
A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD
START

EMET HIRSCH

Abstract. In this paper we present an exposition on a 2016 result [LL18] connecting
geometric definitions of dimension for sets in Rd to algorithmic definitions of dimension for
points within those sets. To do so we assume zero familiarity with the theory of computation,
giving an overview of all the preliminaries, to make the result accessible to those with a
background purely in geometry.

Contents

1. Introduction 1
2. Turing Machines 2
3. Universal Turing Machines, Undecidability, and Oracles 7
4. K-Complexity and The Real Numbers 12
5. The Point-to-Set Principles 16
6. Appendix 21
References 29

1. Introduction

This is an expository paper of [LL18], which presents a result connecting geometric measure
theory and the theory of computation. To make the result accessible to those with no
background in the theory of computation, we give an expedited presentation of the necessary
material to understand the result and its proof, using a little rigor and describing common
intuitions.

• The first section is intended to convey what it means mathematically to ”compute”
something, and giving an intuitive picture of the decidable problems.

• The second section goes over the general structure of decision problems, going over
binary Turing machines, the halting problem, and oracles.

• The third section gives the combinatorial properties of K-complexity necessary for
the main result, constructs the appropriate notions for real numbers, and points out
the connection between real numbers and oracles.

Then we present the motivating result. It is recommended to skip sections if one is already
familiar with their content. Certain proofs, definitions, and examples, which are not useful for
conveying intuition, but may be helpful to skeptical readers, are presented in the appendix.
The content of the appendix is otherwise superfluous.

Finally, given a set of symbols Σ, we call a finite sequence of elements of Σ a string.
For example, every English word is a string of the English alphabet symbols. The set of

Date: September 13, 2023.
1

2 EMET HIRSCH

all strings over a particular set Σ is denoted Σ∗. Note that the string of length zero, or
the null string, is a member of Σ∗. This definition is a practical necessity to shorten other
definitions.

2. Turing Machines

It is natural to ask what it means on a rigorous level to compute something, or for a
result to be computable. On an intuitive level, a set is ”computable” if one can find a
completely deterministic process that takes as input a potential element, and outputs ”yes”
if that element is a member, and ”no” otherwise. We then might attempt to formalize
”deterministic process” by considering how humans perform reasoning, especially when that
reasoning is precise and explicit. In general, one needs fixed starting and ending conditions,
a place to record information (such as a piece of paper), and a list of rules by which to
manipulate existing information.

This exactly corresponds to the formal definition of a Turing machine, which we present
following Sipser [Sip13]:

Definition 2.1. A Turing machine is a 7-tuple (Q,Σ,Γ, δ, qstart, qaccept, qreject) where Q is a
finite set of states, Σ is a finite set of symbols which are used to encode inputs and do not
contain the special symbol ⊔, Γ is a finite set of symbols which contains both Σ and ⊔, δ is
a function Q × Γ → Q × Γ×{left, right} called the transition function, qstart is a special
initial state in Q, and qaccept, qreject are special end states, distinct from one another, which
accept and reject the input respectively, also of course in Q.

To understand this definition, it is important to remember that in defining a Turing
machine, we are attempting to make rigorous the idea of ”algorithm,” and algorithms have
steps; a Turing machine specifies the rules of an iterative process. What actually happens
in this process?

We start with an infinite (shaped like N) set of discrete ”cells.” A cell is simply a place
to store an element of Γ; it is useful to imagine an infinite line of squares, on which one has
inscribed numbers or letters. This line as a whole is referred to as the tape. Initially, nearly
all of the cells are empty, which we formally denote as having ⊔, the ”blank symbol.” The
only nonblank symbols are consecutive, the first of them starts at position 1, and they are
all elements of Σ. These symbols are the input; this is why we mandate that Σ does not
contain ⊔, so that there is no ambiguity to the machine about where the input ends.

Given the starting tape, at position 1 is the head of the Turing machine, which begins,
naturally, in the state qstart. Then the iterative process begins: at each step, we apply the
transition function δ, taking as Q-input the current state of the machine head, and Γ-input
the symbol at its position. Its Q-output becomes the new state of the machine, its Γ-output
is written on its current position, replacing the previous symbol, and the output in {left,
right} causes the head to move one cell in the respective position. To understand this
process, it is useful to imagine the Turing machine head as animate: one can imagine a
floating mouth, or claw, reading off a case-based list of instructions and passing across a line
of squares remembering only its current state.

If the machine head ever enters the state qaccept or qreject when given a particular input,
we say it respectively accepts or rejects the input. This is quite clearly well-defined, since
on a given input, each state is determined from the previous one by a function, and is thus
uniquely defined. It is worthwhile to consider how this definition corresponds to the familiar

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 3

process of computation; the transition function and states are the algorithm itself, while the
tape is used to record information.

Given a set A, we call a subset of A a language. While this term seems strange for a
subset of N, we often want to consider subsets of Σ∗, with Σ including mathematical symbols
other than numbers, for which the term is natural. We say a Turing machine recognizes a
language L if the Turing machine accepts an input if and only if that input is a member of
the language. If, further, it rejects on every other input (rather than ever looping infinitely),
we say it decides L.

It is worth noting that deciding a language is preferable to recognizing it for practical
purposes; otherwise, knowing a machine has not yet accepted on input x, it is not clear
whether it will continue forever, excluding x from L, or will eventually accept x.

If one prefers, a more rigorous formulation of the computation process can be found in
the appendix. It is often convenient to think of Turing machines as ”solving a problem.” For
this reason languages are often called decision problems which the Turing machine solves.

To better understand this definition, let us consider an example. Consider the Turing
machine:

(1) Q ={qstart, q1, q2, qaccept, qreject}
(2) Σ = {0, 1}
(3) Γ = {0, 1, ⊔}
(4) δ takes

• (qstart, ⊔) → (q2, 1, right)
• (qstart, 1) → (qaccept, 0, right)
• (qstart, 0) → (q1, 0, right)
• (q1, ⊔) → (q2, 1, right)
• (q1, 1) → (qaccept, 0, right)
• (q1, 0) → (q2, 0, right)
• (q2, 0) → (qaccept, 0, right)
• (q2, 1) → (q2, 0, right)
• (q2, ⊔) → (q2, 0, right)

What does this Turing machine actually do? That is to say, what language does it recog-
nize?

Given an input starting with the digit 1, it accepts. On an input beginning with 0, the
Turing machine head moves to the next portion of the tape, at which point it accepts if there
is a 1 and moves right again if there is a 0. At this point, it continues to move right, staying
in the same state, when it reads a 1, and accepts if it finds a 0. The way we defined Turing
machines implies that if a Turing machine head reads a blank cell that it did not itself write,
and moves to the right, it will read another blank cell. This means that this Turing machine,
since (q2, ⊔) goes to (q2), will loop infinitely, and therefore never accept, if it reads a blank
cell.

So this Turing machine recognizes the language ”the set of binary strings which have a 1 in
their first two digits, or a 0 thereafter,” but it does not decide this language, or any language.
A useful exercise is to construct a Turing machine that recognizes the same language as this
one, but also decides it.

It is worth noting that the Turing machine we constructed never moves left on the tape,
only right. It can be proven that Turing machines restricted in this way compute a much more

4 EMET HIRSCH

restricted class of languages than those computed by Turing machines in general. Intuitively,
this is because such a Turing machine never goes back and reads the information it wrote,
so its ”memory” is limited to that of its states.

This machine, while quite simple, and uninteresting in the aforementioned sense, is al-
ready tedious to describe. For this reason, Turing machines are usually described in the
form of psuedocode, that is, a list of unambiguous instructions written in natural language.
We present and analyze one more Turing machine as a formal object in the appendix for
the purpose of showing off algorithm construction techniques persuasive of the power and
generality of Turing machines. If one is already familiar with this, or convinced of it for less
mathematical reasons1, it is reasonable to skip this construction. Frankly, reasoning with
the explicit definition of Turing machines is unpleasant.

Specifically, in the appendix we construct a Turing machine that, given an element of
Σ∗ where Σ = {0, 1, ◦}, accepts it if and only if it is of the form ”◦ X ◦ Y ◦ Z” where
Y + Z = X, all of which are binary numbers, and rejects otherwise.

This tedious construction give smotivation and justification for a variety of capacities of
Turing machines, of which we must become convinced to be able to rigorously read psue-
docode.

Turing machines can remember arbitrarily large finite quantities. Despite only have a
finite number of states, Turing machines can assign special symbols to the tape, which it
then reacts to differently later, allowing it perform a particular process an arbitrarily large
but finite number of times.

Turing machines can copy the behavior of other Turing machines. The machine we
constructed performs its computation in a series of steps: first checking the form of the
input, then adding leading zeros, then adding Z to Y , then checking the equality of the
modified Y and X. But we constructed δ as to separate each stage of this process from the
others, giving them separate states and appropriately cleaning the tape of marks between
them. The equality-checking process, with its start and end behavior modified slightly,
would have sufficed to decide the following language: ”◦ X ◦ Y” where X and Y are integers
represented in binary and X = Y .

Let’s call this machine E. If while building another Turing machine T , we needed to check
such an equality at some point in the process, we can simply place the entire set of states
and transition function of E within the set of states Q and transition function δ of T . When
T needs to check equality, we have it sends its current state to the relabelled start state of
E, which upon reaching its relabelled accept or reject state, goes to a corresponding state in
T which remembers whether the integers are equal, cleans the tape, then continues whatever
process required checking equality. This is actually a rigorous proof! The skeptical reader
should note that machines constructed so would visibly be composed of connected pieces,
each for a specific task. The machine we construct is one such, and it is exactly because of
this modular construction that we are able to explain the behavior of its transition function
step-by-step.

Turing machines can use what we know about the relevant problem. ”Addition” and
”equality” are arithmetical facts, but the Turing machine we constructed simply manip-
ulates meaningless symbols according to specified rules. How do we know our machine’s
computation had anything to do with addition? Our machine takes a digit from Z and adds

1Such as, for example, the fact that these techniques are analogous to those necessary to perform compu-
tations using logic gates, without which electronics would not exist.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 5

it to the corresponding digit of Y , remembering to carry a 1 if necessary. The fact that
this suffices to add numbers, while obvious, would still require a proof if we were starting
from nothing, and such a proof would require many important facts about addition, such as
its associativity and distributivity with multiplication. Thus, the Turing machine we con-
structed ”uses” the properties of addition we know in its computation. When we construct
more interesting Turing machines, their recognition of the desired language often requires a
proof, and such a proof is often nontrivial. This exactly matches the notion of ”algorithm”
which we used to originally motivate the idea of Turing machines.2

Turing machines can solve problems other than decision problems. As we defined it, a
Turing machine can only determine whether its input is a member of some set by accepting
or rejecting it. But the Turing machine we presented, in the process of determining whether
to accept or reject a triplet of integers, takes two of them and obtains their sum. Intuitively,
this is harder than merely evaluating whether they are a member of some set: it takes the
input in Σ∗ to an element of N (represented as a sequence of binary digits), rather than
merely taking the sequence to an element of {accept, reject}.
To formalize Turing machines solving problems that are harder than decision problems,

we might try the following definition:
A Turing machine T computes a function f , f : X → Y with X and Y ∈ Σ∗, if T accepts

on inputs of the form ”x ◦ y” where x ∈ X and y ∈ Y with y = f(x) and rejects on all other
inputs.

