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Abstract. A discussion of the existence and regularity of minimal surfaces,

from an elliptic partial differential equation (PDE) perspective. We begin with

the De Giorgi-Nash-Moser and Schauder theorems for the regularity of (weak)
solutions to the divergence PDE ∂i(aij∂ju) = ∂ifi where aij is an elliptic

matrix. We then use this theory to prove the existence and uniqueness of
minimal surfaces on the ball with Lipschitz, and then with merely continuous,

boundary data. We discuss Bernstein’s method and a few interesting gradient

estimates that follow for minimal surfaces, and we give a proof of a positive
answer to Bernstein’s problem in 2 dimensions.
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1. Introduction

If we define the function L : Rd−1×R×A→ R (with A ⊂ Rd−1) by

(1.1) L(p, z, x) =
√

1 + |p|2

then we have that the associated energy functional to this Lagrangian

(1.2) J [u] :=

∫
A

L(∇u(x), u(x), x) dx =

∫
A

√
1 + |∇u|2

is the surface area functional for the graph of u ∈ W 1,∞(A) ⊂ H1(A). By looking
at the first variation of this functional (see, for instance, 8.1.2 from [1]) we have
that a minimizer u of surface area J will solve the PDE

−
d−1∑
i=1

(Lpi(∇u, u, x))xi = −
d−1∑
i=1

(
∂iu√

1 + |∇u|2

)
xi

= −div

(
∇u√

1 + |∇u|2

)
= 0

Date: August 2023.

1



2 TYLER GROSHONG

Henceforth we call a function u which satisfies

(1.3) Mu := div

(
∇u√

1 + |∇u|2

)
= 0

a solution to the minimal surface equation (on the domain A ⊂ Rd−1).
We will prove in this paper that minimal surfaces with bounded gradients are

in fact smooth. Why should we expect this to be true? First of all, notice that if
|p| is small then

√
1 + |p|2 ≈ |p|2/2, so if u minimizes the surface area functional

L(∇u, u, x) from (1.1) over some region A then we sort of have that u minimizes
the energy

∫
A
|∇u|2, which means that it’s close to being harmonic, and therefore

smooth.
In Section 2 we look at two very important regularity results for the elliptic

PDE problem ∂i(aij∂ju) = ∂ifi, where aij is a uniformly elliptic matrix. Namely,
we prove the De Giorgi-Nash-Moser theorem (Theorem 2.1) for weak solutions to
∂i(aij∂ju) = 0 with L2 gradients, which says that u is Hölder continuous. De
Giorgi is a scale-invariant regularity result, in the sense that if we zoom in around
a point we do not improve or otherwise change the result. The second famous
theorem we look at, the Schauder theorem (Theorem 2.11), does vary with scale,
in that it provides a bound on the Hölder norm of the gradient of a solution to
∂i(aij∂ju) = ∂ifi in some ball, depending on the L2 norm of u (and the Hölder
seminorm of f) in the ball of twice the radius. As we zoom closer and closer in
around a point, the uniformly elliptic matrix aij looks more like the identity, and
the function f looks more like a constant, so a solution u to ∂i(aij∂ju) = ∂ifi looks
more like a harmonic function, and we can take advantage of this to prove such a
theorem that depends on scale.

These theorems will allow us to prove the smoothness of minimal surfaces with
bounded gradients. If u : A ⊂ Rd−1 → R is a function such that the graph of u is
a minimal surface, and if we have that ∇u is bounded, then we can show that u
is a minimizer of the functional J in (1.2) over the space of all Lipschitz functions
W 1,∞(A). Therefore, as above, it solves the minimal surface equation (1.3), and
by differentiating this equation we get that u is a solution of ∂i(aij∂ju) = ∂ifi for

aij ∈ Cα(A,Rd×d) uniformly elliptic and f ∈ Cα(A;Rd). By the Schauder theorem
(Theorem 2.11) this says that u ∈ C1,α(A), which implies that ∇u ∈ Cα(A). Then
(1.3) says that the product of D2u with a nondegenerate Cα function is constant,
so we must have that D2u is Cα, so u ∈ C2,α. Then we repeat: ∇u is now C1,α, so
(1.3) says that the product of D2u with a nondegenerate C1,α function is constant,
so D2u is C1,α, so u ∈ C3,α. Then ∇u is C2,α, and so on, thus proving that u ∈ C∞
by induction.

In Section 3 we prove a comparison principle for sub- and super-solutions to
the minimal surface equation Mu = 0, and then give a proof of the existence and
uniqueness of solutions to the minimal surface equation with Lipschitz boundary
data u = ϕ ∈W 1,∞ on ∂B1.

In Section 4, we look at the first and second variations of perimeter for minimal
surface, and at Bernstein’s method of introducing auxiliary functions to remove
dependence on boundary data. From this, in Section 4.1 we derive two L∞ bounds
for the gradient of minimal surfaces, and prove the existence and uniqueness of
minimal surfaces on the ball with merely continuous boundary data. Then, in
Section 4.2, we introduce Bernstein’s problem, which asks when global minimal
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surfaces must be hyperplanes, and prove that minimal surfaces in R2 must be
planar.

It is worth having an idea of why some of the main variational techniques for
functional minimizers, such as those featured in this summer’s REU papers by my
peers Mr. Daniel Chen and Mr. Sammy Thiagarajan, do not directly apply to
minimal surfaces. If 1 < p < ∞ then we have that Lp is reflexive, or equivalently
that the unit ball in Lp is weakly compact. These papers reference the fact that,
for some functional I : W 1,p(Ω) → R, if we have that we can bound the Lp norm
of the gradient

I[u] ≥ α‖∇u‖pLp(Ω) − β
(for some constants α, β) then a sequence {uk} ⊂ W 1,p(Ω) approaching the mini-
mum will be bounded in W 1,p(Ω) and by the reflexivity of Lp we can then extract a
subsequence that converges in W 1,p. However, for the surface area functional (1.2)

the best p for which we can do this is p = 1 (since
√

1 + |p|2 looks like |p|1 for
|p| large), and L1 is unfortunately not reflexive. So these methods will not exactly
apply for the PDE ∂i(aij∂ju) = 0 where aij = (1 + |∇u|2)−1/2.

All figures in the text are drawn by the author, after illustrations from [3].

2. Regularity

2.1. De Giorgi-Nash-Moser Theorem.

Theorem 2.1. (De Giorgi-Nash-Moser) Let u ∈ H1(B2) be a weak solution to
∂i(aij∂ju) = 0, supposing only that the coefficient matrix aij is measurable and
uniformly elliptic (i.e., ∃λ,Λ > 0 such that λI ≤ aij ≤ ΛI). Then there exists
α > 0 such that u ∈ Cα(B1).

We will prove Theorem 2.1 as follows: we begin by introducing the notion of a
‘subsolution’ to ∂i(aij∂ju) ≥ 0, which essentially says that any downward pertur-
bation of u increases the total energy

∫
aij∂iu∂ju, so even if u is not a classical

solution it will only be a worse candidate if we decrease it anywhere. We then
prove an intermediate lemma (Lemma 2.4) that gives an L∞ bound on B1/2 for
nonnegative subsolutions in B1, which relies on a combination of: the Caccioppoli
inequality, which uses a subsolution’s L2 norm in Br+δ (for some δ > 0 small)
to bound the gradient ’s L2 norm in Br, sort of a reverse Sobolev inequality; the
Sobolev inequality, which uses the L2 bound on the gradient in Br to bound the
L2 norm of the function in Br, so we’ve converted an L2 bound on Br+δ into a
stronger L2 bound on B1; and finally Chebychev’s inequality, which will allow
us to put a (1− ε)k bound on the set where the function is greater than C − 2−k,
thus showing that the function is bounded by taking k → ∞. This is all done in
section 2.1.1, where we prove the L∞ bound in Lemma 2.4.

