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Abstract. We prove the Riesz-Markov-Kakutani (RMK) Representation The-

orem in the setting of a locally compact Hausdorff (LCH) space by using fun-
damental results from measure theory and point-set topology, presenting much

of the necessary background along the way. We also isolate the classical case of
a compact interval [a, b] and prove this case independently by using functional

analysis. The paper concludes with three major applications of the RMK

Theorem.
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1. Introduction

Given a topological space X, we write C(X) for the complex vector space of
continuous functions from X into C under pointwise addition and pointwise scal-
ing. By Cc(X), we denote the collection of functions f ∈ C(X) whose support
supp(f) := clX{x ∈ X : f(x) ̸= 0} is compact. Observe that this is a subspace
of C(X). Let µ be a locally finite Borel measure on X (see Section 4 in case the
definitions are unfamiliar). Since the measure of a compact subset of X under µ is
finite, and a continuous complex-valued function on a compact set is bounded, the
integral

∫
f dµ is finite for all f ∈ Cc(X). Thus, we can define a linear functional T

on Cc(X) by Tf =
∫
f dµ for all f ∈ Cc(X). As with any integral defined against

a measure, T is positive in the sense that if f ∈ Cc(X) takes all of its values in the
nonnegative real numbers, then Tf is a nonnegative real number. This expository
paper is about the remarkable partial converse to this observation.
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Theorem 1.1 (Riesz-Markov-Kakutani Representation Theorem for Cc). Let X
be an LCH space. If T is a positive linear functional on Cc(X), then there exists a
unique Radon measure µ on X such that

Tf =

∫
f dµ for all f ∈ Cc(X).

Hence, the only positive linear functionals on Cc(X) are integrals! In particular,
they are integrals with respect to a Radon measure, a condition which assures us
nice regularity properties generalizing those enjoyed by the Lebesgue measure; cf.
Definition 4.3.

The RMK Theorem was first proved for the special case where X = [0, 1] in 1909
by Frigyes Riesz; cf. [12]. In 1938, Andrey Markov published work extending the
result to some noncompact spaces; cf. [11]. Shizuo Kakutani proved the result for
compact Hausdorff spaces in 1941; cf. [8]. Although LCH spaces are practically
always general enough, there does exist an extension of the RMK Theorem to
Hausdorff spaces; cf. Chapter V of [10]. The RMK Theorem and its several variants
go under a family of names including the Riesz Representation Theorem, Riesz’s
Theorem, the Riesz-Markov Theorem, and the Riesz-Kakutani Theorem.

The key ingredient in the proof of the RMK Theorem that we present is the
Carathéodory Extension Theorem. Urysohn’s Lemma is also crucial. However,
before giving this proof, we first prove the theorem in the classical case where
X = [a, b] without using any measure theory or general topology. Specifically, we
use the Hahn-Banach Theorem to prove this case of the theorem in its original
formulation in terms of Riemann-Stieltjes integrals. We conclude the paper with
a different version of the RMK Theorem and applications. In particular, we use
the RMK Theorem to present an alternate approach to measure and integration,
explain how the RMK Theorem can be used to prove the existence of a nonzero
Haar measure on any locally compact group, and use the RMK Theorem to identify
the dual space of ℓ∞.

The hope is that by giving two very different proofs of the theorem at two very
different levels of generality, we will be able to understand why the theorem is
true, and how to apply the theorem, better than if we just gave one proof at one
level of generality. This approach also allows us to see the RMK Theorem as an
application itself of the big theorems from measure theory, topology, and functional
analysis mentioned above. Moreover, readers who have studied functional analysis
but not measure theory, or measure theory and point-set topology but not functional
analysis, may still read much of the paper. Even for sections that assume some
background knowledge of one of these areas, we briefly present the relevant special
definitions and theorems that the reader may not be acquainted with.

Lastly, we mention that there is another, very different and beautiful, proof of
the RMK Theorem for the case of a compact Hausdorff space, which we do not
present here. This proof is due to D.J.H. Garling and utilizes Stonean spaces and
the Stone-Čech compactification; cf. [7].

2. Preliminaries for the Case X = [a, b]

Fix a, b ∈ R such that a < b. Let B[a, b] denote the complex Banach space
of bounded functions from [a, b] into C under pointwise addition/scaling and the
uniform norm. Let C[a, b] denote the Banach subspace of B[a, b] consisting of the
collection of functions in B[a, b] that are continuous. By an abuse of notation, we
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write ∥ · ∥ for both the norm on these spaces as well as the operator norm on their
dual spaces. Given any subset A of [a, b], we write χA for the characteristic function
of A on [a, b].

Our main goal at the present is to prove the RMK Theorem in the case that
X = [a, b]. In this classical case, we simply call the theorem Riesz’s Theorem. It
should not be confused with the similarly named and probably even more famous
Riesz Representation Theorem for Hilbert spaces, which also concerns bounded
linear functionals. However, there does exist a similarity between the two theorems
that we explain at the end of the next section. To make matters worse, Riesz was
also the first to prove the theorem identifying the dual space of Lp for p ∈ [1,∞), a
result which also sometimes gets called Riesz’s Theorem; that result is not discussed
here.

We do not follow Riesz’s original proof of Riesz’s Theorem— functional analysis
was still nascent in 1909. See [2] for an excellent modern breakdown of Riesz’s orig-
inal proof, and see [3] for a translation of Riesz’s proof into English. Interestingly
though, Riesz published alternate proofs of the theorem many times later in his
life, the last time being in 1952 with a functional-analytic proof that used a variant
of the Hahn-Banach Theorem; cf. [13]. This is pretty much the proof which we
present.

Measure theory and Lebesgue integration were also nascent in 1909. Instead of
using those notions, Riesz formulated his theorem in terms of Riemann-Stieltjes
integrals and functions of bounded variation. We do the same, but afterwards,
we also explain how to translate this classical formulation into modern measure-
theoretic words. Thus, our exposition begins with Riemann-Stieltjes integrals and
functions of bounded variation, but since we are focused on Riesz’s Theorem itself,
and we don’t need a deep understanding of these concepts for that, our presentation
of them is very limited. See Chapters 13 and 14 of N.L. Carothers’ book [4] for an
excellent and highly detailed treatment of these topics (although Carothers restricts
his attention to functions which take values just in R rather than C, everything goes
through for the latter class of functions by making the expected changes).