This definition works partially, but is ill-advised. We could imagine some problem of
arithmetic that is difficult to solve, but given a candidate solution to it, it is easy to disprove
or verify the correctness of that candidate solution. This definition would say such a problem
is easy to solve, because it defines ”computation” as the ability to disprove or verify candidate
solutions! A better definition is as follows:

Definition 2.2. A Turing machine T is said to compute a function f , f : X → Y with
X ⊆ Σ∗ and Y ⊆ Γ∗, if when given an input x ∈ X, T eventually accepts the input, and
when it does so, has f(x) written at the start of it and is blank everywhere else. Further,
the machine rejects on inputs not in X.

In this definition, the machine must come up with the output from the input entirely
”on its own.”3 Once it does so, it must clean the tape, write the output at the start of
the tape, and accept. Such a Turing machine works exactly like a calculator: it takes in
symbolic inputs, transforms them according to specific rules, then writes the correct output
in a convenient place to be read. It is worth noting that our original definition of Turing
machines deciding a language L can be seen as equivalent to a special case of this definition
with X = Σ∗. Simply let the function f be an indicator function for the set L.

2This can seem like a trivial or pedantic point. But when one is attempting to understand a correctness
proof of an algorithm in a seemingly unrelated field of mathematics, one is doing something exactly analogous
to this.

3We probably do not have to ”imagine” problems for which these definitions are different, given a reason-
able notion of ”difficult to solve.” It is quite troublesome and time-consuming to find the prime factorization
of a number, but it is easy to disprove or verify the correctness of a given factorization. This definitional
subtlety touches on the famous and central ”P and NP problem.” Specifically, problems troublesome in the
aforementioned way exist iff ”P ≠ (NP∩co−NP).” This would be an even stronger result than a resolution
to the famous problem.

6 EMET HIRSCH

The Turing machine we presented earlier can easily be adapted to a machine that computes
addition, rather than merely deciding a related language. The notion of Turing machines
computing functions rather than merely recognizing languages allows us to see more clearly
the capabilities of Turing machines. For example, imagine we wanted to construct a Turing
machine that given ”◦ X ◦ Y ” with X and Y numbers in binary digits, computes the product
of X and Y in binary. We could use the following machine:

(1) Check that the input is in the appropriate form. If it is not, reject. Otherwise, place
a special mark • after the end of Y , and a 0 after it.

(2) Go to Y . If Y consists only of 0s, erase everything to the left of the • mark, then copy
everything to the right of it to the start of the tape, delete the mark, then accept the
input. Otherwise, perform the following process:

(3) Decrement Y by one. Then go to the first blank space to the right and place a
different special mark ⋄. Then copy X to after ⋄.

(4) Go to the •, then behave like the Turing machine which computes the function taking
”• X ⋄ Y ” to ”• Z” where Z is the sum of X and Y , all binary digits. Then go to
step (2).

This machine repeatedly add X to itself until it has done it Y many times, which is to say it
multiplies X and Y . Then it moves the resulting number to the start of the tape, cleans the
tape, and accepts. Using Turing machines’ ability to perform computations, to remember
arbitrarily large values, to embed other machines’ processes, and to decrement numbers, we
have constructed a recipe for a Turing machine to perform a task ”x many times” with x an
arbitrarily large number.

How does one intuitively characterize the capacities of Turing machines? Recall we de-
fined Turing machines to formalize the notion of ”algorithm.” Everything a Turing machine
does follows directly from its input, set of states, and transition function. Given infinite
time and an infinite chalkboard, a human being could compute anything a Turing machine
could compute simply by drawing the start of the tape, writing the input on it, and repeat-
edly applying the transition function, adding new blank symbols to the tape if they ever
become necessary. Thus, asymptotically, humans can compute everything Turing machines
can compute. This is a natural upper bound to their abilities. What about a lower bound?

Given a finite set of symbols Σ, we can assign an ordering to the countably infinite set Σ∗ as
follows. First, to Σ an arbitrary ordering. Then x < y if x has fewer symbols than y. If they
have the same number of symbols, either they are the same element or they differ in some
position. Considering the first position where they differ, x < y if the symbol in that position
in x < the one in y. This is known as the lexicographical ordering, because it is exactly the
same ordering that a household dictionary uses, and it is easy for an algorithm to read for the
exact same reason that it is easy to locate a desired section of a household dictionary. Given
an element of Σ∗, one can directly compute its position in the lexicographical ordering, and
vice versa. This means that, for any property of a sequence of symbols that can be decided
by a Turing machine, that is to say any language L decided by some Turing machine, one
can construct another Turing machine that:

(1) Writes down the number 1 on the tape, surrounded by special marks.
(2) Reads the number surrounded by special marks, writes down the corresponding se-

quence of symbols in Σ according to the lexicographical ordering, then checks if it
satisfies the property. If it does, it accepts. If it doesn’t, it cleans the tape, increments
the number by 1, and restarts this step.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 7

This Turing machine accepts if and only if there is some sequence of symbols that satisfies
the property, and goes on infinitely otherwise. This is a complete formal proof that given any
decidable language L, there is a Turing machine that, if the language is nonempty, computes
its lexicographically first member, and otherwise goes on forever.

One should note that for any mathematical claim, given a sequence of mathematical
symbols, evaluating whether it is a proof of the claim is a decidable problem. One simply
needs to check that each line follows from the previous lines according to the recursively
defined rules, and that the input ends in the claim. Thus by the previous result, a Turing
machine can prove any mathematical result a human can!4

For this reason, many believe that Turing machines and human cognition have the same
level of generality in doing mathematics. This is known as the Church-Turing thesis. This
is a philosophical position, not a mathematical assertion, but understanding it is useful for
developing intuition regarding Turing machines, most obviously because it justifies us in
asking, ”Could I do this and be guaranteed to eventually finish, if I had infinite time?” as a
way to tell at a first glance whether a Turing machine decides a particular problem.

3. Universal Turing Machines, Undecidability, and Oracles

In the previous section, we made heavy use of marked symbols to record information. It
turns out, surprisingly, to be the case that for every function computable by some Turing
machine, a basically equivalent function can be computed by a Turing machine using only
binary digits and the blank symbol.

First, let us make clear the notion of ”equivalent.” Given a Turing machine T , it has a
set of input symbols Σ and a set of symbols for processing and outputs, Γ, both of which
are finite with Σ ⊆ Γ. Let us count the elements of Γ, excluding ⊔, assigning them numbers
from 1 to |Γ|. Now, given a number for each element, consider the function γ which takes
each element to that many 0s, followed by a 1. For example, given a Turing machine with
Σ = {0, 1, ◦} and Γ = {0, 1, ◦, 2, 0̇, 1̇, ⊔}, we could let γ take 0 → 01, 1 → 001, 2 → 0001,
0̇ → 00001, 1̇ → 000001, and ◦ → 0000001.

We can apply γ to elements of Γ∗ simply by applying it to each symbol in order. Taking
x ∈ Γ∗, note that γ(x) is longer than x by at most a constant factor equal to |Γ| + 1, the
length of the longest sequence of binary digits we created, and is easily converted back to
its original form. This means that if we can decide a language or compute a function in the
image of Γ under γ, we can also do it in the original form. The two computational problems
convey the same information about the underlying objects we care about; in effect, we have
simply renamed some symbols.

Now we want to see that for any language L decidable by a Turing machine, its image
γ(L) (that is the subset of binary strings γ(x) for some x ∈ L), in the set of sequences of
binary digits, is decidable by a Turing machine for which Γ = {0, 1, ⊔}. Note that there
are many sequences of binary digits that do not correspond to γ(x) for any x, and our new
machine necessarily must reject on them.

4This is non-rigorous. We are omitting some relevant and deep proof-theoretic technicalities related to
the meaning of ”verification” which are beyond scope and would only serve to confuse.

8 EMET HIRSCH

We prove this statement in the appendix. This is done by, for a given Turing machine,
constructing another machine which breaks the tape into ”blocks” of consecutive 0s and 1s,
and uses the blocks as single characters for the emulation of the original machine.5

Given this result, it is clear that Turing machines are highly redundant. Not only are
there infinitely many distinct Turing machines which compute the same function (this can
be trivially seen by adding states that are impossible to reach), there are infinitely many
”seemingly distinct” Turing machines which compute functions which are basically iden-
tical. When we study Turing machines, we rarely care about their formal specifications,
instead only considering what they compute and how. Thus we have learned that, speaking
non-rigorously, the set of Turing machines is highly self-similar: we can take the set of all
Turing machines and computably, injectively map it to the set of all binary Turing machines,
preserving the structure of their inputs and outputs.

This is already quite surprising. Can it be strengthened? For example, can I embed every
Turing machine, into only one Turing machine? It is worth giving a bit of time and effort to
attempt to answer this question for oneself, even before one hears a formal phrasing of it.

More formally: is there some Turing machine T taking inputs of the form ”X ◦ Y ” such
that for every Turing machine T ′ with symbols in Γ, there is some x such that T on input
”x ◦ y” accepts, rejects, or continues forever if and only if T ′ on input y accepts, rejects,
or continues forever respectively? Further, to generalize this to computing functions, we
mandate that if T accepts or rejects on x ◦ y, its tape must be identical to the tape when
T ′ accepts or rejects. Again, it is worth attempting to resolve this for oneself. (Hint.)6

Consider the set of Turing machines taking inputs in {0, 1} and with Γ = {0, 1, ⊔}. We
just proved that these are ”just as strong” as the entire set of all Turing machines. By the
definition of Turing machine, all of these are of the form (Q, {0, 1}, {0, 1, ⊔}, δ, qstart,
qaccept, qreject). Q can be written in set notation, with all its elements written in the form qn
for n ∈ N, written in binary. δ can be specified using the formal definition of a function as a
set of ordered pairs, thus using the parentheses symbols, the comma, and the symbols used
to represent Q.