After having done that, in the Improvement of Oscillation section 2.1.2 we will
prove a weak Harnack inequality that gives us a sense of how much time an H1

function has to spend transitioning between values (i.e., if an H1 function is 0
on at least this-much of the ball and 1 on at least this-much of the ball then it
must be in between 0 and 1 on at least that-much of the ball, where that-much
depends on its H1 norm). Using this inequality and the L∞ bound on B1/2 from
Lemma 2.4, we can come up with an oscillation bound on nonnegative subsolutions
in B1/2. Through iteration of this oscillation bound we get the desired Hölder
bound for Theorem 2.1. Finally, since it will be clear that weak solutions can be
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considered as subsolutions, and since a function has the same Hölder bound as its
absolute value, we can consider a weak solution to ∂i(aij∂ju) = 0 as a nonnegative
subsolution to ∂i(aij∂ju) ≥ 0 and thus prove Theorem 2.1.

2.1.1. Subsolutions and L∞(B1) bound. Denote E(u) :=
∫

Ω
aij∂iu∂ju.

Definition 2.2. (Subsolution) We say that u : Ω ⊂ Rd → R is a subsolution to the
equation ∂i(aij∂ju) ≥ 0 if for any ϕ ∈ C1(Ω;R) with ϕ ≥ 0 in Ω and ϕ = 0 on ∂Ω
we have ∫

Ω

aij∂iu∂jϕ ≤ 0

What motivates this definition? Notice that if we could integrate by parts—we
can’t, since we don’t know that aij∂ju is continuous, let alone differentiable,but if
we could—we would get that

∫
Ω
∂j(aij∂iu)ϕ ≥ 0 for all test functions ϕ. For one

thing, this tells us that if u is a weak solution to ∂i(aij∂ju) then it is a subsolution
to ∂i(aij∂ju) ≥ 0. More interestingly, we also can show that u is a subsolution if
and only if E(u) ≤ E(u + v) for all v ∈ H1

0 (Ω) with v ≤ 0; in other words, every
downward perturbation of a subsolution increases the energy. Therefore, a true
minimizer must not result from a downward perturbation of a subsolution, so we
have that a subsolution lies below every true minimizer, hence the name.

Proof. (downward perturbations of subsolutions increase energy) If u is a subso-
lution, then the inequality in Definition 2.2 holds for all ϕ ∈ H1

0 (Ω). Let u be a
subsolution, and let v ∈ H1

0 (Ω) with v ≤ 0. Then we have that −v ≥ 0 with v = 0
on ∂Ω, so −v is an admissible test function for subsolutions which gives us

E(u+ v)− E(u) =

∫
Ω

aij∂i(u+ v)∂j(u+ v)−
∫

Ω

aij∂i(u)∂j(u)

=

∫
Ω

aij(∂i(u)∂j(v) + ∂i(v)∂j(u) + ∂i(v)∂j(v))

= −
∫

Ω

aij(∂i(u)∂j(−v) + ∂i(−v)∂j(u)) +

∫
Ω

aij∂i(v)∂j(v)

≥
∫

Ω

aij∂i(v)∂j(v) ≥ 0

so we have that E(u) ≤ E(u+ v) for all v ∈ H1
0 (Ω) with v ≤ 0.

On the other hand, let E(u) ≤ E(u + v) for all v ∈ H1
0 (Ω) with v ≤ 0. Let

ϕ ∈ H1
0 (Ω) with ϕ ≥ 0. Then

0 ≤
∫

Ω

aij∂i(u− ϕ)∂j(u− ϕ)−
∫

Ω

aij∂i(u)∂j(u)

= 2

∫
Ω

aij∂i(u)∂j(−ϕ)−
∫

Ω

aij∂i(ϕ)∂j(ϕ)

≤ 2

∫
Ω

aij∂i(u)∂j(−ϕ)

and therefore
∫

Ω
aij∂i(u)∂j(ϕ) ≤ 0 for all ϕ ∈ H1

0 (Ω) with ϕ ≥ 0, so u is a subso-
lution. Thus, we have that u is a subsolution if and only if E(u) ≤ E(u+ v) for all
v ∈ H1

0 (Ω) with v ≤ 0. �
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As explained above, to obtain an L∞(B1/2) bound for a nonnegative subsolution
on B2, we will need to make use of the Caccioppoli inequality:

Lemma 2.3. (Caccioppoli inequality) Let u ∈ H1(Br+δ) be a subsolution to the
equation ∂i(aij∂ju) ≥ 0, with u ≥ 0. Then there exists a constant C > 0 depending
on the ellipticity constants λ,Λ for aij such that

‖∇u‖L2(Br) ≤
C

δ
‖u‖L2(Br+δ)

This will be instrumental in using the L2(B2) norm of u iteratively to obtain a
finite L∞(B1/2) norm.

Proof. (Caccioppoli inequality) Let u ≥ 0 be a subsolution in Br+δ. Let η : Br+δ →
[0, 1] be a smooth cutoff function with η = 1 on Br, η = 0 on ∂Br+δ, and |∇η|L∞ ≤
2δ−1. Then∫

Br+δ

η2(∇u)2 ≤ 1

λ

∫
Br+δ

η2aij∂iu∂ju

=
1

λ

[ ∫
Br+δ

aij∂iu∂j(η
2u)− 2

∫
Br+δ

uηaij∂iu∂jη

]
and since η2u ∈ H1

0 (Br+δ) with η2u ≥ 0 we have that
∫
Br+δ

aij∂iu∂j(η
2u) ≤ 0 so∫

Br+δ

η2(∇u)2 ≤ −2

λ

∫
Br+δ

uηaij∂iu∂jη

≤ 2Λ

λ

∫
Br+δ

|uη∂iu∂jη|

≤ 2Λ

λ

(∫
Br+δ

u2|∇η|2
)1/2(∫

Br+δ

η2|∇u|2
)1/2

so we have that

‖η∇u‖2L2(Br+δ)
≤ 2Λ

λ
‖u∇η‖L2(Br+δ)‖η∇u‖L2(Br+δ)

=⇒ ‖∇u‖L2(B1) = ‖η∇u‖L2(B1) ≤ ‖η∇u‖L2(Br+δ)

≤ 2Λ

λ
‖u∇η‖L2(Br+δ)

≤ 4Λ

δλ
‖u‖L2(Br+δ)

thus with C := 4Λ
λ we have that ‖∇u‖L2(Br) ≤ Cδ−1‖u‖L2(Br+δ). �

Now we are ready to prove the L∞(B1/2) bound:

Lemma 2.4. (L∞ bound) Let u ∈ H1(B2) be a nonnegative subsolution to the
equation ∂i(aij∂ju) ≥ 0. Then ‖u‖L∞(B1) ≤ C‖u‖L2(B2) for some C = C(d, λ,Λ).