Definition 2.1. Let f : [a, b] → C and w : [a, b] → C be two functions. For any
partition P = (t0, . . . , tn) of [a, b], and any selection of points A = (a1, . . . , an)
chosen so that ak ∈ [tk−1, tk] for all k ∈ {1, . . . , n}, we define the Riemann-Stieltjes
sum of f with respect to w, P, and A to be

S(f, w, P,A) =

n∑
k=1

f(ak)[w(tk)− w(tk−1)].

We say that f is Riemann-Stieltjes integrable with respect to w if there exists some
I ∈ C such that for every positive real number ε, there exists a partition P of [a, b]
satisfying

|S(f, w,Q,A)− I| < ε

for any refinement Q of P and any sampling A of [a, b] chosen with respect to Q as
above. Observe that such an I is unique. Consequently, in this case, we define the
Riemann-Stieltjes integral of f with respect to w to be I and write

I =

∫ b

a

f dw.
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Definition 2.2. Let w : [a, b] → C be a function. We define the total variation of
w to be the extended real number

var(w) = sup
(t0,...,tn)∈P [a,b]

n∑
k=1

|w(tk)− w(tk−1)|,

where P [a, b] denotes the collection of partitions of [a, b].We say that w is of bounded
variation if var(w) is finite.

Let BV [a, b] denote the collection of functions of bounded variation from [a, b]
into C.

Proposition 2.3. Let f ∈ C[a, b] and w ∈ BV [a, b].

(a) The function f is Riemann-Stieltjes integrable with respect to w.
(b) The following estimate holds:∣∣∣∣∣

∫ b

a

f dw

∣∣∣∣∣ ≤ var(w)∥f∥.

(c) If (Pn = (t0,n, . . . , tpn,n)) is a sequence of partitions of [a, b] such that
mesh(Pn) → 0, then

S(f, w, Pn, (t0,n, . . . , tpn−1,n)) →
∫ b

a

f dw as n → ∞,

where

mesh(Pn) := max{t1,n − t0,n, . . . , tpn,n − tpn−1,n}.

See Corollary 14.13 and Theorem 14.16 in [4] for proofs of (a) and (b) respec-
tively, and Exercises 49 and 66 in Chapter 14 of the same book for a method of
proving (c).

Proposition 2.4.

(a) The set BV [a, b] forms a complex vector space under pointwise addition and
pointwise scaling.

(b) Setting ∥w∥BV = |w(a)| + var(w) for all w ∈ BV [a, b] defines a norm on
BV [a, b].

(c) The Riemann-Stieltjes integral I : C[a, b]×BV [a, b] → C given by

I(f, w) =

∫ b

a

f dw for all (f, w) ∈ C[a, b]×BV [a, b]

is a bilinear form that is bounded in both arguments.

See Lemma 13.3 and Corollary 14.17 in [4] for a proof of this proposition. The
reason for the term |w(a)| in (b) is that without it we only get a seminorm. Some-
thing else interesting to know, but that we will not use, is that ∥·∥BV makes BV [a, b]
into a Banach space, and this would not be true if we were to equip BV [a, b] with
the uniform norm instead; cf. Theorem 13.4 and the discussion preceding it in [4].

Now, let BV +
0 [a, b] denote the collection of functions w ∈ BV [a, b] that are right-

continuous on (a, b) and satisfy w(a) = 0. Unlike the other notation used in this
paper, the notation BV +

0 [a, b] is not standard; sometimes NBV [a, b] is used, the N
standing for “normalized.” Observe that BV +

0 [a, b] is a subspace of BV [a, b], and
that the inherited norm on BV +

0 [a, b] is simply the total variation function.
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Lemma 2.5.

(a) If w ∈ BV [a, b] satisfies w(a) = 0, then there exists some w̃ ∈ BV +
0 [a, b]

such that

var(w̃) ≤ var(w) and

∫ b

a

f dw =

∫ b

a

f dw̃ for all f ∈ C[a, b].

(b) If w, u ∈ BV +
0 [a, b] satisfy∫ b

a

f dw =

∫ b

a

f du for all f ∈ C[a, b],

then w = u.

See Exercise 52 in Chapter 14 of [4] for a method of proving (a), the key ingredient
being the Jordan decomposition of a function of bounded variation, as is discussed
in that chapter. See Exercise 53 in the same chapter for the statement of (b).

As a final preliminary, recall the following variant of the all-important Hahn-
Banach Theorem from functional analysis, which is the key ingredient in our proof
of Riesz’s Theorem.

Theorem 2.6 (Hahn-Banach Extension Theorem). Every bounded linear func-
tional T defined on a subspace of a normed space X can be extended to a bounded

linear functional on T̃ defined on the full space X such that ∥T̃∥ = ∥T∥.

See Theorem 4.3-2 in [9] for a proof. However, note that this proof of the Hahn-
Banach Theorem, which is by far the most common one, crucially uses Zorn’s
Lemma, a proposition that is equivalent to the Axiom of Choice under Zermelo-
Frankel set theory.

3. The Case X = [a, b]

Theorem 3.1 (Riesz’s Theorem). For every bounded linear functional T on C[a, b],
there exists a unique w ∈ BV +

0 [a, b] such that var(w) = ∥T∥ and

Tf =

∫ b

a

f dw for all f ∈ C[a, b].

