ERGODIC MARKOV CHAINS AND END BEHAVIOR

JOSEPH GORMAN

ABSTRACT. This paper’s main goal is to investigate Markov chains at their in-
tersection with ergodic theory. We will begin with a probability example and
related definitions, prompting our eventual construction of Markov chains. We
will then introduce different Markov chain classes, culminating in a discussion
of ergodicity. The intitial sections motivate our proof of the ergodic theorem,
which we specifically apply to Markov chains as a means of calculating unique
stationary distributions. Applications to Markov chains Monte Carlo will be
explored in an appendix. Previous knowledge of probability theory is not
necessary, and, while an understanding of linear algebra, calculus, and com-
binatorics is assumed, it is mostly tangential to this paper’s central concepts.
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1. A FAMOUS EXAMPLE IN PROBABILITY

Example 1.1. Suppose we have a grasshopper, and we want to study his move-
ment. Our grasshopper lives on an infinitely long east-west line, and he spends his
life taking randomly directed one meter jumps. With just this information, how can
we possibly analyze his movement? One possible first step is to come up with more
specific questions to answer about our grasshopper, including the following. (1)
What is the probability that our grasshopper returns to the origin after n jumps?
(2) What is the probability that our grasshopper makes k consecutive jumps in
the same direction? (3) What other interesting patterns and properties arise from
our grasshopper’s movement? To answer these questions, we can begin by visually
representing our grasshopper’s movement (see Figures 1 and 2).

Example 1.1 is a famous probability scenario: the random walk. So let us begin
with probability. We can introduce some important definitions and useful examples
that will be the basis of understanding our grasshopper’s movement.
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FIGURE 1. Representation of our grasshopper’s directional movement
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FIGURE 2. Representation of our grasshopper’s positional movement

Definition 1.2. A sample space (denoted ) is a set of all possible outcomes in
a situation or model.

Definition 1.3. A function P : Q — [0,1] C R is called a probability distribu-
tion if it satisfies the following two conditions:

(i) for any a € Q, P(a) > 0, and (ii) Z P(a) = 1.
a€eN
For the remainder of the paper, P will solely refer to probability distributions. We
call the pair (2, P) a probability space.

The definition of a probability distribution can also be plainly stated: it is a func-
tion for which (i) if an event is in the sample space, there is a non-negative chance
that it will occur, and (ii) the probability that an event in the sample space occurs
is one, meaning an event must come from the sample space. Additionally, mathem-
aticians sometimes study event spaces (i.e. power sets of sample spaces). There are
certain situations in which it is important to distinguish between an event space
and a sample space—they are generally used in different fields of mathematics—but
for this paper’s purposes, the difference between the two is not significant. As for
probability spaces, they are useful tools for mathematically communicating lexical
scenarios, but because they basically act as a container for other information, we
will not discuss them further.

Definition 1.4. A random variable is a function X : 2 — R that maps randomly
occurring events from our sample space to real numbers. The likelihood of each
event occurring can be determined by a corresponding probability distribution.

Example 1.5. Consider a game in which you flip a coin. If you flip heads, you
receive a point, but if you flip tails, you receive nothing. How can we represent this
game? We can construct a random variable and its probability distribution:

X = {1 if heads, 0 if tails. P(X = 1) = P(X = 0) = 0.5.

Definition 1.6. A discrete-time stochastic process (denoted {X(n)}nen,) is
a collection of random variables indexed by Ny := NU {0}. This process is discrete
because its index is a discrete set. A continuous-time stochastic process would be
indexed by t € [0,00), but we will not further analyze these in this paper.
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Now that we have introduced some probability-related terminology, we can re-
turn to the random walk. There are two key components of our grasshopper’s
movement: direction and position. We will first consider our grasshopper’s direc-
tional movement (visualized in Figure 1). He can jump east or west, so our sample
space is Q = {W, E}. We can also construct a random variable and its probability
distribution for our grasshopper:

X:{lifE,—lifW P(X=1)=P(X = —1) = 0.5.

With the above tools, we can write down different possibilities for the outcomes of
our stochastic process. For example, if the grasshopper’s jumps were W, W, E. W, E,
E,E, W, E,---, the process would be —1,—1,1,—-1,1,1,1,—-1,1,---.