We will actually prove that there exists δ0 = δ0(d, λ,Λ) such that if ‖u‖L2(B1) ≤
δ0 then ‖u‖L∞(B1) ≤ 1. This is equivalent to Lemma 2.4, but we will actually use
this statement of the lemma in the De Giorgi proof so we will not justify their
equivalence.
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To prove the existence of such a δ0, we will consider the setup where we let

`k = 1− 2−k

rk = 1 + 2−k

uk = (u− `k)+

ak = ‖uk‖L2(Brk )

Then we have that uk is a nonnegative subsolution, and uk+1 ≤ uk, and therefore
ak+1 ≤ ak. Also, a0 = ‖u‖L2(B2). Therefore, if we can show that a0 ≤ δ0 implies
ak → 0, then we will have shown that u ≤ 1 on B1 (this follows from the definition
of uk above, since `k → 1), i.e. that ‖u‖L2(B2) ≤ δ0 implies ‖u‖L∞(B1) ≤ 1.

Figure 1. {u > 1−2−k}∩
Bk shrinks by Caccioppoli

Proof. For each k ∈ N let ηk : B2 → R be a smooth
cutoff function such that ηk = 1 on Brk and ηk = 0 on
B1 \Brk−1

, and also ‖∇ηk‖L∞(B2) ≤ 2k.
Let Vk := {x ∈ Brk−1

: uk(x) > 0}. Then, with
2∗ := 2d/(d− 2) the Sobolev conjugate of 2, we have by
Hölder’s inequality that

‖uk‖2L2(Brk ) ≤ ‖ηkuk‖
2
L2(Brk−1

)

=

∫
Brk−1

χVk |ηkuk|2

≤ ‖χVk‖L2∗/(2∗−2)(Brk−1
)‖ηku2

k‖L2∗/2(Brk−1
)

= |Vk|2/d‖ηkuk‖2L2∗ (Brk−1
)(2.5)

Now, by definition of uk we have that uk > 0 ⇔
uk−1 > 2−(k+1), so by Chebychev’s inequality we have

(2.6) |Vk| = |{x ∈ Brk−1
: uk−1 > 2−(k+1)}| ≤ 22(k+1)

∫
Brk−1

|uk−1|2

Furthermore, since ηkuk ∈ H1
0 (Brk−1

) we have by the Sobolev inequality that

(2.7) ‖ηkuk‖L2∗ (Brk−1
) ≤ C‖∇(ηkuk)‖L2(Brk−1

)

and finally by the Caccioppoli inequality that

(2.8) ‖∇(ηkuk)‖L2(Brk−1
) ≤ C‖uk∇ηk‖L2(Brk )

and thus

‖uk‖L2(Brk ) ≤ |Vk|1/d‖ηkuk‖L2∗ (Brk ) by (2.5)

≤ C4(k+1)/2‖uk−1‖2/dL2(Brk−1
)‖∇(ηkuk)‖L2(Brk−1

) by (2.6) and (2.7)

≤ C4(k+1)/d · 2k‖uk−1‖1+2/d
L2(Brk−1

) by (2.8)

= C2k+2(k+1)/da
1+2/d
k−1
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Now, denote nk := k+ 2(k+ 1)/d, and ε := 2/d > 0. By repeated application of
this inequality we see that

ak ≤ C2nka1+ε
k−1 ≤ C

1+(1+ε)2nk+(1+ε)nk−1a
(1+ε)2

k−2

≤ C
∑k
i=0(1+ε)i2

∑k
i=0 nk−i(1+ε)ia

(1+ε)k

0

=

[
C

∑k
i=0(1+ε)i−k2

∑k
i=0 nk−i(1+ε)i−ka0

](1+ε)k

=

[
C

∑k
i=0(1+ε)−i2

∑k
i=0 ni/(1+ε)ia0

](1+ε)k

Also, we have that the following series converge

s1 :=
∞∑
i=0

1

(1 + ε)i
, s2 :=

∞∑
i=0

ni
(1 + ε)i

so the inequality

ak ≤
[
Cs12s2a0

](1+ε)k

holds for all k ≥ 1. Therefore choosing a0 < (Cs12s2)−1 we have that ak → 0 as
k →∞, as desired. �

2.1.2. Improvement of Oscillation. In this section we prove for bounded H1 sub-
solutions on the ball (i.e., subsolutions u ∈ H1(B1) satisfying 0 ≤ u ≤ 1) that
we can find an explicit upper bound for u that is strictly less than 1 as long as
|{x ∈ B1 : u(x) = 0}| is large enough (Lemma 2.9). We prove this using the L∞

bound from Lemma 2.4, and then we also use Lemma 2.4 to ensure that the con-
ditions of Lemma 2.9—that u is bounded—are satisfied. By iteratively applying
this lemma to a geometric series of nested balls between B1 and B2, we get the De
Giorgi result Theorem 2.1.

Suppose that we are given constants C, δ0, δ1 > 0, and an H1 function u : B1 →
[0, 1] such that ‖u‖H1(B1) ≤ C, |{u = 0}| ≥ δ0, |{u = 1}| ≥ δ1. We must have
that there is some ε = ε(C, δ0, δ1) > 0 such that ε < |{0 < u < 1}|. For, suppose
for the sake of contradiction that there exists {uk} ⊂ H1(B1) satisfying the same
conditions, and such that additionally |{0 < uk < 1}| → 0 as k → ∞. Then we
have that {uk} is bounded in L2 and therefore there is some subsequence (which
we relabel {uk}) satisfying uk → u∞ in L2 for some u∞ ∈ L2(B1). Since we have
that

|{u∞ = 0}| ≥ δ0 > 0, |{u∞ = 1}| ≥ δ1 > 0, |{0 < u∞ < 1}| = 0

it must be the case that u∞ = χE for some measurable E ⊂ B1 with δ1 ≤ |E| ≤
1− δ0. But we have that χE cannot be in H1(B1) since ‖∇χE‖L2(B1) =∞, which

contradicts the fact that ‖uk‖H1(B1) ≤ C
√
|B2| and uk → χE in L2.

The observation that we can set a lower bound ε(C, δ0, δ1) < |{0 < u < 1}| is
often referred to as the De Giorgi isoperimetric inequality. With this lower bound
on |{0 < u < 1}| we are now ready to prove the final lemma:

Lemma 2.9. Let u ∈ H1(B2) be a subsolution to the equation ∂i(aij∂ju) ≥ 0, with
0 ≤ u ≤ 1. Then if |{x ∈ B1 : u(x) = 0}| ≥ δ0 > 0, we have that supB1

u ≤ 1− γ =
1− γ(d, λ,Λ, δ0).
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Proof. Set wk := 2k[u−(1−2−k)]+. Then, since 0 ≤ u ≤ 1 we have that 0 ≤ wk ≤ 1,
and furthermore each wk is a subsolution. By the Caccioppoli inequality (Lemma
2.3) we have that ‖∇wk‖L2(B1) ≤ C‖wk‖L2(B2) ≤ C|B2|, so the sequence {wk} is

uniformly bounded in H1.
We have that wk = 0 wherever u = 0, so |{wk = 0}| ≥ δ0 > 0. Furthermore, we

have that

wk+1 = 2k+1[u−(1−2−(k+1))]+ = 2(2k[u−(1−2−k)]+ +(2−1−1))+ = 2[wk−1/2]+

so {0 < wk < 1/2} are disjoint for all k ∈ N, and {0 < wk+1} ⊂ {1/2 ≤ wk}.
Therefore, we have that

(2.10) |{x ∈ B1 : 1/2 ≤ wk(x)}| ≥ |{x ∈ B1 : 0 < wk+1(x)}| ≥
∫
B1

w2
k+1

By Lemma 2.4 (see especially the note immediately following the statement),
we have that there exists δ1 > 0 such that ‖u‖L2(B2) ≤ δ1 implies ‖u‖L∞(B1) ≤ 1.
Also, by the De Giorgi isoperimetric inequality, there exists some ε > 0 such that
‖wk‖H1(B1) ≤ C|B2|, |{wk ≤ 0}| ≥ δ0, |{wk ≥ 1/2}| ≥ δ2