This landmark theorem gives us an identification of the dual space of C[a, b].
Indeed, writing (C[a, b])′ for the (continuous) dual space of C[a, b], we can define
a map φ : (C[a, b])′ → BV +

0 [a, b] by sending each T ∈ (C[a, b])′ to the unique
function w ∈ BV +

0 [a, b] associated to T via Riesz’s Theorem. Notice that φ is
linear because of the linearity of the Riemann-Stieltjes integral in its integrator
(second) argument. Riesz’s Theorem also assures us that φ is an isometry because
var(w) = ∥T∥. In particular, φ is injective. Also, if we start from a w ∈ BV +

0 [a, b],

then setting Tf =
∫ b

a
f dw for all C[a, b] defines a T ∈ (C[a, b])′ because of the

linearity and boundedness of the Riemann-Stieltjes integral in its integrand (first)
argument. Hence, φ is surjective as well. Altogether, we conclude the following.

Corollary 3.2. The correspondence φ provided by Riesz’s Theorem is an isometric
isomorphism between (C[a, b])′ and BV +

0 [a, b]. In particular, the dual space of C[a, b]
can be identified with BV +

0 [a, b].

Since a dual space is always complete, we get another corollary for free.

Corollary 3.3. The space BV +
0 [a, b] is Banach.
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Before giving our proof of Riesz’s Theorem, which is mostly a reproduction of
the proof given for Theorem 4.4-1 in [9], let us first explain the overarching ideas.
Continuous functions can be uniformly approximated by step functions, which are
by definition finite linear combinations of characteristic functions of intervals, so
pretend for a moment that T is also defined on these characteristic functions to
see how T should act on them. At the very least, we want to find a function
w : [a, b] → C such that

Tχ[a,x] =

∫ b

a

χ[a,x] dw

for all x ∈ (a, b]. Observe that if w is right-continuous on (a, b), then for each
x ∈ (a, b], the characteristic function χ[a,x] is Riemann-Stieltjes integrable with
respect to w and ∫ b

a

χ[a,x] dw = w(x)− w(a).

Also note that this is not true if we replace right-continuity with left-continuity.
For example, consider [a, b] = [0, 1], x = 1/2, and the left-continuous function
w = χ[0,1/2] (as both the integrand and integrator). In this case, χ[0,1/2] is not even
Riemann-Stieltjes integrable with respect to w.

If we also require that w(a) = 0, then our formula simplifies to w(x) = Tχ[a,x]

for all x ∈ (a, b]. Working backwards like this tells us how to define w in terms of
T. However, we still have the issue that T is not actually defined on characteristic
functions. We use the Hahn-Banach Theorem to bypass this issue by extending T
to a bounded linear functional of the same norm defined on B[a, b], a space that
does include characteristic functions. The formal proof is just a matter of checking
that if w is defined in this manner, then everything really works as promised. Here
it is.

Proof. Since C[a, b] is a subspace ofB[a, b], we can apply the Hahn-Banach Theorem

to extend T to a bounded linear functional T̃ : B[a, b] → C such that ∥T̃∥ = ∥T∥.
Using this extension, we can define a map w : [a, b] → C by

w(x) =

{
0 x = a

T̃χ[a,x] x ∈ (a, b].

We start by showing that var(w) ≤ ∥T∥. Suppose that (t0, . . . , tn) is a partition
of [a, b]. Let

zk = ei arg(w(tk)−w(tk−1)) for all k ∈ {1, . . . , n},

where we make the convention of setting arg(0) = 0 and we choose any convention
for the argument function on C \ {0}. With this convention, for any z ∈ C, we have
that z = |z|ei arg(z), and so, |z| = z/ei arg(z) = zei arg(z). Hence, by the linearity and
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boundedness of T̃ ,

n∑
k=1

|w(tk)− w(tk−1)| =
n∑

k=1

zk[w(tk)− w(tk−1)]

= z1T̃ χ[a,t1] +

n∑
k=2

zk[T̃ χ[a,tk] − T̃ χ[a,tk−1]]

= T̃

(
z1χ[a,t1] +

n∑
k=2

zk(χ[a,tk] − χ[a,tk−1])

)

≤ ∥T̃∥

∥∥∥∥∥z1χ[a,t1] +

n∑
k=2

zk(χ[a,tk] − χ[a,tk−1])

∥∥∥∥∥
≤ ∥T̃∥ = ∥T∥,

where the final inequality is due to the fact that the function inside the norm is
bounded by 1. Since our partition was arbitrary, we may therefore conclude that
var(w) ≤ ∥T∥. In particular, w is of bounded variation.

Next, we prove that T is given by integration against w. Suppose that f ∈
C[a, b]. Choose a sequence of partitions (Pn = (t0,n, . . . , tpn,n)) of [a, b] such that
mesh(Pn) → 0 as n → ∞, e.g. let Pn be the partition that divides [a, b] into n
equal parts. For each n ∈ N, define the step function

sPn
= f(t0,n)χ[a,t1,n] +

pn∑
k=2

f(tk−1,n)[χ[a,tk,n] − χ[a,tk−1,n]].

Observe that each of these maps is in B[a, b]. Also notice that for each n ∈ N, we
have that sPn(a) = f(t0,n) = f(a) and that if k ∈ {1, . . . , pn} and x ∈ (tk−1,n, tk,n],
then sPn(x) = f(tk−1,n). Since f is uniformly continuous, we therefore see that

∥sPn
− f∥ = sup

x∈[a,b]

|sPn
(x)− f(x)| → 0 as n → ∞.

That is, sPn → f in B[a, b] as n → ∞, which implies that

T̃ sPn
→ T̃ f = Tf as n → ∞

because T̃ a bounded extension of T. As such, once we show that T̃ sPn
→
∫ b

a
f dw

as n → ∞ too, we will have established the fact that T is given by integration
against w. Indeed, after applying linearity and our definition of w, the terms of the
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sequence reveal themselves to simply be Riemann-Stieltjes sums:

T̃ sPn
= T̃

(
f(t0,n)χ[a,t1,n] +

pn∑
k=2

f(tk−1)[χ[a,tk,n] − χ[a,tk−1,n]]

)

= f(t0,n)T̃ χ[a,t1,n] +

pn∑
k=2

f(tk−1,n)[T̃ χ[a,tk,n] − T̃ χ[a,tk−1,n]]

= f(t0,n)w(t1,n) +

pn∑
k=2

f(tk−1,n)[(w(tk,n)− w(tk−1,n)]

=

pn∑
k=1

f(tk−1,n)[(w(tk,n)− w(tk−1,n)]

= S(f, w, Pn, (t0,n, . . . , tpn−1,n))

→
∫ b

a

f dw as n → ∞,

where the limit at the end is due to our hypothesis that mesh(Pn) → 0, see Propo-
sition 2.3(c). Hence, we have shown that

Tf =

∫ b

a

f dw for all f ∈ C[a, b].

