
AN INTRODUCTION TO ITÔ CALCULUS

FEDERICO GUGLIELMOTTI

Abstract. In this paper, we will introduce the fundamental ideas and prove

the main results of Stochastic calculus. We will assume little knowledge of

Probability theory and calculus. At the end, we will also look at an important
application of stochastic calculus in finance.
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5.2. Itô’s Lemma in higher dimensions 10
6. Stochastic Differential Equations 11
6.1. Existence and Uniqueness of Solutions 11
6.2. The Black–Scholes Model 14
Acknowledgments 15
References 15

1. Introduction

Stochastic calculus is the area of mathematics that models processes with a
stochastic component. The stochastic component is often expressed in terms of
Brownian motion, so we will begin this paper by defining it and listing its main
properties. We will then define the Itô integral, which allows us to integrate sto-
chastic processes. We will then state and prove Itô’s lemma, which is akin to
the fundamental theorem of calculus in Riemann calculus. Finally, we will define
Stochastic Differential equations and show the existence of solutions under certain
assumptions, and we will look at an application of stochastic differential equations
in finance; the Black–Scholes equation.
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2. Mathematical Preliminaries

2.1. Definitions.

Definition 2.1. A sample space Ω is the set of all possible outcomes of a statistical
experiment. For example, the sample space of a coin flip is Ω = {H,T}, where H
and T are the events of the coin flipping heads and tails respectively.

Definition 2.2. Given a set Ω, we define the σ-field F on Ω as a family of subsets of
Ω closed under countable union and countable intersection. Equivalently, a σ-field
F on Ω satisfies the following properties:

(1) ∅,Ω ∈ F .
(2) The complement of a set in F is also in F . That is, if A ∈ F , then Ac ∈ F .
(3) The countable union and intersection of sets in F is also in F . That is, if

A1, ...,An, ... ∈ F , then
∞⋂
i=1

Ai ∈ F and
∞⋃
i=1

Ai ∈ F .

In probability, such a field can be understood as the information available to us.
It represents the set of events, an event being a set of possible outcomes from an
experiment.

Definition 2.3. Given a topological space X, a Borel σ-field B(X) is defined as
the smallest σ-field containing all open subsets of X.

We need σ-field to describe possible events because it allows us to assign to
each set in F a probability, that is, a value between 0 and 1 (inclusive). We now
turn to mathematically defining the notion of probability of an event, which has its
commonly understood meaning.

Definition 2.4. A probability measure P on F is a real-valued function on F
where:

(1) P (Ω)= 1
(2) if A ∈ F , then P (A)= 1− P (Ac)

(3) if A1, ...,An, ... ∈ F are pairwise disjoint, then P (
∞⋃
i=1

Ai)=
∑∞

n=1 P (Ai)

Definition 2.5. The tuple (Ω,F , P ) is called a probability space or probability
triple.

Definition 2.6. Given a probability space (Ω,F , P ), a function f : Ω → R is said
to be F-measurable if, for all Borel sets U ⊂ R:

f−1(U) := {ω ∈ Ω : f(ω) ∈ U} ∈ F

Definition 2.7. Given a probability space (Ω,F , P ), a random variable X is a
F-measurable function X : Ω → R. To each random variable corresponds a Borel
measure in R defined by µX(B) = P (X−1(B)), which we call the distribution of
X. We write that FX , the σ-field generated by X, is the set FX = {X−1(A) : A ∈
B(R)}.

Definition 2.8. Given a real-valued function f(t), we define its quadratic variation
[f, f ] over the interval [0, t] as the following limit:

[f, f ] = lim
∥P∥→0

n∑
i=1

(f(ti)− f(ti−1))
2
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where P denotes the partition 0 = t0 < t1 < ... < tn−1 < tn = t of the interval
[0, t], and ∥P∥ denotes the norm of this partition, where ∥P∥ = max

i∈1,...,n
(ti − ti−1).

Definition 2.9. Similarly, given real-valued functions f(t), g(t), we define their
quadratic covariation [f, g] over [0, t] as:

[f, g] = lim
∥P∥→0

n∑
i=1

(f(ti)− f(ti−1))(g(ti)− g(ti−1))

where P denotes the partition 0 = t0 < t1 < ... < tn−1 < tn = t of the interval
[0, t], and ∥P∥ denotes the norm of this partition, where ∥P∥ = max

i∈1,...,n
(ti − ti−1).

Definition 2.10. The expectation of a random variable X with respect to a prob-
ability measure P is defined as

E(X) =

∫
Ω

X(ω) dP (ω) =

∫
R

x dµX(x)

Definition 2.11. For a Borel-measurable random variable X : Ω → R and a
constant p ∈ [1,∞), we define the Lp-norm of X, ∥X∥p as

∥X∥p = E(|X|p)
1
p ,

and the space corresponding to this norm is defined as:

Lp(Ω) = {X : Ω → R; ∥X∥p < ∞}
Definition 2.12. We say that a sequence of random variables {Xn} converges to
X in Lp if E(|Xi|p) < ∞ ∀i ∈ {1, ..., n} and E(|Xn −X|p) → 0 as n → ∞
Definition 2.13. A filtration Ft is a collection of σ-fields Ft indexed by time t
such that, for every s ≤ t, we have Fs ⊆ Ft.

