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Abstract. Reciprocity laws have long been considered some of the most beau-

tiful results in number theory. These reciprocity laws can be interpreted in

terms of finite extensions of number fields. Artin reciprocity generalizes the
early reciprocity laws of Gauss, Jacobi, and Eisenstein into a statement that

holds for all finite extensions of number fields. This paper presents a proof

of Artin reciprocity and discusses its relation to the much more elementary
quadratic reciprocity.
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1. Introduction

In 1801, Gauss published the first proof of quadratic reciprocity. This theorem,
formally stated in Section 9, asserts that given two odd primes p and q, where at
least one is congruent to 1 mod 4, p is a square mod q if and only if q is a square mod
p. Fittingly, this theorem uncovers a reciprocal relationship between the behavior
of squares mod p and mod q. Following Gauss’ proof of quadratic reciprocity, many
reciprocity laws of a similar flavor were proved. These include, but are not limited
to, cubic reciprocity and biquadratic reciprocity.

A century later, number theorists began laying the grounds for one of the largest
projects in the field: class field theory. In essence, this project was designed to study
finite abelian extensions of number fields. One particular goal of class field theory
was to relate the Galois group of a finite abelian extension L/K to the structure
of the field K [3]. This is precisely what the theorem of Artin reciprocity, proved
in 1927, accomplished. But why is this goal important? In fact, all of the earlier
reciprocity laws can be reframed as a relationship between the splitting of prime
ideals in a finite extension of number fields and some modularity condition. As will
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be developed in this paper, the Galois group of L/K encodes information about the
splitting of prime ideals, and the structure of K, interpreted through generalized
ideal class groups, gives a modularity condition.

In this paper, we present a proof of the theorem of Artin reciprocity. Sections 2-4
present an assortment of tools needed to understand and prove Artin reciprocity.
These sections are written to convey the necessary propositions and theorems to a
reader who has minimal experience in algebraic number theory; if interested, one
can consult any of the excellent textbooks cited in these sections to delve deeper
into any particular area. Sections 5-8 are devoted to proving Artin reciprocity,
following the approach of [5]. Section 8 is much more technical than the others in
the paper, so a reader may decide to first skip ahead to Section 9 to see how the
cyclotomic case of Artin reciprocity can be used to prove quadratic reciprocity.

2. Algebraic Number Theory Preliminaries

Let K be a number field, i.e. a finite extension of Q. We use OK to denote the
ring of integers of K, which consists of the elements a ∈ K that satisfy a monic
polynomial f(x) ∈ Z[x]. We also introduce the concept of a fractional ideal of OK
in K:

Definition 2.1. A fractional ideal a of OK in K (often just called a fractional
ideal of K) is an OK-module contained in K such that ca ⊂ OK for some c ∈ K×.

We note that if a is a nonzero fractional ideal and ca ⊂ OK , then b := ca is an
ideal in OK . The ring of integers of any number field is a Dedekind domain, so
ideals factor uniquely into prime ideals. Therefore, we can simplify our description
of fractional ideals of K. We have that a = (c)−1b, and by unique factorization of
(c) and b,

a =
∏
p

pa(p),

where p ranges over the prime ideals of OK , and a(p) ∈ Z, with a(p) = 0 for all but
finitely many p.

Let K ⊂ L be two number fields, and set n = [L : K]. Let I(OK) and I(OL) be
the groups of fractional ideals of K and L, respectively, excluding the zero ideal.
Throughout this paper, when we say fractional ideal, or ideal, we exclude the zero
ideal in this terminology. There is an injection from I(OK) to I(OL) defined by
sending a to aOL. Using this, we can see how prime ideals in OK split, or factor,
in OL. By unique factorization of ideals, if p is a prime ideal of K, then we can
factor the corresponding ideal pOL of L as

pOL = Pe1
1 Pe2

2 · · ·Peg
g .

Here, the Pi represent prime ideals of OL and each ei is a positive integer. The
quantity ei is called the ramification index of Pi over p. In this scenario, we often
say that Pi is a prime ideal lying above p.

In this context, we can introduce the idea of residue class fields. A residue class
field is the quotient field formed by quotienting out the ring of integers OK of some
number field K by a prime ideal p of OK . For each prime Pi lying above p, we
have an induced inclusion of residue fields,

OK/p ⊂ OL/Pi.



ARTIN RECIPROCITY 3

The reader can check that the natural inclusion, induced by the inclusion of rings
of integers OK ⊂ OL, is in fact well-defined because Pi ∩ OK = p. It can also be
verified that the field inclusion is a finite field extension, bounded by [L : K]. As a
corollary to this fact, we can take K = Q, and let L be an arbitrary number field.
If we let p be a prime number, and p be a prime ideal of L lying above (p), then
the residue class field OL/p is a finite extension of the finite field Fp. Therefore, all
residue class fields are finite fields.

