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Abstract. The fundamental group of a topological space categorizes the

structure of loops present in the space. It provides essential information about

the shape of a topological space; in particular, it is instrumental in studying
its holes. In this paper, we will define the fundamental group and demon-

strate some of its essential properties and applications, including a proof of the

Brouwer fixed point theorem. Moreover, we will discuss the Seifert-Van Kam-
pen theorem, which provides a tool to compute fundamental groups. Finally,

as an application of the Seifert-Van Kampen theorem, we will compute the

fundamental groups of two topological spaces: the three-dimensional sphere
and the figure-eight.
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1. Paths and homotopies

Definition 1.1. A pointed topological space (X,x0) is a topological space
equipped with a point x0 ∈ X. The point x0 is called the basepoint of X.

Definition 1.2. A continuous map between two topological spaces (X,x0)
and (Y, y0) is a continuous map f : (X,x0) → (Y, y0) such that f(x0) = y0.

From this point onwards, we will assume that all spaces are topological.

Definition 1.3. A path in a space X is a continuous map f : [0, 1] → X. The
points f(0) = x0 and f(1) = x1 are called the endpoints of the path. The inverse
path of the path f , denoted by f−1, is given by f−1(t) = f(1 − t). A loop is a
path with equal endpoints.
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Definition 1.4. A space X is called path-connected if, for any two points x, y ∈
X, there exists a path in X with x and y as endpoints.

Definition 1.5. (Product of paths) Let f : [0, 1] → X and g : [0, 1] → X be two
paths in a space X. We define the product of f and g, denoted by f ⋆ g, by

(f ⋆ g)(t) =

{
f(2t) if 0 ≤ t ≤ 1

2

g(2t− 1) if 1
2 ≤ t ≤ 1

.

Note that f ⋆ g is a path.

Remark 1.6. Observe that the path product operation is associative.

Definition 1.7. A path homotopy in a space X is a continuous map F : [0, 1]×
[0, 1] → X such that

F (0, t) = F (0, 0) and F (1, t) = F (1, 0)

for all t ∈ [0, 1].

Definition 1.8. Let f and g be two paths in a space X that share the same
endpoints; that is, such that f(0) = g(0) and f(1) = g(1). We will say f and g are
homotopic (and write f ∼ g) if there exists a path homotopy F : [0, 1]× [0, 1] → X
satisfying

F (s, 0) = f(s) and F (s, 1) = g(s)

for all s ∈ [0, 1]. We will call such a homotopy F as a homotopy between f and g.

Intuitively, two paths are homotopic if one can be continuously deformed into the
other. We may interpret the values F (s, 0) as the initial path, which is deformed
into F (s, 1), the second path. Now, given three paths f , g, and h, one may observe
that if f and g are homotopic and so are g and h, then f is homotopic to h. This
observation is made precise by the following proposition:

Proposition 1.9. Homotopy defines an equivalence relation on paths.

Proof. Let X be a space. We must prove that the homotopy relation on paths in
X is reflexive, transitive, and symmetric.

Reflexivity: Given a path f in X, we define the constant homotopy as the
homotopy Fc : [0, 1]× [0, 1] → X given by Ff (s, t) = f(s) for all s, t ∈ [0, 1]. Using
the constant homotopy, it holds that f ∼ f , by Definition 1.5. Thus, ∼ is reflexive.

Symmetry: Let f and g be two paths in X such that f ∼ g and let F be
a homotopy between f and g. We will define the reverse homotopy F−1 as the
homotopy satisfying F−1(s, t) = F (s, 1 − t) for all s, t ∈ [0, 1]. By Definition 1.5,
F−1 is a homotopy between g and f , which implies g ∼ f .

Transitivity: Let f , g, and h be three paths in X such that f ∼ g and g ∼ h
and let F and G be homotopies between f and g and between g and h, respectively.
We will define the homotopy H by

H(s, t) =

{
F (s, 2t) if 0 ≤ t ≤ 1

2

G(s, 2t− 1) if 1
2 ≤ t ≤ 1

.