Notice how, in defining our random variable the way we did, we have a clear link
between analyzing the directional and positional movement of our grasshopper.
This is because his position increases by one if he jumps to the east and decreases
by one if he jumps to the west. So consider our directional stochastic process: if
we takes its partial sums, we can find our grasshopper’s position at any respective
time index. It is important to remember that we cannot simply take the partial
sum because the jumps take place in between states. We need to account for
the grasshopper’s start at the origin, so 0 needs to be the first element of the
positional sequence. Let us now compare the different possible representations of
our grasshopper’s movement (note that (n) is not mathematically rigorous or
completely accurate, but it makes sense in comparing these sequences, so we will
use it as notation below):

Directional movement = {Q(n)}nen, = W,W,E,W,E,E,E,\W,E, .- ;
Stochastic process = {X (n)}nen, —» —1,-1,1,—-1,1,1,1,-1,1,---;

State movement = {0}, > {X(n)} =0, —-1,-2,-1,-2,-1,0,1,0,1,--- .
n€Ny

Now we will more deeply analyze the positional movement of our grasshop-
per (visualized in Figure 2). He lives along an infinite east-west line, so our
sample space can simply be the different states in our figure, which makes it
Q=1{-,-2,-1,0,1,2,---} = Z. Deciding our random variable is fairly dir-
ect: our sample space is already numerical, so we will have our random variable
X (n) be an identity mapping (i.e. X (n) will directly correspond to the grasshop-
per’s position at time n). To determine our probability distribution, we have several
things to consider, but the function boils down to the following relationship:

number of paths to state k in n steps

P(X(n) = k) = number of possible paths taken in n steps’

We will first determine an expression to represent the denominator. Our grasshop-
per has two choices for each jump, east and west, so, after he makes n jumps, there
are 2™ possible paths he could have taken. Evaluating the numerator in an expli-
cit, numerical manner is slightly more complicated. Define £, as the number of
jumps east or west, respectively. We know that k = & —W and n = £+ W, im-
plying that £ = %*k Let us also define an n-length set J := {4j1, -, jn} where j;
represents the direction of the i-th jump of the grasshopper (note that all elements
of J are E or W, and sets cannot have repeating elements, so J is not technically
a set, but we are calling it such because we will perform set-like operatives on it).
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Given all of this information, we know that, in order to reach state k after n steps,
the number of F in our set J must be £. So the number of paths to state k in
n steps has to be equal to the number of size-£ subsets of J. This means that
our numerator is (Z) = (é), implying that "TM € Z. Now we can construct the
following probability distribution, which, given the grasshopper’s starting point as
the origin, evaluates the likelihood the grasshopper is at state k after n jumps:
()
(1.7) P(X(n)=k)= 22n .
The above formula is a useful distribution, but it is not the only condition of our
grasshopper’s movement. We know that the next state our grasshopper visits must
be adjacent to his current state, mirroring the movement and related probabilities
of the grasshopper’s east-west movement:

(1.8) P(X(n+1)=k—-1X(n)=k)=05=P(X(n+1)=k+1X(n) =k).

We see that (1.7) and (1.8) focus on specific scenarios within our simulation (the
first assumes k = 0 when n = 0, and the second only predicts movement one jump
at a time), but we combine we can use these equations to derive a more general
formula. Assume that our grasshopper has taken ¢ jumps and is at state j, the
likelihood that he reaches state k after n jumps (where n > i) can be calculated by
the formula below:

(b —tien) k i+
P(X(n) = HX(5) = ) = 2 such that ”; ! ;j

2. MARKOV CHAIN TERMINOLOGY AND DISTRIBUTIONS

SV

Definition 2.1. Let g, - ,i,-1,%,j be states in a sample space. The Markov
property states that

P(X(n+1)=jlX(n)=i,X(n—1)=tin1,--,X(n) =)
— P(X(n+1) = jIX(n) = ).
A Markov chain is a stochastic process satisfying the Markov property.

Reconsider Example 1.1. The positional and directional movement of our grasshop-
per can be represented by Markov chains. These fascinating modeling tools are
popular because they are relatively simplistic yet powerful stochastic models. This
is because of the Markov property, which does not care about the path you took
to a current state when determining transition probabilities: Markov chains are
memory-free models.

