
THEORETICAL MODELS OF COMPUTATIONS

ARUSH GULIANI

Abstract. This paper aims to establish a basic understanding of theoretical

models of computation, beginning with finite automata. Developing formal

definitions for different types of finite automata allows for a study of regular
languages, or the languages which are accepted by such finite automata. Un-

derstanding the properties and computational capabilities of finite automata

and regular languages leads into a model of Turing Machines, a much more
generalized and powerful model of computation. Still, Turing Machines aren’t

capable of computing solutions to every problem.

Contents

1. Deterministic Finite Automata 1
2. Non-deterministic Finite Automota 4
3. Regular Languages and Expressions 6
4. Turing Machines 9
Acknowledgments 11
References 11

1. Deterministic Finite Automata

Finite automata were initially proposed as a model to represent brain function,
but instead ended up being a crucial building block in the development of theoretical
computer science. This model of automata is characterized by its finite set of states,
which serves both as its mode of operation and as its primary limitation. A set
of inputs takes the automaton from state to state, and at the end of the chain
of inputs, it is checked whether the final state of the automaton falls within the
set of accepting states. We aim to formally define these finite automata, in order
to understand their properties and computational capabilities, including both the
type of problems they can solve as well as the ones they cannot.

This explanation of finite automata is still abstract, so we shall present a simple
informal example. Consider a bookstore which can have up to 10 books on its
shelves at any point in time. The bookstore starts off with a complete set of 10
books, and has a record for every time it sells a book, or restocks on a book.
Reading through the record of sales and restocks, and knowing that we started
with 10 books, we can determine the amount of books at the bookstore at any
given time simply by updating the number of books following each transaction. We
can construct a finite automaton which follows this process exactly to determine if
the bookstore is empty after a series of transactions.

Date: August 29, 2023.

1

2 ARUSH GULIANI

This automaton would possess 11 states, numbered 0 through 10, corresponding
to the number of books present in the bookstore at any given time. The starting
state of our automaton would be 10, since this is the number of books we begin
with. We would have a transition function which reads the record of sales and
restocks and updates our state after each transaction. After every restock, the
state would increase by 1, unless we are at 10, in which case it stays constant since
we are at maximum capacity. After every sale, the state would decrease by 1,
unless we are at 0, in which case it would stay constant since we are at minimum
capacity. After reading through the entire record of transactions we are left with
a final state, corresponding to the number of books left at the bookstore after all
sales and restocks. The bookstore is empty if and only if the final state is 0, and
in this case we say that our automaton accepts this transaction log.

We now formally define a Deterministic Finite Automaton (DFA).

Definition 1.1. A DFA is a method of computation which is defined by five pa-
rameters, and is typically denoted as

A = {Q,Σ, qi, δ(qin, a), F}
These parameters are defined as follows:

(1) A non-empty finite set of states denoted by Q = {q0, q1, q2, ...}
(2) A non-empty finite set of input symbols, denoted by Σ
(3) A starting state qi ∈ Q
(4) A transition function δ : Q× Σ → Q
(5) A set F ⊆ Q of all accepting states

The DFA, beginning at the state qi, reads through the input string one letter at
a time. As a DFA reads the input string, it changes between states. In particular,
when the DFA is in state q, and reads the character a, it switches to state δ(q, a). A
DFA is said to accept an input string if and only if the final state upon processing
the entire string is an element of F . We say a DFA solves a problem if it accepts
only those solutions which are answers to the given problem. For example, in the
case of the bookstore, the DFA would solve the problem of checking if the bookstore
is empty, since it accepts only those transaction logs which would result in an empty
bookstore.

Let us construct a DFA which given a non-negative integer, determines the parity
of the sum of its digits.

Example 1.2. We will construct a DFA that only accepts strings which sum to
be odd.