Another important quantity that often appears in tandem with the ramification
index ei is the residue class degree of a prime ideal lying above another. We define
the residue class degree of Pi over p to be fi := [OL/Pi : OK/p]. A prime ideal p
is said to split completely if all of the ei and fi are equal to 1.

So far, we have a map from I(OK) to I(OL).We can use the definition of residue
class degree to define a map in the other direction, from I(OL) to I(OK). If P is a
prime ideal in OL, then P ∩ OK = p for some prime ideal p ⊂ OK . Then, we can
define a norm map as follows:

Definition 2.2. The norm map NL
K : I(OL) → I(OK) is the unique homomor-

phism induced by NL
K(P) = pf , where p = P ∩OK and f = [OL/P : OK/p] is the

residue class degree of P over p.

We will often use the norm map without the subscript and superscript. In this
case, if a is a fractional ideal in K, Na denotes the norm with respect to Q, that
is NK

Q (a). As a critical note, the inclusion homomorphism from I(OK) to I(OL) is
not surjective, so it and the norm map are not inverses.

In the case that L/K is a Galois extension, the norm map has an alternative
formulation.

Proposition 2.3. If the extension L/K is Galois, we can equivalently define the
norm of a fractional ideal a as follows:

NL
K(a) =

∏
σ∈Gal(L/K)

σa.

The ramification indices and residue class degrees of primes Pi above p also have
important numerical significance, which is laid out in the following proposition:

Proposition 2.4. Let p be a prime ideal in OK such that pOL = Pe1
1 · · ·P

eg
g ,

where the Pi are prime ideals in OL. Then,

[L : K] =

g∑
i=1

eifi.

Corollary 2.5. If L/K is Galois, then the ei are all equal to the same number e
and the fi are all equal to the same number f . Thus, [L : K] = efg.

Now, we focus specifically on Galois extensions L/K. Fix a prime ideal p in OK .
By Corollary 2.5, p factors as

pOL = (P1 · · ·Pg)
e.

Any Galois automorphism σ ∈ Gal(L/K) permutes the prime ideals Pi of OL that
lie above p. This group action of Gal(L/K) on the prime ideals above p is in fact
transitive. For each ideal P lying above p, we can define a subgroup of the Galois
group as follows:
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Definition 2.6. The decomposition group of P is the subgroup of Gal(L/K) given
by GP = {σ ∈ Gal(L/K) : σP = P}.

If σ ∈ GP, then σ induces an automorphism of OL/P that fixes OK/p. This
gives us a homomorphism from the decomposition group GP to the Galois group

of the residue class field extension GP := Gal((OL/P)/(OK/p)). The residue
class field extension is Galois because both fields are finite. We call the kernel of
this homomorphism, TP, the inertia group of P. This homomorphism is in fact
surjective, and a thorough proof can be found in [6].

By the orbit-stabilizer theorem, |GP| = n/g. Additionally, |GP| = f . By the
first isomorphism theorem and Corollary 2.5, we have that |TP| = e. Therefore, if
p is unramified in L, meaning that the common ramification index of all Pi above
p is e = 1, the map from GP to GP is an isomorphism. Thus, there is a unique

element of GP that maps to the Frobenius element of GP. In the case that L/K
is abelian, meaning that its Galois group is abelian, GP and the aforementioned
unique element of GP are independent of the choice of prime P above p.

Now, we define a tool that is incredibly useful for computation, the discriminant.
Suppose that α1, . . . , αn is a field basis for L over K. Then, we can define the
discriminant of this basis.

Definition 2.7. The discriminant of the basis α1, . . . , αn of the extension of num-
ber fields L/K is given by the following matrix determinant:

∆(α1, . . . , αn) = det(trL/K αiαj).

There are many helpful tricks that can be used to calculate the discriminants of
certain bases. We will state one that will be useful for our purposes.

Proposition 2.8. Suppose that L = K(α). Then, if n = [L : K], the set
{1, α, . . . , αn−1} forms a basis for L over K. Let f(x) ∈ K[x] be the minimal
polynomial of α. Then,

∆(1, α, . . . , αn−1) = (−1)n(n−1)/2N(f ′(α))

Proof. A proof of this proposition, along with other propositions related to discrim-
inant calculations, is given in [4]. �

The idea of a discriminant can be made independent of the choice of basis.

Definition 2.9. The discriminant of L/K is the ideal in OK generated by the
discriminants of all field bases of L/K which are contained in OL.