1 implies |{0 < wk <
1/2}| > ε. Therefore if ‖wk+1‖L2(B1) ≥ δ1 we have by (2.10) that |{x ∈ B1 : 1/2 ≤
wk(x)}| ≥ δ2

1 , and as stated in the second paragraph of this proof we have that
|{wk ≤ 0}| ≥ δ0, and as stated in the first paragraph we have ‖wk‖H1(B1) ≤ C|B2|,
so by the isoperimetric inequality we must have |{0 < wk < 1/2}| > ε. However,
since all {0 < wk < 1/2} are disjoint, we must have that

∞∑
k=0

|{0 < wk < 1/2}| ≤ |B2| < +∞

so it is not possible to have that |{0 < wk < 1/2}| > ε for all k, and therefore there
must exist some k0 ∈ N such that ‖wk0‖L2(B2) < δ1. By Lemma 2.4, we therefore
have that

‖wk0‖L∞(B1) ≤ C(d, λ,Λ)‖wk0‖L2(B2) < Cδ1

so by further shrinking δ1 (depending only on C, which depends only on d, λ,Λ) we
can ensure that ‖wk0‖L∞(B1) ≤ Cδ1 ≤ 1/2. Thus,

1

2
≥ wk0 = 2k0 [u− (1− 2−k0)] =⇒ u ≤ 1− 2−(k0+1)

so with γ := 2−(k0+1), the proof is complete. �

Now we can iteratively apply Lemma 2.9 to get a Cα bound on u in B1, thus
completing the proof of Theorem 2.1.

Proof. (De Giorgi-Nash-Moser) Since u ∈ H1(B2) is a weak solution to ∂i(aij∂ju) =
0, we have that |u| ∈ L2(B2) and that |u| is a nonnegative subsolution to the
equation ∂i(aij∂ju) ≥ 0. Therefore, by Lemma 2.4, there exists C = C(d, λ,Λ)
such that ‖u‖L∞(B1) ≤ C‖u‖L2(B2).

Let x0 ∈ B1, and let x ∈ B1(x0) ⊂ B2. There exists k ∈ N such that 2−k ≤
|x− x0| < 2−(k−1). By Lemma 2.9 we have for each i ∈ {1, ..., k} that

oscB2−i(x0)
u ≤ (1− γ) sup

B
2−(i−1) (x0)

u

and therefore

|u(x)− u(x0)| ≤ oscB
2−k (x0)u ≤ (1− γ)koscB1(x0)u ≤ (1− γ)k‖u‖L∞(B1)
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With α := − log2(1− γ) we therefore have that |u(x)− u(x0)| ≤ 2−kα‖u‖L∞(B1).
Thus, since 2−k ≤ |x − x0| we have that |u(x) − u(x0)| ≤ |x − x0|α‖u‖L∞(B1), so
for all x0 ∈ B1 we have that

sup
x∈B1(x0)

|u(x)− u(x0)|
|x− x0|

≤ ‖u‖L∞(B1) ≤ C‖u‖L2(B2)

so u ∈ Cα(B1). �

2.2. Schauder Theorem. The (first-order) Schauder theorem for Hölder regular-
ity estimates of elliptic PDE solutions is the following:

Theorem 2.11. Let aij ∈ Cα(B1) be uniformly elliptic with ellipticity constants

λ,Λ, and let f ∈ Cα(B1;Rd) be a Hölder-continuous vector field. Then if ∂i(aij∂ju) =
∂ifi, we have the interior estimate

‖u‖C1,α(B1/2) ≤{λ,Λ,d,[aij ]α} ‖u‖L2(B1) + [f ]Cα(B1)

Our proof of Schauder’s Hölder regularity theorem (Theorem 2.11) utilizes the
following equivalent definition for C1,α functions:

Proposition 2.12. With Ω ⊂ Rd open and 0 < α < 1, we have that u ∈ C1,α(Ω)
if and only if for all x ∈ Ω, there is some linear function Px(y) = ax + 〈bx, y − x〉
(for ax ∈ R, bx ∈ Rd) and a constant K not depending on x such that

‖u− Px‖L∞(Br(x)) ≤ Kr1+α

Intuitively, one can recall the characterization of Lipschitz continuity in which
we say that a function is Lipschitz continuous with constant M if the graph of the
function lies between the planes of slope +M and −M emanating from every point
in its graph. A function being C1,1 implies that at every point on its graph, there
is a plane such that the function’s graph lies between an upward and a downward
parabola of uniformly bounded slope, oriented against the tangent plane. Notice

Figure 2. graph(u) is bounded by a
linear function Px plus |y − x|1+α at
each x in domain ⇒ u ∈ C1,α

that subtracting off a plane does not affect
the elliptic divergence PDE ∂i(aij∂ju) = ∂ifi,
so with Proposition 2.12 we are squeezing the
graph of u between two parabolas of degree
1 + α, emanating from each point x ∈ Ω (Fig.
2).

Proving Schauder regularity (Theorem 2.11)
becomes a matter of proving that the condi-
tions of Proposition 2.12 are satisfied in B1/2

for solutions u ∈ H1(B1) to the elliptic PDE
∂i(aij∂ju) = ∂ifi, where aij , f ∈ Cα(B1). We
give a rough outline of the proof here. First,
suppose that u is harmonic in B1. By a qua-
dratic approximation for harmonic functions
(see, e.g., Chapter 2 of [1]) we have that

|u(x)−∇u(0) · x− u(0)| ≤ C|x|2

for all x ∈ B1/2, where C = max{‖∇u‖L∞(B1/2),‖D2u‖L∞(B1/2)}. Set r0 :=

(2C)1/(α−1) and C0 := 2C and b := ∇u(0). Then we have that |b| ≤ C0 and
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for r < r0

oscBr (u(x)− 〈b, x〉) ≤ sup
x,y∈Br

|(u(x)− 〈b, x〉)− u(0)|+ |u(0)− (u(y)− 〈b, y〉)|
(2.13)

≤ 2Cr2 ≤ r1+α(2.14)

by choice of r0.
Now, dropping the assumption that u is harmonic, we can zoom in very close to

fixed points in B1/2, and the farther we zoom in the closer aij and f are to being
constant, so the closer u is to being basically harmonic. That is, if aij and f are
constant then ∂ifi = 0 and through change of basis and rescaling we can consider

∂i(aij∂ju)‘=’∂i(δ
i
j∂ju) = ∆u = ∂ifi = 0

We zoom in as close as we need to each point until aij , f are close enough to being
constant that u inherits the regularity from being harmonic on all very small balls.
Specifically, we want to prove the following lemma, which is already shown to be
satisfied for harmonic functions by (2.14).

Lemma 2.15. Suppose u is a solution so that oscB1
u ≤ 1. Then there exist

r0, ε0 ∈ (0, 1) and C0 > 0 such that if

oscB1
aij < ε0, oscB1

f < ε0

then there exists b ∈ Rd with |b| ≤ C0 such that

oscBr (u(x)− 〈b, x〉) ≤ r1+α

for all r ∈ (0, r0).