Consider a Turing machine T with Σ = {q, q̇, 0, 1, 0̇, 1̇, ◦, open bracket, close bracket,
comma, open parenthesis, close parenthesis} and Γ = Σ ∪ {⊔, h}.

This is going to be our solution to the problem we posed. Let us say that this machine
first reads the input to make sure it is of the form ”T ◦ X” where T is a Turing machine
specified in the previous notation and symbols and X is a binary integer or the empty string,
which is the sequence with no symbols. If it isn’t, it rejects. If it is, it writes down h followed
by the start state of T after the ◦ but before the input, moving the input to keep it intact. It
also places a ◦ between them to differentiate the index of the state from the input, which is
necessary because they both consist of binary digits. Then it performs the following process:

(1) Look at the index of the state following the symbol h, and at the symbol on the
tape following the ◦ after that index, then return to the beginning of the tape. If it
matches the accept or reject state, clean T , the ◦, and the h and the state written
down next to it from the tape, then move the remaining nonblank symbols to the

5One might also be inclined to take the theorem statement as self-evident, since in our daily lives we
frequently interact with machines that encode a variety of stored types of data to perform different processes
using only binary. Specifically, of course, digital electronics.

6We have already presented an informal description of such a machine in the form of an algorithm or
iterative process.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 9

left to fill the empty space this created, then accept or reject respectively. Otherwise
move to step (2).

(2) Look at the transition function of T . There is a unique ordered pair in it in Q×Γ →
Q × Γ×{left, right} with the input state equal to the state next to h and input
symbol equal to the symbol next to that. Use marking to check the equality of the
indices and find it, cleaning the marks when done. Mark the correct state with q̇,
remember its output in {left, right}, and travel back beyond the ◦. Move the h and
the written-down state next to it one cell in the corresponding direction, taking the
cell it just moved into, and move it to the other side of the h and state. Then find
the marked element of δ, changing the symbol just moved to the output in Γ, and
finally changing the state next to h to the state output of the marked element. Then
delete the mark in δ and return to step (1).

The h refers to Turing machine ”h”ead, because this machine mechanically applies the
definition of Turing machine computation to its input! It creates a separate portion of the
tape on which to do computation, and places a marker on it representing the input Turing
machine’s head and its state, and at each step consults its Turing machine input about how
to transform the tape and change states, using its various marks to track unboundedly long
quantities as it moves from the ”fake tape” to the machine it takes as input. When it accepts
or rejects, it simply copies the ”fake tape” to the front of the real tape and cleans up all the
symbols it used, so it computes the same function.

We have constructed a single Turing machine that is capable of emulating all Turing
machines that use only binary digits. This is called a universal Turing machine, or UTM .
We could use the same general strategy for any fixed Γ. Further, we could even convert
our strategy for converting arbitrary Γ to binary sequences into a formal algorithm and
construct a Turing machine that performs it to the input, then behaves like the previously
defined UTM. This could emulate all Turing machines up to an easy change of symbols.

We also proved earlier that for every Turing machine, there is another Turing machine
which computes an equivalent function. However, given a Turing machine which gives out-
puts already in binary digits, the machine we constructed does not give exactly the same
outputs, instead lengthening them in a way that seems unnecessary. This is a purely technical
detail which can be fixed with little effort. We omit this fix.

We can apply this to the UTM we constructed: we can encode parentheses and brackets
just as well as any other symbol, and thus construct a UTM with Γ = {0, 1, ⊔} that emulates
all Turing machines of the same Γ. Now we are justified in being able to discuss UTMs with
Σ ={0, 1}, Γ = {0, 1, ⊔} without having to be careful about technicalities. We call this a
binary UTM . Often when studying Turing machines, one does so in the background of a
fixed arbitrary UTM.

Now it is natural to ask whether there are any languages that a Turing machine cannot
decide. This is another question that is worth attempting to answer for oneself. Hint.7

Fix an arbitrary binary UTM. Consider the language L = {X : X is a sequence of binary
digits that, when interpreted by the UTM, eventually accepts or rejects, rather than going on
forever.} This language is called the halting problem. Assume for the sake of contradiction
that there is some Turing machine T which decides L. Consider the Turing machine T ′,
which given an input x, runs T on the ordered pair (x, x). If T says that it halts, i.e. it

7The proof can be done in three lines by a diagonalization. But how does one apply diagonalization in
this context?

10 EMET HIRSCH

accepts or rejects, then T ′ goes into an infinite loop. If T says that it runs forever, then T ′

halts. Now, consider T ′(T ′). If it halts, then it necessarily runs forever. If it runs forever,
then it necessary halts. This is absurd. □

This proof is so important, wide-ranging in implication, and exemplary of useful techniques
that it is usually taught to students even before it can be made rigorous using UTMs. We
gave the ”mathematician’s proof.” To a computer science student the existence of UTMs is
obvious: it is a near synonym for ”programming language.” Here is a three line ”computer
scientist’s proof” referenced in the hint:

(1) Let T take ordered pair (T ′, x), decides whether Turing machine T ′, input x, halts.
(2) We can construct explodeT , which on input x runs T on (x, x) and does the opposite.
(3) explodeT (explodeT) → ⊥. □

This proof is rigorous and contains the actual important insight. It merely fails to define
how to interpret the input as a Turing machine which can interpret other components of the
input, which is why the mathematician’s proof first formalizes the notion of UTM .
We have successfully proven that the language L is not decidable. But in fact, it is

recognizable. Simply run the UTM on the input and accept if the emulated Turing machine
ever accepts or rejects. Then it accepts if and only if the input halts, and it fails to halt
otherwise.

An implication of this is that the complement of L, that is the set of ordered pairs which
do not halt plus those which do not represent a Turing machine (an uninteresting component
which can be decidably filtered out) is not even recognizable! If it were, one could construct
a Turing machine that separated the tape into two components, emulated the machine that
recognizes L on one component and emulated the machine that recognizes its complement in
the other. Since every pair clearly does or does not halt, such an algorithm would necessarily
decide the problem, and thus cannot exist.

Two useful questions: first, why does this argument fail to prove that L is not recogniz-
able? If it could prove this it would prove a false statement, and then we certainly could not
trust arguments of this form. Second, how is this proof like other proofs by diagonalization
one may have encountered in other contexts?

We also have another proof, this one merely showing existence, that there exist undecidable
languages.

(1) Each Turing machine corresponds to a sequence of symbols from a finite set according
to our formal definition, of which there are countably many.

(2) Each Turing machine decides at most one language.
(3) A language is a subset of the set of finite sequences of symbols from a finite set, of

which there are uncountably many. □

.
This proof, while much less satisfying, generalizes in a different direction: one can replace

the word ”decide” with ”recognize” in it and it will still be valid. Thus the vast majority of
languages are not only undecidable, but not even recognizable.

Nonetheless, one might be motivated to study such languages, and the analysis of Turing
machines is a powerful tool. Can one construct similar objects which are more powerful and
general?

Before the definition, let us first describe the intuition for Turing machines equipped with
an oracle, or oracle machines.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 11

Consider the question, ”If the halting problem were decidable by a Turing machine, what
other languages would be decidable?” Trivially, the answer is, ”all of them and also none of
them because we can derive a contradiction.”

If we wants to give this question a meaningful answer, we must do something subtler. We
equip a Turing machine with a black box, a term common outside mathematics which often
means ”a piece of technology which we use, but do not understand.” One also may have heard
other mathematicians describing a theorem or lemma they cannot prove, but have used to
prove other results, as a black box. The Turing machine can, during its computation, give
the black box an input using symbols from Γ, and query it for an output. The black box, or
oracle, for a language L will output 1 if the input is a member of the language, and 0 if it is
not.

Most people do not know how their electronics work, let alone understand them at the
level of mathematical rigor. Similarly the machine does not actually ”know” whether an
arbitrary machine halts. It can only ask a mysterious oracle, assumed to be trustworthy,
individual queries of that form, an unbounded but finite (if the oracle machine halts) number
of times.

Definition 3.1. A Turing machine equipped with an oracle A, with A some language with
symbols in {0, 1}, is the same as a normal Turing machine, with three additions to the
transition function: it has two more output components and one more input component.
The first output component lies in {left, right}, the second lies in {0, 1}, and the last input
component lies in {0, 1, ∅}.

The output components describe the behavior of a second head along a second tape. The
second head starts at the second cell (which corresponds to 1) of a separate infinite tape
indexed by N∪ {0}. The second head writes, but does not read, binary digits on the cells of
the second tape other than the 0-indexed cell. At the 0 index, it reads, but does not write.
At any given step of the computation, the oracle reads all of the digits written on the second
tape. If the corresponding sequence is in A, the oracle writes 1 at the 0-indexed cell, and
if it is not in A, it writes 0 in the 0-indexed cell. Whenever the second head is not at the
0-index cell, the transition function takes as the value of its new input component ∅. When
the second head is at the 0-index cell, the transition function takes the value at that cell as
its new input component.

This formal definition is sufficiently without insight that it is sometimes omitted entirely.
It simply states that the Turing machine can write a sequence of symbols, usually copied
from its main tape, into a place for the oracle to read: the oracle says whether the sequence
is in the language, and the Turing machine can behave differently based on how the oracle
answers. We present this definition merely to justify pseudocode. Psuedocode for oracle
machines works as follows: we can perform any computations a Turing machine can, but
also ask the oracle about the membership of a sequence we have computed in A (referred to
as querying the oracle), and use its answer in future computations.

One may worry that since we are dealing with uncomputable decision problems, our earlier
process for converting all problems into binary problems may fail. This is not the case for the
oracle itself: our procedure for converting arbitrary languages to ”equivalent” languages using
only binary symbols is a computable function even if its input ranges over some uncomputable
language. Similarly, given an arbitrary oracle machine, the same process of sectioning the
tape into chunks described earlier works to convert it to a binary machine.

12 EMET HIRSCH

Some natural questions to ask regarding oracles: given an oracle for the halting problem,
what other languages are decidable?

”Ordered pairs of Turing machine and inputs such that the Turing machine accepts on
the input” is decidable with respect to this oracle: take an oracle machine that simply uses
the input Turing machine to explicitly construct another Turing machine that does the same
thing but, when it would reject the input, instead loops forever, then query the halting oracle
about that Turing machine on the given input.

What about ”Turing machines that halt on at least one input?” This is also now decidable:
given a Turing machine input, let our oracle machine construct from it a Turing machine
that emulates it, ”weaving” through every possible input in lexicographical order. That is,
it performs the first step of the computation on the first input, then the first step of the
second input, then the second of the first, then the second of the second, then the first of
the third, and so on. Querying the oracle about the constructed machine suffices.