For clarity, we will use the term “discriminant” to refer to the ideal described in
Definition 2.9. We will use the exact wording “discriminant of a basis” if we need
to refer to the number discriminant as described in Definition 2.7.

The discriminant of an extension of number fields encodes a great amount of
information about the extension itself. One particularly useful fact relates the
discriminant to ramified primes.

Theorem 2.10. A prime ideal p of OK ramifies in L if and only if it divides the
discriminant of L/K.

Proof. A full proof of this theorem is provided in [7]. �

Due to the prime factorization of ideals, this theorem has an immediate corollary.

Corollary 2.11. Only finitely many primes of OK ramify in OL.
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3. Local Fields

The main theorem of this paper, Artin reciprocity, is a statement concerning
number fields, which are examples of global fields. However, to understand the
class field theory of global fields, one must also understand the theory of local
fields. The completion of a number field K with respect to an absolute value on
K is an example of a local field, and this is the only type of local field that we
will consider in this paper. To formalize this, we first introduce the definition of an
absolute value on K.

Definition 3.1. An absolute value onK is a function |·|v fromK to the nonnegative
real numbers satisfying the following properties:

(i) |x|v = 0 if and only if x = 0.
(ii) For all x, y ∈ K, |xy|v = |x|v|y|v.
(iii) For all x, y ∈ K, |x+ y|v ≤ |x|v + |y|v.

The simplest way to define an absolute value on K is by embedding the num-
ber field in either the real or complex numbers. Such absolute values are called
archimedean. Furthermore, if the absolute value is induced by an embedding in R,
we say that it is real archimedean. If the absolute value is induced by an embedding
in C whose image is not contained in R, we say that it is complex archimedean. As
an example of an archimedean absolute value, in Q(i), embedding in the complex

numbers gives the absolute value |a+ bi| =
√
a2 + b2. However, we can also intro-

duce some non-trivial absolute values corresponding to the prime ideals of OK . Fix
a nonzero prime ideal p of OK . For an element a ∈ OK , we define the order of a
at p to be the unique nonnegative integer i such that a ∈ pi but a 6∈ pi+1 (here, p0

is taken to be OK). We denote this by i = ordp(a). This notion of order can be
extended to K by expressing any element a ∈ K as a = b/c, where b, c ∈ OK . We
then take ordp(a) = ordp(b)− ordp(c). Take (p) = p∩Q. Let e be the ramification
index of p over p. Then, we get the following absolute value:

|a|p =
1

pordp(a)/e
.

We call | · |p a p-adic absolute value. Alternatively, the p-adic absolute values are
often called non-archimedean. If K = Q, the absolute value corresponding to (p)
is precisely the p-adic absolute value. Suppose L/K is a finite extension of number
fields, and P is a prime ideal of OL lying above p, a prime ideal of OK . Then, the
absolute value | · |P agrees with | · |p on K.

We will denote the set of these p-adic absolute values and the archimedean
absolute values induced by an embedding in R or C by MK . We call this the set of
canonical absolute values. Surprisingly, these are the only possible absolute values
on K, up to exponentiation by a constant. A proof of this fact is given in [2].

We obtain local fields by constructing the completion of a number field K with
respect to one of its canonical absolute values v. For K = Q, this is a familiar
concept, at least for the archimedean absolute value on Q, which corresponds to
Euclidean distance. In this case, we construct R by taking the ring of all Cauchy
sequences in Q, and quotienting out by all Cauchy sequences which converge to 1.
We can do the same for the non-archimedean absolute values of Q, where conver-
gence is interpreted using these new absolute values, and this construction yields
the p-adic numbers Qp. This construction can be done for any number field K and
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any absolute value v. We denote this new field by Kv, and call it the completion
of K with respect to v.

Local fields are an incredibly useful tool that will be used to prove Artin reci-
procity. Much of this is because of the convenient algebraic and topological prop-
erties of these fields. Let K be a number field and v a non-archimedean absolute
value. We then consider the local field Kv. We define the ring of integers of Kv

to be the set of elements of Kv with an absolute value less than or equal to 1. As
with number fields, we will use the notation OKv to refer to the ring of integers of
a local field Kv. This ring of integers is a local ring, meaning that it has a unique
maximal ideal m. We often refer to m as the maximal ideal of Kv.

This maximal ideal is very important to the topology of Kv. If we imbue Kv

with the metric topology induced by the absolute value | · |v, then the subgroups
mi are open. Moreover, for i > 0, they form a neighborhood basis at 0. By the
translational invariance of the metric topology on Kv, we have a neighborhood basis
for any point a ∈ Kv by taking the subgroups a + mi. We now state two useful
propositions.