We can identify our set of input symbols:

Σ = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}
Next, we want to create a set of the possible states. Since the running total can
either be even or odd, we need two states. Let Q = {qo, qe}, where qo refers to
an odd running total and qe refers to an even running total. Since zero is an even
number, we know that we start off being even, so:

qi = qe

We next want to pick our set of accepting states. Since we we only want to accept
odd totals, we let

F = {qo}

THEORETICAL MODELS OF COMPUTATIONS 3

Finally, we define our transition function, δ. Since we want to update the parity
of the running total based on the next digit in the number, reading an even digit
should retain the current state, whereas reading an odd digit should switch the
current state. Hence, we define δ to have the following values:

• δ(qe, n) = qe if n is an even digit. Else, δ(qe, n) = qo
• δ(qo, n) = qo if n is an even digit. Else, δ(qo, n) = qe

Now that we have assigned a value to each necessary parameter, we have suc-
cessfully constructed a DFA which will determine the parity of the sum of the digits
of a number.

Let us present some more examples of problems which can be solved by DFAs;
the construction of these DFAs is left as an exercise for the reader.

Problem 1.3. Construct a DFA which can determine whether a string is longer
than 5 characters.

Problem 1.4. Construct a DFA which can determine whether the length of an
input string is a multiple of 3.

We have seen examples of problems which DFAs can be constructed to solve.
This raises the question, what variety of problems can DFAs not solve? We will
now prove this to be the case for one such problem.

Theorem 1.5. There does not exist a DFA which can determine whether a binary
string has an equal number of 1s and 0s.

Proof. For the sake of contradiction, assume there does exist a DFAD which accepts
only those strings which contain an equal number of 1s and 0s. Let n = |Q| denote
the number of states for this DFA. We know that D must accept a string containing
(n+ 1) zeroes followed by (n+ 1) ones. Let this string be denoted by w.

Since there are 2n+ 2 steps in the computation of w, at least one state must be
visited in at least 3 steps.

Let this state be denoted by qr. Since qr is visited at least 3 times, there are at
least 2 disjoint substrings of w which bring the DFA from qr back to qr; let us refer
to these substrings as S1 and S2. If D is in state qr and reads S1 or S2, then it will
once again be in state qr.

We now seek to prove that either S1 or S2 has an unequal number of 1s and
0s. If S1 has an unequal number of 1s and 0s, then we are done, so we can assume
that this is not the case. Since S1 is non-empty and has an equal number of 1s and
0s, it must fall directly in the center of w, since this is the only way it can contain
both 1s and 0s. Since S1 and S2 are disjoint, S2 must either fall to the left or right
of S1, and as a result, will either be composed entirely of 0s or entirely of 1s. We
have now proven that either S1 or S2 has an unequal number of 1s and 0s.

We now seek to form a new string, which contains an unequal number of 1s and
0s, yet still brings our DFA back to an accepting state. Without loss of generality,
assume that S2 was the substring with an unequal number of 1s and 0s. Let X and
Y be the strings such that w = X+S2+Y , where + is the concatenation operator.
Our new string, w′, will be defined as the following:

w′ = X + S2 + S2 + Y

The number of 1s and 0s in w is equal, and the number of 1s and 0s is unequal
in S2, so the total number of 1s and 0s will be unequal in w′. Furthermore, since

4 ARUSH GULIANI

S2 brings the DFA from the state qr back to qr, repeating it an additional time
within our input string will have no effect on the final state of the DFA; thus, our
DFA will accept w′.

We have now shown our DFA to accept a string which has an unequal number
of ones and zeroes, so we reach a contradiction. □

2. Non-deterministic Finite Automota

Let us now try to construct a DFA which accepts only those binary strings
ending in ”01.” This is a surprisingly hard process, since the DFA will never know
whether it is approaching the end of the string or not. To make this problem
easier to solve, we introduce non-deterministic finite automata (NFAs). These
computational devices are identical to DFAs, except for the fact that they can be
in several or no states at any given point. Since Q, Σ, Qi, and F are defined
identically to that of DFAs, we will not bother defining these. We instead focus
on the transition function, δ, which now possesses the quality of returning a set of
output states rather than a singular output state. For an input character a and an
input state qin, we have the following:

δ(qin, a) = Qout ⊆ Q

The set of states for the NFA upon reading a letter is the union of the transition
function outputs for each of the states it is currently in. Let Q0 be the current set
of states of an NFA during computation. Upon reading an input letter a, its new
set of states will be

Q1 =
⋃

q∈Q0

δ(q, a)

We say an NFA N accepts an input string w if its final set of states upon reading
w, say Qf , includes at least one member of the set of accepting states. This means
that w is accepted if and only if ∃q ∈ Qf such that q ∈ F .