Example 2.2. Board games that use dice are great examples of the Markov prop-
erty. For example, if you were playing Chutes and Ladders, your next state on the
board would be entirely dependent on your current state and the roll of a die. It
does not matter how you got to your current state, all that matters is that you
are there. Conversely, card games do not follow the Markov property. Consider a
hand of Blackjack in which you hold two Tens, but you see that all of the Aces are
in other hands at the table. This means it is impossible for you to draw a card
that keeps you under twenty-one, so the only logical choice is to stay, not hit. This
choice to stay is not solely based on your current state (the sum of your cards), it
is also based on the past states of the players and the specific cards drawn. The
path taken (i.e. cards drawn) matters, so card games are Markovian.
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In Example 1.1, our grasshopper’s future state is entirely dependent on his cur-
rent state, which can be seen mathematically in (1.8). This formula shows that, no
matter how our grasshopper got to state k, his next move is solely dependent on the
fact that he is at state k in his current state. Markov chains are generally visually
represented weighted digraphs like Figures 1 and 2. Topics in graph theory are not
very relevant to this paper, so a formal definition of weighted digraphs is not ne-
cessary, and we do not need to dive into their properties. For this paper’s purpose,
a weighted digraph is a collection of states connected by arrows and probabilities.

Definition 2.3. Consider two states ¢ and j in a sample space. The transition
probability (denoted P;;) is the probability of directly moving from state ¢ to j.
This can be formulaically represented as

P =P(X(n+1)=jX(n)=1).

A Markov chain is called time-homogeneous if its transition probabilities do not
change over time. We will exclusively study time-homogeneous Markov chains for
the remainder of this paper.

For our purposes, the notion of a probability vector is particularly important.
It is quite similar to a probability distribution; a probability vector is any vector
that has no negative entries and all entries sum to exactly one. For any state in a
Markov chain, there will certainly be a next state visited (even if it is itself). Thus,
if we index the states of a Markov chain by N, we can create a probability vector
for each state, and its elements will represent the likelihood of it visiting each state
on the next step. This is called a transition vector. For example, assume we have
a Markov chain with states Q = {1,--- , N}. Then for an arbitrary state i, we can
create the transition vector p; = {P;1, -+, Pin}-

Definition 2.4. Consider a Markov chain with |Q2] = n. Its transition matrix
(denoted P) is an m X n matrix such that its ij-th entry is P;;. The transition
matrix’s contents are n n-length indexed transition vectors.

Definition 2.5. Let ig,i1,--- be states in a sample space. We write ¢(i;) =
P(X(0) = i;) as the probability of the Markov chain starting at state i;. The
initial distribution of a Markov chain is ¢ = (¢(ip), ¢(i1), - - ).

Proposition 2.6. The product of n transition matrices is also a transition matriz.

Proof. Let matrices P, Py, -+ , P, be k-dimensional transition matrices and define
1:= (1,---,1)T € R¥. Because of the unique nature of 1, for every row i the
product P1 = Z§=1 P;; =1, which means P1 = 1 because each row of the matrix
is a transition vector. Thus, if (Pyo---0 P,)(1) = 1, then (Pyo---0 P,) is a
transition matrix. This can be proven with the associative property: multiply the
two rightmost elements over and over until the result is 1. d

Theorem 2.7. Consider a Markov chain with a finite sample space ) = {1,---,N},
a transition matriz P, and an initial distribution ¢ = (¢(1),--- ,0(N)). Then the
probability vector of X(n) is given by

(P(X(n) =1),--+ ,P(X(n) = N)) = ¢P".

Proof. This can be proved by induction. We know that the probability being at
state j when n = 1 is based on the probability of us taking any path that contains
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n = 1. So, we can sum of the probability of taking each of these paths, which we
can then simplify by the definition of transition probabilities:

P(X(1) = j) = ST P(X(0) = i) - P(X(1) = j|X(0) = i) = 3" 6(i) - Py.
i€Q i€Q
This final summation essentially does vector-matrix multiplication with the initial
distribution and the j-th column of the transition matrix, making this the j-th
element in our initial distribution, thus satisfying the n = 1 case. We can prove
the inductive step using the Markov property.

P(X(n+1)=j)=) P(X(n)=i)- P(X(n+1) = j|X(n) =)
i€Q
=> P(X(n)=1i)-Py;.
i€Q
Assuming that P(X(n) = i) is given as the i-th element of the row vector @P", we
observe that the j-th coordinate of the row vector (¢P™)P coincides with P(X (n+
1) = j) obtained above. We deduce that the distribution of X (n+1) is ¢P"*1. O

Proposition 2.6 is not necessary for completing Theorem 2.7 or any future proof in
this paper, but these two proofs side-by-side yield notable information nonetheless.
We know that P™ is itself a transition matrix, which makes P™ a useful calculation
in so many different simulations and circumstances. In essence, this means P} is
the probability of transitioning from state ¢ to j in exactly n steps. Theorem 2.7
is a very applicable theorem because it gives a relatively straightforward way of
calculating probability distributions at any time n. This proof will continue to be
important as we begin to study other properties of Markov chains, so we will return
to it later.

