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Abstract. In this paper, we make a few random explorations that relate di-

rectly to the items mentioned in the title. We define transient chains and
recurrent chains with “killing”, the Green’s function, the Laplacian opera-

tor, and harmonic functions. We then introduce the loop-erased random walk

(LERW) and its relationship with the uniform spanning tree (UST). We fin-
ish by introducing loop measures and soups and defining the “growing loop”

model.
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1. Introduction

This paper takes the first three chapters of the book by Gregory F. Lawler [1]
and summarizes them. Instead of presenting the proofs in the book, we present
original proofs for important lemmas, propositions, and facts in the book that are
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given without proofs, as well as solutions to interesting challenging problems in the
book that are given without solutions. Missing definitions and missing proofs of
theorems, lemmas, propositions, corollaries, etc., can be found in the book [1].

Chapter 2 mainly focuses on discrete time chains, but we also discuss how to
construct a continuous time Markov chain later in the chapter. Analysis of the
loop-erasing procedure and its applications are introduced in Chapter 3. Chapter
4 introduces loop measures, loop soups and the “growing looop” model. Three
different ways of constructing the loop configurations are introduced: (ordered)
growing loops, rooted loops, and unrooted loops. Chapter 3 (Loop-Erased Random
Walk) and Chapter 4 (Loop Soups) depend on the material in Chapter 2 (Markov
Chains). Chapter 4 uses Chapter 3.

2. Markov Chains

2.1. Definition.

If A is finite with N elements, the transition probabilities p(x, y) of a finite
Markov chain on A are often collected into a N ×N matrix P = [p(x, y)] called the
transition matrix.

The n-step transition matrix is obtained by raising the transition matrix P to
the nth power. One important property of a transition matrix is that each of the
rows sum to 1, that is,

(2.1)
∑
y∈A

p(x, y) = 1.

Proposition 2.2. (Chapman-Kolmogorov equations) If n,m ∈ N and x, y ∈ A,

pn+m(x, y) =
∑
z∈A

pn(x, z)pm(z, y).

Proof. The proof uses the law of total probability and the definition of conditional
probability. For a complete proof, see the proof of Proposition 1.1 in [1]. □

The Chapman-Kolmogorov equations can be written in matrix form as

Pn+m = Pn · Pm,

where · denotes matrix multiplication.

Definition 2.3. A Markov chain is irreducible if for every x, y ∈ A there exists an
integer n ≥ 0 such that pn(x, y) > 0.

That is, it is possible to get from any state to any other state.

Definition 2.4. Let x ∈ A and τx = min{k ≥ 1 : Xk = x}. τx is the index of
the first visit to x after time 0. If P{τx < ∞ | X0 = y} = 1, then the irreducible
Markov chain is recurrent. If P{τx < ∞ | X0 = y} < 1, then the irreducible Markov
chain is transient.

In other words, an irreducible Markov chain is recurrent if eventual return to
every point is certain.

Notations 2.5. If E is an event and Y is a random variable, then

Px(E) = P{E | X0 = x},
Ex(Y ) = E{Y | X0 = x}.
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Notations 2.6. (Indicator function notation) If E is an event, then 1E is the
random variable that equals 1 if E occurs and equals 0 if E does not occur.

We can use the indicator function notation 1E to denote the total number of
visits to the state x,

Vx =

∞∑
n=0

1{Xn = x}.

Lemma 2.7. If Vy denotes the total number of visits to the state y, then

Ex[Vy] =

∞∑
n=0

pn(x, y).

Proof. Note that E[1E ] =
∑

x∈E 1 · P{X = x} = P(E) and hence

E[Vy | X0 = x] =
∞∑

n=0

E[1{Xn = y} | X0 = x] =

∞∑
n=0

pn(x, y).

□

Remark 2.8. In this paper, the word “visit” includes the visit at time 0 but the
word “return” refers only to the visits after time 0. Therefore, τx describes the
time it takes for a Markov chain to return to state x, and Vx is the total number
of visits to x.

Proposition 2.9. If Xn is an irreducible Markov chain and x ∈ A, then

P{τx = ∞} =
1

Ex[Vx]
.

In particular, P{τx = ∞} = 0 if and only if Ex[Vx] = ∞.

Proposition 2.10. The following are equivalent for an irreducible Markov chain.

(1) The chain is recurrent.
(2) For every x, y ∈ A, Ex[Vy] = ∞.
(3) There exists x, y ∈ A such that Ex[Vy] = ∞.
(4) For every x, y ∈ A, Px[Vy = ∞] = 1.
(5) There exists x, y ∈ A such that Px[Vy = ∞] = 1.

Proof. We will prove the equivalence by proving: (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒
(5) =⇒ (1).

(1) =⇒ (2) : Suppose the chain is recurrent. By definition, for all x, y ∈ A,
P{τy < ∞ | X0 = x} = 1. In other words, starting in state x, the chain will
certainly return to y in finite steps. Since the chain is recurrent, Py{τy = ∞} = 0.
By Proposition 2.9, this implies Ey[Vy] = ∞ and hence Ex[Vy] = ∞.

(2) =⇒ (3) : Clear, since (3) is a case of (2).
(3) =⇒ (4) : Suppose there exists x, y ∈ A such that Ex[Vy] = ∞. Then,

Ey[Vy] = ∞. This implies that starting at y, the chain will certainly return to y
in finite steps. If not, it contradicts Ey[Vy] = ∞. We can perceive this as having
infinitely many finite-step “loops” rooted at y, where each “loop” only visits y at
the root. For all z, w ∈ A, since there exists n ≥ 0 such that pn(y, z) > 0 by
irreducibility, z must be in one of the “loops” and hence Pz{τy < ∞} = 1. Since
there are infinitely many such loops and pn(y, w) > 0, Pz{Vw = ∞} = 1.

(4) =⇒ (5) : Clear, since (5) is a case of (4).
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(5) =⇒ (1) : Suppose there exists x, y ∈ A such that Px{Vy = ∞} = 1. Then,
Py{Vy = ∞} = 1 so there are infinitely many such “loops” as defined previously.
For all z, w ∈ A, since there exists n ≥ 0 such that pn(y, z) > 0, z must be in
one of the “loops” and hence P{τy < ∞ | X0 = z} = 1. Since there are infinitely
many such loops and pn(y, w) > 0, the chain will reach w from y in finite steps and
therefore P{τw < ∞ | X0 = z} = 1. □

Example 2.11. Consider the Markov chain whose state space is the integers with
transition probabilities

p(x, x+ 1) = q, p(x, x− 1) = 1− q,

where 0 < q < 1. Let

pn = pn(0, 0) = P0{Xn = 0}.
(1) Pn = 0 if n is odd since we need an even number of steps to get back to the

starting point.
(2) p2n =

(
2n
n

)
qn(1 − q)n since we need n steps of “+1” and n steps of “-1” to

get back to the starting point.
(3) If q = 1

2 , assuming Stirling’s formula, we get

lim
n→∞

n1/2p2n =
1√
π
.

(4) Suppose q = 1/2. By (3), for all ϵ > 0, there exists N > 0 such that for all
n > N we have

1√
π
− ϵ < n1/2p2n <

1√
π
+ ϵ.

