /∈ A, which implies that h(x) > 0. Take
the open rays (0,∞) and (−∞, 0), then h−1(0,∞) and h−1(−∞, 0) are disjoint
open sets containing A and B, respectively; thus every pair of separated sets yields
disjoint open sets containing them.

Normality is shown in the following lemma. □

Lemma 6.4. X is completely normal if and only if for every pair A and B of
separated sets, there exist disjoint open sets containing them.

Proof. Suppose X is completely normal, and let A and B be separated sets in X.
Then consider the following subspace S = X \ (Ā ∩ B̄). S is normal as it is a
subspace of a completely normal space. Since Ā and B̄ are closed in X, A′ = Ā∩S
and B′ = B̄ ∩ S are closed in S, through the subspace topology. Then there exist
distinct neighborhoods U and V of A and B, respectively. Because S is open in X,
it follows that U and V are open sets in X. Now, it remains to show that A ⊂ U
and B ⊂ V . Let x ∈ A, then x /∈ B̄, since A and B are separated sets. It follows
that x ∈ A′ ⊂ U because x ∈ Ā and x /∈ Ā ∩ B̄. Similarly, B ⊂ V . Altogether, U
and V are disjoint neighborhoods of A and B, respectively.

Conversely, let Y be a subspace of X and take C and D to be closed sets in Y .
Then C ′ = C ∩ Y and D′ = D ∩ Y , where C ′ and D′ are disjoint closed sets in
X, thus separated. From the hypothesis, there exist disjoint open sets U and V
containing C ′ and D′, respectively. By definition of subspace topology, U ∩ Y and
V ∩ Y are disjoint open sets containing C and D, respectively, thus Y is normal,
and X is completely normal. □

Theorem 6.5. Every metrizable space is perfectly normal.

Proof. Let X be a metrizable space. X is normal because every metrizable space
is normal. Take a closed set A in X and choose a point x′ ∈ X \ A, then {x′} is a
closed set. Let B = {x′}. The following function satisfies the continuous function
in Urysohn’s Lemma:

f(x) =
d(x,A)

d(x,A) + d(x,B)

It’s easy to observe that f(x) = 0 for every x ∈ A, f(x) = 1 for x ∈ B, and
f(x) > 0 for every x /∈ A ∪B. Thus, f vanishes precisely on A. By Lemma 6.2, A
is a Gδ set. Since X is normal and every closed set A is a Gδ set, we have that X
is perfectly normal. □

In Theorem 6.3 and Theorem 6.5, we have actually strengthened the fact every
metrizable space is completely normal, which was previously stated in Example
4.7. Because of Theorem 6.3, perfectly normal spaces are given the notation of
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the T6 axiom to show their increased strength compared to completely normal or
T5 spaces. Moreover, here and in the following diagram, we heavily emphasize the
importance and usefulness of a topological space being metrizable. Future studies
of topology will bring you to the results of the Nagata-Smirnov Metrization Theo-
rem, which is not mentioned in this paper but is located in [1] Chapter 6: Section 40.

The subsequent diagram presents a basic overview of the conditions on a topolog-
ical space along with their corresponding implications. Each labeled box represents
a topological space. The non-labeled arrows connecting different boxes denote the
automatic implication of each topological space. The annotation associated with
certain arrows indicates the necessary condition(s) that the initial topological space
must possess in order for the implication to automatically follow. Throughout this
paper, we have proved all the following implications:

T6 T5

Metrizable

T4 T3 1
2

T3 T2

Compact

Locally compact

Countable basis

Locally metrizable and compact
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