3. PROPERTIES OF VARIOUS MARKOV CHAIN CLASSIFICATIONS

Many Markov chain classifications are based on the properties of different paths,
which are essentially sequences of states that connect one state to another. More
formally, there is a path from state i to state j (denoted i — j) if there is a
sequence of states i = ig — i1 — -4, = j that connects the two where we have
P;,_,;, >0foralll=1,--- ,n (i.e. there is a positive probability of going between
any adjacent states in the sequence). If we have ¢ — j and j — ¢, we say that ¢ and
j communicate (denoted ¢ <+ j). Additionally, a communication class is a group of
states that all communicate with each other (note that all states communicate with
themselves, and every state belongs to exactly one communication class, which can
be proved by contradiction).

Definition 3.1. A Markov chain is irreducible if it has only one communication
class. If this is not true, the Markov chain is reducible.

Definition 3.2. The hitting time of a state ¢ is T; = inf{n > 0| X (n) = 7). When
the Markov chain starts at state ¢, this is generally called the return time.

Definition 3.3. A state is recurrent if and only if P(T; < +00|X(0) = i) =1,
but if this is not true, the state is called transient.

We will return once again to Figure 1. We can draw a path £ — W and W — E
directly, implying that E <> W, meaning E and W are in the same communication



ERGODIC MARKOV CHAINS AND END BEHAVIOR 7

class. Because these are the only two states in the Markov chain, there is only one
communication class, so we can say Figure 1 is irreducible. Assume X (0) = E. The
only possible way to never return to E is to have the random variables index as
E,W,W,W,---. This would mean that for every n € N, X(n) = W, and we know
that P(X(n) = W|n € N) = 0.5. So, the probability of this collection of random
variables occuring is lim,_,+(0.5)™ = 0, which implies that P(T; < +o00|X(0) =
i) = 1, so the state F is recurrent. The same argument follows for the recurrence
of state W, so each state is recurrent.

FIGURE 3. Diagram of k-state Gambler’s ruin

Example 3.4. The Gambler’s ruin simulation depicts two parties, A and B, who
bet against each other in a series of hands of some game (oftentimes one party is a
casino, betting agency, etc.). Gambler’s ruin shows that the odds are always stacked
in the house’s favor, and the Markov chain’s physical nature has some interesting
properties. In Gambler’s ruin, player A has a probability p, (0 < p < 1) of winning
each hand, implying party B has probability 1 — p. Assume that combined money
the two parties are willing to bet is k € Z; player A has an initial wealth of i € Z;
each player bets one dollar per hand; and the game continues until one of the players
is out of money. We can represent this game as a k-state Markov chain with X (0) =
i. X(n) =0 (resp. X(n) = k) implies that player A (resp. player B) is out of money
after n hands. Figure 3 depicts the gambler’s ruin Markov chain. Consider state 0.
There is no path from state 0 to any other state in the chain, so state 0 is in its own
communication class. State k is similarly in its own communication class. Because
this Markov chain has the paths 1 -2 - --- - k—land k-1 —-k—-2— --- > 1,
all of these states exist in a communication class together. Our Markov chain is
reducible with the following three communication classes: {0},{1,---,k —1},{k}.
Now let us look at the recurrence and transience of different states. For state 0,
X (0) = 0 implies that X (1) = 0, so this state is recurrent, and state k is similarly
recurrent. Consider some arbitrary state j € {1,--- ,k — 1}. We are k — j steps
from reaching state k, and there is probability p that we will move one step closer
to state k during each step. Mathematically, we can show that if X (0) = j, then

P(X(1) =7+ 1X(0) =j) = p, implying P(X(k — j) = k| X (0) = j) :p(k*j) > 0.

This means that, for state j, there is at least a p*~7) chance that it will never be
returned to (note that the actual likelihood is higher, but completely unpacking
that probability is not necessary for proving this state’s transience), so every state
in the communication class {1,--- ,k — 1} is transient.