Definition 2.14. A stochastic process {Xt}t∈T is a set of random variables indexed
by time t. If the index t takes on only positive integer values, the stochastic process
is said to be discrete. If t can take on any positive real value, the process is
continuous. A stochastic process is said to be adapted to a filtration Ft if, for every
t, Xt is Ft measurable.

In this paper, we will work primarily with continuous stochastic processes.

Definition 2.15. A continuous stochastic process Xt is said to be a martingale
with respect to a filtration Ft if, for all t ≥ 0 and some s > 0, E(|Xt|) < ∞, and
the following property is true almost surely (with probabiliy 1):

E(X(t+ s)|Ft) = X(t)

3. Brownian Motion

Brownian motion was first introduced by British botanist Robert Brown to de-
scribe the apparently random motion of pollen in water. As pollen in a cup of water
sinks to the bottom, it also moves horizontally, changing directions very frequently.
At the molecular level, this movement is determined by the forces of nearly in-
finitely many and nearly infinitely small water particles. Stock prices can also be
modeled by Brownian motion because they are determined by very many buyers
and sellers of very small amounts of stock at the same time. We denote Brownian
motion by B(t) or, equivalently, by Bt.
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3.1. Defining Properties of Brownian Motion.
Let {B(t)} be a continuous stochastic process that represents the position of a
particle at time t with the following defining properties:

(1) (Independence of increments) for t > s, the difference B(t)−B(s) is inde-
pendent of the past, that is, of all B(u) such that 0 ≤ u ≤ s or, equivalently,
the σ-algebra Fs generated by B(u), where u ≤ s.

(2) (Normal increments) B(t) − B(s) ∼ N(0, t − s). That is, the increment
from time s to t is normally distributed with mean 0 and variance t− s.

(3) (Path continuity) B(t) is a continuous function with respect to t ≥ 0.

On the additional condition that B(0) = 0, the process is sometimes called a
standard Brownian motion or a Wiener process, and it is at times denoted with
W (t).

3.2. Some additional Properties of Brownian motion.

Theorem 3.1. The quadratic variation of Brownian motion [B(t), B(t)] over [0, t]
converges to t in L2.

Proof. Put the partition that defines the variation as 0 = t0 < t1 < ... < tn−1 <
tn = t, and we write ∆Bi = B(ti)− B(ti−1) to denote the increment from ti−1 to
ti. Then we have:

E(([B,B]− t)2) = E((
n∑

i=1

(∆Bi)
2 − t)2)

Then, writing t as a telescoping sum t =
∑n

i=1(∆ti) using increments ∆ti = ti−ti−1,
and joining the sums, we obtain:

E((
n∑

i=1

(∆Bi)
2 − t)2) = E(

n∑
i=1

(∆B2
i −∆ti)

2) (∗)

Then, we use the linearity of expectation to bring the expectation inside the sum,
we expand the square argument, use linearity again and we obtain the following:

E(
n∑

i=1

(∆B2
i −∆ti)

2) =

n∑
i=1

(E(∆B4
i − 2(∆Bi)

2(∆ti)
2 +∆ti)

2)

=

n∑
i=1

(E(∆B4
i ))− 2

n∑
i=1

(E(∆Bi)(∆ti)
2) +

n∑
i=1

(E(∆ti)
2)

Recall that the increments from times s to t in Brownian motion are normally
distributed with mean 0 and variance t− s. Then, use the fact that for a normally
distributed variable X ∼ N(0, σ2), its second moment is E(X2) = σ2 and its fourth
moment is E(X4) = 3σ4. Also, note that ∆ti is nonrandom and take it out of the
expectation by linearity. Then, we get:

E(
n∑

i=1

(∆B2
i −∆ti)

2) =

n∑
i=1

(3(ti − ti−1)
2)− 2

n∑
i=1

(∆ti)(ti − ti−1) +

n∑
i=1

(∆ti)
2

We then use the fact that ∆ti = ti − ti−1 and simplify the sums to obtain:

E(
n∑

i=1

(∆B2
i −∆ti)

2) = 2

n∑
i=1

(ti − ti−1)
2
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Now, recall that the quadratic variation is defined by taking the limit of the sum
as the partition gets infinitely finer. When ∥P∥ → 0, each interval in the partition
becomes infinitely small, so ti− ti−1 → 0 ∀i ∈ 1, ..., n. Hence, each term in the sum
above goes to 0, so the sum goes to 0 and this gives us L2 convergence as desired:

E(|[B,B]− t|2) = E(
n∑

i=1

(∆B2
i −∆ti)

2) = lim
∆ti→0

2

n∑
i=1

(ti − ti−1)
2 = 0

□

Theorem 3.2. Brownian motion B(t) is nowhere differentiable with respect to t
almost surely.