Example 2.1. We seek to construct an NFA which only accepts those binary
strings which end in 01.

We know the input language for this NFA:

Σ = {0, 1}

We next want to define the set of states for this NFA. In particular, we have
the state q0, which is a waiting state, so the NFA is still waiting for the end of the
string to begin. Since the NFA will never know for certain that it is approaching
the end of the string, it will always remain in this state. However, we also define a
state q1, and this is the state of the NFA which guesses that it has read the second
to last digit to be a 0, and it is expecting that a 1 should follow. Since we never
know if we are approaching the end of the string, the NFA will always enter q1 upon
reading a 0. Finally, we define the state q2, a state which corresponds to the NFA
guessing that it has read the final 01. As such, the NFA will enter Q2 whenever it
reads a 1 while in state q1. Crucially, reading any digit while in q2 yields an empty
set of states, since any further digit invalidates the guess that the 01 we have just
read is the end of the string. Similarly, reading a 0 while in q1 returns an empty
set of states since this 0 invalidates the guess that we were entering the final 01.

Q = {q0, q1, q2}

THEORETICAL MODELS OF COMPUTATIONS 5

Figure 1. A diagram of the transition function δ, sourced from
Introduction to Automata Theory, Languages, and Computation,
Section 2.3 [1]

Figure 2. An illustration of the behavior of our NFA, sourced
from Introduction to Automata Theory, Languages, and Computa-
tion, Section 2.3 [1]

Naturally, the NFA begins in its waiting state, so:

qi = q0

Furthermore, we want to accept the string if it has read a 01 at the end, so:

F = {q2}
The transition function, as described above, is given by the Figure 1 where ∅ cor-

responds to the empty set, → corresponds to the starting state, and ∗ corresponds
to an accepting state.

Now that we have defined Q,Σ, Qi, δ, and F , we have completed the construction
of our NFA to determine if a string ends in 01. Figure 2 illustrates the trajectory
of the NFA as it reads through the input.

Even though we greatly simplified the solution of this problem by using an NFA,
notice that we still could have solved it with a DFA (the details of this construction
are left as an exercise). However, this DFA solution would have many more states
than the NFA we just constructed, and generally be needlessly complicated. As
such, we greatly simplified our computational mechanism by using an NFA. Still,
despite the fact that NFAs make computations for certain problems easier, as we
have just observed, we still don’t know whether NFAs are more powerful than
DFAs. To understand whether there is a greater degree of computational capability
possible with an NFA than a DFA, we will attempt to write an arbitrary NFA as a
DFA.

Theorem 2.2. Any problem which can be solved by an NFA can also be solved by
a DFA.

Proof. Let us consider an arbitrary NFA A given by:

A = {Q,Σ, qi, δ(qin, a), F}

6 ARUSH GULIANI

We want to construct a DFA, B, which accepts exactly the same set of strings
as A. Σ will remain the same for B, since it reads the same alphabet. We now
define P to be the power set of Q. Every possible set of states which A could be in
will be included in P . We now define X to be the subset of P which includes every
set with at least one element of F . This will be our set of accepting states for B.
For the starting state for B, we have {qi}, the set containing the starting state of
A. Finally, we will construct a new transition function, denoted δ′, and defined as
follows:

δ′(S ⊂ Q, a) =
⋃
q∈S

δ(q, a)

This transition function will move between sets of states exactly in accordance
with A. Now that we have constructed each parameter of B, we can define it to be
the DFA given by:

B = {P,Σ, {qi}, δ′, X}
By its construction, B will behave identically to A, and thus accept the same

set of strings.
□

3. Regular Languages and Expressions

So far, we have discussed DFAs and NFAs, two models of computation with
differing modes of operation but identical computational capabilities. We have
considered the type of problems which these automata can solve, and ones they
cannot solve. To further generalize which type of problems are capable of being
solved by these finite automata, we want to develop a system of regular languages,
which are defined to be the sets of strings which are accepted by some finite au-
tomata. Looking at regular languages, we begin with the question: what pattern
unites these regular languages? What properties must they follow and what does
this tell us about finite automata?