By Definition 1.5, H is a homotopy between f and h. Because ∼ is symmetric, it
holds that h ∼ f . □

Definition 1.10. Given a path f in a space X, we denote the homotopy class
of f by [f ].
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2. The Fundamental group

In this section, we will introduce the fundamental group, which describes the
loops contained in a topological space up to homotopy.

2.1. Definition.

Lemma 2.1. Let (X,x0) be a pointed space and let f1, g1, f2, and g2 be loops based
at x0 such that f1 ∼ f2 and g1 ∼ g2. Then, f1 ⋆ g1 ∼ f2 ⋆ g2.

Proof. Let F be a homotopy between f1 and f2 and G be a homotopy between g1
and g2. Let H : [0, 1]× [0, 1] → X be a continuous map given by

H(s, t) =

{
F (2s, t) if 0 ≤ s ≤ 1

2

G(2s− 1, t) if 1
2 ≤ s ≤ 1

.

The continuity ofH is given by the continuity of F and G. Now, note thatH(s, 0) =
F (2s, 0) = f1(2s) for s ∈ [0, 12 ]. Moreover, H(s, 0) = G(2s − 1, 0) = g1(2s − 1) for

s ∈ [ 12 , 1]. Thus, by Definition 1.5,

H(s, 0) = (f1 ⋆ g1)(s).

Similarly,
H(s, 1) = (f2 ⋆ g2)(s).

It follows thatH is a homotopy between f1⋆g1 and f2⋆g2, and so f1⋆g1 ∼ f2⋆g2. □

Definition 2.2. Let (X,x0) be a pointed space and let f and g be loops based at
x0. Define the product of the homotopy classes of f and g by

[f ] · [g] = [f ⋆ g].

Remark 2.3. By Lemma 2.1, Definition 2.2 is well-defined. That is, the product
of two loop homotopy classes is independent of the choice of loop in each class.

Definition 2.4. Let (X,x0) be a pointed space. The fundamental group of
(X,x0), denoted by π1(X,x0), is the group whose set contains all homotopy classes
of loops based at x0 and whose operation is the product between two homotopy
classes, as described in Definition 2.2.

Theorem 2.5. Let (X,x0) be a pointed space. Then, π1(X,x0) is a group.

Proof. We begin by defining the identity loop as the loop id : [0, 1] → X defined by
id(t) = x0 for all t ∈ [0, 1]. The identity element of π1(X,x0) is thus defined as [id].
We must now prove that π1(X,x0) satisfies each of the group axioms.

Identity: Let γ be a loop based at x0. We want to show that

[γ] · [id] = [id] · [γ] = [γ].

By Definition 2.2,
[id] · [γ] = [id ⋆ γ].

Now, let F : [0, 1]× [0, 1] → X be defined by

F (s, t) =

{
x0 if 0 ≤ s ≤ t

2

γ(
s− t

2

1− t
2

) if t
2 ≤ s ≤ 1

.

Note that F is a homotopy between γ and id ⋆ γ. Therefore,

[id] · [γ] = [id ⋆ γ] = [γ].
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Similarly, [γ] · [id] = [γ].
Inverse: Let γ be a loop based at x0. We will define the inverse of γ as the

inverse loop γ−1. Now, we must show that

[γ] · [γ−1] = [id].

Let F : [0, 1]× [0, 1] → X be defined by

F (s, t) =

{
γ(2st) if 0 ≤ s ≤ 1

2

γ−1(2(s− 1
2 )t) if 1

2 ≤ s ≤ 1
.

Note that F is a homotopy between id and γ ⋆ γ−1. Therefore,

[γ ⋆ γ−1] = [id].