Proof. Suppose Lemma 2.15 does not hold. Then there exist sequences εk → 0 and
{uk} ⊂ H1(B1) with coefficients akij and vector fields fk ∈ Cα where ∂j(a

k
iju

k) =

∂jf
k
j for all k, and such that oscB1f

k
i ,oscB1a

k
ij < εk such that for all vectors b ∈ BC0

we have that there exists r ∈ (0, r0) such that

(2.16) oscBr (u
k − 〈b, x〉) > r1+α

By the oscillation assumption we have that fk and akij are bounded functions con-

verging in C0 to constant functions f∞ and a∞ij , respectively.

Denote wk := uk − 1
|B1|

∫
B1
uk, so wk has the same gradient and oscillation

as uk and therefore is still a solution for each akij , f
k and also still satisfies the

inequality (2.16). By Poincaré’s inequality for a ball ([1] 5.8, Theorem 2) there
exists a constant C = C(d) such that

(2.17) ‖wk‖L2(B1) ≤ C‖∇wk‖L2(B1) = C‖∇uk‖L2(B1)

and since ∂j(a
k
ij∂iu

k) = ∂j(a
k
ij∂iw

k) = ∂if
k
i we have that

‖∇wk‖2L2(B1) ≤
1

λ

∫
B1

akij∂iw
k∂jw

k =
1

λ

∫
B1

fki ∂iw
k ≤ 1

λ
‖fk‖L2(B1)‖∇wk‖L2(B1)

so dividing by the common factor we see that

‖∇wk‖L2(B1) ≤
1

λ
‖fk‖L2(B1)

Since fk → f∞ uniformly where f∞ is constant, we have that the right side of this
inequality is bounded, so ‖∇wk‖L2 is uniformly bounded. Then, by (2.17) we have
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that wk are uniformly bounded in H1(B1). Therefore there exists w∞ ∈ H1(B1)
such that wk⇀w∞ weakly in H1(B1).

Since ∂j(a
k
ij∂jw

k) = ∂if
k
i we have that each wk ∈ Cβ(B1/2) by the De Giorgi

theorem with nonzero right hand side, where β depends only on λ,Λ, the dimension
d, the radius BR = B1, and the degree Lq = L2, which do not vary with k (see
Theorem 2.1, proved for zero right hand side, or Chapter 8 of [2] for nonzero right
hand side). Specifically,

‖wk‖Cβ(B1/2) ≤ C‖wk‖L2(B1) + ‖fk‖L∞(B1)

Since wk is uniformly bounded in L2(B1) and fk → f∞ uniformly with f∞ con-
stant, we have that wk is uniformly bounded in Cβ(B1/2), so by the Arzelà-Ascoli
theorem for Hölder functions we have that there exists w∞ ∈ C(B1/2) such that

wk → w∞ uniformly after passing to a subsequence.
Furthermore, we have that w∞ is harmonic: for, let v ∈ C∞c (B1/2) be an arbi-

trary test function. Then we have that∫
a∞ij ∂iw

∞∂jv =

∫
a∞ij ∂iw

∞∂jv +

∫
(akij − akij)∂iw∞∂jv +

∫
akij(∂iw

k − ∂iwk)∂jv

=

∫
(a∞ij − akij)∂iw∞∂jv +

∫
akij(∂iw

∞ − ∂iwk)∂jv +

∫
akij∂iw

k∂jv

and the first term goes to zero since akij → a∞ij uniformly and the second term goes

to zero by combining akij → a∞ij uniformly with ∇wk⇀∇w∞ weakly (recall that

wk⇀w∞ weakly in H1(B1)). The third term goes to zero since
∫
akij∂iw

k∂jv =∫
fkj ∂jv →

∫
f∞j ∂jv = 0 since fk → f∞ uniformly, f∞ constant, and v compactly

supported in B1/2. Thus ∂j(a
∞
ij ∂iw

∞) = 0 weakly. Since a∞ij is a constant uniformly

elliptic matrix we can consider after a linear change of variables that ∂j(δ
i
j∂iw

∞) =

∆w∞ = 0 weakly, and since w∞ ∈ C0(B1/2) we in fact have that w is harmonic
(see problem 2.8 of [2]). But this contradicts the fact that we know the lemma
to hold for harmonic functions from (2.14). Thus, no such sequences εk, uk, akij , f

k

exist, concluding the proof of Lemma 2.15 . �

Recalling that the Schauder inequality (Theorem 2.11) depends on scale, we can

for each x ∈ B1/2 construct a sequence {bk} ⊂ Rd with |bk| → 0 such that, for
r0, ε0, C0 > 0 as in Lemma 2.15, we have

(2.18) ∂i

(
aij(r

k
0x)∂j

(
1

r
k(1+α)
0

[u(rk0x)− 〈bk, rk0x〉]
))

= ∂ifi(r
k
0x)

which is a bit ugly to look at, but is just saying that a scaled-down u satisfies the
same elliptic PDE for a scaled-down aij and scaled-down f . Applying Lemma 2.15
for each k we have that

oscB
rk0

(u− 〈bk, x〉) ≤ rk(1+α)
0

which implies that u satisfies the conditions of Proposition 2.12 for each point in
B1/2, which thus implies that u ∈ C1,α(B1/2), as stated in Theorem 2.11.
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3. Existence and Uniqueness of Minimal Surface Equation Solutions
on the Unit Ball

We say that u ∈ C0,1(B1) is a subsolution of the minimal surface equation
Mu = 0 (as in (1.3)) if, with J denoting the surface area functional J(u) =∫
B1

√
1 + |∇u|2, we have that J(u − ψ) ≥ J(u) for all ψ ∈ C∞c (B1) with ψ ≥ 0.

We say that u is a supersolution if J(u + ψ) ≥ J(u) always holds under the same
conditions. Similarly to when they were introduced in Section 2.1.1, a subsolution
(resp. supersolution) is not necessarily a classical solution, but perturbing it down-
wards (resp. upwards) anywhere will only increase the surface area. It turns out
that we can derive a comparison principle between continuous supersolutions and
subsolutions to the minimal surface functional J :

Theorem 3.1. Let u be a supersolution and v a subsolution on the unit ball B1.
Then

sup
B1

(v − u) = sup
∂B1

(v − u)

Which can be proved easily after proving the following lemma:

Lemma 3.2. Let u be a supersolution and v be a subsolution on the unit ball B1

such that u ≥ v on ∂B1. Then u ≥ v on B1.

Proof. (Lemma 3.2) Set U := {v > u}. Then since u and v are continuous we have
that U is open. Suppose for the sake of contradiction that |U | 6= 0. Set

ũ :=

{
u on B1 \ U
v on U

, and ṽ :=

{
v on B1 \ U
u on U

Then u ≤ ũ and ṽ ≤ v, with equality on ∂B1. Since u is a supersolution and v
a subsolution, and since v > u on U , we have also that 0 ≤ J(u) ≤ J(ũ), and
0 ≤ J(v) ≤ J(ṽ) (with J and L as in (1.1)-(1.2)). Therefore

J(u) ≤ J(ũ)⇒
∫
B1\U

L(∇u) +

∫
U

L(∇v) ≤
∫
B1\U

L(∇u) +

∫
U

L(∇u)

⇒
∫
U

L(∇v) ≤
∫
U

L(∇u)

and through the same line of reasoning with J(v) ≤ J(ṽ) we see that
∫
U
L(∇u) ≤∫

U
L(∇v), so ∫

U

L(∇u) =

∫
U

L(∇v)

However, by the strict convexity of L this leads to a contradiction. Let w :=
(u + v)/2. Then we have that w = u + ψ for some ψ ∈ C0,1

0 (U) with ψ ≥ 0 (note
that ψ = 0 on ∂U since u = v on ∂U) and therefore since u is a supersolution we
have that ∫