Proposition 3.5. The states in a communication class are either all recurrent or
all transient (i.e. of the same type), and we call this class such.
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Proof. This proof makes use of another theorem about recurrence: a state i is
recurrent if and only if

(3.6) > Pl = 4oc.
n=1

While that property will not be proven in this paper, it can be seen in full as
Theorem 5.3.1-2 in Durrett (2019). Assume that states ¢, j are in the same commu-
nication class. Then, there exist [,m € N such that Pilj, P > 0. Further, for any
k>1, Pilj 'Pfj 'P;‘? is the probability of going from ¢ to j in [ steps, looping back to
j in k steps, and returning from j to 7 in m steps. As this is just one specific path
of looping back from ¢ to ¢ in [ + k +m steps, we know that Pilj ~Pfj P < Pil;rker
(there may be other possible loops back to state ¢ in the same time). Further, the
loop back to state ¢ may be possible in any n € N steps without looping through
state j, making an even further generalization of a return possibility. Thus, we
have the following inequality:

oo oo oo oo
n I+k+m ! k m _ pl m k

E ID“ZE:P” Z§:IDij'ij'Pji_Pij'Pji'§ ij'

n=1 k=1 k=1 k=1

Assume without loss of generality that j is a recurrent state. Then, (3.6) would
imply that > ,2, Pfj = +o0, which implies that >~ 7 ;| P/ = 400, so ¢ must be a
recurrent state. Similarly, assume without loss of generality that ¢ is a transient
state. Then the above argument works in reverse to show that j must also be a
transient state. ]

Definition 3.7. A possible return path to state i is represented as D; = {n €
N|P» > 0}. The period of state ¢ is mathematically represented as

per(i) = sup{n € N|E € N for any = € D;}.
n
A state 7 is called periodic if per(i) > 1 and aperiodic if per(i) = 1.

Essentially, the period of a state is the largest number to divide the length of
every possible return path (i.e. the greatest common factor of all possible return
times for a state). This definition is limited, though, because it only refers to
individual states. We will expand on this definition soon, but we will first return
to Figure 1. It is possible to return to state E after one step, so the period of state
F must be one, and state W similarly has period one. We can thus say that this
Markov chain is aperiodic because each of its states is aperiodic. Now reconsider
Figure 2. In order to return to state 0 after n steps, we need £ + W = n and
€ + W = 0, which implies that £ = W and n must be even, so the period of state
0 is two. Similarly, every other state in this Markov chain has period two.

Proposition 3.8. The states in a communication class all have the same period,
and if that period is one, the communication class is aperiodic.

Proof. Assume that states ¢ and j are in the same communication class. Then,
there exist [,k € N such that PZ; > 0, P}i > 0. We know that m =1+ k € D;, D;
because there is a path for ¢ through j and vice versa. Assume there exists D; = n,
then there must also exist D; =1+ n 4+ k =n +m from an [-step trip from j to ¢,
an n-step loop at ¢, and a k-step return from i to j. Because of this, we know that
per(j) divides n, and per(j) divides n 4+ m, so per(j) must divide m. Extending
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this argument to any size x € D; return time, it must follow that per(j) divides x.
Because per(j) divides x for any = € D;, and per(i) is the supremum of all possible
numbers that divide any x € D;, it follows that per(i) > per(j). The same logical
argument follows to show that per(j) > per(i), so per(i) = per(j). O

4. ERGODIC MARKOV CHAINS AND STATIONARY DISTRIBUTIONS

Definition 4.1. We call a Markov chain ergodic if and only if it is irreducible,
recurrent, and aperiodic.

It may seem difficult to prove that a Markov chain is ergodic, but, because of
our work in Section 3, we have some shortcuts. To prove ergodicity, we would first
prove need to prove irreducibility, which can be most easily done by finding looping
paths that pass through every state in both directions. After this, we only have to
prove that one state is recurrent because, based on Proposition 3.5, the rest of the
states would then also be recurrent. Similarly, we only need to show that one state
is aperiodic because, by Proposition 3.8, the rest of the states would then also be
aperiodic.

For the remainder of this paper, we will study some fascinating properties of
ergodic Markov chains. This paper is too short to unpack every interesting aspect
of ergodic Markov chains (e.g. each has some ¢t € N such that, for any i,j € Q,
Pfj > 0), but there are interesting references in the bibliography. This section’s
primary goal is to motivate and prove the ergodic theorem. Then we will show
how to calculate the unique stationary distributions of ergodic Markov chains. But
before we prove the ergodic theorem, there are several definitions and proofs we
must introduce, including lemmas related to dominated convergence and hitting
times between arbitrary states.

Definition 4.2. A recurrent state i is called positive recurrent if and only if
the expected return to time state 4 is finite, meaning E[T; : X (0) = i] < co. If this
is not true, we call the state null recurrent (note that all finite ergodic Markov
chains are positive recurrent).