Now, since w ∈ BV [a, b] and w(a) = 0, according to Lemma 2.5(a), there exists
some w̃ ∈ BV +

0 [a, b] such that

var(w̃) ≤ var(w) ≤ ∥T∥ and Tf =

∫ b

a

f dw =

∫ b

a

f dw̃ for all f ∈ C[a, b].

By an abuse of notation, we denote this modified function by w as well.
The estimate given in Proposition 2.3(b) yields that

|Tf | =

∣∣∣∣∣
∫ b

a

f dw

∣∣∣∣∣ ≤ var(w)∥f∥ for all f ∈ C[a, b].

Thus, ∥T∥ ≤ var(w) as well, implying that var(w) = ∥T∥. Finally, the uniqueness
of w ∈ BV +

0 [a, b] follows from Lemma 2.5(b). □

Another proof of Riesz’s Theorem that is based on Helly’s Selection Theorem
rather than on functional analysis is given in Chapter 14 of [4].

The way that we stated Riesz’s Theorem does not look quite the same as set-
ting X = [a, b] in the RMK Theorem. However, it really is a special case, but of a
different version of the RMK Theorem, Theorem 5.3. This can be realized via a cor-
respondence between BV +

0 [a, b] and M [a, b], the space of complex Radon measures
on [a, b] (Section 5 has the relevant definitions for this space). This correspondence
works through notion of Borel-Stieltjes measures, the details are in Section 3.5 of
[6]. Furthermore, see Theorem 9.9 in [1] for a direct proof of the measure-theoretic
formulation of Riesz’s Theorem that is based on the Hahn Extension Theorem (a
variant of the Carathéodory Extension Theorem).

Lastly, we explain the similarity between Riesz’s Theorem and the Riesz Repre-
sentation Theorem for Hilbert spaces.
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Theorem 3.4 (Riesz Representation Theorem). Let H be a Hilbert space with
inner product ⟨·, ·⟩. If T is a bounded linear functional on H, then there exists a
unique vector v ∈ H such that ∥T∥ = ∥v∥ and Tx = ⟨x, v⟩ for all x ∈ H.

Given any Hilbert space H, there exists a measure space (X,Σ, µ) such that
H is inner product isomorphic to L2(µ), where the codomain of the functions in
L2(µ) is defined to be the scalar field of H (either R or C). Hence, by an abuse of
notation, the Riesz Representation Theorem is equivalent to the statement that for
any bounded linear functional T on H, there exists some unique φ ∈ L2(µ) such
that ∥T∥ = ∥φ∥2 and

Tf =

∫
fφ dµ for all f ∈ L2(µ).

In this way, the Riesz Representation Theorem is also a result saying that the only
bounded linear functionals on a space are integrals.

4. Preliminaries for the General Case

Before getting to our proof of the general case of the RMK Theorem, we establish
the necessary measure-theoretic and topological framework. As with our treatment
of Riemann-Stieltjes integration and functions of bounded variation in Section 2,
we are very brief in order to get to the proof at hand.

The key result from measure theory that we need is the following variant of the
Carathéodory Extension Theorem.

Theorem 4.1 (Carathéodory’s Theorem for Outer Measures). If µ∗ is an outer
measure on a set X, then the collection of µ∗-measurable subsets of X is a σ-algebra
of X, and the restriction of µ∗ to this σ-algebra is a measure on X.

See Theorem 1.11 in [6] for a proof, and see the discussion preceding the theorem
for the relevant definitions.

Definition 4.2. Let X be a topological space. The Borel algebra of X is the σ-
algebra of X generated by the collection of open subsets of X. Members of the Borel
algebra of X are called Borel subsets of X. A Borel measure on X is an (unsigned
extended-valued σ-additive) measure whose domain is precisely the Borel algebra
of X.

The Borel algebra is the natural place to do measure theory in a general topo-
logical space, and thus, Borel measures are the natural measures to consider. See
Chapter 1 of [6] for a detailed treatment of Borel measures. As with any σ-algebra,
the Borel algebra induces a class of measurable functions. Namely, a function
f : X → C is defined to be Borel measurable if the inverse image of any open subset
of C under f is a Borel subset of X. Observe that continuous functions f : X → C
are Borel measurable, and so are characteristic functions χE : X → C, where E is
a Borel subset of X. Therefore, if f is compactly supported, then it makes sense to
take its integral with respect to a Borel measure on X, and it always makes sense
to do so for χE .

From now on, fix an LCH space X.

Definition 4.3. A Borel measure µ on X is called a Radon measure if

(a) µ is locally finite: for any x ∈ X, there exists a neighborhood U of x in X
such that µ(U) < ∞.
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(b) µ is outer regular: for any Borel subset E of X,

µ(E) = inf{µ(U) : E ⊆ U, U is open in X}.
(c) µ is weakly inner regular: for any open subset U of X,

µ(U) = sup{µ(K) : K ⊆ U, K is compact}.

To be clear, all suprema and infima above, and in what follows, are taken in
the extended real line. Notice that (d) makes sense because compact sets always
belong to the Borel algebra, and also note that local finiteness implies that the
measure of any compact set is finite. As we mentioned in the introduction, the point
of this definition is to generalize the nice topological regularity of the Lebesgue
measure. See Chapter 7 of [6] for a detailed treatment of Radon measures. Be
warned, however, that there are several different definitions of Radon measures
in the literature. Some definitions are equivalent to ours, while others are not.
Moreover, many people call what we defined to be a Radon measure a regular
Borel measure instead, while some people have a slightly different definition for the
latter. There are also notions of outer Radon measures and inner Radon measures.
Finally, there are Baire measures, which are related to all of the above, but certainly
different. It’s all very confusing.