One may think: to make that machine prettier, why can’t we let our machine simply
explicitly construct an oracle machine that queries the oracle about every input in lexico-
graphical order, and halts when one of them halts, and then query the oracle about that
machine? It is worth figuring out for oneself why one cannot do this.

Because the oracle halting problem provides information about whether Turing machines
halt, not whether oracle machines halt! And we cannot possibly use the former to obtain
the latter in full generality, because oracle machines with oracle A cannot decide the halting
problem for themselves. The exact same proof as before can prove this.8

The exact same cardinality proof also works for oracle machines as well, establishing that
for any oracle, no matter how much or how powerful the information it contains, a Turing
machine equipped with it can only recognize countably many languages. One should also
note that every language is trivially decidable by some oracle machine, simply by giving it
an oracle for that particular language.

4. K-Complexity and The Real Numbers

Consider an arbitrary sequence of binary digits that is 500 digits long. It seems that most
such sequences are in some sense ”more complicated” than the sequence of 500 consecutive
0s. Intuitively, one should be able to pick a particular such string and assert it is ”more
complicated” than the string of 0s of equivalent length. However, most notions of complexity
for sequences of symbols, such as those employing probability, require a specified ”context”
that assigns weights to all elements, and the notion of complexity only holds meaning in
that context. Using the theory of computation, one can construct a less contextual notion of
sequence complexity, known as K-complexity or Kolmogorov complexity, which intuitively
measures ”how hard a particular sequence is to specify.”

8Of course, oracles can clearly sometimes solve the halting problem for other oracles. Consider the oracle
for the empty language: that is, the oracle which always outputs 0, because the language has no members.
Any such oracle machine behaves identically to the Turing machine formed by considering the value of the
transition function restricted to oracle inputs 0 and ∅ at appropriate times, those times being computable by
a Turing machine that ”follows” the oracle machine and checks when the second head enters the read-only
section. Thus one can tell whether such a machine halts if one has access to an oracle for the Turing machine
halting problem. Thus oracles can be said to be ”stronger” or ”weaker” than other oracles, and one can
study the corresponding ordering on equivalence classes of languages.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 13

Definition 4.1. Fix a binary UTM. The K-complexity of a sequence of digits x is the length
of the shortest input sequence on which the UTM computes x.

One should first note that this definition does not discriminate between the ”Turing ma-
chine” part of the input and the ”input to that machine” part of the input. This is common
in many applications. To interpret this it is useful to remember that a UTM is just a Turing
machine, and the form of its input just a human convention for understanding; there is only
a fixed deterministic process, and a sequence of binary digits. There is no fundamental dis-
tinction between the ”Turing machine input” and the rest of the input. More practically, we
choose to ignore this because it does not really matter; two Turing machines might compute
different functions, but on respective inputs both output the desired x. Specifying x can be
done by using many symbols to specify the input component in the UTM, or by using many
symbols to specifying the Turing machine component.

Given a way to measure the complexity of something, it is natural to ask what lower
bounds one can establish with it. Elegantly, at least half of all strings of length ≤ n have
K-complexity at least n. Why?

(1) Every input specifies at most one output.
(2) There are 2n+1 − 1 strings of length ≤ n.
(3) There are 2n − 1 inputs of length ≤ n− 1.
(4) Therefore at least 2n of the output strings require an input of length at least n.
(5) 2n/(2n+1 − 1) > 1/2. □

This is an elementary proof by a counting argument. To what degree can one obtain
stronger results using more sophisticated methods?

Let us note that the language ”(x, n) such that n is the K-complexity of x” is not only
undecidable, but not recognizable!9 Of course, since we do not care about the time the
Turing machine takes, this is equivalent rather than weaker to computing n from x simply
by brute-forcing every possibility.

Imagine it were recognizable, with some Turing machine T recognizing it. Then there is
another machine T ′ which, on input n, considers every pair (x, i) with x in lexicographical
order and i ≤ n with i written in normal binary notation and applies T to each. Eventually it
will enumerate all such x, then let it output the lexicographically smallest y such that the K-
complexity of y is at least n. This machine has some K-complexity U under the fixed UTM,
so the value of y corresponding to n, which is T ′(n), has K-complexity at most U + log2 n
But by this algorithm T ′(n) has K-complexity n, so letting n large gives a contradiction. □

This result does not seem so surprising: after all, ”most” problems are uncomputable. But
it is worth noting that for any axiomatic system that is sound, whose proofs are recognizable
as described earlier, there is some constant U such that no sequence can be proved to have
a K-complexity greater than or equal to U .

One may notice that we earlier claimed that K-complexity assigns meaningful values to
individual strings in a way that does not depend on a ”context” of other strings, but also
required the fixing of a UTM. If one wanted to, for any string, one could pick a UTM for
which it has K-complexity 0. In what sense is it nonarbitrary?

K-complexity has regularity that crosses UTMs. Specifically, for any two distinct UTMs
T1, T2 there is a constant U such that for any string x, the K-complexity of x under T2 is

9One can weaken this to bounds on its K-complexity or otherwise alter it and obtain different degrees of
uncomputability, but this is outside scope: this result is presented only to build intuition.

14 EMET HIRSCH

less than its K-complexity under T1 plus U . This is because all UTMs can simulate each
other, so T2 can simulate T1 by reading some Turing machine input y. Thus if T2 computes
x on input z, then T1 also computes it on input yz, upper bounding its complexity. Note
that switching T1 and T2 may give an entirely different U .
This is an upper bound, but one can easily see there is no corresponding lower bound.

This is intuitive: K-complexity measures the difficulty of specifying a sequence of digits, and
specification relies on previous information, and that ”previous information” may already
know the desired sequence.

One can also consider ”oracle complexity,” that is K-complexity where the UTM is equipped
with an oracle and interprets its input, which also encodes an oracle machine, to determine
when to query its oracle. All of our previous results are still true for this object, by the exact
same proofs.

Now when we refer to K-complexity, we are implicitly fixing an arbitrary UTM. Note that
by the previous upper bound, and an easy squeeze argument, if one only cares about K-
complexity up to some error which is >> O(1), one does not need to worry about individual
UTMs. Much of the study of K-complexity takes place in such a context, including the
Point-to-Set Principles.

One may note that real numbers require infinitely many digits to completely specify, thus
our definition of Turing machines computing functions is not adequate to describe real-valued
functions in general. One way to solve this problem is to define computation a different way
when considering real numbers.

Definition 4.2. For some x ∈ Rd, we say a Turing machine computes x if for every input
r ∈ N, represented in binary, the machine outputs a number q ∈ Qd with |q−x| < 2−r. Note
that every input can be interpreted as a natural number when Σ = {0, 1}.10

That is, on input n, the Turing machine, or oracle machine, computes x to ”n digits
of precision.” Instead of directly truncating the digits of the vector components we define
computation using a bound on the distance: this eliminates some pathological behavior and
makes proofs much easier. One can safely use one’s intuition for truncation in this context.

By a now familiar counting argument, for a given oracle A, there are only countably many
computable numbers in Rd, since clearly each machine can only compute one.
It is worth considering which numbers are computable by Turing machines, or equivalently

oracle machines with oracles for decidable languages. The rationals clearly are, since we can
explicitly write into the Turing machine’s states what to write on every input. Familiar
irrational constants such as π, e, and roots of polynomials with integer coefficients are
computable by Turing machine versions of appropriate approximation algorithms. Vectors
whose components are computable clearly are computable, and given an algorithm computing
x ∈ Rd we can clearly compute its components, so it suffices to consider x ∈ R.
Are there explicit constructions of reals that are not computable? Certainly by definition

we cannot give processes to approximate them to arbitrary precision, but we would like to
be able to give examples that are constructive ”in spirit,” as the halting problem was.

Choose an arbitrary binary UTM, and order its possible inputs lexicographically. Consider
the real number whose binary expansion has a 1 in the n-th position past the zero if the
n-th Turing machine halts, and a 0 if it does not. If this number were computable, one

10We interpret blank spaces in the output as division signs and commas separating vector components, so
that machines with Γ = {0, 1} can express numbers in Qd. This is a purely technical detail of little interest.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 15

could solve the halting problem by approximating the number sufficiently closely to obtain
the appropriate digit, so this number must not be computable.

More interestingly, we can consider the sequence {an}, where an is a rational number
whose k-th digit is 1 if the k-th Turing machine halts in the first n steps and 0 otherwise for
k ≤ n, and is 0 for k > n. This sequence clearly consists of computable numbers because
their values can be directly computed. Further, we can construct a Turing machine that
outputs the an on input n, so it is not the case that the values are placed in some clever
uncomputable way. Nevertheless, the sequence is monotonically increasing and its limit is
the previous uncomputable number. Thus, this particular notion of computing real numbers
does not ”cooperate” with familiar, convenient tools such as completeness and continuity.11

One can easily convert any language into a real number by using the lexicographical
ordering to encode an indicator function for it in the binary digits of a real number, as we
just did for the halting problem. Further, any real number can be converted to a language:
simply convert it to binary, and let the digit in position n after the decimal describe the
language’s inclusion of the n-th sequence of binary digits in the lexicographical ordering.
Note that we must use the lexicographical ordering (or a similarly readable ordering), rather
than merely writing the natural number in binary, because otherwise inputs with leading 0s
would never be meaningfully defined.

This connection naturally motivates the computational study of reals as infinite sequences
of digits, each truncation of which is clearly computable because it is finite. We denote the
K-complexity of a number q ∈ Qd by K(q).

Definition 4.3. TheK-complexity at precision r of a number x ∈ Rd is min{K(q) : |q−x| <
2−r}. We write it as Kr(x). In natural language, it is the K-complexity of the least complex
rational vector within 2−r of x. We can similarly define this for arbitrary oracle A, in which
case we write KA(q) and KA

r (x).

Naturally one might want to study the asymptotic behavior of this as r → ∞, specifically

limr→∞
KA

r (x)
r

. However, convergence of this is not guaranteed. Non-rigorously, one might
imagine some real number that starts with a highly complex sequence of digits such that
KA

r (x)
r

> 3
4
, followed by sufficiently many repetitions of 1 such that KA

r (x)
r

< 1
4
, followed by

a sufficiently long highly complex string such that KA
r (x)
r

> 3
4
, alternating forever. Thus we

instead consider the limit infimum and limit supremum.

Definition 4.4. For a given oracle A, we write

dimA(x) = lim inf
r→∞

KA
r (x)

r

DimA(x) = lim sup
r→∞

KA
r (x)

r

The names of these values are unfortunately not standardized. We use lower dimension
and upper dimension respectively, but one may also encounter lower and upper effective
dimension, lower and upper algorithmic dimension, and, in the original paper, simply
dimension and strong dimension.