Lemma 4.3. Let A1, Ag, -+ ,Ap, -+, B : N = R be sequences. Suppose that for
any l,m € N, |A,,(1)] < B(l) where Y72, B(l) < oco. Also assume that there exists
A:N = R such that limy, o0 A (1) = A(l). Then this implies that

o0 o0
dim YA = > A,
1=1 1=1
Proof. We can prove that these two summations are equal by proving that the
upper limit of their difference is less than every € > 0. Because the summation of
B is finite, we know that lim; ., B(l) = 0, which is equivalent to saying that, for
any € > 0, there exists some N € N such that

i B(l) <

I=N+1

>~ ™

Consequently, we can also say that, by our second condition, the infinite sums cor-
responding to A,, and A must also be finite. Thus, in order to prove the equivalence
of these two summations, we want to show that the difference between them heads
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to zero as m — oo.

lim sup]| Z A (D) i A(l
1=1

3

<limsup[| Y (An(l) — AQD)]]

m—o0

<lim sup[z [ Am (1) — A(1)]]

m— o0 -1
N 00
=1%njgop[Z|Am(l)—A(l)\+ D 1A = AQ))-

= I=N+1

1
Because we know that |A,,(I)| and |A(l)| are bounded by B(l), it follows that

i |Am (1) — A(D)] < 2 i B(l)<§,
I=N+1 I=N+1

Also, because of our previously set conditions, lim A,,(I) = A(l), we know for
m—00
every i € N such that 1 <1i < N:
N

, implying Z A (D) — A(l)| < g

=1

40) - AD) < 55

From this, we can say that

hmsup|ZA iA )] <e.
=1

m—0o0
Consequently, these two summations must be equal, concluding our proof. O

Lemma 4.4. In a communication class containing states i and j, if i is positive
recurrent, then j is positive recurrent and E[T;|X(0) = i] < oco. This can be
expressed mathematically as

ip(Tj = kX (0) = i) = 1.
k=1

Proof. Consider the value T;; = inf{n > 0|X(0) = 4, X(n) = j}. In other words,
T;; is the first visit to state j provided we start at state . To complete this proof,
we will show that T;; must be finite (i.e. we will show that P(T;; = oco) = 0). We
can simply manipulate the notation we have constructed to show that

E[T3;]X(0) = 1] = E[T;] = Zn - P(T;5 = n) + (c0) - P(Ti; = o0).

We want to show that this expected value is finite, which would imply that P(T;; =
00) = 0. Choose the smallest L € N such that PJLZ > 0 (i.e. L is the lengths of the
shortest path from j to 7). Now consider a specific type of path:

In essence, these are paths that start at j and go to i in L steps without returning
to j. A encompasses all paths from j to ¢ of length L because, if the path returned
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to j in s steps, then it would take at least s+ L > L steps to reach ¢, which would
already fail to meet the conditions of set A. However, this is a special type of path
from j to i because there may be paths between the two that are not length L.
Thus, we can say that

E[T};] = i m - P(Ti; = m|A) - P(A).
m=1
Recall that E[T};] = >",°, - P(T;; = 1). We can now manipulate our summations:
E[T};] > i m - P(Ti; = m|A) - P(A)
m=1
- i m - P(Tjj =ml|A)

:i(L—&-k)-P(TJj =L +k|A)

k=1
=L-Y_ m-P(T;; =m|A)+ Y k- P(Ty; = k| X(0) = ).
m=L-+1 k=1

Thus, we can say
oo > E[T};] < E[T);]4] - P(A) = (L +E[T}]) - P(A) = E[T3] < oc.

This completes our proof, showing that elements in the same communication class
will reach each other in finitely many steps. ([l

Definition 4.5. A sequence of random variables is called independent and
identically distributed (denoted i.i.d.) if each random variable has the same
probability distribution and is independent from every other random variable. Con-
sider a sequence T, 17, Ty, - - - of i.i.d. random variables with a distribution function
f(z) = P(T < x). A sequence Sy, 51,952, - is called a renewal sequence if it
has So=0and S,, =Ty +---+ T, for n € N.

Theorem 4.6. Suppose we have a state i in a finite ergodic Markov chain. For
any initial distribution, it holds that

1
4.7 lim P(X(n)=1) = =—————.
(4.7) A, P(X(n) =1) = g5y =]
Proof. We have proven two of the lemmas we will use in this paper, but there is one
more which we will not prove—see Proposition 1.2.2 from Asmussen (2003) for a
complete proof. This states that, for an aperiodic renewal sequence (u,,) generated
by probability vector (f%), it holds that

1
lim wu, =

n— o0 Zzozl k . fk ’

Now consider a fixed j € Q and define f; := P(T; = k|X(0) = j). We can split the
event (X (n) = j) into cases by their hitting time at state j. We can thus show by
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the Markov property that
un = P(X(n) = j|X(0) = j)