Definition 3.1. A language is a set of strings built from letters within a given
alphabet, Σ. The language of a finite automata is defined to the set of strings which
it accepts. For an NFA or DFA A, L(A) notates the corresponding language. Any
language which has a corresponding DFA is considered to be a regular language.

We want to define a few operators for languages.

(1) The union of two languages, L1 ∪ L2.
(2) The concatenation of two languages, denoted as L1 · L2, is the set of all

strings w = xy for some x ∈ L1 and some y ∈ L2.
(3) The closure of a language, denoted as L1∗, is the set of all strings, w, such

that for some non-negative integer n, w = x1x2...xn, with xi ∈ L ∀i.

For example, if:

L1 = {0, 1}
L2 = {a, b, c}

Then:

L1 ∪ L2 = {0, 1, a, b, c}
L1 · L2 = {0a, 0b, 0c, 1a, 1b, 1c}

THEORETICAL MODELS OF COMPUTATIONS 7

L1∗ = the set of all binary strings

We now seek to separately define regular expressions, which will help us talk
about regular languages in a more algebraic manner.

Definition 3.2. We will define regular expressions inductively. We begin with our
base case, by establishing the three cases which we consider to be regular expressions
by definition. For any symbol x, x is a regular expression denoting the singleton
language containing that symbol. We write this as

L(x) = {x}

A special case of the singleton regular expression is ϵ, a regular expression denoting
the language {ϵ}, or the language containing the empty string. The final base case
of our regular expression is ∅, which denotes the empty language.

From here, we inductively define that for regular expressions X and Y , the
following is also true:

(1) X + Y is a regular expression, and the language of X + Y is L(X) ∪ L(Y)
(2) XY is a regular expression, and the language of XY is L(X) · L(Y)
(3) X∗ is a regular expression, and the language of X∗ is L(X)∗

Now that we have formally defined regular expressions and their arithmetic, we
can now use them to talk about languages. Crucially, we have a relation between
regular expressions and regular languages.

Theorem 3.3. A language is regular if and only if it is represented by some regular
expression.

The proof of this theorem is beyond the scope of this paper, but it generally
functions by inducting on the arbitrary regular expression to build a corresponding
DFA, and in reverse by inducting on the the paths between states to build a regular
expression.

Using the models we have built up, we now want to prove some properties of
regular languages, since this will better give us an idea of the kinda of problems
which may be solved by finite automata.

Theorem 3.4. If L is regular, then LR is regular, where LR is the set of all strings
in L reversed.

Proof. Let L be some arbitrary regular language. By Theorem 3.3, there exists
some regular expression, say E, such that L(E) = L. To show that LR is a regular
language, it suffices to show that there exists some regular expression ER such that
L(ER) = LR.

We will build up ER by considering the form of the expression E and determining
its reversal, repeating this process through induction on the size of E. We now want
to show the value of ER depending on the different possible forms of E.

• In the base case that E refers to a singleton set or an empty set, the
corresponding language is a reversal of itself, and so we set ER = E, since
this would mean that L(ER) = L(E) = L = LR.

• If E is of the form E = A+B, then ER = AR+BR. This is because the +
operator refers to a union, and the reversal of the union of two languages
is simply the union of the reversal of both languages. For example, if

8 ARUSH GULIANI

L(A) = {100, 101} and L(B) = {001, 010}, then, L(AR) = {001, 101} and
L(BR) = {100, 010}. This would give us the correct value for ER:

ER = AR +BR = {001, 101, 100, 010}
• If E is of the form E = AB, then ER = BRAR. This is because when
dealing with the concatenation of two languages, the reversal of the con-
catenation will be the concatenation of the reversal of each language, but
in opposite order. Using the same A and B as in the previous example, we
calculate the correct value for ER in this case as well:

ER = BRAR = {100001, 100101, 010001, 010101}
• The case that E is of the form E = A∗ follow a similar logic to the previous
two forms, and the specific math is left as an exercise to the reader.