Then,

E0[V0] =

∞∑
n=0

p2n(0, 0) >

∞∑
n>N

(
1√
π
− ϵ)

1√
n
→ ∞.

By Proposition 2.10, the chain is recurrent.
(5)Suppose q ̸= 1/2:

p2n,q ̸=1/2

p2n,q=1/2
=

(
2n
n

)
qn(1− q)n(

2n
n

)
(1/2)2n

= [4q(1− q)]n.

Then we get

p2n,q ̸=1/2 = p2n,q=1/2 · [4q(1− q)]n.

Similarly,

E0[V0] =

∞∑
n=0

p2n ≤
N∑

n=0

p2n + (
1√
π
+ ϵ)

∞∑
n>N

1√
n
[4q(1− q)]n,

which converges using the ratio test. Therefore, the chain is transient for q ̸= 1/2.

2.2. Laplacian and harmonic functions.

Definition 2.12. The Laplacian is the linear transformation L = I − P where I
denotes the identity matrix and P is the transition matrix,

Lf(x) = (I − P )f(x) = f(x)−
∑
y∈A

p(x, y)f(y).
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Recalling (2.1),
∑

y∈A p(x, y)f(y) can be seen as the “mean value” or “expected
value” of f along x’s adjacent vertices.

For a random walk on a simple graph, we can write

Lf(x) = f(x)− Ex[f(X1)] = f(x)−MV (f ;x)

where Ex[f(X1)] denotes the expected value of f at time 1 given X0 = x. X1 is
a random variable taking values from x’s neighbors. MV (f ;x) denotes the “mean
value” of f along x’s neighbors.

If f : Rd → R is a smooth function, the Laplacian is defined as

∆f(x) =

d∑
j=1

∂2
xjxj

f(x).

Proposition 2.13. Suppose D ⊂ Rd is open, and f : D → Rd is a function with
continuous first and second derivatives. Then, for x ∈ D,

∆f(x) = 2d lim
ϵ↓0

MV (f ;x, ϵ)− f(x)

ϵ2
,

where MV (f ;x, ϵ) denotes the mean (average) value of f on the sphere of radius ϵ
centered at x, {y ∈ Rd : |x− y| = ϵ}.

Proof. It is the equivalent of showing

∆f (⃗0) = 2d lim
ϵ↓0⃗

MV (f ; 0⃗, ϵ)− f (⃗0)

ϵ2
.

Expand f around 0⃗ in its Taylor polynomial of degree 2:

f(x⃗) = f (⃗0) +

d∑
i=1

∂f

∂xi
(⃗0)xi +

1

2

d∑
i,j=1

∂2f

∂xixj
(⃗0)xixj + o(|x|2).

Substitute the expansion into the right-hand side:

2d lim
ϵ↓0⃗

1

ϵ2

 1

zϵ

∫
|x|=ϵ

f (⃗0) +

d∑
i=1

∂f

∂xi
(⃗0)xi +

1

2

d∑
i,j=1

∂2f

∂xixj
(⃗0)xixj + o(|x|2) ds(x⃗)− f (⃗0)


= d lim

ϵ↓0⃗

1

ϵ2

[
1

zϵ

∫
|x|=ϵ

d∑
i=1

∂2f

∂x2
i

(⃗0)x2
i ds(x⃗)

]

= d lim
ϵ↓0⃗

1

ϵ2

[
d∑

i=1

∂2f

∂x2
i

(⃗0)
ϵ2

d

]
= ∆f (⃗0).

zϵ is the “surface area” of the sphere. The first equality uses the symmetry in the
integral. Note that∫

|x|=ϵ

x2
1 ds(x⃗) =

∫
|x|=ϵ

x2
2 ds(x⃗) = · · · =

∫
|x|=ϵ

x2
d ds(x⃗).

Then we can see that∫
|x|=ϵ

x2
i ds(x⃗) =

1

d

∫
|x|=ϵ

x2
1 + x2

2 + · · ·+ x2
d ds(x⃗) =

ϵ2

d
,

which is used in the second equality. □
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Definition 2.14. A function f is (P-)harmonic on A′ ⊂ A if for all x ∈ A′,
Pf(x) = f(x), that is

Lf(x) = 0, x ∈ A′.

2.3. Markov chain with boundary.

A state space A can be written as

A = A ∪ ∂A

where A denotes the interior vertices and ∂A are the boundary vertices. Here, the
usages of A, ∂A,A are directly analogous to a set, its limit points, and its closure,
respectively.

If P is a transition matrix for an irreducible Markov chain on A with entries pij
for xi, xj ∈ A, then P̃ is the corresponding matrix such that for each xi ∈ ∂A, we
change the entries in the ith-row:

p̃(xi, xj) =

{
1 if xi = xj

0 if xi ̸= xj

.

We let PA be the submatrix of P obtained by restricting the states in A, that is,
for all Pij in PA, xi and xj are in A. This is the same as P̃A and PA = P̃A.

Definition 2.15. Given a stochastic process {X0, X1, X2, ...}, a non-negative in-
teger random variable τ is called a stopping time if for all integers k ≥ 0, τ ≤ k
depends only on X0, X1, ..., Xk.

Assume ∂A ̸= ∅ and define the stopping time

T = TA = min{k ≥ 0 : Xk /∈ A}.

In other words, TA is the first index to leave A, and TA is a random variable. If A
is finite, since the chain is irreducible,

P{T < ∞} = 1.

Definition 2.16. The Poisson kernel is the function HA : A × ∂A → [0, 1] given
by

HA(x, z) = Px{XT = z} = P{XT = z | X0 = x}.

The Poisson kernel describes the probability of leaving A at a particular point
in ∂A starting at x. Note that for each x,∑

z∈∂A

HA(x, z) = 1.

If x ∈ ∂A, that is, the chain that starts outside of A, then T = 0 and hence

(2.17) HA(x, z) =

{
1, x = z

0, x ̸= z
, x ∈ ∂A.

Proposition 2.18. Suppose P is an irreducible transition matrix on A = A∪ ∂A.
If z ∈ ∂A and h(x) = HA(x, z), then h is the unique bounded function on A that is
harmonic in A and satisfies the boundary condition (2.17) on ∂A.
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Proposition 2.18 establishes the existence and uniqueness of bounded harmonic
functions on Markov chains satisfying specific Dirichlet boundary condition. If the
proposition generalizes to arbitrary boundary conditions, it is called the solution
to the Dirichlet problem.

Proposition 2.19. (Bounded Convergence Theorem) Suppose X1, X2, ... is a col-
lection of random variables such that with probability one, the limit

X = lim
n→∞

Xn

exists. Assume also that there exists J < ∞ such that |Xn| ≤ J for all n. Then

E[X] = lim
n→∞

E[Xn].

Proof. We will first show that it suffices to prove this when X is identically equal
to 0. Then, for n sufficiently large, E[|Xn|] ≤ 2ϵ.

Let Yn = Xn −X. Then

lim
n→∞

Yn = lim
n→∞

(Xn −X).