11One may be confused as to why an algorithm for computing {an} then does not suffice to compute the
uncomputable number. This is because, for sufficiently large n, there are k ≤ n which the Turing machine
cannot know are ”supposed” to be 0 or 1, precisely because one cannot solve the halting problem.

16 EMET HIRSCH

It is worthwhile to consider some example cases. A number x computable with respect to
an oracle A has Dim(x) = 0, since the oracle machine computing it has some complexity U ,

so Kr(x) is at most U + log2 r, and in the limit U+log2 r
r

goes to 0.

A number x ∈ Rd that is in some sense ”maximally hard to approximate” for a given
oracle A, has dim(x) = d.

Given x ∈ R, y = (x, x) ∈ R2, dim(y) = dim(x). Its lower dimension cannot be lower,
since any approximation of x can be extracted from an approximation of y with an input
only more complex by a constant. And it cannot be higher, since an approximation of y
can be similarly extracted from an approximation of x. Similarly, but with the implication
directions of the proof reversed, we have Dim(y) = Dim(x).
Finally, it is worth noting that one’s intuition for the behavior of Turing machines approx-

imating computable numbers should not transfer to numbers with nonzero lower dimension.
We are inclined to to think of some reasonable iterative process gradually approximating the
number, but by the argument three paragraphs before, we know this is not the case, since
such a process could be used to construct a Turing machine. Instead we have easy-to-specify
rational numbers that approximate the number appearing seemingly ”at random,” with no
computable underlying pattern, with the lower and upper dimensions merely measuring how
easy-to-specify such coincidentally close numbers are in the limit.

Now that we have tools to study the asymptotic complexity of real numbers with respect
to oracles, it is natural to ask how they interact with the real numbers geometrically and
arithmetically.

5. The Point-to-Set Principles

Recalling some definitions: taking a set E ⊆ Rd, the s-dimensional Hausdorff measure
of E, denoted as Hs(E) is

lim
δ→0+

Hs
δ (E), where Hs

δ (E) = inf

{∑
i∈N

diam(Ui)
s : Ui is a cover of E and ∀i diam(Ui) < δ.

}
The Hausdorff dimension of a set E, denoted by dimH(E), is the unique s such that

s = sup
d∈R

{d : Hd(E) = ∞}, equivalently s = inf
d∈R

{d : Hd(E) = 0}

We also have the s-dimensional packing measure. We let Bi(xj) represent the closed ball
centered at xj with index i, not the diameter i. First construct the appropriate pre-measure

P s
0 (S) = lim sup

δ→0+

{∑
i∈N

diam(Bi(xi))
s : all Bi are pairwise disjoint and ∀i xi ∈ S and diam(Bi) < δ/2

}
Then, to turn this into an actual measure, we take

P s(E) = inf

{∑
j∈N

P s
0 (Uj) : Uj is a cover of E

}
Then we have the packing dimension of a set E, denoted by dimP (E), is the unique s

such that

s = sup
d∈R

{d : P d(E) = ∞}, equivalently s = inf
d∈R

{d : P d(E) = 0}

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 17

In different ways these definitions describe the ”thickness” of a set E in Rd, and thus
we might naturally assume they could be manipulated to give some lower bound on the
K-complexity of the elements of E. This relationship is miraculously simple, as proven by
[LL18]:

Theorem 5.1 (Point-to-Set Principle).

dimH(E) = min
A⊆N

sup
x∈E

dimA(x)

dimP (E) = min
A⊆N

sup
x∈E

DimA(x)

A is an oracle, and we can denote arbitrary oracles for decision problems over elements of
Σ∗ as subsets of N as before, specifically by taking the lexicographical ordering and letting the
subset’s inclusion of n ∈ N represent the decision problem’s acceptance of the corresponding
element of Σ∗.
It is worth noting these areminima, not infima. This will emerge naturally from the proof,

which constructs such minima explicitly. We prove the part regarding Hausdorff dimension
first.

Proof of Hausdorff part. Let us first show

min
A⊆N

sup
x∈E

dimA(x) ≤ dimH(E)

Letting dimH(E) = s, fix s′ > s. Then by a familiar property of Hausdorff dimension
Hs′(E) = 0, so for sufficiently small δ we have Hs′

δ (E) < 1.
Let δ0 = 2−m, δ0 < δ. Define {δn} a sequence starting with δ0 and δn+1 = δn

2
. Then let,

for each n, {Ui,n} be a countable cover of E, its elements indexed by i with diam(Ui,n) < δn
and ∑

i∈N

diam(Ui,n)
s′ < 1.

In natural language, we have constructed a countable family of countable covers {Ui,n} of
E with exponentially decreasing rational δ, all of whose measure are bounded by a constant.
The positions of these coverings naturally gives us information about the approximate po-
sition of the elements of E, so now we are going to construct an appropriate oracle that
converts these coverings into a way to ”locate” arbitrary elements of E. Before we do so, we
must deal with the boring case of singleton sets.

First, consider the set {x : ∃i, n with {Ui,n} = {x}}. In natural language, this is the set of
elements of E which are ever covered by a singleton within our family of coverings. This set
is clearly countable since it is a countable union of countable sets, let us label it {xj}. Now
we let our oracle A encode the function: f(j, l) = ”the first l digits of xj”) using its even
numbers. Then there is some oracle machine TA which on input (J, L) queries the oracle
to obtain the digits of xj. Then all elements of {xj} are computable with respect to the
oracle A, so by previous reasoning for all such elements dimA(xj) = 0. Thus without loss of
generality we can ignore the elements ever in singleton sets, and look only at the interesting
elements.

In the odd numbers of the oracle, we encode a function as follows:

• f : N2 → Qd, denoted (j, r) → q
• ∃ i, n such that ∃u ∈ Ui,n with |f(j, r)− u| < δr+2 and diam(Ui,n) ∈ [δr+2, δr+1)

18 EMET HIRSCH

• For each possible such Ui,n there is a j such that f(j, r) maps to a nearby u for the
appropriate r. Further, f(1, r), f(2, r), f(3, r)... all satisfy the constraint for distinct
Ui,n. Thus we only need as many distinct possible j as there are sets satisfying the
second bullet point.

In natural language, this oracle encodes a rational number q for each element in every
covering in our family with q exponentially close to that element, indexed by decreasing
size-exponent in r and indexed individually among those of similar sizes by j. It must be
noted that they are indexed by their diameter, not by the δ-constraint of their family, and
that they use a lower bound as well as an upper bound.12

Let us note that given some (Ui,n) in one of our covers, it can only correspond to f(i, r) for
some specific value of r. Let us also note that the set corresponding to f(j, r) can only occur
in the first r + 2 elements of our descending-diameter family, because beyond that point its
minimum-diameter requirement contradicts the original maximum-diameter requirement.

Finally, recall that ∑
i∈N

diam(Ui,n)
s′ < 1.

By arithmetic each family can contain at most

1

δ0
(2−r+2)−s′

sets (Ui,n) for a particular value of r. This quantity is of course O(2rs
′
) with respect to r

since we already fixed s′. Thus the total number of such sets is at most on the order

∼ c0(r + 2)2rs
′

Let us observe that every element x ∈ E is contained in some Ui,n for infinitely many r.
By our definition of q and the diameter constraint on the set, we have |f(i, r)− x| < 2−r.

Now, consider an oracle machine TA which on input (i, r) queries the oracle to obtain
f(i, r), and outputs it. This input requires log2 i+log2 r+o(max{log2 i, log2 r}), the first two
to specify the respective natural numbers and third due to a technical detail of computation
relating to unambiguously reading the separate numbers.

So for all x ∈ E we have infinitely many r such that TA(i, r) gives some q with |q−x| < 2−r.
TA has constant K-complexity, so at these values of r Kr(x) is at most

c1 + log2(c0(r + 2)2rs
′
) + log2 r + ϵ ∼ rs′ + o(r)

By simple arithmetic and applying the definition of lower dimension we therefore have,
for all s′ > s, for all x ∈ E

dimA(x) ≤ s′ □

This completes the first inequality. For the other direction, assume for contradiction there
is some oracle A and s′ < s such that ∀x ∈ E

dimA(x) ≤ s′

. Now, let c ∈ (s′, s) and c′ ∈ (c, s). We use Br(x) to denote the open ball of diameter r
centered at x.

12If one is skeptical of the construction of such an oracle, it is worthwhile to remember how one would
construct it, encoding functions directly by explicitly assigning 1s and 0s to the appropriate ordered pairs,
then ”weaving” or more generally the lexicographical ordering to encode multiple functions.

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 19

Consider the finite set of open balls

Ur = {B2−r : q ∈ Q,KA
r (q) < rc}

Note that there are at most 2rc many, since there are only that many UTM inputs to specify
real numbers. Note that, by assumption, every element of E lies in Ur for infinitely many r.
Letting

Wr =
⋃
k≥r

Uk

So we have E ⊆ Wr for all r. These form countable coverings of E for arbitrarily small
diameters, so let us use them to find an upper bound of Hc′(E).

Hc′(E) ≤ lim
r→∞

∑
S∈Wr

diam(S)c
′

which is equal to
∞∑

r′=r

∑
S∈Ur′

diam(S)c
′ ≤

∞∑
r′=r

2r
′c(21−r′)c

′

The figure on the right rearranges to 2c
′
(2r

′(c−c′)), which goes to 0 in the limit as r increases.
So Hc′(E) = 0, so by the definition of Hausdorff dimension we have dimH(E) ≤ c′ < s, a
contradiction. □

This direction has a nice corresponding intuition: the infinite intersection
⋂

r→∞
Wr itself

has Hausdorff dimension c,13 meaning rational numbers q which have Kr(q)
q

< c, which is

rare when c < d, are ”asymptotically thin” in exactly the same way that a set of Hausdorff
dimension c is ”asymptotically thin.” One also may note Wr’s rough similarity in definition
to the Cantor set.

The proof of the first direction does not have a nice geometric intuition that the author
knows of, and is best understood through the counting argument that it presents. It is worth
noting that the counting argument emerges simply from a careful, attentive understanding of
Hausdorff dimension: given the Hausdorff dimension’s restriction on the ”thickness” of a set,
there is an bound on the necessary number of indexes to index any ”sufficiently not precise”
covering elements, and that this can be done for arbitrary δ, giving asymptotic information.

There is also a computational view of this proof. When one sees a ”minimum supremum,”
it brings to mind minimaxes and other similar structures which can be understood adver-
sarially: one comes up with a ”strategy” to pick an oracle to minimize the effectiveness
of the opponent’s ”strategy” to pick an element. This analogy is fairly standard, and also
commonly used to understand quantifier alternation.