A rigorous proof of this fact is beyond the scope of the paper; one such proof
can be found in Breiman (1992), p.261-262.

The non-differentiability of Brownian paths is the principal motivation of Itô
calculus, which allows us to define an integral with respect to Brownian motion
without the fundamental theorem of Riemann calculus. This will be introduced in
the next Section.

Theorem 3.3. Brownian motion B(t) is a martingale with respect to the σ-fields
Ft generated by {Bs : s ≤ t}. That is, E(B(t+ s)|Ft) = B(t) almost surely for any
s > 0.

Proof. Begin with the left-hand side of the equation and add and subtract B(t) in
the expectation

E(B(t+ s)|Ft) = E(B(t) +B(t+ s)−B(t)|Ft)

Then, use linearity of conditional expectation to split it in two;

E(B(t) +B(t+ s)−B(t)|Ft) = E(B(t)|Ft) + E(B(t+ s)−B(t)|Ft)

Now, we use the fact that increments B(t+s)−B(s) in Brownian motion are inde-
pendent of Ft and normally distributed with mean 0. Also, we have E(B(t)|Ft) =
E(B(t)) in the left summand because B(t) is Ft-measurable, and we are left with:

E(B(t)|Ft) +E(B(t+ s)−B(t)|Ft) = B(t) +E(B(t+ s)−B(t)) = B(t) + 0 = B(t)

This shows E(B(t+ s)|Ft) = B(t). □

Theorem 3.4. Almost surely, Brownian motion B(t) is not monotone on any
interval [a, b] ⊂ (0,∞].

Proof. Consider an interval [a, b] ⊂ (0,∞] where a ̸= b. Assume, for the sake of
contradiction, that Brownian motion is monotone on this interval. Then, consider
a partition a = t0 < t1 < ... < tn−1 < tn = b of the interval [a, b]. Then,
by monotonicity, all increments B(ti) − B(ti−1) must be of the same sign. Since
increments are normally distributed, they are either positive with probability 0.5
or negative with probability 0.5. Hence, the probability of B being monotone, that
is, all increments having the same sign, is 2−n+1. As we keep taking finer and finer
partitions, n → ∞, and this probability goes to 0, since limn→∞ 2−n+1 = 0. This
shows that for any interval [a, b], B([a, b]) is not monotone almost surely. We can
take the countable union of all intervals with rational endpoints. But then, by the
density of Q in R, we can extend this to all intervals in (0,∞]. □
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4. The Itô Integral

Itô’s calculus extends many of the methods of calculus to stochastic processes,
such as Brownian motion. The Itô integral and Itô’s lemma form the basis of Itô
calculus, and are described in this Section.

Definition 4.1. Given a function f and a monotone function g that are finite on the
interval [a, b] partitioned by P = a = x0 < x1 < ... < xn = b and some intermediate
points ξi ∈ [ti−1, ti], the Riemann-Stieltjes integral of f with respect to g over
(a, b] is defined as:∫ b

a

f(x)dg(x) = lim
∥P∥→0

n∑
i=1

f(ξi)(g(ti)− g(ti−1))

Observe that this is a generalization of the Riemann integral, which is just the
Stieltjes integral with g(x) = x. We will see that the definition of the Itô integral
closely resembles that of a Stieltjes integral, but g will be a stochastic process
instead.

Remark 4.2. We often understand a Riemann integral as quantifying the ”area
under the curve” delimited by the integrand f(x). In this interpretation, Riemann
sums approximate the area under the curve with rectangles all of which have equal
width and variable height, depending on the value of the integrand at that point. At
the end we sum up all of these rectangles to get our approximation of the area under
the curve. To understand the Stieltjes integral we can think of a similar procedure,
except that in the final step, instead of just summing up all the rectangles, we
choose to rescale each width of the rectangles by applying some function to them
individually. The said function is precisely g(x), which ”stretches” or ”compresses”
the points on the x-axis.

Definition 4.3. We say that a stochastic process f(t, ω) is elementary, if it is
of form f(t, ω) =

∑
j ej(ω)1[tj ,tj+1)(t), where each ej is a Ftj -measurable random

variable and 1[tj ,tj+1)(t) is the indicator variable on the interval [tj , tj+1).

4.1. Defining the Itô Integral. Consider an elementary stochastic process f(t, ω).
Then we can define its Itô integral as∫ T

S

f(t, ω)dBt(ω) =
∑
j≥0

ej(ω)[Btj+1, Btj ](ω)

Then, we observe some of the properties of this integral.