=Y P(Tj = k|X(0) = i) - P(X(n — k) = j|X(0) = j)
k=1

n
= ka cUn—k-
k=1

Additionally, since j is an aperiodic state, it follows that
. 1
Z;?Q ke fi

Consider starting at an arbitrary ¢ and returning to j. By Lemma 4.4, we know

no__
Pjy = un

Pij = P(X(n) = j|X(0) = 1)

I
NIE

P(T; = k|X(0) =4) - P(X(n — k) = j|X(0) = j)

T
I

o

P(T; = k| X(0) =) - Up_g-

>
Il
—

In order to complete the proof, we need to apply Lemma 4.3 to show dominated
convergence’s relevance to the ergodic theorem. Consider the function:

Ay (k)= {P(Tj = k| X(0) =1) - up—p, k< n

0,k >n.
Note that
HILH;O A (k) = nlgr;o(P(Tj =k|X(0) =4) - up_p)
=P(T; = k|X(0) =) - lim up_p
n— oo
1
=P(T; =k|X(0) =1) =sc—— = A(k).
! Zk:l k- fk

We also know that u,, is a converging sequence, so it must have a supremum:
P(Ty = k|X(0) = i) - | < P(T; = k| X (0) = i) - sup .
Thus we can define a function
B(k) = P(Tj = kX (0) = &) - sup{u,}
to meet another condition of dominated convergence. Note that

> B(k) =sup [{un}|- Y P(Tj = k| X(0) = i) = sup | {un}.

k=1 k=1

Consequently, we know that the summation of all B(k) must be finite. This means
that all of the conditions of dominated convergence are satisfied, so, based on both
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of our lemmas, we can say:
o0
lim ( E A (k
n—oo
k=1

_ 1
Sl fi
1

Eillﬁ 2}) _mxmpﬂyzizﬁjﬁ

Because f; is a probability vector and it is being multiplied by [ within its summa-
tion, we are generating the reciprocal of a weighted average (i.e. the reciprocal of
our desired expected value). This proves the ergodic theorem. (I

Tj = k[X(0) =) -

=3
22

While the proof of the ergodic theorem itself is not necessarily the most digestible,
there are many ways in which we can directly apply it to the end behavior of ergodic
Markov chains. Let us consider a probability vector m, which is defined below:

m(j) = lim P(X(n+1) = j)
= {lim P(X(n)=1)}- Py
e

= w(l)Py.

leQ

Definition 4.8. Consider the above probability vector 7 and define @ = (7(j))jeq,
then 7 is a stationary distribution.

To further unpack what this stationary distribution looks like, consider what
is happening with each element. Take the i-th element of 7. This element is
a summation of products: it multiplies each element of itself by its respective
element in the i-th column of the transition matrix (i.e. the stationary distribution
is equivalent to vector-matrix multiplication of itself by the transition matrix).
Thus, we can say that

(4.9) 7 = 7P,

Separately, notice the essence of the stationary distribution. As we see in (4.9),
the stationary distribution is resistant to the transition matrix, hence its name. No
matter what happens over time with the transition matrix, the probabilities have
reached their equilibrium state at the stationary distribution. Also notice when
the stationary distribution is reached. By our definition of 7(j), the stationary
distribution occurs as time heads to infinity, which is the same time that we assess
for state ¢ in the (4.7). Consequently, with the ergodic theorem, we are calculating
the value of state i in a stationary distribution.

There is one complication in the above logic, however. How many stationary
distributions does a Markov chain have? When is a stationary distribution unique?
We can show that it is possible for a Markov chain to have more than one stationary
distribution with Figure 3. If our initial distribution starts at state 0, it follows
that our stationary distribution would end up being 7 = (1,0,0,---,0). But if
our initial distribution starts at state k, it follows that our stationary distribution
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would end up being 7 = (0,0, - ,0,1). This means we have at least two stationary
distributions for Figure 3. So what is necessary for a unique stationary distribution?

To answer this question, let us return to Theorem 2.7 and extend this equation
to the case where n — oo. Then we can say that

lim (P(X(n) =1),---,P(X(n) = N)) =7 = lim ¢P".

n— oo n—roo
From this, we know that, just like any other probability vector for a Markov chain,
a stationary distribution, if it exists, for a Markov chain is uniquely determined by
its initial distribution and transition matrix.