Proposition 3.2. Let L/K be a finite extension of number fields. Let v ∈MK be
an absolute value on K. Then, if we let w range over all absolute values extending
v to L, we have that

NL
K(a) =

∏
w

NLw

Kv
(a).

Proof. A proof can be found in [5]. �

Proposition 3.3. Suppose L/K is a finite extension of number fields. Let v be an
absolute value on K, and let w be an extension of that absolute value to L. Then,
the local norm NLw

Kv
is a continuous map.

Proof. Let E be the Galois closure of Lw over Kv. Then, any embedding of Lw into
its algebraic closure that fixes Kv has an image which lies within E. Thus, these
injective homomorphisms can be thought of as maps from Lw to E. The norm map
can be expressed as a product varying over all of the Kv-embeddings σ of Lw into
E:

NLw

Kv
(α) =

∏
σ

σα.

We claim that each σ is continuous as a map from Lw to E. Each embedding σ
commutes with addition, so it suffices to show continuity at 0.

First assume that v is a non-archimedean absolute value. Then all of our fields
are non-archimedean local fields. Let m be the maximal ideal of OKv , and let M
be the maximal ideal of OE . Let’s denote the image of Lw under σ by L′w. This
is a field, and the image of m is the maximal ideal of L′w; let’s call this m′. Since
m′OE is a non-unit ideal in OE , it must be of the form Md for some d > 0. So, the
image of m is contained in Md.

Since the topology on E is a discrete metric topology, the open sets Mm, m > 0,
form a neighborhood basis of 0. By the division algorithm, m = dq − r for q > 0
and 0 ≤ r < d. Therefore,

mq ⊂ σ−1(Mdq) ⊂ σ−1(Mm).

So σ : Lw → E is continuous, thus the norm map, viewed as a function from Lw
to E, is also continuous. We know that the image of the norm map is in fact Kv.
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The topology on Kv is the subspace topology, so the norm map is also continuous
as a map from Lw to Kv.

In the case that v is archimedean, the fields Kv and Lw are either R or C. If
[Lw : Kv] = 1, the norm map is the identity and thus continuous. If Kv = R and
Lw = C, the norm map is given by NC

R (α) = αα, which is continuous as a map
from C to R. �

These two propositions can be used together to extract some notion of continuity
from the global norm map, which is central to the main result of Section 7.

4. Generalized Ideal Classes

Let K be a number field, and let I denote the group of fractional ideals of OK in
K. Identify two fractional ideals if they are the same up to scaling, that is, a ∼ b
if a = αb for some α ∈ K×. This forms an equivalence relation, and we can denote
the quotient group by I/P , where P is the subgroup of I consisting of principal
fractional ideals. We call I/P the ideal class group of K. The class number of K is
defined to be the size of I/P . The class number of any number field is in fact finite,
and an elementary proof can be found in [4]. In essence, the ideal class number is
a measure of how close the ring of integers of a field is to being a principal ideal
domain (PID): the smaller the ideal class number, the more like a PID. For a field
K where OK is a PID, I/P is the trivial group, giving the smallest possible class
number of 1. One example of a field whose ring of integers is not a PID is Q(

√
−5).

However, the ideal class number of this field is 2, suggesting that it is in some sense
almost a PID.

We are interested in generalizing the notion of an ideal class group. To motivate
this new definition, recall the discussion in Section 2 about the decomposition group.
In this scenario, the finite set of ramified primes behaves differently than all other
prime ideals in that they do not induce an isomorphism from GP to GP. Thus, we
may sometimes want to consider fractional ideals that have no ramified primes in
their factorization. We will formalize this idea through the notion of a cycle, which
is a generalization of an ideal.

Definition 4.1. A cycle c of K is a formal product over all canonical absolute
values

c =
∏

v∈MK

vm(v),

where m(v) is a nonnegative integer that is zero for all but finitely many v.

Since many of the absolute values on K correspond to a prime ideal of OK , we
will often use the notation p instead of v for these absolute values. Each cycle has a
finite part, taken by ignoring any archimedean absolute values in its product form.
Formally, the finite part of a cycle, denoted c0 is given by

c0 =
∏

p∈MK\∞

pm(p),

where the ∞ in the product above denotes the set of archimedean absolute values
on K. Finite cycles of K, or cycles that contain no archimedean absolute values,
are in bijection with ideals of OK .

For any cycle c of K, we let I(c) denote the set of fractional ideals in K relatively
prime to c. In other words, I(c) is the subgroup of I generated by all prime ideals
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in OK that have multiplicity 0 in c. Like I, the set of all fractional ideals, I(c)
forms a group under multiplication.