The key topological ingredient for our proof of the RMK Theorem is the following
variant of Urysohn’s Lemma.

Theorem 4.4 (Urysohn’s Lemma for LCH Spaces). If K ⊆ U ⊆ X, where U
is open in X, and K is compact, then there exists some f ∈ Cc(X) such that
f(X) ⊆ [0, 1], f = 1 on K, and supp(f) ⊆ U.

See Theorem 4.32 in [6] for a proof of this result. In our proof of Riesz’s Theorem,
we used the Hahn-Banach Theorem to subvert the issue that characteristic func-
tions are not continuous by extending our functional to a space that does include
characteristic functions. This issue persists when trying to prove the general RMK
Theorem. However, it’s no longer clear how to use Hahn-Banach to work-around it.
In this case, we tackle the issue with Urysohn’s Lemma, which gives us continuous
approximations of characteristic functions.

We also need the following topological lemma.

Lemma 4.5. If K is a compact subset of X and {U1, . . . , Un} is an open cover of
K, then there exists a partition of unity on K subordinate to {U1, . . . , Un} consisting
of compactly supported functions.

See Proposition 4.41 in [6] for a proof (whose essential ingredient is Urysohn’s
Lemma), and see the discussion above the proposition for the definition of such a
partition of unity.

Given f, g ∈ Cc(X), we write g ≤ f if (f − g)(x) ∈ [0,∞) for all x ∈ X. We can
give Cc(X) the uniform norm ∥ · ∥ in order to make it into a normed space. The
positivity condition in the RMK Theorem is therefore motivated by the following.

Proposition 4.6. Let T be a positive linear functional on Cc(X). For each compact
subset K of X, there exists some C ∈ R such that |Tf | ≤ C∥f∥ for all f ∈ Cc(X)
satisfying supp(f) ⊆ K.

Proof. Suppose thatK is a compact subset of X. By Urysohn’s Lemma, there exists
some g ∈ Cc(X) such that g(X) ⊆ [0, 1] and g = 1 on K. So, for all f ∈ Cc(X)
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such that supp(f) ⊆ K, the function ∥f∥ · g is also in Cc(X), and |f | ≤ ∥f∥ · g. By
the linearity and positivity of T, it follows that

T |f | ≤ T (∥f∥ · g) = (Tg)∥f∥
for all such f. Now, if f ∈ Cc(X) is real-valued, then −|f | ≤ f ≤ |f |, so −T |f | ≤
Tf ≤ T |f |, which is equivalent to the inequality |Tf | ≤ T |f |. Thus, we deduce the
desired estimate |Tf | ≤ C∥f∥ for all real-valued f ∈ Cc(X) such that supp(f) ⊆ K,
where C = Tg ∈ R.

This in turn implies the general complex-valued case. Indeed, suppose that f ∈
Cc(X) satisfies supp(f) ⊆ K. Since supp(Re f) and supp(Im f) are closed subsets
of the compact set supp(f), we have that Re f, Im f ∈ Cc(X), where supp(Re f)
and supp(Im f) are subsets of K as well, so there exist C1, C2 ∈ R such that

|Tf | = |T (Re f + i Im f)| ≤ |T (Re f)|+ |T (Im f)| ≤ C1∥Re f∥+ C2∥ Im f∥
≤ (C1 + C2)|∥f∥.

□

Corollary 4.7. If X is compact, then any positive linear functional on Cc(X) is
bounded.

(Remember that we already supposed that X is Hausdorff.) The reverse inclu-
sion does not hold. For example, consider the compact Hausdorff space [0, 1], the
function of bounded variation w : [0, 1] → C defined by w(x) = −x for all x ∈ [0, 1],

and the linear functional T on Cc[0, 1] = C[0, 1] defined by Tf =
∫ 1

0
f dw for all

f ∈ C[0, 1]. This functional is bounded, and χ[0,1] ≥ 0, but Tχ[0,1] = −1 < 0.

5. The General Case

We now come to our proof of the general case of the RMK Theorem, as stated in
Theorem 1.1. This proof is mostly a reproduction of the proof given for Theorem
7.2 in [6].

Proof. Throughout this proof, given an open subset U of X and a function f ∈
Cc(X), we write f ≺ U if f(X) ⊆ [0, 1] and supp(f) ⊆ U. Also, given any subset A
of X, we write χA for the characteristic function of A on X.

We begin by proving uniqueness. Suppose that λ is a Radon measure on X such
that Tf =

∫
f dλ for all f ∈ Cc(X). Let U be an open subset of X. If f ∈ Cc(X)

satisfies f ≺ U, then f ≤ χU , so

Tf =

∫
f dλ ≤

∫
χU dλ = λ(U) = sup{λ(K) : K ⊆ U, K compact},

where the final equality is due to the weak inner regularity of λ. On the other
hand, if K is a compact subset of U, Urysohn’s Lemma tells us that there exists an
f ∈ Cc(X) such that f ≺ U and f = 1 on K. Thus,

λ(K) =

∫
K

f dλ ≤
∫

f dλ = Tf.

So,

sup{Tf : f ∈ Cc(X), f ≺ U} = sup{λ(K) : K ⊆ U, K compact} = λ(U).

As such, we have shown that the action of λ on the open subsets of X is determined
by T. By the outer regularity of λ, it follows that λ is entirely determined by T.
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Like what we saw in the [a, b] case, this uniqueness argument also suggests how
to define such a Radon measure. First, set

µ(U) = sup{Tf : f ≺ U, f ∈ Cc(X)}
for all open subsets U of X (note that all of the Tf ’s there are real due to the
positivity of T ). Then, define µ∗ : P(X) → [0,∞] by

µ∗(E) = inf{µ(U) : E ⊆ U, U open in X}
for all E ∈ P(X), where P(X) denotes the power set of X. The outline of our proof
is now as follows.