Because [γ ⋆ γ−1] = [γ] · [γ−1], we have that [γ] · [γ−1] = [id], as desired.
Associativity: Let γ1, γ2, and γ3 be loops based at x0. In order to demonstrate

associativity for π1(X,x0), we must show that

([γ1] · [γ2]) · [γ3] = [γ1] · ([γ2] · [γ3]).
By the associativity of the product of paths operation (⋆), we have

[(γ1 ⋆ γ2) ⋆ γ3] = [γ1 ⋆ (γ2 ⋆ γ3)]

=⇒ [γ1 ⋆ γ2] · [γ3] = [γ1] · [γ2 ⋆ γ3]
=⇒ ([γ1] · [γ2]) · [γ3] = [γ1] · ([γ2] · [γ3]).

Hence, associativity holds. □

Definition 2.6. A space X is called simply connected if it is path connected
and, for all points x0 ∈ X, the fundamental group of π1(X,x0) is trivial. That is,
π1(X,x0) = 0.

2.2. Examples of fundamental groups.

Example 2.7. The fundamental group of Rn, based at 0, is the trivial group. That
is, π1(Rn, 0) = 1.

In order to check this fact, we may take F (s, t) = f(s) · t as a homotopy between
any loop f based at 0 and the constant loop at 0. Then, it follows that any loop
based at 0 is homotopic to the constant loop at 0, and so π1(Rn, 0) is trivial.

Definition 2.8. The n-th dimensional disk, denoted my Dn, is defined by Dn =
{x ∈ Rn | ∥x∥ ≤ 1}. Similarly, the (n + 1)-th dimensional sphere, denoted by Sn,
is defined by Sn = {x ∈ Rn+1 | ∥x∥ = 1}.

Example 2.9. The fundamental group of the n-dimensional disk, based at 0, is
the trivial group. That is, π1(D

n, 0) = 1.

This fact follows from a similar argument as the one made in Example 2.6. By
taking F (s, t) = f(s)·t as a homotopy between a loop f based at 0 and the constant
loop at 0, we may note that any loop in Dn is homotopic to the constant loop, and
so π1(D

n, 0) = 1.

Example 2.10. The fundamental group of the circle, based at 0, is isomorphic to
the group of integers with addition as operation. That is,

π1(S
1, 0) ∼= (Z,+).



AN INTRODUCTION TO THE FUNDAMENTAL GROUP 5

From this result, we may observe that the homotopy classes of loops in S1 are
precisely those containing the loops formed by revolving clockwise in the circle an
integer number of times. The fundamental group of the circle is instrumental in
computing fundamental groups of other more complex spaces.

A demonstration of this statement can be found in [1], Chapter 1, Section 1.1.

2.3. Properties.
We now turn our attention to discussing two important properties of fundamental
groups.

Lemma 2.11. Let X be a path-connected space and let x0, y0 be two points in X.
Then, π1(X,x0) ∼= π1(X, y0).

Proof. Let ρ : [0, 1] → X be a path with ρ(0) = y0 and ρ(1) = x0. Note that, for
any loop γ based at x0, the path

ρ ⋆ γ ⋆ ρ−1

is a loop based at y0. Using this observation, we will define ϕ : π1(X,x0) →
π1(X, y0) by

ϕ([γ]) = [ρ ⋆ γ ⋆ ρ−1],

for any loop γ based at x0. We will now show that ϕ is well-defined and, further-
more, that it induces and isomorphism between π1(X,x0) and π1(X, y0).

Part 1: We begin by showing that ϕ is well-defined. Let γ be a loop based at
x0 that is homotopic to another loop γ′. We wish to show that

ρ ⋆ γ ⋆ ρ−1 ∼ ρ ⋆ γ′ ⋆ ρ−1.

Let F : [0, 1] × [0, 1] → X be a homotopy between γ and γ′. For each t ∈ [0, 1],
define Ft : [0, 1] → X by Ft(s) = F (s, t). Then, for any t ∈ [0, 1], Ft is a loop based
at x0. Next, for each t ∈ [0, 1], define Ht : [0, 1] → X by

Ht = ρ ⋆ Ft ⋆ ρ
−1.