4.2. Properties of the Itô Integral. We can also write the Itô integral as∫ T

S
X(t)dBt. Then, it has the following properties:

• (Interval Addition) Given a function f(t, ω) ∈ V, and some constant
R ∈ (S, T ) ⊂ R∫ T

S

f(t, ω)dBt(ω) =

∫ R

S

f(t, ω)dBt(ω) +

∫ T

R

f(t, ω)dBt(ω)

• (Linearity) Given functions f(t, ω), g(t, ω) ∈ V, and constants a,b∫ T

S

(af(t, ω) + bg(t, ω))dBt = a

∫ T

S

f(t, ω)dBt + b

∫ T

S

g(t, ω)dBt
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• (Zero Mean Property) Given a function f(t, ω) ∈ V

E

(∫ T

S

f(t, ω)dBt

)
= 0

• (Isometry) Given a function f(t, ω) ∈ V

E

(∫ T

S

f(t, ω)dBt

)2

=

∫ T

S

E(f2(t, ω))dt

Note that the Isometry and Zero Mean properties hold only under the additional
assumption that f(t, ω) is bounded.
Properties 1 and 2 can be proven by simple algebraic manipulations, so we omit
their proofs. We instead turn to proving properties 3 and 4.

Proof. (Zero Mean Property)
Consider an elementary function f(t, ω) =

∑
j ej(ω)1[tj ,tj+1)(t). Then, observe

that, by the Cauchy-Schwarz inequality:

E(|ej(ω)(Btj+1(ω)−Btj (ω))|) <
√

E(ej(ω)2)E((Btj+1(ω)−Btj (ω))
2) < ∞

In particular, the expression must be bounded because we know that E(ej(ω)2) <
∞, and because the increments in Brownian motions are normally distributed, its
second moment is bounded as well. Because this inequality holds, we can apply the
triangle inequality to the Itô integral of an elementary function. In particular, we
get:

E

(∣∣∣∣∣
∫ T

S

f(t, ω)dBt(ω)

∣∣∣∣∣
)

= E

∣∣∣∣∣∣
∑
j≥0

ej(ω)∆Btj (ω)

∣∣∣∣∣∣


≤ E

∑
j≥0

|ej(ω)∆Btj (ω)|

 =
∑
j≥0

E(|ej(ω)∆Btj (ω)|) < ∞

This shows that the expectation of the Itô Integral exists.
Now, recall that Brownian motion is a martingale (Theorem 3.3), and that each ej
is Ftj -measurable. Then, we have:

E((ej(ω)∆Btj (ω))|Fti) = ej(ω)E(∆Btj (ω)|Fti) = 0

this implies that E((ej(ω)∆Btj (ω))|) = 0, which, in turn, implies that each term in
the expectation of the Itô integral is 0. Hence, the Itô Integral has mean zero. □

Proof. (Itô Isometry)
We know that each ej that defines an elementary process f(t, ω) is L2, so f(t, ω)
must also be L2, and we can safely expand the following expectation:

E

(∫ T

S

f(t, ω)dBt

)2

= E

∑
j≥0

(ej(ω)∆Btj (ω))

2

=
∑
j≥0

E(e2j (ω)(∆Btj (ω))
2) + 2

∑
j ̸=i

E(ej(ω)ei(ω)∆Btj (ω)∆Bti(ω))
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We can again use the martingale property of Brownian motion. Consider the first
sum of the previous equation:∑

j≥0

E(e2j (ω)(∆Btj (ω))
2) =

∑
j≥0

E(E(e2j (ω)(∆Btj (ω))
2)|Ftj )

=
∑
j≥0

E(e2j (ω)E((∆Btj (ω))
2|Ftj ) =

∑
j≥0

E(e2j (ω)E(ti − ti−1)|Ftj )

=
∑
j≥0

E(e2j (ω)(ti − ti−1)) =

∫ T

S

E(f2(t, ω)dBt(ω))

We can do this on the second sum of the expansion of the expectation squared of the
Itô integral, and this would give us that each term in the sum equals zero, so that the

entire sum equals zero. Hence, we showed: E
(∫ T

S
f(t, ω)dBt

)2
=
∫ T

S
E(f2(t, ω))dt.

□

What about continuous functions? It turns out that we can extend the definition
of the Itô integral for a wider class of functions.

Consider the set V of functions y(t, ω) such that y(t, ω) is bounded and contin-
uous with respect to t.

Lemma 4.4. If y(t, ω) is a function where y ∈ V, then y can be described as an L2-
limit of a sequence of elementary functions fn(t, ω), and consequently all properties
of the Itô integral of elementary functions carry over to Itô integrals of any y ∈ V.
See Oksendal (2003), p.27-28 for a proof of this lemma.

Then, observe that, for any y(t, ω) ∈ V, we write its Itô integral as the L2 limit:∫ T

S

y(t, ω)dBt(ω) = lim
n→∞

∫ T

S

fn(t, ω)dBt(ω)

where fn(t, ω) is a sequence of elementary functions that converges in L2 to y(t, ω) ∈
V. Also, note that the set of functions for which the integral is defined can be
further expanded to the set of functions that are Ht-adapted, where Ht is a field
with respect to which Bt is a martingale (see Oksendal (2003), p.34).