From this perspective, Hausdorff measure, which is a monotone increasing limit of infima
of coverings, is a limit of an adversarial process of the form, ”how well can I do by picking
small δ such that my opponent must cover E with increasingly many diameter δ sets?”
Then the Point-to-Set principle is one of the many results allowing one to switch the order
of two limit-taking operations, specifically in the context of adversarial process. Measure
theoretic definitions of volume, insofar as they rely on outer measures based on ”strategies”
of coverings or the like, are already ”computational” from this standpoint.

13This can be checked from above trivially, and checked from below by applying this principle in an
argument from contradiction.

20 EMET HIRSCH

Proof of packing part. First let us prove

min
A⊆N

sup
x∈E

DimA(x) ≤ dimP (E)

Let dimP (E) = s. Then for any s′ > s, we have P s′(E) = 0. So we can pick some countable
covering {Ei} with E ⊆ {Ei} and ∑

i∈N

P s′

0 (Ei) < 1

Now we can study the packing pre-measure over {Ei} and construct the appropriate oracle.
For each r ∈ N, and a fixed i, consider each packing of Ei with exclusively closed balls
of radius 2−r−2 that is maximal, in the sense that no further balls can be added. Call
this packing {Bj,i,r}, indexed by j. For sufficiently large r, we have by our prescription on
the {Ei} that there are at most 2rs

′+2s′ balls. Further, notice that for each x ∈ Ei, there
is necessarily some ball Bj,i,r such that ∀q ∈ Bj,i,r |q − x| < 2−r, because the packing is
maximal.

Now the proof is quite clear, following the strategy previously used for Hausdorff dimen-
sion. Let A be an oracle taking (r, i, j) → q rational ∈ Bj,i,r. Consider an oracle machine
TA which on an input (R, I, J) queries the oracle then outputs the point given by the oracle.
Then for any x ∈ E, the K-complexity of the output of this machine is at most a constant
corresponding to the description length of the machine, a constant corresponding to the i
such that x ∈ Ei, log2 r to represent r, log2(2

rs′+2s′) to represent the j-index, and a small
term for unambiguous reading of the code. This works for every sufficiently large value of
r, so applying the definition of upper dimension we have that it is lower than s′ for every
s′ > s, and we are done. □

Now let us show

dimP (E) ≤ min
A⊆N

sup
x∈E

DimA(x)

Assume for contradiction there exists an oracle A such that ∀x ∈ E, DimA(x) ≤ s′, with
s′ < dimP (E) = s. Then let us choose c ∈ (s′, s) and define the sets

Ck =
⋃

{B2−k(q) : KA(q) ≤ kc}

Ek =
⋂
i≥k

Ck

Note that, by assumption, every element in E is in all Ek for sufficiently large k. For fixed
k, consider a packing Vr,k of Ek with balls of diameter 2−r for r ≥ k, r ∈ R.
Let Bδ(x) be an element of this packing, and e = ⌈− log2 δ⌉. Since this an element of the

packing, we have x ∈ Ek and therefore x ∈ Ce, so there is some q with KA(q) ≤ ec. Since
δ
2
< 2−e < δ, and each ball is disjoint, we can find different q for each ball. Since there at

most 2ec+1 rational numbers of appropriate K-complexity, there are at most 2ec+1 balls of
diameter in [21−e, 22−e).
Now, as in a previous argument, let c′ ∈ (c, s). Then

P c′

2−r(Ek) ≤
∑

S∈Vr,k

diam(S)c
′

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 21

≤
∞∑
j≥r

2ec+1(21−e)c
′

As before, this goes to 0, so for each k we have P c′
0 (Ek) = 0. As we noted earlier,

E ⊆
⋃
k∈N

Ek

Thus P c′(E) = 0, with c′ < s, contradicting our assumption that dimP (E) = s. □
These proofs only differ meaningfully from the source material in the first direction of the

Hausdorff part: our method is slightly weaker, as the original paper does not include an
(r′ + 2) inside the logarithm, but this allows us to use a more digestible proof with fewer
indices, and it is not relevant in the limit.

For such a counterintuitive result, these proofs can seem unsatisfyingly simple. The con-
struction of an appropriate countably infinite sequence that allows one to switch the order of
infinitary operations brings to mind proofs of equivalence of definitions in elementary topol-
ogy. The ability to take an alternate perspective when it is appropriate tends to be useful,
of course; the original paper gives some further development of K-complexity over Rd, then
uses the point-to-set principles to prove the 2-dimensional case of the Kakeya conjecture.

It is not clear to this author how these results could be extended to statements that are
more geometrically powerful, and the lack of powerful machinery in the equivalence proof
suggests that it may not be possible to do so. However, being able to choose between
equivalent definitions as contextually appropriate to give short and elegant proofs of easy
problems is sometimes the pathway to the insight that solves more difficult problems.

6. Appendix

One may notice that while we gave a formal definition of Turing machines, we only gave
an informal description of the computation process. A formal definition is presented here.
For x ∈ Σ∗, we denote as xi the i-th symbol of x, and |x| the number of symbols in x.

Definition 6.1. Given a Turing machine (Q,Σ,Γ, δ, qstart, qaccept, qreject), we say a computation
history on input x is a sequence {Ci} of elements of ΓN ×Q× N such that

(1) C0 = (the function f taking i → xi if i ≤ |x| and → ⊔ otherwise, qstart, 1)
(2) The function component of Cn+1 = (fn+1, qn+1, an+1) is identical to that of Cn =

(fn, qn, an), except at an, where it is equal to the Γ output component of δ(qn, fn(an)).
Similarly, qn+1 is the Q output component of δ(qn, fn(an)). Finally, an+1 = an + 1 if
the output in {left, right} of δ(qn, fn(an)) is right, and it is equal to an − 1 if that
output is left.

There is nothing particularly interesting, conceptual, or subtle about this definition com-
pared to the non-rigorous description of computation. The function from N → Γ formalizes
the infinite tape containing symbols from Γ, and taking that function on a particular natural
number n simply means ”the symbol at position n on the tape.” Taking δ(qn, fn(an)) simply
represents how a Turing machine head in state qn at position an on a tape with symbols
described by fn behaves, and the previous definition converts that behavior into the notation
of functions representing tapes and natural numbers representing machine head positions.

Definition 6.2. Given a Turing machine (Q,Σ,Γ, δ, qstart, qaccept, qreject) and an input x, we
say the Turing machine accepts x if there exists a computation history of that machine on

22 EMET HIRSCH

that input which ever has a step whose component in Q is qaccept, we say it rejects x if
there exists a computation history of that machine on that input which ever has a step
whose component in Q is qreject. Otherwise, the Turing machine will continue forever, so we
naturally say it does not halt.

Note that this is well-defined, since each step of the computation history is entirely defined
by the output of a function on the previous step. For a given machine and input, there is
only one computation history. As before, a Turing machine recognizes a language L if it
accepts an input x if and only if x ∈ L. If it also rejects on all other inputs, it decides L.
Constructing the analogous formal definitions for Turing machines that compute functions,
rather than merely recognize languages, and for oracle machines, are useful exercises.

In this text we are careless about what happens if the Turing machine tries to move
left while already at the leftmost component of the tape. Without loss of generality we
can ignore it; Turing machines that fail to move, ”break” and are forced to halt, are never
even permitted to move left in such a position, or even have a two-way infinite tape are all
computationally equivalent. (One can prove fairly easily that each one can emulate any of
the others.)

We also give the previously mentioned explicit construction of a Turing machine that,
given an element of Σ∗ where Σ = {0, 1, ◦}, accepts it if and only if it is of the form ”◦ X ◦
Y ◦ Z” where Y + Z = X, all of which are binary numbers, and rejects otherwise. It does
so first by going over the entire input, making sure it is of the form ’◦ X ◦ Y ◦ Z’ with X,
Y , and Z binary integers at all. Then it adds leading 0s to Y in advance to make the later
addition easier until it has at least as many 0s as there are digits of Z, plus one. Then it
adds Z to Y digit by digit, and finally checks whether the resulting number equals X. If it
does, it accepts. Otherwise, it rejects. We use → to denote the image of an element of Q×Γ
under δ.

(1) Q ={qstart, qcheck0, qcheck1, qcheck2, qcheck3, qcheck4, qcheck5, qstartaddition, qgoleft, qfindunmarkedY ,
qgoright, qcheckiffinishedZ , qfindunfinishedZ , qreplace0, qreplace1, qreplacecircle, qbounceonce, qgoleftlast,
qreplace0last, qreplace1last, qreplacecirclelast, qbounceonceagain, qbeginarithmetic, qbring0across, qbring1across,
qadd0digitY , qadd1digitY , qcarrythe1, qrestartarithmetic, qclearmarks0, qclearmarks1, qgotoendY 0, qgotoendY 1,
qbegincomparison, qgoocheckXdigit0, qgoocheckXdigit1, qleftwardsfinalscan, qrightwardsfinalscan, qaccept,
qreject}

(2) Σ = {0, 1, ◦}
(3) Γ = {0, 1, ◦, ⊔, 0̇, 1̇}

We elaborate the transition function as we explain what it does. First the machine should
check that the first symbol is a circle, so we have

• (qstart, ⊔), (qstart, 0), and (qstart, 1) → (qreject).

Note the slight abuse of notation of not specifying the output symbol and movement direction
of this step; they are irrelevant since the computation has just ended. Now, our transition
function, having seen a circle, should check to see the next symbol is a digit. After that,
it does not matter how many consecutive digits there are, so it should loop until it sees a
different symbol. If it sees a blank cell it should reject, and once it sees a ◦ it should repeat
this whole process once more. Then it should make sure there is at least one digit after that,
and no ◦.

• (qstart, ◦) → (qcheck0, ◦, right).

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 23

• (qcheck0, ⊔) and (qcheck0, ◦) → (qreject) This rejects if the input has ended prematurely
or has two consecutive ◦.

• (qcheck0, 0) → (qcheck1, 0, right) and (qcheck0, 1) → (qcheck1, 1, right) respectively. Note
the different outputs: we don’t want to accidentally change digits of X.

• (qcheck1, ⊔) → (qreject).
• (qcheck1, 0) → (qcheck1, 0, right) and (qcheck1, 1) → (qcheck1, 1, right) respectively.
When it encounters another digit, it simply does not change it and continues to the
right.

• (qcheck1, ◦) → (qcheck2, ◦, right).
• (qcheck2, ◦) and (qcheck2, ⊔) → (qreject). Again, this rejects inputs that end too early
or have consecutive ◦.