Since Xn ≤ J for all n, Yn ≤ 2J for all n. Then

lim
n→∞

E[Yn] = lim
n→∞

E[Xn −X] = lim
n→∞

E[Xn]− E[X] = 0

and hence

E[X] = lim
n→∞

E[Xn].

To show E[|Xn|] ≤ 2ϵ, for every ϵ > 0, we write,

E[|Xn|] = E[|Xn| · 1{|Xn| ≤ ϵ}] + E[|Xn| · 1{|Xn| > ϵ}]
≤ ϵ+ E[J · 1{|Xn| > ϵ}]
= ϵ+ J · P{|Xn| > ϵ}.

Since P{|Xn| > ϵ} → 0 as n → ∞, there exists N such that for all n > N ,
P{|Xn| > ϵ} ≤ ϵ

J . Then

E[|Xn|] ≤ ϵ+ J · ϵ
J

= 2ϵ.

□

2.4. Green’s function.

Definition 2.20. Assume either ∂A ̸= ∅ or the chain is transient. The Green’s
function GA(x, y) is defined for x, y ∈ A by

GA(x, y) = Ex[Vy] =

∞∑
n=0

pn(x, y).

The Green’s function describes the expected number of visits to y ∈ A starting
at x ∈ A. We also consider GA as a linear transformation

GAf(x) =
∑
y∈A

GA(x, y)f(y) =
∑
y∈A

∞∑
n=0

pn(x, y)f(y).

In other words,

(2.21) GA = I + PA + P 2
A + P 3

A + · · · = (I − PA)
−1 = L−1

A .
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Example 2.22. Consider a binary tree defined as follows. Let A be the set of finite
sequences of 0s and 1s such as 0010110. We include the empty sequence which we
represent as ∅. We say that sequence a is the parent of sequence b if b is of the
form ar where r is 0 or 1. All sites have a parent except for the empty sequence.
Consider the Markov chain with transition probabilities

p(a, b) =
1

3
, p(b, a) =

1

3
,

if a is a parent of b. In other words, the random walker chooses randomly among
its parent and its two children. Since the empty sequence ∅ has no parent we also
set p(∅, ∅) = 1

3 .

∅

1

11

111 110

10

101 100

0

01

011 010

00

001 000

(1) Observe that the probability of going up is 1/3 and the probability of going
down is 2/3. By Example 2.11, q ̸= 1/2 and hence the chain is transient.

(2)For b ̸= ∅, let p(b) be the probability that the chain starting at b ever reaches
the empty sequence and let |b| be the length of (number of digits in) b. Suppose
the probability that b ever reaches its parent is λ. Then the probability that b’s
parent ever reaches its parent is also λ. Then p(b) must be of the form λ|b|.

(3) From (2) it follows that

λ =
1

3
+

2

3
λ2.

By solving this equation we find that λ = 1 or 1/2. Since λ ̸= 1, λ = 1/2.
(4) To find G(∅, ∅), recall that G(∅, ∅) = E∅[V∅]. Note that V∅ denotes the number

of visits to ∅. In other words, V∅ denotes the number of visits to ∅ until the chain
never returns to ∅. Then V∅ has a geometric distribution, written V∅ ∼ Geo(1/2),
and hence

G(∅, ∅) = 1

1/2
= 2.

(5) It is also interesting to find G(b, ∅) and G(∅, b) if b is any sequence. Note
that G(b, ∅) = p(b)G(∅, ∅). Then

G(b, ∅) = λ|b| · 2 = 2 · (1
2
)|b|.

To find G(∅, b), suppose |b| = 2 and call it level 2. Let L2 denote level 2. Observe
that

G(∅, 11) = G(∅, 10) = G(∅, 01) = G(∅, 00) = 1

4
G(∅, L2) = 1

4
G(L2, L2),

where G(∅, L2) denotes the expected visits to level 2 starting at ∅ and G(L2, L2)
denotes the expected visits to level 2 starting at level 2. The last equality holds
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because starting at ∅, the chain will certainly reach L2 by transient. Recall in (4)
that VL2 has a geometric distribution and

PL2{never returns to L2} =
2

3
· 1
2
= 1/3.

Then G(L2, L2) = 1
1/3 = 3 and hence

G(∅, b) = 3

2|b|
.

(6) Suppose b ̸= ∅. Define p̃(b) to be the probability that b ever reaches the other
side of the binary tree. Then p̃(b) is a bounded nonconstant function on A that is
harmonic with respect to this chain.

2.5. Continuous time.

We have been discussing Markov chains indexed by integer times. We now
consider continuous-time process, Markov chains Yt indexed by time t ∈ [0,∞).
These can be constructed from discrete-time chains by assuming that each time the
process reaches a state, the amount of time it spent at the site before taking the
next step has an exponential distribution.

The exponential distribution satisfies the memoryless property:

P{T > t+ s | T > s} = P{T > t},
which is important in order to construct a Markov chain. It tells us that the
probability of leaving a site soon does not depend on how long one has been at the
site.

Proposition 2.23. Suppose T is a nonnegative random variable with a continuous
distribution function F satisfying the memoryless property: for all t, s > 0,

P{T > t+ s | T > s} = P{T > t}.
Then T has an exponential distribution.

Proof. Define f(x) = logP{T > x}. For all t, s > 0,

f(t+ s) = logP{T > t+ s}
= logP{T > s ∩ T > t+ s}
= log[P{T > s}P{T > t+ s | T > s}]
= log[P{T > s}P{T > t}]
= f(s) + f(t).

By the continuity of f , f(x) = xf(1) for all x > 0. Since T is nonnegative, f(0) = 1.
Note that f(1) < 0. Set f(1) = −λ for some λ > 0. Then f(x) = −λx = logP{T >
x}. Then we get P{T > x} = e−λx and hence

F (x) = P{T ≤ x} = 1− P{T > x} = 1− e−λx,

which is the cumulative distribution function of an exponential distribution. □

Proposition 2.24. Suppose T1, T2, ..., Tn are independent exponential random vari-
ables with rates λ1, λ2, ..., λn. Let T = min{T1, T2, ..., Tn}. Then T has an expo-
nential distribution with rate

n∑
i=1

λi.
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Proof. We will find the cumulative distribution function of T , written as F (t) =
P{T ≤ t}:

F (t) = 1− P{Ti > t for all i}

= 1−
n∏

i=1

P{Ti > t}

= 1−
n∏

i=1

e−λit

= 1− e−
∑n

i=1 λit.

□

The exponential distribution of T is used in the construction of the continuous
time chain. Whenever we reach a state x, we wait an exponential amount of time
with rate λ(x), and then we move to state y with rate λ(x, y) = λ(x)p(x, y). Ti

can be seen to be the waiting time until the chain moves to yi, written as Ti ∼
exp(λ(x, yi)). Then T denotes the first “neighbor” of x to call x and say, “jump
here!”

3. Loop-Erased Random Walk

In this chapter, we define and explore the loop-erased random walk (LERW) and
show how the LERW relates to the uniform spanning trees (UST).

3.1. Loop erasure.

Definition 3.1. Write a path ω of length n as a finite sequence of points

(3.2) ω = [ω0, . . . , ωn]

with ωj ∈ A. We call a path a self-avoiding walk (SAW) of length n if all of the
vertices {ω0, . . . , ωn} are distinct.