Finally, let H : [0, 1] × [0, 1] → X be defined by H(s, t) = Ht(s). Note that H is
continuous since Ht is continuous for each t ∈ [0, 1]. Moreover,

H(s, 0) = H0(s) = (ρ ⋆ γ ⋆ ρ−1)(s)

and

H(s, 1) = H1(s) = (ρ ⋆ γ′ ⋆ ρ−1)(s).

Thus, H is a homotopy between ρ ⋆ γ ⋆ ρ−1 and ρ ⋆ γ′ ⋆ ρ−1. It follows that ϕ is
well-defined.

Part 2: We will now show that ϕ induces an isomorphism between π1(X,x0)
and π1(X, y0). Let ψ : π1(X, y0) → π1(X,x0) be defined by

ψ([γ]) = [ρ−1 ⋆ γ ⋆ ρ],

for each loop γ based at y0. Note that ψ is well-defined for analogous reasons as
the ones shown in Part 1. We now claim that ϕ ◦ ψ = id, where id denotes the
identity homomorphism. In order to show this, let γ be a loop based at y0. Then,

ϕ(ψ([γ])) = ϕ([ρ−1 ⋆ γ ⋆ ρ])

= [ρ ⋆ (ρ−1 ⋆ γ ⋆ ρ) ⋆ ρ−1]

= [(ρ ⋆ ρ−1) ⋆ γ ⋆ (ρ ⋆ ρ−1)], by the associativity of ⋆.
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We now claim that ρ ⋆ ρ−1 is homotopic to id, the identity loop. Hence, by Lemma
2.1,

[(ρ ⋆ ρ−1) ⋆ γ] = [id ⋆ γ] = [γ].

Thus,

ϕ(ψ([γ])) = [(ρ ⋆ ρ−1) ⋆ γ ⋆ (ρ ⋆ ρ−1)] = [γ ⋆ (ρ ⋆ ρ−1)] = [γ].

It follows that ϕ◦ψ = id. Similarly, ψ◦ϕ = id. Therefore, ϕ induces an isomorphism
between π1(X,x0) and π1(X, y0), and so π1(X,x0) ∼= π1(X, y0). □

According to Lemma 2.11, the fundamental group of any path-connected space
is independent of the choice of basepoint, up to isomorphism. When convenient,
we will refer to the fundamental group of a path-connected space X as π1(X).

Theorem 2.12. (Homomorphism induced by continuous map) Let f : (X,x0) →
(Y, y0) be a continuous map between two pointed spaces. Let f∗ : π1(X,x0) →
π1(Y, y0) be defined by f∗([γ]) = [f ◦ γ] for any loop γ in X based at x0. Then, f∗
is a well-defined homomorphism between π1(X,x0) and π1(Y, y0).

Proof. Part 1: We begin by proving that f∗ is well-defined. Let γ : [0, 1] → X
be a loop in X based at x0. Note that f ◦ γ is a loop in Y based at y0 since, by
definition, f is continuous and f(x0) = y0. Now, let γ′ be a loop in X such that
γ ∼ γ′. We wish to show that f ◦ γ ∼ f ◦ γ′. For this, let F : [0, 1]× [0, 1] → X be
a homotopy between γ and γ′ and define H : [0, 1]× [0, 1] → Y by

H(s, t) = f(F (s, t)).

Since f and F are both continuous, H is also continuous. Moreover,

H(s, 0) = f(F (s, 0)) = f(γ(s))

and

H(s, 1) = f(F (s, 1)) = f(γ′(s)).

Hence, H is a homotopy between f ◦ γ and f ◦ γ′, which implies f ◦ γ ∼ f ◦ γ′. We
may therefore conclude that f∗ is well-defined.

Part 2: We now wish to show that f∗ is a homomorphism. Let γ1 and γ2 be two
loops in X based at x0. We want to prove that f∗([γ1] · [γ2]) = f∗([γ1)]) · f∗([γ2]).
Note that

f∗([γ1] · [γ2]) = f∗([γ1 ⋆ γ2]), by Definition 2.2

= [f ◦ (γ1 ⋆ γ2)], by the definition of f∗.