Step (i): show that µ∗ is an outer measure on X. Step (ii): show that every
open subset of X is µ∗-measurable. Assuming those two results, the Carathéodory
Extension Theorem implies that every Borel subset of X is µ∗-measurable and that
the restriction of µ∗ to the Borel algebra of X is a measure on X. We can denote
this new restricted measure by µ because µ∗ agrees with our previously defined
µ on all open subsets of X. Notice that µ is an outer regular Borel measure by
definition. Step (iii): show that

µ(K) = inf{Tf : f ≥ χK , f ∈ Cc(X)}
for all compact subsets K of X. By Urysohn’s Lemma, for each compact subset K
of X, there exists some f ∈ Cc(X) such that f(X) ⊆ [0, 1] and f = 1 on K. Hence,
f ≥ χK . As T maps into C by definition, this implies that µ(K) < ∞. Therefore,
by the local compactness of X, we have that µ is locally finite. Step (iv): use the
identity derived in the previous step to show that µ is weakly inner regular. Step
(v): show that

Tf =

∫
f dµ for all f ∈ Cc(X).

Once we complete each of these steps, the proof is done.
Step (i). As T (0) = 0 (one zero being the function and one being the number),

we have that µ(∅) = 0. If we show that µ(
⋃∞

j=1 Uj) ≤
∑∞

j=1 µ(Uj) for any sequence

(Uj) of open subsets of X, then we get that

µ∗(E) = inf{µ(U) : E ⊆ U, U open in X}

= inf

µ

 ∞⋃
j=1

Uj

 : (Uj) is an open cover of E in X


≤ inf


∞∑
j=1

µ(Uj) : (Uj) is an open cover of E in X


for all subsets E of X. However, the inequality above is actually an equality because
we can just take the trivial open cover {X} of E to contradict the possibility of
strict inequality. Thus, if we show that µ(

⋃∞
j=1 Uj) ≤

∑∞
j=1 µ(Uj) for any sequence

(Uj) of open subsets of X, then we get that

µ∗(E) = inf


∞∑
j=1

µ(Uj) : (Uj) an open cover of E in X

 ,

which implies that µ∗ is an outer measure on X; cf. Proposition 1.10 in [6]— this
blueprint for the construction of an outer measure from an elementary family works
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for arbitrary sets. So, suppose that (Uj) is a sequence of open subsets of X. Assume
that f ∈ Cc(X) satisfies f ≺

⋃∞
j=1 Uj . Since supp(f) is compact, there exists some

n ∈ N such that {U1, . . . , Un} still covers supp(f). By Lemma 4.5, it follows that
there exist g1, . . . , gn ∈ Cc(X) such that

∑n
j=1 gj = 1 on supp(f) and gj ≺ Uj for

all j ∈ {1, . . . , n}. Hence, f ≤
∑n

j=1 gj , so due to the positivity and linearity of T,
we have

Tf ≤ T

 n∑
j=1

gj

 =

n∑
j=1

Tgj ≤
n∑

j=1

µ(Uj) ≤
∞∑
j=1

µ(Uj).

As such, we may conclude that µ(
⋃∞

j=1 Uj) ≤
∑∞

j=1 µ(Uj).

Step (ii). It suffices to show that if U is open in X, and E is any subset of X
such that µ∗(E) < ∞, then

µ∗(E) ≥ µ∗(E ∩ U) + µ∗(E \ U);

this is because the reverse inequality holds for any outer measure and any two sets,
and the case where µ∗(E) = ∞ is trivial. In order to establish this estimate, we
start by just considering the case where E is also open in X. It follows that E∩U is
open in X. Suppose that ε is a positive real number. By the definition of µ(E ∩U),
there exists some f ∈ Cc(X) such that f ≺ E ∩ U and Tf > µ(E ∩ U) − ε. As
X is Hausdorff, the set E \ supp(f) is also open in X, so likewise, there exists
some g ∈ Cc(X) such that g ≺ E \ supp(f) and Tg > µ(E \ supp(f)) − ε. Thus,
f + g ∈ Cc(X) with f + g ≺ E, which then implies that

µ∗(E) = µ(E) ≥ T (f + g) = Tf + Tg ≥ µ(E ∩ U) + µ(E \ supp(f))− 2ε

≥ µ∗(E ∩ U) + µ∗(E \ supp(f))− 2ε

≥ µ∗(E ∩ U) + µ∗(E \ U)− 2ε.

Sending ε → 0, we obtain the desired inequality. Now, for the general case, since
µ∗(E) < ∞, there exists an open subset V of X such that E ⊆ V and µ(V ) <
µ∗(E) + ε. Thus, by what we showed for the open case,

µ∗(E) + ε > µ(V ) ≥ µ∗(V ∩ U) + µ∗(V \ U) ≥ µ∗(E ∩ U) + µ∗(E \ U).

Again, as ε is arbitrary, this establishes the desired general inequality.
Step (iii). Let K be a compact subset of X. First, suppose that f ∈ Cc(X)

satisfies f ≥ χK Let ε be a positive real number such that ε < 1. Furthermore, let
U = {x ∈ X : f(x) > 1−ε}. Note that Uε is open in X. If g ∈ Cc(X) satisfies g ≺ U,
then g ≤ (1 − ε)−1f, so Tg ≤ (1 − ε)−1Tf. Hence, µ(K) ≤ µ(U) ≤ (1 − ε)−1Tf.
Sending ε → 0, this yields that µ(K) ≤ Tf. Consequently,

µ(K) ≤ inf{Tf : f ≥ χK , f ∈ Cc(X)}.

For the reverse inequality, note that by the definition of µ(K), there exists some
open subset U of X such that K ⊆ U and µ(K)+ ε ≥ µ(U). By Urysohn’s Lemma,
there then exists some f ∈ Cc(X) such that f ≥ χK and f ≺ U. Hence, µ(U) ≥ Tf,
which then gives us that

µ(K) + ε ≥ inf{Tf : f ≥ χK , f ∈ Cc(X)}.