Definition 3.3. If ω = [ω0, ω1, . . . , ωn] is a path, then its (chronological) loop
erasure, denoted by LE(ω), is the SAW η = [η0, η1, . . . , ηk] defined as follows.

• Set η0 := ω0.
• If ωn = ω0, we set k = 0 and terminate; otherwise, let η1 be the first vertex
in ω after the last visit to ω0, that is, η1 := ωi+1, where i := max{j;ωj =
ω0}.

• If ωn = η1, then we set k = 1 and terminate; otherwise, let η2 be the first
vertex in ω after the last visit to η1, and so on.

LE(ω) is obtained by erasing cycles in ω in the order they appear. Note that the
definition of LE(ω) depends on the order in which the vertices [ω0, ω1, . . . , ωn] are
traversed. This procedure is sometimes called “forward loop-erasing” to distinguish
it from “backward loop-erasing”, which is defined as follows.

Definition 3.4. Suppose ω = [ω0, ω1, . . . , ωn]. Let ωR = [ωnωn−1, . . . , ω0] be the
path ω traversed in the opposite direction. Then

η̃ = LE(ωR), LER(ω) = η̃R.

Example 3.5. The following is an example of a path ω for which LER(ω) ̸= LE(ω).
Suppose ω = [ω0, ω1, ..., ω7], which ω1 = ω4 and ω2 = ω6. Then LE(ω) =

[ω0, ω4, ω5, ω6, ω7] and LER(ω) = [ω0, ω1, ω2, ω7]. Hence LER(ω) ̸= LE(ω).
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3.2. Loop-erased random walk.

In this section, we investigate the “loop-erased random walk (LERW) from x ∈ A
to ∂A” where by this we mean start the Markov chain in state x, stop it when it
first reaches ∂A.

If x ∈ A, let KA(x, ∂A) denote the set of paths starting at x stopped at the first
time that they reach the boundary. We write

KA(x, ∂A) =
⋃

z∈∂A

KA(x, z)

where KA(x, z) denotes the set of such paths that end at z ∈ ∂A. The probability
measure p on KA(x, ∂A) is p[KA(x, z)] = HA(x, z): if ω = [ω0, . . . , ωn] ∈ KA(x, ∂A),

p(ω) = Px{X1 = ω1, X2 = ω2, . . . , Xn = ωn} =

n∏
j=1

p(ωj−1, ωj).

Let RA(x, ∂A) denote the set of self-avoiding walks (SAWs) in KA(x, ∂A) and
define RA(x, z) similarly.

Definition 3.6. Loop-erased random walk (LERW) from x to ∂A is the probability
measure

p̂(η) = p̂A(η) =
∑

ω∈KA(x,∂A),LE(ω)=η

p(ω).

Since the initial and terminal vertices are fixed in the loop-erasing procedure we
see that for all z ∈ ∂A,

p̂[RA(x, z)] = p[KA(x, z)] = HA(x, z).

Proposition 3.7. Suppose that η = [η0, η1, . . . , ηk] ∈ RA(x, ∂A) and let Aj =
A\{η0, . . . , ηj−1}. Then

p̂A(η) = p(η)

k−1∏
j=0

GAj
(ηj , ηj).

Suppose V = {x1, x2, . . . , xk} ⊂ A and let Aj = A\{x1, . . . , xj−1}. Let

F (A;x1, x2, . . . , xk) =

k∏
j=1

GAj (xj , xj).

The next lemma shows that it does not depend on the order we write the vertices
x1, x2, . . . , xk.

Lemma 3.8. If σ : {1, ..., k} → {1, ..., k} is a permutation, then

F (A;xσ(1), ..., xσ(k)) = F (A;x1, ..., xk).

Proof. This is trivial if k = 1. The proof for k = 2 is omitted and can be found in
the proof of Lemma 2.5 in [1]. For general k, we want to establish the result for
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any permutation σ that just interchanges two adjacent indices:

F (A;x1, . . . , xk)

= F (A;x1, . . . , xi, xi+1, . . . , xk)

= GA(x1, x1) · · ·GAi
(xi, xi)GAi+1

(xi+1, xi+1) · · ·GAk
(xk, xk)

= GA(x1, x1) · · ·F (Ai;xi, xi+1) · · ·GAk
(xk, xk)

= GA(x1, x1) · · ·F (Ai;xi+1, xi) · · ·GAk
(xk, xk)

= GA(x1, x1) · · ·GA\{x1,...,xi−1}(xi+1, xi+1)GA\{x1,...,xi−1,xi+1}(xi, xi) · · ·GAk
(xk, xk)

= F (A;x1, . . . , xi+1, xi, . . . , xk).

Since any permutation {xσ(1), . . . , xσ(k)} can be achieved by “swapping” two adja-
cent indices of {x1, . . . , xk}, F (A;xσ(1), . . . , xσ(k)) = F (A;x1, . . . , xk). □

Definition 3.9. If V = {x1, x2, . . . , xk} ⊂ A, let

(3.10) FV (A) =

k∏
j=1

GAj (xj , xj)

where Aj = A\{x1, . . . , xj−1}. Recall Lemma 3.8. This quantity is independent of
the ordering of the vertices. We also make the following conventions.

• If V = A, we write just F (A) for FA(A).
• If V ̸⊂ A, then FV (A) = FV ∩A(A).
• If η is a path, Fη(A) = FV (A) where V is the set of vertices visited by η.

The next proposition restates Proposition 3.7.

Proposition 3.11. If η = [η0, η1, . . . , ηk] ∈ RA(x, ∂A), then

p̂A(η) = p(η)Fη(A).

3.3. Determinant of the Laplacian.

Proposition 3.12. If V ⊂ A, then

FV (A) =
detGA

detGA\V
=

detLA\V

detL
= det G̃V ,

where G̃V is the matrix GA restricted to the rows and columns indexed by V . In
particular,

F (A) =
1

detL
= detGA.

Here L = LA = G−1
A .

Remark 3.13. Recall that GV = (I − PV )
−1 where PV is the transition matrix

restricted to the rows and columns indexed by V . This is not the same at G̃V which
is defined as the matrix GA restricted to those rows and columns.

Proposition 3.14. Suppose Xj , j = 0, 1, . . ., is an irreducible Markov chain on

A = A ∪ ∂A and suppose that either the chain is transient or ∂A ̸= ∅. Let x, y be
distinct points in A, and let q(x, y) be the probability that the chain starting at x
reaches y before leaving A or returning to x. Then

GA(x, y) = q(x, y)FV (A),

where V = {x, y}.
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Proof. Recall that

GA(x, y) =

∞∑
n=0

pn(x, y) =
∑

ω:x→y

p(ω).

We can decompose ω into three parts: loop(s) rooted at x in A, a path starting
at x that reaches y before leaving A or returning to x, and loop(s) rooted at y in
A\{x}. Then ω can be written as

ω = GA(x, x)q(x, y)GA\{x}(y, y)

and hence

ω = q(x, y)F (A;x, y) = FV (A).