Remark 4.5. Because the Itô integral is defined similarly to a Stieltjes integral, we
can interpret the Itô integral to simply be a random version of the Stieltjes integral.
However, an Itô integral can also be understood as the profit from trading stock.
Suppose B(t) represents the price of stock and f(t, ω) = Xti is the amount of stock
held in the interval [ti, ti+1). At each time ti, a trader pays XtiBti for Xti stocks,
and at time ti+1, all Xti stocks are sold, totaling a net profit of Xti(Bti+1

− Bti).
Then, again at time ti+1 the trader buys Xti+1

stocks and repeats the process until
t = T . At the end, the total profit equals precisely the value of the Itô integral.
This interpretation also shows why we choose the left endpoint ei instead of any
other value at a point in [ti, ti+1). We choose how much stock to buy at time ti
based on the price at the price it has at that time Bti , and being able to buy it
based on any other later price would imply that we are able to see into the future.
It’s for this reason that Itô calculus is especially useful in finance.
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5. Itô’s Lemma

Even though we have arrived to the definition of the Itô integral, we still do now
know how to compute one. As in the case of Riemann integration, the definition
of the integral alone is not useful in practice, and we need to define other tools or
techniques to evaluate integrals. Itô’s lemma is the tool that allows us to integrate
a class of stochastic processes called Itô processes.

Definition 5.1. A stochastic process Xt is called a 1-dimensional Itô process on
the probability triple (Ω,F , P ) if it satisfies the following equation for some u, v:

Xt = X0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs

or the equivalent equation in differential form:

dXt = u(t, ω)dt+ v(t, ω)dBt

Here
∫ t

0
|u(s, ω)|ds < ∞ and

∫ t

0
v2(s, ω)dBs < ∞ almost surely.

5.1. 1-dimensional Itô Lemma. Given an Itô process Xt, and a bounded, twice
continuously differentiable function g(t, x) : [0,∞) × R → R with bounded partial
derivatives, then Yt = g(t,Xt) is an Itô process with:

dYt =
∂g

∂t
(t,Xt)dt+

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2 (t,Xt)(dXt
2)

Proof. Because g’s partials are bounded, we can approximate g with a second-degree
Taylor polynomial, which gives:

g(t,Xt) = g(0, X0) +
∑
j

∂g

∂t
∆tj +

∑
j

∂g

∂t
∆Xj +

∑
j

1

2

∂2g

∂t2
(∆tj)

2

+
∑
j

1

2

∂2g

∂t∂x
(∆tj)(∆Xj) +

1

2

∑
j

∂2g

∂x2 (∆Xj)
2 + · · ·

Where all partial derivatives are evaluated at point (tj , Xj), and ∆tj = tj+1 − tj ,
∆Xj = Xj+1 −Xj , and the ... denotes the remainder term of form
o(|∆tj |2 + |∆Xj |2) Observe that, as ∆tj → 0, we have:∑

j

∂g

∂t
(tj , Xj)∆tj →

∫ t

0

∂g

∂t
(s,Xs)ds

∑
j

∂g

∂x
(tj , Xj)∆Xj →

∫ t

0

∂g

∂x
(s,Xs)dXs

Then, using the definition of Itô process Xt, we can expand the fifth sum in the
Taylor expansion as follows:∑
j

∂2g

∂x2 (∆Xj)
2 =

∑
j

∂2g

∂x2u
2
j (∆tj)

2+2
∑
j

∂2g

∂x2ujvj(∆tj)(∆Bj)+
∑
j

∂2g

∂x2 v
2
j (∆Bj)

2

where uj and vj are evaluated at (tj , ω). Observe that the first sums with terms
(∆tj)

2, (∆tj)(∆Xj) both become irrelevant in our sum because they go to 0 much
more rapidly than the terms with either only ∆tj or ∆Xj in our starting Taylor
expansion. It can, however, be shown that this is not true of the third term in
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the sum with (∆Xj)
2 We now turn to precisely this term. Put aj = a(tj) =

∂2g
∂x2 (tj , Xtj )v

2(tj , ω). Then, consider:

E((
∑
j

aj(∆Bj)
2 −

∑
j

aj∆tj)
2) =

∑
i,j

E((aiaj((∆Bi)
2 −∆ti)(∆Bj)

2 −∆tj))

When i > j, the factors (∆Bi)
2 −∆ti,aiaj((∆Bj)

2 − (∆tj)) are independent, and
we have:

E((aiaj((∆Bi)
2 −∆ti)(∆Bj)

2 −∆tj)) = E(aiaj((∆Bj)
2 −∆tj))E((∆Bi)

2 −∆ti)

= E(aiaj((∆Bj)
2 −∆tj))(∆ti −∆ti) = 0

Since the Brownian increment from 0 to tj is normally distributed with variance tj .
A similar argument can also be applied to the terms where j > i. Hence, we only
care about the terms where i = j, and, as ∆tj → 0 our previous equation becomes:∑

i

E(a2i ((∆Bj)
2 −∆tj)

2) =
∑
j

E(a2j )E((∆Bj)
4 + 2(∆tj)(∆Bj)

2 + (∆tj)
2)

=
∑
j

E(a2j )(3(∆tj)
2 − 2(∆tj)