• (qcheck2, 0) → (qcheck3, 0, right) and (qcheck2, 1) → (qcheck3, 1, right) respectively.
• (qcheck3, ⊔) → (qreject).
• (qcheck3, 0) → (qcheck3, 0, right) and (qcheck3, 1) → (qcheck3, 1, right) respectively.
• (qcheck3, ◦) → (qcheck4, 0, right). Now we have verified the three ◦ and the digits
between them. We now want to verify the presence of at least one more digit and
the absence of any further ◦.

• (qcheck4, ⊔) and (qcheck4, ◦) → (qreject).
• (qcheck4, 0) → (qcheck5, 0, right) and (qcheck4, 1) → (qcheck5, 1, right).
• (qcheck5, ◦) → (qreject).
• (qcheck5, 0) → (qcheck5, 0, right) and (qcheck5, 1) → (qcheck5, 1, right).
• (qcheck5, ⊔)→ (qstartaddition, ⊔, left). This check state acts differently than all previous
because when it sees a blank symbol, it is clear that the input is of the correct form,
rather than of the incorrect form. So it goes to the state which begins the process of
addition.

This is where the use of marked digits becomes relevant. For our later convenience, we are
going to add leading 0s to Y until it is as long as Z. Our machine has to look at the length
of Z, but since it can be arbitrarily long, it cannot remember all of that information using
only its states. So we will make the machine head ”bounce” back and forth between the
two numbers, marking the rightmost digit of each, until one runs out of unmarked digits, at
which point it will be clear which is longer.

• (qstartaddition, 0)→ (qgoleft, 0̇, left) and (qstartaddition, 1)→ (qgoleft, 1̇, left) respectively.
After encountering an unmarked digit in Z, we switch states and begin to move to Y .
When encountering a marked digit, it should continue looking in Z for an unmarked
digit, so we have that:

• (qstartaddition, 0̇) → (qstartaddition, 0̇, left) and (qstartaddition, 1̇) → (qstartaddition, 1̇, left)
respectively.

• (qgoleft, 0), (qgoleft, 1), (qgoleft, 0̇), (qgoleft, 1̇) all to themselves and left. The purpose
of qgoleft, is to literally ”go left” from Z to Y and track when it has reached it.

• (qgoleft, ◦) → (qfindunmarkedY , ◦, left). Once it passes the ◦ into Y , it should look for
an unmarked digit. If it finds one, it should mark it and go back right.

• (qfindunmarkedY , 0̇) and (qfindunmarkedY , 1̇) to themselves and left.
• (qfindunmarkedY , 0) → (qgoright, 0̇, right) and (qfindunmarkedY , 1) → (qgoright, 1̇, right).
• (qgoright, 0), (qgoright, 1), (qgoright, 0̇), and (qgoright, 1̇) → themselves and right.
• (qgoright, ◦) → (qcheckiffinishedZ , ◦, right). We mark digits from right to left, but
when we are reading Z we read it from left to right, which means that rather than

24 EMET HIRSCH

ignoring marked digits, we should ignore unmarked digits, and to check if the process
is complete, we simply need to check if the digit right after the ◦ is marked.

• (qcheckiffinishedZ , 0)→ (qfindunfinishedZ , 0, right) and (qcheckiffinishedZ , 1)→ (qfindunfinishedZ ,
1, right) respectively.

• (qfindunfinishedZ , 0)→ (qfindunfinishedZ , 0, right) and (qfindunfinishedZ , 1)→ (qfindunfinishedZ ,
1, right) respectively. When this state reaches a marked digit, it obviously doesn’t
need to mark it; rather, it needs to mark the digit to the left of it and repeat this
process. So we can just bring to it back to qstartaddition and move it to the left.

• (qfindunfinishedZ , 0̇) → (qstartaddition, 0̇, left) and (qfindunfinishedZ , 1̇) → (qstartaddition,
1̇, left) respectively.

We’ve elaborated the cases in which this part of the process does not terminate. However, it
eventually will. If Y runs out of digits first, we want to add a leading 0 to it and repeat the
process. If Z runs out of digits first, we want to add one more leading 0 to Y in case they
both start with 1 which would require us to carry the digit later, then begin the process of
actually adding the numbers.

• (qfindunmarkedY , ◦) → (qreplace0, ◦, right). If the machine head is in qfindunmarkedY

and reaches the ◦, that means Y has already been completely marked, so it needs a
leading 0. We need to place a leading 0 there, but that would change the value of the
number if that digit is a 1, so we need to move all the symbols one cell to the right.
We do this by constructing a state corresponding to each potential symbol that reads
a symbol, moves to the right, writes the symbol it just read, and repeats. The states
labeled replace will do just that. Further, since we are iterating the process, we want
to remove the marks on digits, so these states will ”forget” that the digits they read
are marked.

• (qreplace0, 0), (qreplace0, 1), and (qreplace0, ◦) → (qreplace0, 0, right), (qreplace1, 0, right),
and (qreplacecircle, 0, right) respectively. Deleting the marks, it takes (qreplace0, 0̇) and
(qreplace0, 1̇) → (qreplace0, 0, right) and (qreplace1, 0, right) respectively. The two other
replace states should work the same, but place their corresponding character on the
tape rather than a zero.

• (qreplace1, 0), (qreplace1, 1), and (qreplace1, ◦) → (qreplace0, 1, right), (qreplace1, 1, right),
and (qreplacecircle, 1, right) respectively. Again, deleting marks, we have (qreplace1, 0̇)
and (qreplace1, 1̇) → (qreplace0, 1, right) and (qreplace1, 1, right) respectively.

• (qreplacecircle, 0), (qreplacecircle, 1), and (qreplacecircle, ◦)→ (qreplace0, ◦, right), (qreplace1, ◦,
right), and (qreplacecircle, ◦, right) respectively. Removing marks, we have (qreplacecircle,
0̇) and (qreplacecircle, 1̇) → (qreplace0, ◦, right) and (qreplace1, ◦, right) respectively.

When these states complete the process of moving all the characters to the right and removing
their marks, they will reach a blank symbol, at which point we want them to write down
the final character they have stored, and begin the process of adding leading 0s again. So
we have

• (qreplace0, ⊔) → (qbounceonce, 0, right) and (qreplace1, ⊔) → (qbounceonce, 1, right) respec-
tively.

• (qbounceonce, ⊔) → (qstartaddition, ⊔, left). We need this state because as we defined
Turing machines, the head must move left or right at every step. After the replace
states end, if we had them move to the left, rather than being on the final digit of Z,

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 25

they would be one digit left of it. So we have them move to the right and enter a state
that always moves left once before entering qstartaddition and restarting the process.

One might note that we have not defined the outputs of δ on inputs such as (qreplacecircle,
⊔). This is because, as we are constructing the algorithm, this combination of state and
tape input should never occur. Without loss of generality, we can simply map all such
combinations to qreject. This particular example never occurs because the algorithm only
ever reaches the replacement process if the input is in the correct form, in which case every
◦ is followed by at least one 0 or 1, so when moving all symbols one cell to the right, the
machine will never have to copy a ◦ onto a blank cell.
Now we have completed the description of what happens when Y runs out of digits before

Z. This process will iterate until Y is at least as long as Z. Once this occurs, either
qstartaddition will encounter a ◦ or qcheckiffinishedZ will encounter a marked digit. In the first
case, the machine head will be at the ◦ between Y and Z and in the second it will be at the
digit that immediately follows it. In both cases we want the head to move to the beginning
of Y , add one more leading digit, then begin the actual process of addition.

• (qstartaddition, ◦) → (qgoleftlast, ◦, left).
• (qcheckiffinishedZ , 0̇) → (qstartaddition, 0̇, left) and (qcheckiffinishedZ , 1̇) → (qstartaddition,
1̇, left).

• (qgoleftlast, 0), (qgoleftlast, 1), (qgoleftlast, 0̇), (qgoleftlast, 1̇) all to themselves and left.
This is exactly the same as qgoleft. We give this state a new name because when it
eventually reaches a ◦, it should go to a special set of replace states that ”remember”
that this is the last time we perform this process.

• (qgoleftlast, ◦) → (qreplace0last, ◦, right). The replace last states, named for being
the last instances of replacement, work exactly the same as the previous replace
states, so we omit writing their identical behavior. They only differ in behavior upon
encountering a blank symbol.

• (qreplace0last, ⊔) and (qreplace1last, ⊔) to (qbounceonceagain, 0, right) and (qbounceonceagain,
1, right). We add this bounce state as an intermediary to a change to another state
for exactly the same reasons as previously.

• (qbounceonceagain, ⊔) → (qbeginarithmetic, ⊔, left).
Entering qbeginarithmetic is the beginning of the actual process of adding Z to Y . At each
step, we we want the algorithm to mark the rightmost unmarked digit of Z, remember it,
then travel to the corresponding digit of Y , then add them. Y may be arbitrarily long, so
we aren’t able to remember the digit position of Y using states. So we mark a digit of Y ,
starting from the right, every time we mark a digit of Z, and thus we know which digits of
Y we have finished adding to.

• (qbeginarithmetic, 0) → (qbring0across, 0̇, left) and (qbeginarithmetic, 1) → (qbring1across, 1̇,
left) respectively.

• (qbeginarithmetic, 0̇) → (qbeginarithmetic, 0̇, left) and (qbeginarithmetic, 1̇) → (qbeginarithmetic,
1̇, left) respectively. As we described, this ignores those digits and looks for an
unmarked one.

• (qbring0across, 0), (qbring0across, 1), (qbring1across, 0), (qbring1across, 1) all → themselves
and left.

• (qbring0across, ◦) → (qadd0digitY , ◦, left) and (qbring1across, ◦) → (qadd1digitY , ◦, left)
respectively. The bring states ignore all symbols until they read a ◦, detecting they

26 EMET HIRSCH

have crossed over into Y . When they do so, they will look for the first unmarked
symbol to add their digit to.

• (qadd0digitY , 0̇), (qadd0digitY , 1̇), (qadd1digitY , 0̇), and (qadd1digitY , 1̇) → themselves and
left.

• (qadd0digitY , 0) → (qrestartarithmetic, 0̇, right) and (qadd0digitY , 1) → (qrestartarithmetic, 1̇,
right) respectively. Adding 0 obviously does not change the corresponding digit.

• (qadd1digitY , 0) → (qrestartarithmetic, 1̇, right) and (qadd1digitY , 1) → (qcarrythe1, 0̇, left).
• (qcarrythe1, 0) → (qrestartarithmetic, 1, right) and (qcarrythe1, 1) → (qcarrythe1, 0, left).
Note that the state which carries a 1 does not mark the digits it alters. Otherwise, in
future steps, the digitwise addition would become mismatched. Further, this process
of addition is so convenient to state now because we spent so much effort earlier
adding leading digits to Y , and thus do not have to worry about the case in which
we have to add a new digit mid-computation.