To create generalized ideal class groups, we want to consider the quotient of
I(c) with respect to some subgroup of I(c). The immediate choice is P (c), the set
of principal fractional ideals prime to c. However, for any cycle c, one can verify
that I(c)/P (c) ∼= I/P . To obtain generalized ideal class groups that are actually
different from the ideal class group, we will instead take the quotient of I(c) with
respect to a subgroup of P (c). To define this subgroup, we need the following
definition.

Definition 4.2. Let a ∈ K×. For a cycle c of K, we say that a ≡ 1 (mod× c) if:

(i) For each prime ideal p with positive multiplicity in c0, a lies in the localization
of OK at the prime p. If we denote its unique maximal ideal as mp, then we
must also have

a ≡ 1 (mod m
m(p)
p ).

(ii) For each real absolute value v with positive multiplicity in c, let σv represent
the corresponding embedding from K into R. We then enforce that σv(a) > 0.

An equivalent way to interpret (i) in the preceding definition is as follows. An
element a ∈ K× satisfies (i) if and only if:

• For each prime ideal p with positive multiplicity in c0, ordp(a) = 0.
• a = α/β, where α and β both lie in OK , have order 0 at p, and satisfy
α ≡ β (mod pm(p)).

Using this equivalent definition, we can produce some simple examples for K = Q.
If we have c = 22 · 5, then 23/3 ≡ 1 (mod× c), but 26/6 = 13/3 6≡ 1 (mod× c).

One can check that the subset of K× consisting of elements a such that a ≡
1 (mod× c) is a group, which we will denote by Kc. We then define Pc to be the
group of fractional ideals that are principal, and generated by an element of Kc.
The quotient group I(c)/Pc is called the c-ideal class group.

In the context of class field theory, we wish to study certain quotients of I(c).
While I(c)/Pc is solely dependent on K, we wish to define another quotient of I(c)
that depends also upon a finite extension L of K. For this, we introduce a new
subgroup N(c, L/K). We define N(c, L/K) to be the subgroup of fractional ideals
in I(c) which can be written in the form NL

K(A), where A is a fractional ideal
of L. The quotient group I(c)/PcN(c, L/K) will be of critical importance in the
statement of Artin reciprocity.

The final idea that we need to develop regarding cycles uses the idea of com-
pletions developed in Section 3, and is called admissibility. Let L/K be a finite
extension of number fields, and c a cycle of K. Let v be an absolute value on K.
For an element α ∈ K×v , we can define its residue modulo a cycle locally. That is,
we only consider the v-component vm(v) of c, which we will denote cv. Then, we
have the following definition:

Definition 4.3. Let α ∈ K×v . Then, we say that α ≡ 1 (mod× cv) if one of the
following conditions is met.

(i) The absolute value v corresponds to a prime ideal of K, and

α ≡ 1 (mod m
m(p)
p ),

where mp denotes the maximal ideal of Kv.
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(ii) The absolute value v is real archimedean and α > 0.
(iii) The absolute value v is complex archimedean.

We let Wc(v) be the subgroup of K×v consisting of all α ∈ K×v such that α ≡
1 (mod× cv). The similarity between the two notions of mod× given in Definitions
4.2 and 4.3 can be seen through the following equation:⋂

v∈MK

(
K× ∩Wc(v)

)
= Kc

A cycle c of K is said to be admissible for L/K if for each absolute value v of
K and each absolute value w extending v to L, Wc(v) is contained in the group

of local norms NLw

Kv
L×w . It is a fact that there exists some admissible cycle for all

finite extensions of number fields L/K. As c is made larger, the sets Wc(v) shrink,
meaning that if an admissible cycle divides some other cycle, that other cycle is
admissible too. Thus, there is always a minimal admissible cycle for the extension
L/K, which we will often denote by f.

5. Statement of the Main Theorem

In this section, we let L/K be a finite abelian extension of number fields. Let
G = Gal(L/K). Recall from Section 2 that for any unramified prime p of OK , there
exists a unique element σ ∈ GP ⊂ G such that σ maps to the Frobenius element of

GP, i.e.

(5.1) σ(α) ≡ αNp (mod P), ∀α ∈ OL.

Since L/K is abelian, this element is independent of the prime P above p. We
denote σ by (p, L/K), and call it the Artin symbol of p in G.

We now note that we can extend the Artin symbol to fractional ideals generated
by unramified prime ideals of OK by multiplicativity. Suppose that

a = pr11 · · · prnn ,

for prime ideals p1, . . . , pn unramified in L. Then, we define the Artin symbol of a
to be

(a, L/K) =

n∏
i=1

(pi, L/K)ri .