□

Proposition 3.15. Suppose Xj , j = 0, 1, . . ., is an irreducible Markov chain on

A = A ∪ ∂A where A = {x1, ..., xn} is finite and ∂A ̸= ∅. Let PA = [p(x, y)]x,y∈A

denote the transition matrix restricted to A and GA = (I − PA)
−1 the Green’s

function. Suppose V = {x1, ..., xk}. We will consider the Markov chain that corre-
sponds to the original chain “viewed only when visiting points in V ”. The transition
matrix P̃ = [p̃(x, y)]x,y∈V is given by

p̃ =
∑

ω:x→y

p(ω),

where the sum is over all paths ω = [ω0, ..., ωr] with r ≥ 1; ω0 = x, ωr = y; and
ω1, ..., ωr−1 ∈ A\V . Then

(1)the Green’s function G̃V := (I − P̃ )−1 is the same as GA restricted to rows and
columns indexed by vertices in V and
(2)

FV (A) = det G̃V .

Proof. (1) Recall that GA = I + PA + P 2
A + P 3

A + · · · . Then G̃V = I + P̃A +

P̃ 2
A + P̃ 3

A + · · · . P̃ i
A denotes the probability that the ith return to V is at y. Let

Ti = min{k > Ti−1 | Xk ∈ V }, where T0 = 0 and i = 0, 1, 2, 3, . . . Then

P̃ i
A(x, y) = Px{XTi

= y}

and hence

G̃V =

∞∑
i=0

Px{XTi
= y}

=

∞∑
i=0

∞∑
k=0

Px{Xk = y, Ti = k}

=

∞∑
k=0

∞∑
i=0

Px{Ti = k,Xk = y}

=

∞∑
k=0

Px{Xk = y}

= GA(x, y)

where x, y ∈ V .
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(2) From (1), observe that GA(y, y) = G̃V (y, y) and GA\{y}(z, z) = G̃V \{y}(z, z)
for all y, z ∈ V . Then

FV (A) =

k∏
j=1

GAj
(xj , xj) =

k∏
j=1

G{xj ,...,xn}(xj , xj) =

k∏
j=1

G̃{xj ,...,xk}(xj , xj) = det G̃V .

□

3.4. Laplacian random walk.

In this section, “loop-erased walk from x to V ⊂ ∂A” is interpreted as follows.

• Run the Markov chain starting at x stopped at time T , the first time that
XT ∈ ∂A.

• Condition on the event that XT ∈ V .
• Erase loops.

We can view this as a process X̂0, X̂1, . . . , X̂T where X̂1, . . . , X̂T−1 ∈ A and X̂T ∈
V ⊂ ∂A. This chain does not “return”, so the conditional distribution of X̂k given
X̂0, . . . , X̂k−1 depends on the entire past and not just on the value X̂k−1 and hence
this is not a Markov process.

For z ∈ A and w ∈ ∂A, KA(z, w) is the set of paths ω = [ω0, ω1, . . . , ωk] for some
k with ω0 = z, ωk = w and ω1, . . . , ωk−1 ∈ A. If x ∈ A, we will write

KAx(x,w)

where Ax = A\{x}. That is, we turn x into a boundary point.

Definition 3.16. Suppose z, w are distinct points in ∂A. Then the boundary
Poisson kernel, denoted H∂A(z, w), is the measure of the set of paths starting at
z, ending at w, and otherwise staying in A. If z = w we define H∂A(z, z) = 1. If
V ⊂ ∂A, we write

H∂A(z, V ) =
∑
w∈V

H∂A(z, w).

Proposition 3.17. If x ∈ A, z ∈ ∂A,

HA(x, z) = GA(x, x)H∂Ax
(x, z),

H∂Ax(x, z) =
∑
y∈A

p(x, y)HAx(y, z),

where Ax = A\{x}. More generally, if V ⊂ ∂A,

HA(x, V ) = GA(x, x)H∂Ax
(x, V ).

Proof. For x ∈ A and z ∈ ∂A, note that

HA(x, z) =
∑

ω∈KA(x,z)

p(ω).

We can write ω as

ω = l0 ⊕ ω∗

with l0 ∈ KA(x, x), ω
∗ ∈ KAx(x, z). Then

HA(x, z) = H∂Ax(x, z)

∞∑
n=0

pn(x, x) = H∂Ax(x, z)GA(x, x).
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To prove the second equality, let T∂Ax
= min{k ≥ 1 : Xk ∈ ∂Ax}, which denotes

the first index that the chain visits ∂Ax. Then

H∂Ax(x, z) = Px{XT∂Ax
= z}

=
∑
y∈A

Px{X1 = y,XT∂Ax
= z}

=
∑
y∈A

Px{X1 = y}Px{XT∂Ax
= z | X1 = y}

=
∑
y∈A

p(x, y)HAx(y, z).

More generally, if V ⊂ ∂A,

HA(x, V ) =
∑
z∈V

HA(x, z) = GA(x, x)
∑
z∈V

H∂Ax(x, z) = GA(x, x)H∂Ax(x, V ).

□

Lemma 3.18. Suppose x ∈ A, V ⊂ ∂A and HA(x, V ) > 0. Let {Xn} be the
Markov chain started at x and T = min{k ≥ 0 : Xk ∈ ∂A}. Then for y ∈ Ax ∪ V ,

Px{X1 = y | XT ∈ V, x /∈ {X1, . . . , XT−1}} =
p(x, y)HAx

(y, V )

H∂Ax(x, V )
.

Here Ax = A\{x}.

Proof. We prove this lemma using conditional probability:

Px{X1 = y | XT ∈ V, x /∈ {X1, . . . , XT−1}}

=
Px{X1 = y,XT ∈ V, x /∈ {X1, . . . , XT−1}}

Px{XT ∈ V, x /∈ {X1, . . . , XT−1}}

=
Px{X1 = y,XT ∈ V, x /∈ {X1, . . . , XT−1}}

H∂Ax
(x, V )

=
Px{X1 = y}Px{XT ∈ V, x /∈ {X1, . . . , XT−1} | X1 = y}

H∂Ax(x, V )

=
p(x, y)HAx

(y, V )

H∂Ax
(x, V )

.

□

3.5. Putting the loops back on the path.

In this section, we consider the joint distribution of the LERW and the loops
erased. A path ω ∈ KA(x, ∂A) is decomposed into its loop erasure η and a collection
of loops l = {ℓ0, ℓ1, . . . , ℓk−1} where k = |η| is the length of η. The loop ℓj is an
element of KAj

(ηj , ηj). We write the joint distribution as

p(η, l) = p(η)p(l) where p(l) =

k−1∏
j=0

p(ℓj).

Recall Proposition 3.11. We can write

p(η, l) = p̂(η)p(l)Fη(A)−1.
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Proposition 3.19. Consider LERW from x to ∂A, that is, we assign each SAW
η = [η0, . . . , ηk] from x to ∂A in A probability p̂(η). Suppose that we choose condi-
tionally independent loops l given η with probability

Fη(A)−1p(l) = Fη(A)−1p(ℓ0) . . . p(ℓk−1),

assuming ℓj ∈ KAj (ηj−1, ηj−1). Then if we put the loops on the curve and concate-
nate as in the proof of Proposition 3.7, the path we get has the distribution of the
Markov chain starting at x stopped at ∂A.