• (qrestartarithmetic, 0), (qrestartarithmetic, 1), (qrestartarithmetic, 0̇), (qrestartarithmetic, 1̇) →
themselves and right. This should continue until it reaches the end of Z, then
restart the addition process.

• (qrestartarithmetic, ⊔) → (qbeginarithmetic, ⊔, left). Note that we do not need to add a
bounce step here, since we are leaving this space blank.

This iteration should terminate once all of Z has been added to Y , at which point all of Z
should be marked. At that point, qbeginarithmetic will end up reading a ◦ since it goes to itself
when it reads a marked digit. So we can let:

• (qbeginarithmetic, ◦) → (qclearmarks0, ◦, left).
We have now modified Y such that it is equal to the sum of the original values of Y and Z.
It suffices to check whether this Y and X are equal. To do this, we first remove all existing
marks.

• (qclearmarks0, 0) and (qclearmarks0, 0̇) → (qclearmarks0, 0, left). Similarly (qclearmarks0,
1) and (qclearmarks0, 1̇) both go → (qclearmarks0, 0, left). The number on the state is
present to count the number of circles this has passed; once it reaches the second ◦,
it is necessarily at the beginning of the tape, because this process started at the cell
before the third ◦.

• (qclearmarks0, ◦) → (qclearmarks1, ◦, left). qclearmarks1 behaves identically to qclearmarks0

on inputs other than ◦.
• (qclearmarks1, ◦) → (qgotoendY 0, ◦, right). Now that we have cleared the tape of marks,
we must return to the end of Y and begin the actual comparison process.

• (qgotoendY 0, 0), (qgotoendY 0, 1), (qgotoendY 0, 0̇), (qgotoendY 0, 1̇) to themselves and right.
We will be reusing these states later, which is why we define their behavior on marked
digits, even though as of now there are none on the tape.

• (qgotoendY 0, ◦) → (qgotoendY 1, ◦, right). As before qgotoendY 1 behaves identically to
qgotoendY 0 on inputs other than ◦.

• (qgotoendY 1, ◦) → (qbegincomparison, ◦, left).
Now that the tape is clear of marks, we can safely use marks to actually compare X and Y .
To do this, we look at the rightmost unmarked digit of the modified Y , remember it, and
mark it. If it fails to corresponds with the rightmost unmarked digit of X, we reject the
input. If it does correspond, we mark that digit of X and repeat this process. Eventually, if
no rejection occurs, all digits of either X or Y will be marked. At this point, we can search

A POINT TO SET PRINCIPLE FROM A COMPUTATIONAL COLD START 27

both for unmarked digits. If all unmarked digits are 0, then they only differ by leading 0s
and are therefore equal, and we accept the input. If there is an unmarked 1, the inputs differ
and we reject the input.

• (qbegincomparison, 0̇) and (qbegincomparison, 1̇) → themselves and left.
• (qbegincomparison, 0) → (qgocheckXdigit0, 0̇) and (qbegincomparison, 1) → (qgocheckXdigit1, 1̇).
• (qgocheckXdigit0, 0), (qgocheckXdigit0, 1), (qgocheckXdigit1, 0), and (qgocheckXdigit0, 1)→ them-
selves and left.

• (qgocheckXdigit0, ◦) → (qcheckXdigit0, ◦, left) and (qgocheckXdigit1, ◦) → (qcheckXdigit1, ◦,
left). Once the ◦ is read, the machine head is in X, and should look for an unmarked
digit to compare to the stored digit in its state.

• (qcheckXdigit0, 0̇), (qcheckXdigit0, 1̇), (qcheckXdigit1, 0̇), (qcheckXdigit1, 1̇) → themselves and
left.

• (qcheckXdigit0, 1) and (qcheckXdigit1, 0) → (qreject). Detecting a difference in the corre-
sponding digits implies the stored numbers are not equal, so we reject the input and
are done.

• (qcheckXdigit0, 0) → (qgotoendY 0, 0̇, right) and (qcheckXdigit1, 1) → (qgotoendY 0, 1̇, right).

This iteration can end one of two ways. If Y runs out of unmarked digits first, qbegincomparison

will encounter a ◦, in which case we want to scan leftwards for any unmarked 1s, reject if we
find any, and accept if none are found. So we have

• (qbegincomparison, ◦) → (qleftwardsfinalscan, ◦, left).
• (qleftwardsfinalscan, 0), (qleftwardsfinalscan, 0̇), and (qleftwardsfinalscan, dot1) → themselves
and left.

• (qleftwardsfinalscan, 1) → (qreject).
• (qleftwardsfinalscan, ◦) → (qaccept) since reading a ◦ means we have confirmed all digits
of X, and thus we are done.

If X runs out of digits first, one of the checkXdigit states will encounter the ◦ at the
beginning of X. In this case, it should pass back into Y, rejecting if it encounters an
unmarked 1 and accepting otherwise.

• (qcheckXdigit0, ◦) → (qrightwardsfinalscanstart, ◦, right).
• (qcheckXdigit1, ◦) → (qreject).
• (qrightwardsfinalscanstart, 0), (qrightwardsfinalscanstart, 1), (qrightwardsfinalscanstart, 0̇), and
(qrightwardsfinalscanstart, 1̇) to themselves and right.

• (qrightwardsfinalscanstart, ◦) → (qrightwardsfinalscan, ◦, right).
• (qrightwardsfinalscan, 0) → (qrightwardsfinalscan, 0, right).
• (qrightwardsfinalscan, 1) → (qreject).
• (qrightwardfinalscan, 0̇) and (qrightwardfinalscan, 1̇) → (qaccept). Since Y is marked right-
to-left, once a single marked character is found going rightwards, there will be none
more, which means the values are equal, and we’re done. □

Now we present the proof that any Turing machine can be emulated by a Turing machine
with Γ = {0, 1, ⊔}.

Let L be such a language, T the Turing machine that decides it, and Γ be the collection
of symbols it uses. We construct T ′ to behave as follows:

(1) First, using replace states, it moves the entire input two cells to the right. Then it
checks to make sure the binary digits of the input are in the form prescribed by γ,

28 EMET HIRSCH

rejecting otherwise. Then it places two 1s at the start of the input to mark it: none
of the sequences generated by γ have two consecutive 1s.

(2) Then, the machine iterates the following process: Go to the end of the input and
parse left, ignoring sequences of the form (k many consecutive 0s, a single 1, |Γ| − k
many consecutive ⊔s), until it reaches a sequence of the form created by γ. When it
does so, parse to the left until it encounters a 1, counting how many consecutive 0s it
sees. Call this quantity k. There are always only boundedly many 0s, so we can use
the machine’s states to remember them. Go back to the 1 that ends this sequence,
and move everything to the right of it |Γ| − k cells to the right, putting ⊔ in the
intervening spaces. Again, we do not need to use marks to perform this counting
process, because it has boundedly many steps. Once it reaches two consecutive 1s,
we have reached the start of the tape, so we are done with this step.14 Now we go to
the state of T ′ corresponding to the start state of T , which we will soon describe.
What did the process we just performed do? The original input to T ′ was a

sequence of elements of γ(Γ); each of which is a series of consecutive 0s followed by
a 1. The process we performed separates the input into ”blocks” of length |Γ| + 1
by adding blank symbols in between the distinct parts of the input. Now, the tape
is broken into pieces of length |Γ| + 1, each of which corresponds to γ(x) for some
x ∈ Γ.

(3) Now, let us examine the transition function δ of T . Say, for example, in state qi,
it takes every symbol x to some corresponding state qj, writing symbol Γ(i,x) on the
tape and going to the left or right. We can construct an analogous transition function
with analogous states for T ′. When in state q(i,0), it will read either a 0 or 1. When
it reads a 0 while in state q(i,n) with natural number n, it travels right and enters the
state q(i,n+1). When encountering 1 in such a state, it travels left n+ 1 cells, back to
the start of that block. Note that each n corresponds to having read n 0s followed
by a one, which is the image of some x under γ. Recall the behavior of the original
machine T . T ′ now writes γ(Γ(i,x)) on the tape, travels right until it reaches the next
block, and enters q(j,0).

What did we just construct? Well, for each state of T , we created |Γ| + 2 states
of T ′ corresponding to it with an index used to count 0s. The states parse right,
counting 0s using the index, until it reads a 1, at which point its current index tells it
what symbol it has just read. Then it writes down the binary notation of the symbol
the original machine would have written, travels to the next |Γ|+1-length block, and
enters the 0 index of the state which the original machine would have entered.

This is why we separated the tape into blocks. Each block is a place to store a long
sequence corresponding to a symbol used by T , and our new machine is just a copy
of T that treats each block as a tape cell. We can do this because by definition, the
original machine had finitely many states and finitely many language symbols, which
means we can explicitly code into the states of T ′ what to do in every situation to
imitate T .

14One may worry that since we are using ⊔ for computation, the machine may think that it has reached
the end of the input when it has not. We can prevent this the same way we have dealt with other problems:
the process we are defining only ever writes boundedly many consecutive ⊔, so when we want the machine
to check whether it has reached the end of the input, we can have it travel a fixed but larger number of cells
to the right. If any one those cells are nonblank, it is still in the input, and if all are blank, it truly has
reached the end of the tape.

REFERENCES 29

(4) The qaccept and qreject states of T
′ relate to the other states exactly as defined in the

previous step. T ′ reaches such a state by reading each sequence in its inputs and
copying the original machine’s reaction to it, meaning that it reaches these steps if
and only if the original machine T accepts or rejects on the corresponding input.
Thus the languages they decide are equivalent as we described. □

This exact same proof can be adapted to the more general case of computing functions,
rather than merely deciding languages, with some appropriate cleaning of the tape.

One might also notice that in this proof, it did not seem like we ”needed” all three symbols,
{0, 1, ⊔}. This is a correct intuition: with some carefulness, we can strengthen this result
to not just binary, but unary, in which the input is simply a long string of 1s, and the
machine uses 1 and ⊔ to perform computation. This construction is sometimes preferred,
but we neglect it due to the often strange behavior of unary. There are kn distinct inputs of
length n written in k symbols. For k = 1, this is a constant, meaning unary is exponentially
inefficient at conveying information, and thus a terrible context in which to motivate K-
complexity.

References

[LL18] Jack H Lutz and Neil Lutz. “Algorithmic information, plane Kakeya sets, and con-
ditional dimension”. In: ACM Transactions on Computation Theory (TOCT) 10.2
(2018), pp. 1–22.

[Sip13] Michael Sipser. Introduction to the Theory of Computation. Third. Cengage Learn-
ing, 2013, p. 168. isbn: 978-1-133-18779-0.