By Theorem 2.10, the subgroup of fractional ideals generated by unramified prime
ideals of OK is precisely I(d), where d is the discriminant of L/K, and I(d) repre-
sents the subgroup of fractional ideals relatively prime to d. So the Artin symbol
gives us a homomorphism:

ω : I(d)→ G

a 7→ (a, L/K).

Take an arbitrary cycle c divisible by all ramified primes. Then, I(c) ⊂ I(d), so
we can define the Artin map on the group of c-ideals as a restriction of the Artin
map on I(d):

ωc : I(c)→ G

a 7→ (a, L/K).

Now, we are ready to state the law of Artin reciprocity.
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Theorem 5.2. (Artin Reciprocity) There exists some cycle c of K, divisible by all
primes ramified in L, such that:

(1) The Artin map ωc is surjective.
(2) The kernel of the Artin map is precisely PcN(c, L/K).

Alternatively, we can say that the law of Artin reciprocity is the assertion that
there exists some cycle c such that there is a canonical isomorphism

I(c)

PcN(c, L/K)
∼= Gal(L/K).

Before proceeding to a proof, we provide a few remarks about different ways
to interpret Artin reciprocity. Since I(c) is an abelian group, so is the quotient
I(c)/Pc. Therefore, the image of N(c, L/K) under this quotient map is a normal
subgroup, and we have a natural isomorphism

I(c)

PcN(c, L/K)
∼=

I(c)/Pc

N(c, L/K)/Pc
.

Therefore, we can regard I(c)/PcN(c, L/K) as a quotient of I(c)/Pc. This means
that the Artin map induces a surjection from I(c)/Pc onto Gal(L/K). In Section
9, this viewpoint will be especially useful for explicit computations, as it is easier
to compute Pc than N(c, L/K).

6. Surjectivity of the Artin Map

We will begin by proving the easier of the two assertions in Theorem 5.2, the
surjectivity of the Artin map. To start, we state some properties of the Artin
symbol that will be integral to the proofs in this section as well as Sections 7 and
8.

Proposition 6.1.
(i) Let L′/K be a finite abelian extension such that L′ ⊃ L ⊃ K. Suppose a is a

fractional ideal of K whose factorization contains no primes that are ramified
in L′. Then,

resL(a, L′/K) = (a, L/K).

This property is often called consistency.
(ii) Let E/K be an arbitrary finite extension of K. Suppose p is a prime in K

unramified in L, and q is a prime of E lying above p. Then,

resL(q, LE/E) = (p, L/K)f ,

where f is the residue class degree, i.e. f = [OE/q : OK/p].
(iii) Let E be as above. Let b be a fractional ideal of E such that if q is a prime

ideal in its factorization, and q lies above p in K, then p is unramified in L.
Then,

resL(b, LE/E) = (NE
Kb, L/K).

Proof.
(i) Take p to be a prime unramified in L′, and let P′ be a prime in L′ lying

above p. Let σ = (p, L′/K). Then, σα− αNp ∈ P′ for all α ∈ OL′ . For all
α ∈ OL, we have that σα− αNp ∈ OL. Since P′ ∩OL = P for some prime
ideal P of L lying above p, the restriction of σ to L satisfies (5.1), and is
thus the Artin symbol (p, L/K). The result thus holds for all fractional
ideals satisfying the given conditions by multiplicativity.



ARTIN RECIPROCITY 11

(ii) Let σ = (q, LE/E). Select a prime ideal Q of OLE lying above q. Then,
for α ∈ OLE ,

σα ≡ αNq (mod Q).

We also know that Q ∩ OL will be a prime of OL lying above p. Let’s call
this P. So, if α ∈ OL, then

σα ≡ αNq (mod P).

Therefore, σ is the automorphism sending α to αNq. Since Nq = Npf , σ
is the fth power of the Frobenius element. After mapping back into GP,
we get the statement of the proposition.

(iii) This statement is obtained from (ii) by applying the multiplicativity of the
Artin symbol, using the fact that N(q) = pf .

�

We now state two technical lemmas that will help us prove the surjectivity of the
Artin map. These fall outside of the scope of this paper, and are not at all trivial.

Lemma 6.2. Suppose that c is a cycle in K that is divisible by all primes that
ramify in L. Then,

[I(c) : PcN(c, L/K)] ≤ [L : K].

Lemma 6.3. Suppose that L/K is a finite cyclic extension, and c is an admissible
cycle for L/K. Then,

[I(c) : PcN(c, L/K) = [L : K].