2 + (∆tj)
2) =

∑
j

E(a2j )(2(∆tj)
2) → 0

This shows that, as ∆tj → 0:∑
i

ai(∆Bj)
2 →

∫ t

0

a(s)ds in L2(P )

Sometimes, we summarize this final step with the shorthand and somewhat misused
notation (dBt)

2 = dt. Since we showed that all explicit terms in the original Taylor
expansion are finite, we need not worry about the remainder terms. Thus, we have
proven Itô’s lemma in its entirety. □

Example 5.2. Find
∫ t

0
BsdBs.

From regular calculus, we guess that our final answer will have a
B2

t

2 term, and we

take it from there. Set Xt = Bt and g(t, x) = x2

2 . Then Yt = g(t, Bt) =
B2

t

2 and we
apply Itô’s Lemma and get:

dYt = d(
B2

t

2
) = BtdBt +

1

2
dt

Integrating both sides gives:

B2
t

2
=

∫ t

0

BsdBs +
t

2
⇒
∫ t

0

BsdBs =
B2

t

2
− t

2

5.2. Itô’s Lemma in higher dimensions. We now formulate Itô’s lemma when
working with processes in dimensions higher than one.
Let B(t, ω) = ⟨B1(t, ω), ..., Bm(t, ω)⟩ be the m-dimensional Brownian motion. If
the processes Xi = ui(t, ω)dt + vij(t, ω)dBj are Itô processes for all 1 ≤ i ≤ n
and 1 ≤ j ≤ m, then X(t) = ⟨X1, ..., Xn⟩ is an n-dimensional Itô process. If
g(t, ω) = ⟨g1(t, ω), ..., gp(t, ω)⟩ is a twice differentiable function from [0,∞)×Rn to
Rp, then the process Y (t, ω) = g(t,X(t)) is also an Itô process, and for each of its
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components, we have:

dYk =
∂gk
∂t

(t,X)dt+
∑
i

∂gk
∂xi

(t,X)dXi +
1

2

∑
i,j

∂2gk
∂xi∂xj

(t,X)d[Xi, Xj ]

A proof of Itô’s lemma in multiple dimensions is similar to that in 1 dimension and
we omit it.

Theorem 5.3. (Itô’s Integration by Parts)
Given two Itô processes Xt, Yt, then the following holds:∫ T

0

XtdYt = XTYT −X0Y0 −
∫ t

0

YtdXt −
∫ T

0

d[Xt, Yt]

Proof. Apply the multi-dimensional Itô formula to the function g(x, y) = xy. Then

d(XtYt) = d(g(Xt, Yt)) =
∂g

∂x
(Xt, Yt)dXt +

∂g

∂y
(Xt, Yt)dYt

+
1

2

∂2g

∂x2
(Xt, Yt)(dXt)

2 +
1

2

∂2g

∂y2
(Xt, Yt)(dYt)

2 +
∂2g

∂y∂x
(Xt, Yt)d[Xt, Yt]

= YtdXt +XtdYt + dXtdYt

Integrating both sides, this gives us:

XTYT = X0Y0 +

∫ T

0

YtdXt +

∫ T

0

XtdYt +

∫ T

0

d[Xt, Yt]

which corresponds to the statement of Integration by parts after rearranging the
terms. Note that if Xt, Yt are Itô processes with dXt = adt + bdBt, dYt = αdt +
βdBt, then d[Xt, Yt] = bβdt. □

6. Stochastic Differential Equations

Differential equations are used to describe change in a system. Stochastic differ-
ential equations are used when noise is accounted for in the model of a system. In
this section, we will define Stochastic differential equations (SDEs), we will consider
solutions to SDEs, and we will show that, under certain conditions, solutions exist
and are unique.

In this section, we will look at stochastic differential equations of form dXt

dt =
µ(t,Xt) + σ(t,Xt)Bt, where µ, σ : R≥0 ×R → R respectively denote the drift term
and the noise term of the differential equations. The possible solutions Xt to such
differential equations are Itô processes.

6.1. Existence and Uniqueness of Solutions. For the purpose of the next theo-
rem, we will consider a constant T ∈ (0,∞) and functions µ(t, x) : [0, T ]×Rn → Rn

σ(t, x) : [0, T ]× Rn → Rn×m satisfying:

(1) (Linear Growth Condition) |µ(t, x)|+|σ(t, x)| ≤ C(1+|x|) for some constant
C.

(2) (Locally Lipschitz) |µ(x, t)−µ(y, t)|+ |σ(x, t)−σ(y, t)| < D|x−y| for some
constant D.
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Theorem 6.1. Let X0 be a random variable that is independent of B(t), 0 ≤ t ≤ T
and such that E(X2

0 ) < ∞. Then, the stochastic differential equation

(6.2) dXt = µ(t,Xt)dt+ σ(t,Xt)dBt

with initial condition X0 has a unique solution Xt that is continuous with respect
to t and adapted to the filtration FZ

s , generated by Z and Bs, where s ≤ t.