U

L(∇u) ≤
∫
U

L(w)

but by strict convexity we have that∫
U

L(w) <
1

2

∫
U

L(∇u) +
1

2

∫
U

L(∇v) =

∫
U

L(∇u)
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with the last equality coming from having proved
∫
U
L(∇u) =

∫
U
L(∇v). This

implies that
∫
U
L(∇u) <

∫
U
L(∇u), a contradiction. Thus, |U | = 0, so u ≥ v on

B1. �

Proof. (Theorem 3.1) For x ∈ ∂B1 we have that

v(x) = (u+ v − u)(x) ≤ u(x) + sup
y∈∂B1

(v − u)(y)

Also, u(·) + supy∈∂B1
(v − u)(y) is a subsolution, so by the comparison principle

(Lemma 3.2) we have that

v(x) ≤ u(x) + sup
y∈∂B1

(v − u)(y)

=⇒ (v − u)(x) ≤ sup
y∈∂B1

(v − u)(y)

for all x ∈ B1, as desired. �

Figure 3. Affine
bounds on graph

Theorem 3.3. Let ϕ : ∂B1 → R be Lipschitz. Then there
exists a unique u : B1 → R such that div(∇u/

√
1 + |∇u|2) = 0.

Furthermore, u is smooth on the interior of B1.

Proof. Let J and L be as in (1.1)-(1.2). First, suppose that
u ∈W 1,∞(B1) is a minimizer of J . Let m = sup∂B1

|∇ϕ|. Then
we have that ϕ(y) −m|x − y| ≤ u(x) ≤ ϕ(y) + m|x − y| for all
y ∈ ∂B1, x ∈ B1 (Fig. 3). Therefore for each y ∈ ∂B1 there
exist tangent planes v−y to the cone ϕ(y) −m|x − y| and v+

y to

the cone ϕ(y) + m|x − y| such that v−y ≤ u ≤ v+
y in B1. Since

v−y , v
+
y are affine they are also solutions to the minimal surface

equation, so by the comparison principle (Theorem 3.1) we must
have for each y ∈ ∂B1 that

(3.4) sup
x∈B1

|u(x)− u(y)|
|x− y|

≤ sup
x∈B1

max{|v+
y (x)− v+

y (y)|, |v−y (x)− v−y (y)|}
|x− y|

= m

Now, using Theorem 3.1 we can show that this bounds the gradient of u on B1.
Let x1, x2 ∈ B1, and let v = x2−x1. Then we have that x 7→ u(x+v) is a minimizer

of J on W 1,∞(Bx1
x2

), where Bx1
x2

= {x ∈ Rd : x+v ∈ B1}. Then since x1 ∈ B1∩Bx1
x2

we have that this intersection is nonempty and that both u and u(·+v) minimize J
on W 1,∞(B1 ∩Bx1

x2
), and therefore by Theorem 3.1 that their difference is achieved

on the boundary, i.e. that there must exist z ∈ ∂(B1 ∩Bx1
x2

) such that

|u(x1)− u(x2)| = |u(x1)− u(x1 + v)| ≤ |u(z)− u(z + v)|

and therefore, since one of z or z + v is in ∂B1, we have that

sup
x,y∈B1

|u(x)− u(y)|
|x− y|

≤ sup
x∈B1,y∈∂B1

|u(x)− u(y)|
|x− y|

But the left hand side is precisely ‖∇u‖L∞(B1), so combining with (3.4) we have
that ‖∇u‖L∞(B1) ≤ m.

Now, if we set

Am+1 := {u ∈W 1,∞(B1) : u = ϕ on ∂B1, ‖∇u‖L∞ ≤ m+ 1}
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then we have that Am+1 is closed under uniform limits, and also that for all u ∈
Am+1, J [u] is bounded below by |B1|, so there exists a minimizer um+1 ∈ Am+1.
But we’ve just shown that um+1 must satisfy

‖∇um+1‖L∞(B1) ≤ m < m+ 1

This in fact implies that um+1 is a minimizer over all of {u ∈ W 1,∞(B1) : u =
ϕ on ∂B1}. To see this, let w ∈ A \Am, so ‖∇w‖L∞ > m. We can show using the
convexity of J that J(um+1) ≤ J(w), by choosing t ∈ [0, 1] so that tw+(1−t)um+1 ∈
Am, which is possible because of these two strict inequalities ‖∇um+1‖L∞ < m and
‖∇w‖L∞ > m. Choose

t ∈
(

0,
m− ‖∇um+1‖L∞

‖∇w‖L∞ − ‖∇um+1‖L∞

)
Then, we have that

‖∇(tw + (1− t)um+1)‖L∞ ≤ t‖∇w‖L∞ + (1− t)‖∇um+1‖L∞ < m

by our choice of t ∈ (0, 1). Therefore, tw + (1− t)um+1 ∈ Am, so

(3.5) J(um+1) ≤ J
(
tw + (1− t)um+1

)
≤ tJ(w) + (1− t)J(um+1)

with the first inequality from the fact that um+1 is a minimizer on Am, and the
second inequality from the convexity of J . From (3.5) we have that J(um+1) ≤
J(w), so J(um+1) is a minimizing minimal surface.

Uniqueness follows from the comparison principle (Theorem 3.1). �

4. Bernstein’s Method and Problem

4.1. Bernstein’s Method & Interior Gradient Estimates. We’ve just proved
(Theorem 3.3) that a unique smooth solution exists for Lipschitz boundary data, but
this is not so satisfying since Lipschitz is such a strong condition. If we have merely
continuous boundary data ϕ : ∂B1 → R then we might think about mollifying the
boundary data to get smooth solutions, but for all we know now, as we take the
mollifier ϕ ∗ ρε to the identity ε→ 0 we might have that |∇u| → ∞ on the interior,
which prevents us from extracting a solution for merely continuous boundary data.

Bernstein’s method involves multiplying a solution u by some auxiliary cutoff
function η that is zero on ∂B1, and choosing η specifically in a way that lets us say
something interesting about u. Using this method, we will be able to derive a bound
on the gradient of solutions to mollified boundary data ϕ ∗ ρε that depends only on
‖ϕ‖L∞(∂B1), thus allowing us to extract a convergent subsequence and therefore a
smooth solution to the minimal surface equation with continuous boundary data.

If u : Ω ⊂ Rd → R is harmonic (where Ω is open, with ∂Ω ∈ C1) we have that u
achieves its maximum on the boundary ∂Ω. We can show furthermore that |∇u|2
is subharmonic by looking at its Laplacian:

∆|∇u|2 = 2(∂i∂ju)2 + 2∂ju∂j∂
2
i u

= 2

[
|D2u|2 + ∂ju(∂j∆u)

]
= 2|D2u|2 ≥ 0(4.1)
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where D2u is the Hessian of u. Since |∇u|2 is subharmonic we also have the same
maximum principle, i.e. that maxΩ |∇u|2 = max∂Ω |∇u|2.