Proof. Proofs of these two lemmas can be found in chapters 8 and 9 of [5], respec-
tively. �

This lemma has an important corollary, which is also proved using ideles in [5].

Corollary 6.4. Suppose L/K is a nontrivial finite cyclic field extension. Then,
there are infinitely many prime ideals of K which do not split completely in L.

Now, we can prove the surjectivity of the Artin map.

Theorem 6.5. Suppose that c is a cycle in K that is divisible by all primes that
ramify in L. Then, the Artin map ωc is surjective.

Proof. Let c be a cycle of K divisible by all ramified primes. Let H be the image
of the Artin map ωc. Let E be the fixed field of H, so we have K ⊂ E ⊂ L. By
consistency, we have that for any prime ideal p ∈ I(c),

(p, E/K) = resE(p, L/K) = 1,

since (p, L/K) is an automorphism that fixes E. By the definition of the Artin
symbol, (p, E/K) = 1 if and only if the Galois group of the residue fields is trivial,
that is, the ramification index f of p is equal to 1. Since p is unramified in L and
therefore also in E, this is exactly what it means for p to split completely in E.

Suppose that H 6= G. Then, E 6= K. Since E/K is a nontrivial finite abelian
extension, it is a consequence of the structure theorem for finite abelian groups
that there exists some intermediate field K ⊂ F ⊂ E such that F/K is a nontrivial
cyclic field extension. Because all primes p ∈ I(c) split completely in E, they split
completely in F too. This leaves only finitely many prime ideals which do not split
completely in F , contradicting Corollary 6.4. So H = G, meaning the Artin map
is surjective. �
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Now it remains to prove the second part of Theorem 5.2. That is, we must find
some cycle c such that the kernel of the Artin map ωc from I(c) to Gal(L/K) is
equal to PcN(c, L/K). To do this, we claim that it suffices to find some cycle c,
divisible by all ramified primes, such that Pc ⊂ ker(ωc). Such a cycle is called a
conductor of the Artin map. We now argue why finding a conductor is sufficient to
prove that the kernel of the Artin map is PcN(c, L/K).

Suppose c is a conductor of the Artin map. Then, any element of N(c, L/K) can
be written as NL

K(A) for some fractional ideal A in L. Then, (NL
K(A), L/K) = 1

by Proposition 6.1iii. So N(c, L/K) ⊂ ker(ωfc), and Pc ⊂ ker(ωc) by the definition
of a conductor. So, PcN(c, L/K) ⊂ ker(ωc). Therefore,

[I(c) : ker(ωc)] ≤ [I(c) : PcN(c, L/K)].

By the surjectivity of the Artin map, [I(c) : ker(ωc)] = [L : K]. By Lemma 6.2,
[I(c) : PcN(c, L/K)] ≤ [L : K]. So the inequality must in fact be an equality, and
we must have

PcN(c, L/K) = ker(ωc).

As a note, if c1 and c2 are cycles such that c1 divides c2, and c1 is a conductor,
then c2 is a conductor. This is because Pc2 ⊂ Pc1 , which is contained in the kernel
of the Artin map.

7. The Cyclotomic Case

We first assert the existence of a conductor for cyclotomic extensions of Q. We
begin with a small lemma about cyclotomic extensions.

Lemma 7.1. If p ramifies in Q(ζm), then p | m.

Proof. Let Φ ∈ Z[x] be the minimal polynomial of ζm. Since ζm also satisfies
xm−1 = 0, we have that xm−1 = Φ(x)g(x) for some g ∈ Z[x]. Taking derivatives,
we get

mxm−1 = Φ′(x)g(x) + Φ(x)g′(x).

Plugging in ζm, we get mζm−1m = Φ′(ζm)g(ζm). Now, take the norm of both
sides. Since ζm has absolute value 1, its norm will be one of ±1. Let ∆ =

∆(1, ζm, . . . , ζ
φ(m)−1
m ) be the discriminant of the basis {1, ζ, . . . , ζφ(m)−1}. Using

Proposition 2.8 to relate these norms to the discriminant , we get

N(mζm−1m ) = ±N(m) = ±mφ(m) = N(Φ′(ζm))N(g(ζm)) = ±∆N(g(ζm)).

Thus, the discriminant of Q(ζm)/Q, divides ∆, which divides mφ(m). A prime
ramifies if and only if it divides the discriminant, so only primes that divide m can
ramify in Q(ζm). �

Theorem 7.2. Let K = Q ⊂ L ⊂ Q(ζm) for some m ∈ N. Then, m∞ is a
conductor of the Artin map.