Proposition 3.20. The following gives a way to sample the loops ℓ0, . . . , ℓk−1 given
η.

• Start independent Markov chains Xj at each ηj and let

T j = min{n ≥ 0 : Xj
n ∈ ∂Aj}.

• Let

ρj = max{m < T j : Xj
m = xj}.

• Output

ℓj = [Xj
0 , X

j
1 , . . . , X

j
ρj ].

Proof. We want to show the probability that we choose conditionally independent
loops l given η is

Fη(A)−1p(l) = Fη(A)−1p(ℓ0) . . . p(ℓk−1),

where ℓj ∈ KAj
(ηj−1, ηj−1). Note that

P{ℓ0, . . . , ℓk−1 | η = [η0, . . . ηk]} =

k−1∏
j=0

P{ℓj | η}

and

P{ℓj | η} =
∑

ωj∈KA(ηj ,∂Aj)

p(ωj)

=
∑

ω̂j∈KA\{ηj}(ηj ,∂Aj)

p(ℓj ⊕ ω̂j)

= p(ℓj)
∑

ω̂j∈KA\{ηj}(ηj ,∂Aj)

p(ω̂j)

= p(ℓj)H∂Aj+1
(ηj , ∂Aj).

Then we substitute back into P{ℓ0, . . . , ℓk−1 | η}:

P{ℓ0, . . . , ℓk−1 | η} =

k−1∏
j=0

p(ℓj)H∂Aj+1
(ηj , ∂Aj)

=

k−1∏
j=0

1

GAj
(ηj , ηj)

p(ℓ0)p(ℓ1) · · · p(ℓk−1)

= Fη(A)−1p(l).

□
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3.6. Wilson’s algorithm.

Definition 3.21.

• A tree is a simple undirected graph such that for any two distinct vertices
x, y there is exactly one SAW in the graph with initial vertex x and terminal
vertex y.

• A spanning tree of a graph is a subgraph containing all the vertices that is
a tree.

Any tree on n vertices must have exactly n− 1 edges. A finite graph only has a
finite number of spanning trees and hence it makes sense to choose one “at random”.

Definition 3.22. A uniform spanning tree (UST) of a graph is a random spanning
tree chosen from the uniform distribution on all spanning trees.

The word “uniform” in uniform spanning tree refers to the probability distri-
bution on trees and shows that it uniform over all trees. The algorithm found by
David Wilson [9] for choosing a spanning tree selects from the uniform distribution,
and it also allows us to get an expression for the number of trees.

Assume a graph has n+1 vertices. Choose any ordering of the vertices and write
them as V = {x0, x1, . . . , xn}. Let V0 = {x0}. Start simple random walk at x1 and
stop it when it reaches x0. Erase loops chronologically from the path. Let E1 be
the set of edges from the loop erasure of this path and let V1 be the set of vertices
that are adjacent to an edge in E1. Recursively, if Vk = V stop. Otherwise, let xj

be the vertex of smallest index not in Vk. Take random walk starting at xj stopped
when it reaches Vk. Erase loops, and add the remaining edges to Ek giving Ek+1

and let Vk+1 be the set of vertices that are adjacent to an edge in Ek+1. We call
this Wilson’s algorithm of generating random spanning trees.

Proposition 3.23. If T is a spanning tree of a connected graph with vertices
V = {x0, . . . , xn}, then the probability that T is chosen in Wilson’s algorithm is n∏

j=1

deg(xj)

−1

F (A)

where A = {x1, . . . , xn}. Recall Proposition 3.12, which states that F (A) = detGA.
Note that the probability does not depend on how the points were ordered or on the
tree T .

Since we are choosing from a uniform distribution and we know the probability
of picking a particular element, we know how many elements are in the set which
gives the following corollary.

Corollary 3.24. The total number of spanning trees is n∏
j=1

deg(xj)

F (A)−1 =

 n∏
j=1

deg(xj)

 detLA.

Proposition 3.25. The complete graph on n+1 vertices {x0, x1, . . . , xn} is the
(undirected) simple graph with the maximal number of edges. That is, every pair of
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distinct vertices is connected by an edge. In particular, each vertex has degree n.
The number of spanning trees of the complete graph on n+ 1 vertices is

(n+ 1)n−1.

Proof. We first compute

F (A) =

n∏
j=1

GAj
(xj , xj), Aj = {xj , xj+1, . . . , xn}.

For vertices {x0, x1, . . . , xn}, suppose the chain starts at xj . The chain is “killed”
if the chain leaves Aj . Observe that the probability that xj leaves Aj is

j

n
+

n− j

n

j

j + 1
.

This is equivalent to the probability that the chain never returns to xj starting at
xj . Recall that GAj (xj , xj) is the expected value of a geometric distribution:

GAj
(xj , xj) =

1
j
n + n−j

n
j

j+1

=
n(j + 1)

j(n+ 1)
.

Then we have

F (A) =

n∏
j=1

n(j + 1)

j(n+ 1)
=

nn

(n+ 1)n−1
,

and using Corollary 3.24, the total number of spanning trees is

nn (n+ 1)n−1

nn
= (n+ 1)n−1.

□

4. Loop Soups

We focus on the loops in this chapter. We define a growing loop at a point and
the growing loop configuration in A. Then we show how they can be constructed
in three different ways: (ordered) growing loops, rooted loops, and unrooted loops.

4.1. Growing loop at a point.

In this section, we give a model for a “growing loop” rooted at a vertex x in A.
We let lt denote a continuous time Markov chain for time t ≥ 0 with state space
K := K(x) := KA(x, x) starting at the trivial path. We allow the trivial loop. We
assume that l0 is the trivial loop, and the process grows at the end. That is to
say, if s ≤ t, ls is an initial segment of lt, that is lt = ls ⊕ l∗ for another loop l∗.
The distribution at time t = 1 will be that of the loops erased in the chronological
loop-erasing procedure.

For n > 0, let Kn = Kn(x) be the set of loops starting at x that return to x
exactly n times. We call the loops in K1 elementary loops and note that each loop
in Kk can be written uniquely as

(4.1) l = l1 ⊕ l2 ⊕ · · · ⊕ lk, lj ∈ K1.

The total measure of the set of elementary loops at x is denoted by

fx := p(K1) =
∑
l∈K1

p(l) = 1− 1

GA(x, x)
=

GA(x, x)− 1

GA(x, x)
.
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If p is the transition matrix of a Markov chain, fx is the probability that the chain
starting at x returns to x without leaving A. Let ν denote the probability measure
on K1 given by ν(l) = p(l)/fx. Using (4.1) we see that p[Kk] = fk

x .

Definition 4.2. (Growing loop)

• Let Kt be the number of elementary loops in the growing loop at time t.
We assume that Kt is a continuous time Markov chain with state space N
and rate

λ(n, n+ k) =
1

k
fk
x .

• Choose l1, l2, . . . to be independent, identically distributed loops in K1 with
distribution ν.