The next two interior gradient estimates are proved by the method of Bernstein:

Theorem 4.2. There exists a constant C > 0 such that for all harmonic functions
u : B1 → R we have

‖∇u‖L∞(B1/2) ≤ C‖u‖L∞(B1)

Theorem 4.3. Let u ∈ C3(B1) satisfy the minimal surface equation Mu = 0
(as in (1.3)). Then, there exists a constant C = C(‖u‖L∞(B1)) depending on the
maximum of u in the unit ball such that

‖∇u‖L∞(B1/2) ≤ C(‖u‖L∞(B1))

Proof. (Theorem 4.2) Let w := |∇u|2, and let η ∈ C∞c (B1). Then, we have that

∆(η2w) = 2w(|∇η|2 + η∆η) + 4η∇η · ∇w + η2∆w

= 2w(|∇η|2 + η∆η) + 8η∇η · (D2u)>∇u+ 2η2|D2u|2

and by Cauchy-Schwartz we have that

8

(
|η||D2u|

)(
|∇η||∇u|

)
≤ 2

(
|η||D2u|

)2

+ 8

(
|∇η||∇u|

)2

and therefore

∆(η2w) ≥ 2w(|∇η|2 + η∆η)− 2η2|D2u|2 − 8|∇η|2|∇u|2 + 2η2|D2u|2

= 2w

(
|∇η|2 + η∆η − 4|∇η|2

)
so with C := 2(3|∇η|2 − η∆η) depending only on η we have that ∆(η2w) ≥
−C|∇u|2.

Now considering η2w + C
2 u

2, we have that

∆(η2w +
C

2
u2) ≥ C

2
∆(u2)− C|∇u|2

= Cu∆u+ (C − C)|∇u|2 = 0

and therefore η2w+ C
2 u

2 is subharmonic. Let η be a smooth nonnegative function
with η ≡ 1 on B1/2 and η = 0 on ∂B1. Then we have by the maximum principle
for subharmonic functions that

‖w‖L∞(B1/2) ≤
∥∥∥∥η2w +

C

2
u2

∥∥∥∥
L∞(B1/2)

≤
∥∥∥∥η2w +

C

2
u2

∥∥∥∥
L∞(B1)

=

∥∥∥∥η2w +
C

2
u2

∥∥∥∥
L∞(∂B1)

=
C

2
‖u2‖L∞(∂B1) ≤

C

2
‖u2‖L∞(B1)
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where the first inequality comes from the fact that w ≥ 0 and u2 ≥ 0. Thus,

‖∇u‖L∞(B1/2) ≤
√
C

2
‖u‖L∞(B1)

where C = 2(3|∇η|2 − η∆η) does not depend on u. �

Proof. (Theorem 4.3) Set

v :=
√

1 + |∇u|2, ν :=
∇u
v
, gij := δij − νiνj

then we have that

∂iv = ∂i∂kuν
k

∂i∂jv = ∂i∂j∂kuν
k +

∂i∂ku∂j∂ku− ∂i∂ku∂j∂`uνkν`

v
(4.4)

Also, if through a change of coordinates we ensure that D2u is diagonal, the second
term of (4.4) is given by

∂2
i u∂

2
j u(δij − νiνj)

which is positive since (νi)2 ≤ |ν| ≤ 1. Therefore,

(4.5) gij∂i∂jv ≥ gij∂i∂j∂kuνk

and differentiating the equation for u with respect to xk we obtain

gij∂i∂j∂kuν
k =

2

v
gij∂iv∂jv

and therefore by (4.5) that

(4.6) gij∂i∂jv ≥
2

v
gij∂iv∂jv > 0

where the second inequality follows from (4.4) and the reasoning that follows. Thus,
we have that v is a (nonnegative) subsolution.

Now, Bernstein’s method relies on the step of multiplying v by a cutoff function
ν(x, u) : B1 × R → R. Let w : B1 → R be defined by w(x) := ν(x, u(x))v(x).
Then, since v is a subsolution and ν will be a nice cutoff, we have by the maximum
principle for subsolutions (Theorem 3.1) that w achieves a maximum on the interior
of B1. At this interior maximum, we must have that

0 = ∂iw = ∂ηv + η∂v

and furthermore that the Hessian of w

∂i∂jw = ∂i∂jηv + ∂iη∂jv + ∂jη∂iv + η∂i∂jv = ∂i∂jηv + η

(
∂i∂jv − w

∂iv∂jv

v

)
is nonpositive at the maximum.

Since gij∂i∂jv ≥ 2
v g
ij∂iv∂jv by (4.6) we have that this gives

0 ≥ gij∂i∂jw

= gij∂i∂jηv + η

(
gij∂i∂jv −

2

v
gij∂i∂jv

)
≥ gij∂i∂jη

so if we shift U by a constant so that u ≥ 0 on B1 and set

η(x, u(x)) := eC(2A(1−|x|2)−u(x))+ − 1
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where C is a large constant depending on A, we have that η is a compact pertur-
bation with η(0) 6= 0. By computing gij∂i∂jη for this specific η we get that, at the
maximum,

gij∂i∂jw ≥
1

1 + |∇u|2

(
|∇u|2 −A|∇u · x| − A

C
(1 + |∇u|2)

)
Since |x · ∇u| ≤ ∇u

|∇u| · ∇u = |∇u|, we get that

gij∂i∂jw ≥
(1−A/C)|∇u|2 −A|∇u| −A/C

1 + |∇u|2

so with |∇u| very large we would get, with C > A, that gij∂i∂jw > 0 in a neighbor-
hood of the maximum. But this implies that w is a subsolution in a neighborhood
of its maximum, which is a contradiction. Therefore we have that |∇u| cannot be
too large; specifically, we have that η(0, A)v(0) ≤ max(ηv) ≤ C(A), as desired. �

Using the estimate of Theorem 4.3 we can prove the existence of a unique solution
to the minimal surface equation on B1 for merely continuous boundary data:

Theorem 4.7. Let ϕ ∈ C0(∂B1). Then there exists a unique function u : B1 → R
such that u solves the minimal surface equation div(∇u/

√
1 + |∇u|2) = 0 and such

that u = ϕ on ∂B1.

Proof. Let ρε ∈ C∞(Rd) be a standard mollifier, and denote ϕε := ϕ ∗ ρε. Then for
all ε > 0 we have that ϕε is smooth, so by Theorem 3.3 we have that there exists a
unique uε : B1 → R that minimizes J(u) :=

∫
B1

√
1 + |∇u|2 and that uε is smooth

on the interior. Then since uε is certainly both a super- and sub-solution for all
ε > 0, we have by the comparison principle in Theorem 3.1 that for all α, β > 0

(4.8) ‖uα − uβ‖L∞(B1) = ‖uα − uβ‖L∞(∂B1) = ‖ϕα − ϕβ‖L∞(∂B1)

and since ϕε → ϕ uniformly as ε→ 0 we have therefore that uε is uniformly bounded
for all ε > 0. Let K ⊂ Int(B1) be compact. Then by Theorem 4.3 and the fact that
uε is uniformly bounded there exists a constant CK such that ‖∇uε‖L∞(K) ≤ CK
for all ε > 0, and therefore we have that (1 + |∇uε|2)−1/2 is uniformly elliptic on
K, bounded between (1 + C2

K)−1/2 and 1. Therefore by the Schauder Theorem
(Theorem 2.11) we have the estimate

‖uε‖C1,α(K) ≤ C‖uε‖L2(B1) ≤ C
√
|B1|‖uε‖L∞(B1)

Then by the higher-order Schauder theorem (since a uniform C1,α estimate for uε

gives a uniform C1,α estimate for the coefficient
√

1 + |∇uε|2) we have a uniform
C2,α estimate

‖uε‖C2,α(K) ≤ C ′‖uε‖L∞(B1)

Therefore the uε are bounded in C2,α
loc , which is sufficient to pass to a sequence

εk → 0 such that uεk converges in C2,α
loc , and therefore converges in C2

loc to some u0.
Convergence in C2

loc is enough to guarantee that u0 inherits solving the minimal

surface equation div(∇u0/
√

1 + |∇u0|2) = 0, and that u0 is smooth. Since u0

solves the minimal surface equation, we have the same comparison principle as in
(4.8) and can say also that u0 = ϕ on ∂B1, as desired. �
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4.2. The Bernstein Problem in R2 . The Bernstein problem asks, ‘are all glob-
ally defined minimal graphs necessarily hyperplanes?’ Results from Bernstein him-
self in the second decade of the 20th century, along with results from papers by
Fleming, De Giorgi, Almgren, and Simons in the 1960s showed that the answer is
yes in Rd for 1 ≤ d ≤ 8, i.e. that a globally-defined function u : Rd−1 → R such
that graph(u) ⊂ Rd is a minimal surface is necessarily a degree-one polynomial if
d ≤ 8. A paper by Bombieri, De Giorgi, & Giusti in 1969 proved the converse, that
in fact the answer to the Bernstein problem is no for d ≥ 9, i.e. that for each d ≥ 9
there exists u : Rd−1 → R where graph(u) ⊂ Rd is minimal but not a hyperplane.