Moreover, we also have that

f∗([γ1]) · f∗([γ2]) = [(f ◦ γ1)] · [(f ◦ γ2)], by the definition of f∗

= [(f ◦ γ1) ⋆ (f ◦ γ2)], by Definition 2.2

= [f ◦ (γ1 ⋆ γ2)], by Definition 1.5.

Thus, f∗([γ1] ◦ [γ2]) = f∗([γ1]) ◦ f∗([γ2]), which implies f∗ is a homomorphism. □
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2.4. Application: Brouwer’s fixed point theorem.

By utilizing the previously shown results on the fundamental groups of the circle
and the disk, we are able to demonstrate Brouwer’s fixed point theorem.

Theorem 2.13. (Brouwer’s fixed point theorem) Let f : D2 → D2 be a continuous
map. Then, there exists a point x ∈ D2 such that f(x) = x.

Proof. Assume, for the sake of contradiction, that no such point exists. Then, we
may define the map g : D2 → S1 as follows: for each x ∈ D2, let g(x) be the point
of intersection between the edge of the disk (the circle, S1) and the ray starting at
x and moving in the direction of f(x).

We now claim that g is continuous. Indeed, if the point x is moved by a small
distance, then, by continuity, f(x) is moved by a small distance and, consequently,
the same holds true for g(x). Now, observe that we have the following commutative
diagram:

S1

j !!

i // D2

g

��
S1

.

In the diagram, i : S1 → D2 is the homomorphism induced by the inclusion of S1

into D2 and j : S1 → S1 is the identity. The commutativity of the diagrams holds
since, for any point x at the edge of the disk, g(x) = x.

Now, let i∗ : π1(S
1) → π1(D

2) and g∗ : π1(D
2) → π1(S

1) be the homomorphisms
induced by i and g, respectively, as defined in Theorem 2.12. Let γ be a loop in
S1. We then have

g∗(i∗([γ])) = g∗([i ◦ γ]), by the definition of i∗

= g∗([γ])

= [g ◦ γ], by the definition of g∗

= [γ], since γ ∈ S1.

Therefore, we have the following commutative diagram:

π1(S
1)

j∗ $$

i∗ // π1(D2)

g∗

��
π1(S

1)

,

where j∗ : π1(S
1) → π1(S

1) is the identity. Since π1(S
1) ∼= Z and π1(D

2) ∼= 1, the
following diagram commutes:

Z

j∗ ��

i∗ // 1

g∗

��
Z

Note, however, that the identity homomorphism cannot be realized as a composition
of a homomorphism from Z to the trivial group and a homomorphism from the



8 LÚCIO FIGUEIREDO

trivial group to Z. We have therefore arrived at a contradiction, which implies
there exists a point x ∈ D2 such that f(x) = x. □

3. Computing fundamental groups

In this section, we will discuss the Seifert-Van Kampen theorem, which provides
a method to compute fundamental groups of more complex topological spaces. In
order to state the theorem, we must first define free products on groups.

3.1. Free products.

Definition 3.1. Let G and H be groups. A word in G and H is an element of
the form

f1f2 · · · fn
such that each fi is an element of either G or H. A reduction operation in a
word f1f2 · · · fn consists of performing the following operation: if two consecutive
elements fi and fi+1 are elements of a same group, remove fi and fi+1 and replace
them by fifi+1. A reduced word is a word in which no reduction operation can
be performed.

Remark 3.2. Equivalently, a reduced word in G and H is a word f1f2 · · · fn whose
elements alternate between elements of G and elements of H such that, for any two
consecutive elements fi and fi+1, fi and fi+1 are not elements of the same group.

Definition 3.3. Given two groups G and H, the free product of G and H,
denoted G ⋆H, is the group whose set contains all reduced words in G and H and
whose operation consists of concatenation followed by reduction operations, until
the resulting element is a reduced word.