• Let
lt = l1 ⊕ l2 ⊕ · · · ⊕ lKt ,

where the right-hand side is defined to be the trivial loop if Kt = 0.

Definition 4.3. (An alternative definition for growing loop)

• lt is a continuous time Markov chain taking values in K with l0 being the
trivial loop and rates

λ(l, l ⊕ l′) =
1

k
p(l′), l′ ∈ Kk.

The process Kt is a negative binomial process with parameter GA(x, x)
−1 =

1 − fx. Kt is counting k elementary loops (failures), given t chains starting at x
either never return to x or leave A before returning to x (successes). From this we
see that

P{Kt = k} =
1

GA(x, x)t
Γ(k + t)

k!Γ(t)
fk
x , k = 0, 1, 2, . . . ,

and hence

(4.4) P{lt = l} =
1

GA(x, x)t
Γ(k + t)

k!Γ(t)
p(l) if l ∈ Kk.

When t = 1, we get the simpler expression

(4.5) P{l1 = l} =
1

GA(x, x)t
p(l).

Example 4.6. Suppose we have a Markov chain on the state space A = {1, 2, 3}
with transition probabilities

p(1, 3) = p(2, 3) =
1

3
, p(3, 3) = 1

p(1, 1) =
1

3
, p(1, 2) =

1

3
, p(2, 1) =

1

2
, p(2, 2) =

1

6
.

Let A = {1, 2}. We will find a number of quantities with x = 1 and with x = 2.

1
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��
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hh
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(1) fx. Observe that the set of elementary loops at x is of the form

{[x, x], [x, y, x], [x, y, y, x], [x, y, y, y, x], . . .}.

Then for x = 1

f1 =
1

3
+

1

3

(
1

2

)
+

1

3

(
1

6

)(
1

2

)
+

1

3

(
1

6

)2(
1

2

)
+ . . . =

8

15

and for x = 2

f2 =
1

6
+

1

2

(
1

3

)
+

1

2

(
1

3

)(
1

3

)
+

1

2

(
1

3

)2(
1

3

)
+ . . . =

5

12
.

(2) GA(x, x). Recall that fx = 1− 1
GA(x,x) . Then we have

GA(1, 1) =
1

1− f1
=

15

7
, GA(2, 2) =

1

1− f2
=

12

7
.

(3) P{l1 = [x]}. Using (4.5), the probability that the growing loop at time t = 1
is trivial is

P{l1 = [x]} =
1

GA(x, x)
p([x]) =

1

GA(x, x)

and hence

P{l1 = [1]} =
7

15
, P{l1 = [2]} =

7

12
.

(4) P{l1 is of length 2}. Observe that P{l1 is of length 2} = P{l1 = [x, x, x]} +
P{l1 = [x, y, x]}. Use (4.4). Then for x = 1

P{l1 is of length 2} =
7

54

and for x = 2

P{l1 is of length 2} =
49

432
.

(5) P{l1 = [x, x, x] | l1 is of length 2} =
P{l1 = [x, x, x]}

P{l1 is of length 2}
.

We have calculated all the quantities.
(6) Let ρ(t) be the probability that the growing loop at time t is of length 2 and

let ρ̃(t) be the probability that the growing loop at time t is [x, x, x]. Then we have

lim
t↓0

ρ̃(t)

ρ(t)
=

1

4
, lim

t→∞

ρ̃(t)

ρ(t)
= 1,

which can be seen through simplification.

4.2. Growing loop configuration in A.

The growing loop configuration in A is a collection of growing loops at each
vertex. It depends on an ordering σ of the vertices, and, as before, we let Aj =
A\{x1, . . . , xj−1}. Let us write G = GA,σ to denote the set of n-tuples of loops

l = (l1, . . . , ln)

such that lj is a loop in Aj rooted at xj .
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Definition 4.7. Given the ordering of A, the growing loop configuration is an
n-tuple

lt = (l1t , l
2
t , . . . , l

n
t )

where l1t , l
2
t , . . . , l

n
t are independent and ljt is a growing loop at xj in Aj as in the

previous section.

Proposition 4.8. If σ is an ordering of A and p is an integrable nonnegative
weight, then for l ∈ G,

P{lt = l} =
p(l)

(detG)t

n∏
i=1

Γ(ji + t)

ji!Γ(t)

where ji is the number of times that loop li returns to the origin as in the previous
section and p(l) = p(l1)p(l2) · · · p(ln).

We view the growing loop configuration as a “loop soup”. The growing loop
configuration depends on the ordering of vertices and we write σ to denote the
particular ordering of the vertices. Let

Jσ =

n⋃
j=1

KAj (xj , xj).

For each l ∈ KAj (xj , xj), let β(l) denote the number of times that the loop returns
to xj . For each l ∈ Jσ, let Nt(l) denote the number of times that l has been added
onto a loop by time t. Then Nt(l) := {Nt(l) : l ∈ Jσ} are independent Poisson
processes with parameters

λl =
1

β(l)
p(l), if l ∈ KAj (xj , xj).

Example 4.9. Consider the Markov chain in Example 4.6 and suppose that the
vertices are ordered 1, 2 and lt = (l1t , l

2
t ) is the corresponding growing loop config-

uration.
(1) For each t, we will find the probability that the loop l1t visits the vertex

2 using two different approaches. Loops that visit the vertex 2 can be separated
based on the number of times that the loop returns to vertex 1. Loops that visit
the vertex 2 k times are Poisson processes with parameter

1

k

[
fk
1 −

(
1

3

)k
]
.

Since Nt are independent Poisson processes, the number of times that loops that
visit the vertex 2 has been added by time t has parameter

∞∑
k=1

1

k

[
fk
1 −

(
1

3

)k
]
=

∞∑
k=1

1

k

[(
8

15

)k

−
(
1

3

)k
]
= log

10

7
.

Then we have

P{l1t visits the vertex 2} = 1− e−(log 10
7 )t = 1−

(
7

10

)t

.



22 ZHUOHAN (JOSHUA) GU

The other approach is

P{l1t visits the vertex 2} = 1− P{l1t doesn’t visit the vertex 2}

= 1− 1

GA(1, 1)

∞∑
k=0

Γ(k + t)

k!Γ(t)

(
1

3

)k

= 1−
(

7

10

)t

.

(2) For each t, we will find the expected number of times vertex 2 appears in l1t .
Note that

E[# 2’s in l1t ] =

∞∑
k=1

E[# 2’s in l1t | Kt = k] · P{Kt = k}.

Then

∞∑
k=1

E[# 2’s in l1t | Kt = k] =
∑

lj∈K1

P{l1t = l1 ⊕ l2 ⊕ · · · ⊕ lk}(# 2’s in l1t )

= k ·
∑
l∈K1

p(l)

fx
(# 2’s in l)

= k ·
∞∑

n=1

(1/6)n

8/15
n

=
9

20
k.

The second equality holds since lj are independent. Recall that the process Kt is
a negative binomial process and hence

E[# 2’s in l1t ] =

∞∑
k=1

9

20
k · P{Kt = k} =

9

20
E[Kt] =

18

35
t.