A logical approach to the Bernstein problem is to look at the curvature of a
minimal surface Σ. Since an entire graph with zero curvature must be a plane, if
we could bound the curvature of a minimal surface Σ ⊂ Rd this might allow us to
argue that it is a hyperplane. As it turns out, using a variational technique we can
prove the following lemma:

Lemma 4.9. Let u : Rd → R solve the minimal surface equation Mu = 0 on the
whole space (as in (1.3)). Assume further that u ∈ C2. Then for all ϕ ∈ C∞c (Σ)
we have the following interior gradient estimate:∫

Σ

( d∑
i=1

κ2
i

)
ϕ2 ≤

∫
Σ

|∇ϕ|2

where κi are the principal curvatures of Σ.

If we perturb a surface Σ by εϕν(x), where ε > 0 is small, ϕ ∈ C∞c (Σ), and ν(x)
is the normal to Σ at x ∈ Σ, then since Σ is a minimal surface we have that
(4.10)

∂

∂ε

[ ∫
Σ+εϕν(x)

√
1 + |∇u|2

]
ε=0

= 0, and
∂2

∂ε2

[ ∫
Σ+εϕν(x)

√
1 + |∇u|2

]
ε=0

≥ 0

We prove Lemma 4.9 by calculating these derivatives and plugging in ε = 0.

Proof. (Lemma 4.9) The change of variables (x 7→ x+εϕν(x)) in Rd has determinant√
1 + ε2|∇ϕ|2

∏d
i=1(1− εϕκi), and expanding the second factor

d∏
i=1

(1− εϕκi) = 1− εϕ
d∑
i=1

κi +
1

2
ε2ϕ2

(( d∑
i=1

κi

)2

−
d∑
i=1

κ2
i

)
+O(ε3)

Denoting the mean curvature H = 1
d

∑d
i=1 κi and the sum of squares of the principle

curvatures c2 =
∑d
i=1 κ

2
i we can differentiate the change of variables determinant

∂

∂ε

[√
1 + ε2|∇ϕ|2

d∏
i=1

(1− εϕκi)
]

=
∂

∂ε

[√
1 + ε2|∇ϕ|2

(
1− dεϕH +

1

2
ε2ϕ2(d2H2 − c2) +O(ε3)

)]
=

ε|∇ϕ|2√
1 + ε2|∇ϕ|2

(
1− dεϕH +

1

2
ε2ϕ2(d2H2 − c2) +O(ε3)

)
+
√

1 + ε2|∇ϕ|2
(
− dϕH + εϕ2(d2H2 − c2) +O(ε2)

)
(4.11)
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so considering the first variational equality in (4.10) we must have that (4.11) is
zero at ε = 0, so

(4.12) − dϕH = 0 =⇒ H = 0

Then, differentiating (4.11) again with respect to ε, we get

∂2

∂ε2

[√
1 + ε2|∇ϕ|2

d∏
i=1

(1− εϕκi)
]

=

(
|∇ϕ|2√

1 + ε2|∇ϕ|2
− ε2|∇ϕ|4

(1 + ε|∇ϕ|2)3/2

)
·
(

1− dεϕH +
1

2
ε2ϕ2(d2H2 − c2) +O(ε3)

)
+

ε|∇ϕ|2√
1 + ε2|∇ϕ|2

(
− dϕH + εϕ2(d2H2 − c2) +O(ε2)

)
+

ε|∇ϕ|2√
1 + ε2|∇ϕ|2

(
− dϕH + εϕ2(d2H2 − c2) +O(ε2)

)
+
√

1 + ε2|∇ϕ|2
(
ϕ2(d2H2 − c2) +O(ε)

)
(4.13)

and considering now the second variational inequality in (4.10) we must have that
(4.13) is nonnegative at ε = 0. Combined with the fact that H = 0 from (4.12),
this tells us that

|∇ϕ|2 − ϕ2c2 ≥ 0

�

This gives us immediately that the Bernstein problem has an affirmative answer
in d = 2. For it is the case that in R2 we can define a sequence of functions
{ϕN} ⊂ C∞c (R3) such that ϕN → 1 pointwise and |∇ϕN | → 0 uniformly, and such
that supp(ϕN ) → R3. Combined with Lemma 4.9, this lets us bound

∫
Σ
c2 above

by an arbitrarily small number, thus implying that Σ has zero curvature. This
proof is originally due to [4].

Theorem 4.14. (Bernstein’s problem in R2) Let u : R2 → R be a solution to the
minimal surface equation on all of R2. Then u is a plane, i.e. u(x, y) = αx+βy+γ
for constants α, β, γ ∈ R.

Proof. Denote Σ := graph(u). For R > 0 define ϕR : R3 → R by

ϕR(x) :=


1 |x|2 ≤ R
2− 2 log(|x|)/ logR R < |x|2 ≤ R2

0 R2 < |x|2

Then, with ∇Σ denoting the gradient with respect to the surface Σ, we have that∣∣∣∣∇Σ|x|
∣∣∣∣ ≤ ∣∣∣∣∇|x|∣∣∣∣ = 1

since the distance to the origin |x| has derivative 1 where the tangent plane to Σ
intersects the origin, and is less than 1 if Σ has any wrinkles or bends and thus
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slows our distance from the origin when travelling along its surface. With this,
since ϕR is radially symmetric with

∂

∂|x|
ϕR =

{
0 |x|2 ≤ R or R2 < |x|2
−2

|x| logR otherwise

we have that

(4.15) |∇ΣϕR| =
∣∣∣∣ ∂

∂|x|
ϕR

∣∣∣∣ · |∇Σ|x|
∣∣∣∣ ≤ 2

|x| logR

Therefore by Lemma 4.9 we have that∫
B√R∩Σ

c2 ≤
∫

Σ

ϕ2
Rc

2 (ϕR ≡ 1 on B√R)

≤
∫

Σ

|∇ΣϕR|2 (by Lemma 4.9)

≤ 4

(logR)2

∫
BR∩Σ

|x|−2 (by (4.15))

≤ 4

(logR)2

logR∑
i=(logR)/2

∫
Bei\Bei−1∩Σ

|x|−2

≤ 4

(logR)2

logR∑
i=(logR)/2

2πe2 ≤ 4πe2

logR

(We assume logR, (logR)/2 ∈ N for simplicity’s sake, one could just take integer
parts). Thus, taking R→∞ we get that

∫
Σ
c2 = 0, so Σ is planar. �
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