Sending ε → 0 again, we get the reverse inequality.
Step (iv). Suppose that U is open in X. Assume that f ∈ Cc(X) and f ≺ U.

Let A = supp(f). Observe that f ≤ g for all g ∈ Cc(X) such that g ≥ χA. As
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T is positive and linear, it follows that Tf ≤ Tg for all such g. Thus, since A is
compact, we can use the identity derived in the previous step to yield that

Tf ≤ inf{Tg : g ≥ χA, Cc(X)} = µ(A) ≤ sup{µ(K) : K ⊆ U, K compact}.
Therefore,

µ(U) = sup{Tf : f ≺ U, f ∈ Cc(X)} ≤ sup{µ(K) : K ⊆ U, K compact}.
On the other hand, suppose that K is a compact subset of U. By Urysohn’s Lemma,
there exists some g ∈ Cc(X) such that g ≥ χK and g ≺ U. Hence, reusing the
identity derived in the previous step,

µ(K) = inf{Tf : f ∈ Cc(X), f ≥ χK} ≤ Tg ≤ sup{Tf : f ∈ Cc(X), f ≺ U} = µ(U).

Therefore,
sup{µ(K) : K ⊆ U, K compact} ≤ µ(U)

as well. Combining our estimates, we deduce that µ is weakly inner regular.
Step (v). Let Cc(X → [0, 1]) denote the subset of functions in Cc(X) whose

image is contained in [0, 1]. The linear span of Cc(X → [0, 1]) is Cc(X). Thus, it
suffices to show that Tf =

∫
f dµ for all f ∈ Cc(X → [0, 1]). To that end, suppose

that f ∈ Cc(X → [0, 1]). Let N ∈ N. Set K0 = supp(f) and Kj = {x ∈ X : f(x) ≥
j/N} for all j ∈ {1, . . . , N}. It is given that K0 is compact, and moreover, for each
j ∈ {1, . . . , N}, the set Kj is a closed subset of K0, and so, Kj is likewise compact.
Hence, we can define a function fj ∈ Cc(X) by

fj(x) =


0 x /∈ Kj−1

f(x)− j−1
N x ∈ Kj−1 \Kj

1
N x ∈ Kj

for all x ∈ X (notice that supp(fj) ⊆ Kj−1). As
χKj

N ≤ fj ≤
χKj−1

N , we have that

µ(Kj)

N
≤
∫

fj dµ ≤ µ(Kj−1)

N
.

Also, as
µ(Kj) = inf{Tg : g ∈ Cc(X), g ≥ χKj

},
we have that µ(Kj) ≤ N · Tfj . And furthermore, if U is an open subset of X
containing Kj−1, then Nfj ≺ U, so Tfj ≤ µ(U)/N. Thus,

µ(Kj)

N
≤ Tfj ≤

µ(Kj−1)

N
as well. Lastly, note that f1 + · · ·+ fN = f, so

1

N

N∑
j=1

µ(Kj) ≤
∫

f dµ ≤ 1

N

N−1∑
j=0

µ(Kj) and
1

N

N∑
j=1

µ(Kj) ≤ Tf ≤ 1

N

N−1∑
j=0

µ(Kj).

This implies that ∣∣∣∣Tf −
∫

f dµ

∣∣∣∣ ≤ µ(K0)− µ(KN )

N
≤ µ(K0)

N
.

Since µ is locally finite, µ(K0) < ∞. Therefore, taking N → ∞, we may conclude
that

Tf =

∫
f dµ.

□
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We conclude this section with a useful variant of the RMK Theorem. Let C0(X)
denote the collection of functions in C(X) that vanish at infinity, i.e. the f ∈ C(X)
such that for every positive real number ε, there exists a compact subset K of X
such that |f(x)| < ε for all x ∈ X \ K. Observe that this is a subspace of C(X).
In fact, equipping C(X) with the uniform norm, we have that C0(X) is the closure
of Cc(X) in C(X); cf. Proposition 4.35 in [6]. For this last bit of the section, we
assume a working knowledge of complex Borel measures, as in Section 3.3 of [6].

Definition 5.1. A signed Radon measure on X is a signed Borel measure on X
whose positive and negative variations are Radon. A complex Radon measure on X
is a complex Borel measure on X whose real and imaginary parts are signed Radon
measures.

Let M(X) denote the collection of complex Radon measures on X.

Proposition 5.2. The set M(X) is a complex vector space under pointwise addi-
tion/scaling and the norm given by ∥µ∥M = |µ|(X) for all µ ∈ M(X), where |µ|
denotes the total variation of µ.

See Proposition 7.6 in [6] for a proof.

Theorem 5.3 (Riesz-Markov-Kakutani Representation Theorem for C0). If T is
a bounded linear functional on C0(X), then there exists a unique complex Radon
measure µ on X such that ∥T∥ = ∥µ∥M and

Tf =

∫
f dµ for all f ∈ C0(X).

See Theorem 7.17 in [6] for a proof, which is quite short having already proved the
RMK Theorem for Cc. As with functions of bounded variation, the key extra fact
needed here is a Jordan decomposition: functionals on C0(X) can be decomposed
into a sum of positive ones.

Since C0(X) = C(X) when X is compact, this yields the following corollary.
(Again, remember that we already supposed that X is Hausdorff.)

Corollary 5.4. The correspondence between [C0(X)]′ and M(X) provided by the
RMK Theorem is an isometric isomorphism. In particular, if X is compact, then
the dual space of C(X) can be identified with M(X).

What a beautiful result.

Corollary 5.5. The space M(X) is Banach.