How does this relate to ergodic Markov chains? Return to Theorem 4.6: to find
the probability of visiting a state ¢ as n — 0o, we calculate the return time to ¢ with
the assumption that the initial distribution starts at ¢. First, because an expected
return time exists, we know that any state in an ergodic chain has a stationary limit.
Second, because the initial distribution is fixed, the stationary distribution of an
ergodic Markov chain is entirely dependent on its transition matrix. Consequently,
we can say that the stationary distribution of an ergodic Markov chain
is unique. Moreover, we can calculate the infinite step transition matrix, and,
because of the initial distribution in 4.6, we know that our stationary distribution
is equivalent to the sequence of diagonal elements in our resulting matrix. In other
terms, the stationary distribution of a k-state ergodic Markov chain is

- . n n n
7= lim (P117P227-..7Pkk)'
n—oo

5. APPENDIX: INTRODUCTION TO MARKOV CHAIN MONTE CARLO

Ergodic Markov chains are noteworthy for the relative ease of calculating their
unique stationary distributions. But there are other fascinating applications of
Markov chains (especially ergodic ones) in other fields, specifically data science.
These processes can be applied in Markov chain Monte Carlo (MCMC) simulation.
Before we dive into MCMC, we need to understand Monte Carlo simulations.

Definition 5.1. A Monte Carlo simulation is a technique to model the probab-
ility of various events that are otherwise difficult to predict due to randomness.

Example 5.2. One common type of Monte Carlo simulation is Monte Carlo integ-
ration, which aims to be able to determine the area of different integrals and spaces.
In this example, we are going to use Monte Carlo integration to approximate 7. We
can first inscribe a circle of radius one inside a square (implying that the square has
side length two and area four). We can then randomly shoot points into the square
and see the proportion that land within the circle. In multiplying this proportion
by four, we can approximate 7 (sample python simulation shown):

import numpy as np

num._sims = _____

num _inside_circ = 0

for i in np.arange(num_sims):
x = np.random. uniform (—1,1)
y = np.random . uniform (—1,1)
if xxx2 4+ y*xx2 <= 1:

num_inside_circ += 1
4 % num_inside_circ / num_sims
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There are notable upsides and downsides Monte Carlo simulations. They are
less complicated than many other types of algorithms, but, in order to generate
accurate results, they take time. Consider possible simulation sizes for Example
5.2. When I ran one billion trials, = was approximated as 3.141501324, but the
simulation took a great deal of computer power. Conversely, when I ran one million
trials, the simulation only needed a few seconds to run, but the approximation was
3.140452: a much worse estimate of 7. We will now turn to MCMC.

Definition 5.3. A Markov chain Monte Carlo simulation is a method for pro-
ducing an ergodic Markov chain whose stationary distribution 7 closely resembles
some target density p(z).

MCMC simulations are based on accept-reject sampling—the process of ran-
domly sampling within an overarching distribution to more accurately model a
smaller one—but they are more dynamic in their abilities. Because of Markov
chains, MCMC is rooted in its resampling of a distribution based on its last dis-
tribution (i.e. X(0) is the first sample, and based on its results, the sample goes
to the next state, which may or may not be equivalent to X (0)). But how do we
determine the transition probabilities between states in MCMC? We use a property
called detailed balance, which connects an equation resembling Bayes’s theorem to
our representation of stationary distributions in (4.9):

W(i)'Pij :W(j)'Pji for all 1,7 e

— Y (@) Py =) _7(j)- Py
i€Q 1€Q
= 7(j) = Zw(z) -P; = ©P=m.
i€Q

There are many different types of MCMC simulations, but one of the most
famous is the Metropolis-Hasting algorithm. In Metropolis-Hastings, our goal is to
sample from an unknown target distribution p(z). What we do know, though, is
the formula of a function f(z) o« p(z). Given this, we design a Markov chain with
a burn-in period (the beginning states we will later disregard) that may or may
not resemble p(z), but we will eventually reach a state and stationary distribution
which is treated as p(x).

There are many steps to conducting Metropolis-Hastings. We first randomly
choose some starting X (0), and we draw a random sample j from our proposed
distribution @, and we assess ();;. We then compute a value

q PU)Qyi
A;; = min {1, 2(0)Qs; 1.

This is essentially comparing the ratios of the true probabilities (which we can do
because of f) and the proposed probabilities. Now we sample u € U|0, 1] to decide
what acceptance threshold we will choose for our proposed A4;;. If our v < A;;, then
we transition from X (0) =4 to X(1) = j, otherwise, we stay and have X (1) = 1.
Then we draw another random sample k from our proposed distribution and repeat
all of the above steps once again. Over time, the proposed sample will begin to
change and look more and more like our target distribution. This makes Metropolis-
Hastings a powerful tool at the intersection of statistics and data science and an
amazing application of Markov chains.
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