Lemma 6.3. (Gronwall’s inequality)
Given nonnegative functions f(t), constants C,A where A ≥ 0, and if , ∀t ∈ [0, T ],

f(t) ≤ C +
∫ t

0
f(s)ds holds, then, ∀t ∈ [0, T ]:

f(t) ≤ CeAt

See Klebner (2005) p. for a proof of this fact.

Proof. We first show that if solutions to (6.2) exist, they must be unique. Consider
the solutions X1(t, ω), X2(t, ω) with initial conditions Z1, Z2 respectively. Put
a(s, ω) = µ(s,X1(s, ω))−µ(s,X2(s, ω)) and b(s, ω) = σ(s,X1(s, ω))−σ(s,X2(s, ω)).
Then, using the fact that X1, X2 are solutions, we have

E(|X1(s, ω)−X2(s, ω)|2) = E

[(
Z1 − Z2 +

∫ t

0

ads+

∫ t

0

bdBs

)2
]

Then, using the Cauchy-Schwarz inequality for sums
∑

i uivi < (
∑

i u
2
i )(
∑

i v
2
i )

where, for i ∈ {1, 2, 3} ui = 1, and v1 = Z1 − Z2, v2 =
∫ t

0
ads, v3 =

∫ t

0
bdBs, we

have:

E(|X1(s, ω)−X2(s, ω)|2) ≤ 3E(|Z1−Z2|2)+3E

[(∫ t

0

ads

)2
]
+3E

[(∫ t

0

bdBs

)2
]

Then, using the Cauchy-Schwarz inequality for integrals
∫ d

c
fg =

∫ d

c
f2
∫ d

c
g2 on the

first integral, and Itô isometry on the second integral, we get:

E(|X1(s, ω)−X2(s, ω)|2) ≤ 3E(|Z1 − Z2|2) + 3tE
[∫ t

0

a2ds

]
+ 3E

[∫ t

0

b2dBs

]
Then, observe that by assumption 2. (Lipschitz continuity), we have a2 = (µ(t,X1(t, ω))−
µ(t,X2(t, ω)))

2 ≤ D2(X1 −X2)
2. An analogous reasoning can be used on b2, and

it gives us:

E(|X1(s, ω)−X2(s, ω)|2) ≤ 3E(|Z1−Z2|2)+3(1+t)D2

∫ t

0

E((X1(s, ω)−X2(s, ω))
2)ds

Set v(s) = E(|X1(s, ω) − X2(s, ω)|2), C = 3E(|Z1 − Z2|2), A = 3(1 + T )D2, and
apply Gronwall’s inequality to get:

if v(t) ≤ C +A

∫ t

0

v(s)ds, then v(t) ≤ CeAt

However, since X1, X2 are both solutions to equation (6.2), their initial conditions
must be the same, so Z1 = Z2. But then, CeAt = 0, so v(t) = 0 as well, which
implies E((X1 − X2)

2) = 0. Therefore, P (|X1 − X2|) = 0 for all rational t ∈
[0, T ]. However, because the map t 7→ |X1 − X2| is continuous, it follows that
P (|X1 − X2|) = 0 can be extended to all values of t ∈ [0, T ], and this terminates
the proof of uniqueness of the solution.

We now turn to showing the existence of a solution. Let Y
(0)
t = X0, and define
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inductively Y
(k+1)
t = X0+

∫ t

0
µ(s, Y

(k)
s )ds+

∫ t

0
σ(s, Y

(k)
s )dBs. Then, using a similar

reasoning as that in our proof of the uniqueness of a solution, we have E((Y (k+1)
t −

Y
(k)
t )2) ≤ (1 + T )3D2

∫ t

0
E((Y (k)

s − Y
(k−1)
s )2)ds for k ≥ 1, t ≤ T . Then consider

E((Y (1)
t − Y

(0)
t )2). By definition, we have:

E((Y (1)
t − Y

(0)
t )2) = E

((∫ t

0

µ(s,X0)ds+

∫ t

0

σ(y,X0)dBs

)2
)

≤ E

((∫ t

0

µ(s,X0)ds

)2
)

+ E

((∫ t

0

σ(y,X0)dBs

)2
)

Then, using the linear growth condition and Itô isometry:

E((Y (1)
t − Y

(0)
t )2) ≤ E

((∫ t

0

C(1 + |X0|)ds
)2
)

+ E
(∫ t

0

C2(1 + |X0|)2
)

≤ 2C2(t+ t2)(1 + E(|X0|2)) ≤ A1t

where A1 is a constant depending on C,T , E(|X0|2). By induction, we can then

show that E((Y (k+1)
t −Y

(k)
t )2) ≤ Ak+1

2 tk+1

(k+1)! for positive integers n and nonnegative k,

where A2 is a constant depending on C,T ,D, E(|X0|2). Then, consider the Lebesgue
measure λ on [0, T ] and m > n ≥ 0, and we have, using telescoping sums and the
triangle inequality:

∥Y m
t − Y n

t ∥L2(λ×P ) =

∥∥∥∥∥
m−1∑
k=n

Y k+1
t − Y k

t

∥∥∥∥∥
L2(λ×P )

≤
m−1∑
k=n

∥Y k+1
t − Y k

t ∥L2(λ×P )

Then, using the definition of L2 norm, we have:

m−1∑
k=n

∥Y k+1
t − Y k

t ∥L2(λ×P ) =

m−1∑
k=n

(
E
(∫ t

0

(Y (k+1)
s − Y k

s )2ds

)) 1
2

≤
m−1∑
k=n

(∫ t

0

Ak+1
2 sk+1

(k + 1)!
ds

) 1
2

=

m−1∑
k=n

(
Ak+1

2 tk+2

(k + 2)!