Proposition 4.10. Order the vertices A = {x1, . . . , xn} and define the measure on
ordered loops m∗ as follows. Let Aj = A\{x1, ..., xj−1}. If l is a loop in Aj rooted
at xj, then

m∗(l) =
p(l)

β(l)

where β(l) = #{k : 1 ≤ k ≤ |l|, lk = xj}, and m∗(l) = 0 for all other loops. Then∑
l

m∗(l) = log detGA.

Proof. We first calculate loops in Aj rooted at xj :

∑
l∈KAj

(xj ,xj)

m∗(l) =
∑

l∈KAj
(xj ,xj)

p(l)

β(l)
=

∞∑
k=1

1

k
fk
xj

= − log

(
1

GAj (xj , xj)

)
.
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Then it follows that ∑
l

m∗(l) =

n∑
j=1

− log

(
1

GAj
(xj , xj)

)

= − log

(
1∏n

j=1 GAj
(xj , xj)

)

= − log

(
1

F (A)

)
= − log

(
1

detGA

)
= log detGA.

The third equality uses Definition 3.9 and the penultimate equality uses Proposi-
tion 3.12. □

We now focus on t = 1, for which (4.5) shows that the conclusion of Proposi-
tion 4.8 can be written as

(4.11) P{l1 = l} =
p(l)

detG

n∏
i=1

p(ℓi)

GAj
(xj , xj)

.

Proposition 4.12. See Proposition 3.9 and Proposition 3.10 in [1]. The propo-
sitions show that we can construct realizations of a Markov chain by starting with
realizations of the loop-erased random walk or the uniform spanning tree, taking
conditionally independent realizations of the loop soup at time t = 1 and combining
them.

Proof. For Proposition 3.9 in [1], note that

p(ω) = p(η)

k−1∏
j=1

p(lj).

We want to show that

p(ω) = p̂(η)

k−1∏
j=0

P{lj1 = lj}.

Using (4.11) and Proposition 3.7, we can see that

p̂(η)

k−1∏
j=0

P{lj1 = lj} = p̂(η)

k−1∏
j=0

p(lj)

GAj (ηj , ηj)

= p(η)

k−1∏
j=0

GAj
(ηj , ηj)

k−1∏
j=0

p(lj)

GAj
(ηj , ηj)

= p(η)

k−1∏
j=0

p(lj).

For Proposition 3.10 in [1], we want to show that∏
ω

p(ω) = P{the tree T is chosen} ·
n∏

j=1

P{lj1 = lj}.
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Observe that the left-hand side is∏
ω

p(ω) =
∏
e∈T

p(e)

n∏
j=1

p(lj) = p(T )

n∏
j=1

p(lj).

Using Proposition 2.27 in [1] and Definition 3.9, we can see that the right-hand side
is

P{the tree T is chosen} ·
n∏

j=1

P{lj1 = lj} = p(T )F (A)

n∏
j=1

P{lj1 = lj}

= p(T )

n∏
j=1

GAj
(xj , xj)

n∏
j=1

p(lj)

GAj
(ηj , ηj)

= p(T )

n∏
j=1

p(lj).

□

4.3. Rooted loop soup.

In the previous section, the ordered loop soup depends on an ordering σ of the
vertices. In this section, we explore a different measure and corresponding loop
soup that does not depend on the ordering.

Definition 4.13. Suppose ω = [ω0, ω1, . . . , ωn] is a loop. We write |ω| = n for the
number of steps in ω. Then we define the translation τ as follows:

τω = [ω1, ω2, . . . , ωn, ω1].

Note that τω traverses the same loop as ω in the same direction but with a
different starting point. We let J(ω) be the number of distinct loops obtained. Let
J(ω;x) be the number of distinct loops obtained that are rooted at x. Then,

(4.14) J(ω;x) =
J(ω)

|ω|
#{j : 1 ≤ j ≤ n, ωj = x}.

Definition 4.15. The rooted loop measure m̃ = m̃p is the measure that assigns
measure

(4.16) m̃(l) =
p(l)

|l|
to every loop

l ∈
n⋃

j=1

KA(xj , xj).

The corresponding Poisson realization is called the rooted loop soup.

Note that the rooted loop measure is not a probability measure since

(4.17)
∑
l

m̃(l) = log detGA.

Proposition 4.18. The following is a valid way to get the rooted loop soup.

• Choose an ordering of the vertices σ.
• Take a realization of the ordered loop soup with ordering σ.
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• For each ω in the soup, choose a translation τkω where k is chosen uni-
formly in {0, 1, . . . , |ω| − 1}.

Proof. For each l ∈
⋃n

j=1 KA(xj , xj), we want to show that the rooted loop measure
of l is

m̃(l) =
p(l)

|l|
.

Let i = min{j : xj ∈ l}, which denotes the minimum index in l. Recall that J(l;xi)
denotes the number of distinct loops obtained by translation that are rooted at
xi. Let β(l;xi) denote the the number of times that l returns to xi. Since we are
choosing a translation τkω uniformly, we get

m̃(l) =
1

J(l)

[
J(l;xi)

p(l)

β(l;xi)

]
=

1

J(l)

[
J(l)

|l|
β(l;xi)

p(l)

β(l;xi)

]
=

p(l)

|l|
.

J(l) is the number of distinct loops obtained by translation and 1
J(l) shows that the

translation is chosen uniformly. □

4.4. (Unrooted) random walk loop measure.

In the last section, we choose a loop and then randomize its starting point. We
write ℓ for unrooted loops and l or ω for rooted loops.

Definition 4.19. The unrooted loop measure m = mp is the measure that assigns
to each unrooted loop

(4.20) m(ℓ) = J(ℓ)
p(ℓ)

|ℓ|
.

The (unrooted) loop measure is a Poissonian realization from m.

Using (4.17), we see that

(4.21)
∑
ℓ

m(ℓ) = log detGA.

Proposition 4.22. Each of the following methods is a valid way to get the unrooted
loop soup.

• Take a realization directly from m.
• Take a realization of the rooted loop soup and then “forget the root”.
• Choose an ordering σ, take a realization of the ordered loop soup with or-
dering σ, and then“forget the root”.

Proof. (1) It directly follows from Definition 3.14.
(2) Now, for each ω in the soup, distinct τkω are chosen together. From Propo-

sition 4.18 we see that

m(ℓ) = J(ℓ)m̃(ℓ) = J(ℓ)
p(ℓ)

|ℓ|
,

which corresponds to the unrooted loop measure of ℓ in Definition 4.19.
(3) We take a realization of the ordered loop soups, and then we repeat (2). □

Proposition 4.23. The probability that the unrooted loop soup has no loops in it
at time t is given by (detGA)

−t.
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Proof. The (unrooted) loop soup is a Poisson realization from m. Growing loops
are independent Poisson processes with parameters

m(ℓ).

Let X be the number of loops in the unrooted loop soup at time t. Using (4.21),
we see that

λtotal =
∑
ℓ

m(ℓ) = log detGA.

Then we have X ∼ Poi(log detGA) and hence

P{X = 0} =
(λtotalt)

0e−λtotalt

0!
= e−(log detGA)t = (detGA)

−t.

□
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