Note that the free product is, indeed, a group: the empty word may be taken
as the identity element. The inverse of a word f1f2 · · · fn may be defined as
f−1
n f−1

n−1 · · · f
−1
1 , since performing an operation between both words results in the

empty word. Finally, associativity holds by the definition of the operation of G⋆H.

Example 3.4. The free product Z ⋆ Z consists of all words of the form

xa1yb1xa2yb2 · · · .
3.2. The Seifert-Van Kampen theorem.
Throughout this section, let X, U , and V be path connected spaces with a common
point x0 such that X = U ∪ V , U ∩ V is path-connected, and U and V are open in
X. Define the inclusion homomorphisms iu, iv, ju, and jv as follows:

• iu : U → X as the inclusion of U into X;
• iv : V → X as the inclusion of V into X;
• ju : U ∩ V → U as the inclusion of U ∩ V into U ;
• jv : U ∩ V → V as the inclusion of U ∩ V into V .

Furthermore, let iu∗, iv∗, ju∗, and jv∗ be the homomorphisms between fundamental
groups induced by each respective inclusion as defined in Theorem 2.12.

Theorem 3.5. (Seifert-Van Kampen) Let ϕ : π1(U, x0) ⋆ π1(V, x0) → π1(X,x0) be
the homomorphism induced by iu∗ and iv∗. That is, for a given word u1v1 · · ·unvn
in the free product of π1(U, x0) and π1(V, x0),

ϕ(u1v1 · · ·unvn) = iu∗(u1)iv∗(v1) · · · iu∗(un)iv∗(vn).
Then, the following are true:
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• ϕ is surjective.
• The kernel of ϕ is the minimal normal subgroup N generated by all elements
of the form (ju∗(e)jv∗(e)

−1), for all e ∈ π1(U ∩ V, x0).

By the surjectivity of the homomorphism ϕ and the First isomorphism theorem,
we obtain the following corollary:

Corollary 3.6. The following holds:

π1(X,x0) ∼= π1(U, x0) ⋆ π1(V, x0)/N.

The Seifert-Van Kampen theorem provides a method to compute the fundamen-
tal group of a space by decomposing it into simpler subspaces whose fundamental
groups are already known. While a proof of the theorem will not be presented in
this article, a full demonstration may be seen in [1], Chapter 1, Section 1.2.

3.3. Applications of the Seifert-Van Kampen theorem.
In this section, we will use the Seifert-Van Kampen theorem to compute the fun-
damental groups of the three-dimensional sphere (S2) and of the figure-eight.

Example 3.7. The fundamental group of the three-dimensional sphere, S2, is the
trivial group. That is,

π1(S
2) = 1.

In order to apply Van Kampen’s theorem, we will decompose the sphere into
its northern and southern hemispheres (denoted U and V , respectively) such that
their intersection (U ∩ V ) is nonempty, as shown in the image below:

Figure 1. The sphere, U , V , and U ∩ V

Note that the intersection of both hemispheres is an annulus. Therefore, U , V ,
and U ∩ V are path-connected. We now claim that both U and V are isomorphic
to D2. Hence,

π1(U) = π1(V ) = 1.

By Van-Kampen’s theorem, we have that π1(S
2) is generated by the free product

of π1(U) and π1(V ). Since both are trivial, we may conclude that π1(S
2) is also

trivial.

Example 3.8. The fundamental group of the figure-eight is isomorphic to Z ⋆ Z.

In this example, we will decompose the figure-eight into U and V as shown in
the figure below, such that U ∩ V has shape similar to that of the letter ”x”:
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Figure 2. The figure-eight, U , V , and U ∩ V

Next, observe that U , V , and U ∩ V are path connected. Moreover, we claim
that U and V are homotopic to S1 (indeed, the figure-eight is formed by joining
two circles through a single point) and that U ∩ V is homotopic to a point. Thus,

π1(U) ∼= π1(V ) ∼= Z
and

π1(U ∩ V ) = 1.

By the Seifert-Van Kampen theorem, then, π1(U ∪ V ) ∼= Z ⋆ Z/1 = Z ⋆ Z.
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