) 1
2

→ 0

since each term in the sum goes to 0 as m,n → ∞. This shows that Y
(n)
t converges

in L2(λ × P ). We will now show that the limit of this sequence is a solution.

Put Xt = limn→∞ Y
(n)
t ; note that Xt is FZ

t -measurable because each Y
(n)
t is also

FZ
t -measurable. Consider the following:

E

((∫ t

0

|µ(s,Xs)− µ(s, Y (n)
s )|ds

)2
)

≤ t
1
2E
(∫ t

0

E(|µ(s,Xs)− µ(s, Y (n)
s )|2)ds

) 1
2

By the Lipschitz condition of µ(t, x), we then have, for some constant D

t
1
2E
(∫ t

0

E(|µ(s,Xs)− µ(s, Y (n)
s )|2)ds

) 1
2

≤ D2E(|Xs − Y (n)
s |2) → 0

since E(|Xs − Y
(n)
s |2) → 0 as n → ∞. This shows that:∫ t

0

µ(s, Y (n)
s )ds →

∫ t

0

µ(s,Xs)ds in L2
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We can use a similar argument, combined with Itô isometry, to show that:∫ t

0

σ(s, Y (n)
s )dBs →

∫ t

0

σ(s,Xs)dBs

This shows that ∀t ∈ [0, t], Xt = X0 +
∫ t

0
µ(s,Xs)ds +

∫ t

0
σ(s,Xs)dBs, so Xt is

indeed a solution to our starting equation (6.2). □

6.2. The Black–Scholes Model.
We now look at one of the most famous applications of Stochastic calculus in
finance: the Black–Scholes Model. The Black–Scholes Model is used to describe
the theoretical price of a European-style call option. A call option is a contract
that gives a buyer the right —but not the obligation— to buy an asset (stock,
commodity, or index) at a predetermined price, the strike price, until an agreed-
upon time, the expiration date. The model assumes that there is no arbitrage
in the market, meaning that there is no way for an agent to make profit without
risk. We also assume that an agent’s portfolio is self-financing, i.e. that an agent
starts trading with an initial amount of money, and that the agent cannot receive
additional money. The only way to get more money is by shorting an asset, i.e.
selling it before having it and owing it at some point in the future.
Begin with a stock of price St, which follows the stochastic equation dSt = µStdt+
σStdBt, and suppose we have a call option with expiration date T > 0 and strike
price K. Then, assume that there are no transaction fees and the payoff from the
call option is VT = max(ST −K, 0), and assume that Vt = v(t, St) for some function
v and t < T . Assume that there are also bonds available on the market, whose
value Yt follows the equation dYt = rYtdt for some interest rate r > 0. Denote our
portfolio by Ot, where Ot = XtSt + Yt, where Xt denotes the amount of stock we
hold. Then, by the self-financing assumption, we have that dOt = XtdSt + rYtdt.
Then, we want dOt − dv(t, St) = 0. Use Itô’s lemma and the fact that Ot =
Yt +XtSt = v(t, St) to observe:

dOt − dv(t, St) = µXtStdt+ σXtStdBt + rYtdt− v′(t, St)dSt −
1

2
v′′(t, St)σ

2S2
t dt

− v̇(t, St)dt

dOt − dv(t, St) = µXtStdt+ σXtStdBt + r(v(t, St)−XtSt)dt

− v′(t, St)(µStdt+ σStdBt)−
1

2
v′′(t, St)σ

2S2
t dt− v̇(t, St)dt

Here v̇ is the time derivative of v and v′, v′′ are the first and second order
derivatives of v with respect to St. Then, choose Xt = v′(t, St) and, since we
assumed the no arbitrage condition in the market, observe that all terms in the
expression with dt equal 0. Then, we have

rv(t, St)− rStv
′(t, St)−

1

2
v′′(t, St)σ

2S2
t − v̇(t, St) = 0

Rearranging and multiplying by −1, and letting St = x this gives us precisely the
Black–Scholes formula, with the boundary condition v(T, s) = max(St, 0):

v̇(t, x) + rxv′(t, x) +
1

2
σ2x2v′′(t, x)− rv(t, x) = 0
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To solve this kind of partial stochastic differential equation, many methods may
be used, such as the Feymann-Kac formula, or numerical methods like the finite
difference method. The interested reader should see Lawler (2006), p.221 for a
discussion of these methods.
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