Now that we have inductively reverse engineered a regular expression
ER, such that L(ER) = LR, we are done.

□

Theorem 3.5. The complement of a regular language with respect to an alphabet
is a regular language.

Proof. We pick some arbitrary regular language L. Since L is regular, there exists
a DFA whose set of accepted strings is L. Let this DFA A be given by:

A = {Q,Σ, qi, δ(qin, a), F}
Let X be the language which is the set of all strings comprised of alphabet Σ.

We want to show that Lc = X\L is a regular language. We construct a DFA A′

given by:

A′ = {Q,Σ, qi, δ(qin, a), Q\F}
Since the accepting states of A′ is all of the rejecting states of A, A′ will accept

every string which was not accepted by A, meaning that its set of accepted strings
is exactly Lc. Since Lc is given by a DFA, it is a regular language.

□

The final property of regular languages we seek to establish is known as the
Pumping Lemma, and is essentially a more general version of the phenomenon we
observed in Theorem 1.3, which stated that no regular language consists of only
those binary strings which have an equal number of 1s and 0s. By establishing
this Pumping Lemma, we will have a more direct way of observing of which sets of
strings can be regular languages, and by extension, which problems can be solved
for by finite automata.

Theorem 3.6. Pumping Lemma: Let L be a regular language. There exists an
integer n such that for any string x ∈ L with |x| ≥ n, x can be broken down into
the concatenation of 3 strings, written as x = abc, such that:

b ̸= ϵ

|ab| ≤ n

∀k ≥ 0, abkc ∈ L

Where bk represents the repeated concatenation of the string b, and |x| represents
the length of string x.

THEORETICAL MODELS OF COMPUTATIONS 9

Theorem 3.6 follows a proof structure parallel to that of Theorem 1.5. As such,
this proof is left as an exercise to the reader.

Let us walk through an example of the applications of this Pumping Lemma.

Example 3.7. Prove that there is not a regular language which consists only of
prime-length strings.

Proof. Assume for the sake of contradiction that there exists a regular language L
which consists only of strings of a prime number length. We pick the least prime
number, denoted p, which is greater than the n given by our Pumping Lemma. We
pick a string from our language with p digits, and let this string be denoted x. We
break x down into the concatenation of 3 strings, as given by the Pumping Lemma

x = abc

We know that |b| ̸= 0 by the pumping lemma, and we know that |abc| = p by
definition. We now form a new string:

x′ = abp−|b|c

By the Pumping Lemma, we know that x′ ∈ L. We can also calculate that:

|x′| = (p− |b|) + |b| ∗ (p− |b|) = (|b|+ 1)(p− |b|)

Since we have just factored |x′|, we know that x′ does not have a prime length, but
that it is a member of L. Thus, we reach a contradiction. □

4. Turing Machines

We have looked at finite automata and their limitations, including problems
which they cannot solve, such as whether a string has a prime number of digits, or
if a string has the same number of 1s and 0s. We will draw a contrast to this limited
computational model by briefly considering Turing Machines, a more abstract yet
powerful model of computation. This model of computation includes the ability to
solve every problem that is solvable by a modern computer. We will consider the
computational capabilities and logical limitations of these Turing Machines.

Definition 4.1. Turing Machines are a model of computation which possess the
ability to execute any algorithm. Their functionality can be conceptually under-
stood through the idea of a machine reading and writing over an infinite piece of
tape containing inputs. Specifically, consider a piece of tape broken into sections,
each of which can contain a single symbol, or be blank. This piece of tape has
a distinct starting point, but continues infinitely in the other direction. There is
a finite amount of input symbols on this infinite piece of tape, beyond which are
exclusively blank symbols. Also, like finite automata, the Turing Machine is in one
of a finite set of states at any given point in time. The Turing Machine is looking
at exactly one section on the tape at any given point in time, starting with the first
section, and has the ability to:

(1) Read the section it is currently on.
(2) Erase or re-write the symbol on the section it is currently on.
(3) Move to the next section forward or the previous section.
(4) Change its current state.