6. Applications

6.1. Alternate Approach to Measure Theory.
The RMK Theorem gives an alternate abstract construction of the Borel measure

on R (i.e. the restriction of the Lebesgue measure on R to its Borel algebra). Indeed,
let T : Cc(R) → R be the Riemann integral over R, given by Tf =

∫∞
−∞ f(x) dx

for all f ∈ Cc(R). Since R is an LCH space and T is a positive linear functional,
the RMK Theorem tells us that there exists a Radon measure µ on R such that∫
f dµ =

∫∞
−∞ f(x) dx for all f ∈ Cc(R). Now, let a, b ∈ R be such that a ≤ b, and

consider the characteristic function χ[a,b] : R → R. Choose a sequence of functions
(fk) in Cc(R) such that fk → χ[a,b] pointwise as k → ∞, e.g. “tent-shaped”
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functions that use increasingly steep lines to connect 0 and 1 near a and b. By the
Dominated Convergence Theorem,

µ[a, b] =

∫
χ[a,b] dµ = lim

k→∞

∫
fk dµ = lim

k→∞

∫ ∞

−∞
fk(x) dx =

∫ ∞

−∞
χ[a,b](x) dx

= b− a.

Next, weak inner regularity comes in to give us that µ agrees with the Borel measure
on all open subsets of R. Furthermore, outer regularity therefore implies that µ
agrees with the Borel measure on all Borel subsets of R. Therefore, µ must be
the Borel measure on R. This is good enough because in the words of the great
contemporary analyst Barry Simon, “passing from Borel to Lebesgue measurable
functions is the work of the devil. Don’t even consider it!” [14]. An analogous
approach works for any Rn.

Additionally, by the RMK Theorem, we could equivalently define a Radon mea-
sure on an LCH spaceX to be a positive linear functional on Cc(X). This functional-
analytic approach to measure theory bypasses the usual mound of definitions and
step-by-step constructions, immediately getting to the heart of the matter. Al-
though this approach does not work for general measure spaces, the class of LCH
spaces is so broad and ubiquitous that it is essentially good enough. On the other
hand, whether it is pedagogically sound to do this is another issue.

6.2. Haar Measures.

Definition 6.1. Let G be a topological group, whose group operation we denote
with multiplicative notation. We say that a Radon measure µ on G is a left Haar
measure on G if it is left G-invariant, i.e. for all x ∈ G and all Borel subsets E of
G, we have that µ(xE) = µ(E). A right Haar measure on G is defined analogously.

To give just the archetypal example, the Borel measure on Rn is a left and right
Haar measure on the abelian topological group (Rn,+).

The following seminal result about Haar measures can be most easily proved by
using the RMK Theorem.

Theorem 6.2. If G is a locally compact group, then there exists a nonzero left
Haar measure on G that is unique up to multiplication by a positive real constant.

To be clear, by nonzero here we mean that µ(E) ̸= 0 for some Borel subset E
of G. Also, a locally compact group actually refers to a topological group whose
topology is locally compact and Hausdorff— there is a good justification for this
seemingly perverse naming convention, but we don’t need to get into that here.
Theorem 6.2 is also true if we replace “left” with “right,” choosing the former
is just a convention. Let us sketch how to use the RMK Theorem to prove the
existence part of Theorem 6.2, following the presentation in [5] (uniqueness is an
independent matter for which the RMK Theorem is not used).

The rough idea of why such Haar measure should exist is as follows. Given an
open subset U of G, we can measure the size of any subset A of G relative to U by
the “minimal number” (A : U) of translates xU needed to cover A, where x ∈ G.
Notice that this relative measure is left G-invariant: (gA : U) = (A : U) for all
g ∈ G. Also, if A is compact, then (A : U) is finite. As U shrinks to a point, the
quantity (A : U) should converge to a real number, and it makes intuitive sense to
define this number to be the measure of A. However, what we do instead is fix a
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compact subset K of X, and define the measure of A to be the limit of the ratio
(A : U)/(K : U) as U shrinks to a point. This normalizes the measure so that the
measure of K is 1. Note how this idea generalizes the definition of the Lebesgue
outer measure on Rn and even the general construction of an outer measure from
an elementary family in an arbitrary set.

However, it is quite hard to verify that this purported limit does exist and defines
a measure. Instead, we convert the idea to the setting of positive linear functionals,
which turn out to be easier to work with. Namely, by the RMK Theorem, Theo-
rem 6.2 would follow if we found a nonzero positive linear functional T : Cc(G) → C
that is left-invariant in the sense that T (Lxf) = Tf for all x ∈ G and f ∈ Cc(G),
where the left translation Lxf : G → C is defined by (Lxf)(y) = f(x−1y) for all
y ∈ G. The approach described above translates to this setting by defining

(f : g) = inf


n∑

j=1

cj : c1, . . . , cn ∈ (0,∞), s1, . . . , sn ∈ G, f ≤
n∑

j=1

cjLsjg


for all f, g ∈ Cc(G) such that f, g ≥ 0 and g ̸= 0. We then fix a nonzero f0 ∈ Cc(G)
such that f0 ≥ 0 and consider the limit of (f : φ)/(f0 : φ) as supp(φ) shrinks to
{1}. In some sense, this limit converges to our desired Tf. It turns out that this is
much easier to verify, the details are given in [5].

One major application of Theorem 6.2 is that it allows us to generalize the
definition of the Fourier transform to general locally compact abelian groups by
defining it via the guaranteed nonzero left Haar measure on the group. This is the
beginning of the profound and modern subject of abstract harmonic analysis. The
existence of Haar measures on locally compact groups is also crucial in geometry
for the theory of Lie groups. For example, John von Neumann’s partial solution of
Hilbert’s Fifth Problem was based on a weaker version of Theorem 6.2.

6.3. The Dual of ℓ∞.
By ℓ∞, we mean ℓ∞(N → C), the Banach space of bounded complex sequences

under the uniform norm. The Stone-Čech compactification of N, denoted by βN,
is a compact Hausdorff space “containing” N as dense subspace. In particular,
Cc(βN) = C(βN). It is straightforward to show that ℓ∞ is isometrically isomorphic
to C(βN). Hence, the dual space of ℓ∞ is isometrically isomorphic to the dual of
C(βN). And by the RMK Theorem, the latter is isometrically isomorphic toM(βN).
Therefore the dual space of ℓ∞ can be identified with M(βN). Similar things can
be deduced about the dual of any L∞ space.
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