10 ARUSH GULIANI

There are unique states, known as the accepting and rejecting states, which upon
entering, cause the Turing Machine to accept or reject the input string, respectively.
A Turing Machine can accept, reject, or enter an infinite loop when it reads an input
string.

Traditionally, and formally, Turing Machines are denoted by a tuple notation
similar to that which we used for finite automata. This tuple notation definition
varies by source, but includes things such as the input alphabet, a set of states, a
starting state, an accepting state, a rejecting state, a dedicated blank symbol, and
a transition function which dictates the rewriting of symbols and the movement
between states. However, for the purposes of this paper, we will not use the formal
tuple definition, and instead refer to these Turing Machines simply using the nota-
tion A(a1, a2, ...), where A is the machine itself, a1, a2, ... are the inputs which are
written on the tape, and A(a1, a2, ...) denotes the output of the Turing Machine
when reading the given inputs, being accepting, rejecting, or looping. Although we
will not prove why this model of Turing Machines can be used to form any possible
algorithm, we know this to be the case by the Church-Turing Thesis.

With this model of Turing Machines established, we pose the question: is it
possible to construct a Turing Machine for any language, such that only strings
within that language will be accepted? In other words: can Turing Machines solve
every problem? Despite this model of Turing Machines encapsulating the abilities
of every computer ever made, we know that there exist some problems which cannot
be solved by even this device.

Theorem 4.2. Not every problem is solvable by a Turing Machine.

Proof. For any Turing Machine T , let w(T) represent the blueprint of the Turing
Machine T written in the corresponding language. For this proof, we will also treat
any situation in which a Turing Machine infinitely loops as it rejecting the given
input.

Suppose every problem was solvable by a Turing Machine. We could construct
a Turing Machine A which would take in two sets of inputs: an arbitrary set of
inputs k, followed by a blueprint for a Turing Machine, w(F). A would accept only
those pairings of Turing Machines and symbols such that F accepts the input k.

We will now contradict our assumption by proving that A cannot exist.
We begin by constructing a Turing Machine B. B takes in the blueprint for a

Turing Machine, w(F), and works in the following way:
B(w(F)) rejects ifA(w(F), w(F)) accepts, andB(w(F)) accepts ifA(w(F), w(F))

rejects. In other words, B accepts only those Turing Machines which reject their
own blueprints.

We now disprove the existence of A by showing that A(w(B), w(B)) fails to work
in the ways we would expect, and instead reaches a logical contradiction.

If A(w(B), w(B)) is accepting, then B must accept input w(B). However, this
can only happen if A(w(B), w(B)) rejects. Similarly, if A(w(B), w(B)) rejects,
then B must reject input w(B). However, this can only happen if A(w(B), w(B))
accepts. In both cases, we reach a contradiction, and this disproves the existence
of A.

□

Compared to the limited reach of finite automata, Turing Machines have incred-
ible scope, and the fact that we are able to find an unsolvable problem for them

THEORETICAL MODELS OF COMPUTATIONS 11

means that we have proved a limit for computation. Beginning with finite automata
and their simple ability to check whether a string ends in 01, we now look at the
very limits of possible computational capabilities, and know that there is in fact a
a limit to what computers can, and will be able to do.

Acknowledgments

It is a pleasure to thank my mentor, Marc de Fontnouvelle, for exposing me
to the world theoretical computation, and for guiding me through my reading of
Introduction to Automata Theory, Languages, and Computation[1]. He introduced
me to many different concepts and theorems in the world of Automata and Com-
plexity theory which led me to pursue this paper topic, and this paper would not
have been complete without his continuous support.

References

[1] Hopcroft, John E., et al. Introduction to Automata Theory, Languages, and Computation.

Addison-Wesley, 2001.

[2] Kozen, Dexter. Automata and Computability. Springer, 1997.

	1. Deterministic Finite Automata
	2. Non-deterministic Finite Automota
	3. Regular Languages and Expressions
	4. Turing Machines
	Acknowledgments
	References