Proof. It suffices to prove the above statement for L = Q(ζm). Suppose c is a con-
ductor for the Artin map on L/K, and L′ is an intermediate field. By consistency,
any fractional ideal in the kernel of the Artin map on L/K is also in the kernel of
the Artin map on L′/K. So we will also have that Pc is contained in the kernel of
the Artin map on L′/K, meaning that c is also a conductor.

The cycle c = m∞ divides all ramified primes by Lemma 7.1. The Artin map
from I(c) to Gal(L/K) is determined by its action on the primes not dividing m. Let
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p be a prime not dividing m. By (5.1), ((p),Q(ζm)/Q) is the Galois automorphism
sending ζm to ζpm. Therefore, ((a),Q(ζm)/Q) = 1 if and only if a ≡ 1 (mod× c).
Note that the positivity of a implied by a ≡ 1 (mod× c) is essential here since our
description of the Artin symbol of (p) is only valid when p is a positive prime. �

Corollary 7.3. Suppose p is an odd prime. Let L = Q(
√
p) and K = Q, and

consider the Artin map for this abelian field extension. Then,

p ≡ 1 (mod 4) =⇒ p∞ is a conductor of the Artin map.

p ≡ 3 (mod 4) =⇒ 4p∞ is a conductor of the Artin map.

Proof. By Gauss sums, one can deduce that i(p−1)/2
√
p ∈ Q(ζp). This approach is

outlined in chapter 6 of [4]. Therefore, if p ≡ 1 (mod 4), then Q(
√
p) ⊂ Q(ζp), and

by Theorem 7.2, p∞ is a conductor of the Artin map. If p ≡ 3 (mod 4), we have
that i

√
p ∈ Q(ζp). Since i ∈ Q(i) = Q(ζ4),

√
p is in the compositum of those fields,

which is Q(ζ4p). So in this case, 4p∞ is a conductor of the Artin map. �

We can extend Theorem 7.2 to arbitrary cyclotomic extensions. That is, we may
consider extensions of an arbitrary number field obtained by adjoining a root of
unity.

Theorem 7.4. Let K ⊂ L ⊂ K(ζm) for some m ∈ N. Then, there exists a
conductor of the Artin map divisible only by primes p which divide m and real
archimedean absolute values.

Proof. By the same argument as before, it suffices to take L = K(ζm). Suppose
m = pa11 · · · p

a`
` . For each pi, let pj be a prime ideal of K lying above pi. By

Proposition 3.3, the continuity of local norms, there exists some integer r such that

α ∈ 1 + mrpj
implies that N

Kpj

Qpi
α ∈ 1 + maipi . If α ∈ K, the former condition is

equivalent to saying that α ≡ 1 (mod× prj). This implies that all of the local norms
are contained within 1 + maipi . Since the product of the local norms is the global
norm N from K to Q by Proposition 3.2, we also have the containment

Nα ∈
(
1 + maipi

)
∩Q.

Therefore, Nα ≡ 1 (mod×paii ). Applying this to all primes pi, we can find some

cycle c′ such that α ≡ 1 (mod× c′) implies Nα ≡ 1 (mod×m). Let c be the product
of c′ with all real archimedean values on K. Then, if α ≡ 1 (mod× c), the norm
Nα will be positive.

Now, by consistency, we have that for such α,

resQ(ζm)((α), L/K) = (NK
Q (α),Q(ζm)/Q) = 1.

So Pc ⊂ kerωc, and thus c is a conductor of the Artin map. �

8. The General Case

We are now ready to prove the general theorem of Artin reciprocity. We follow
the approach of chapter 10 in [5], providing some extra details and commentary
where desired. As the first step of our proof, we present the following lemma.

Lemma 8.1. Suppose K is a number field, L/K is a finite cyclic extension, and
S is a finite set of prime numbers. Let p be a prime ideal of K unramified in L.
Then there exists an integer m relatively prime to S and a finite extension E/K
such that:
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(i) L ∩ E = K.
(ii) L(ζm) = E(ζm) and L ∩K(ζm) = K.

(iii) p splits completely in E.
(iv) There exists an automorphism τ ∈ Gal(K(ζm)/K), such that τ and (p,K(ζm)/K)

generate cyclic subgroups of Gal(K(ζm)/K) with trivial intersection.

In this lemma, m can be chosen such that it is only divisible by arbitrarily large
primes.

Proof. To prove this lemma, one essentially “translates” a statement about modular
arithmetic to one about cyclotomic extensions. This process is explained in full in
section 2 of chapter 10 in [5]. �

To construct a conductor, we will recursively apply Lemma 8.1 to a finite set of
prime ideals p1, . . . , pr of K. By the lemma, there exist fields Ei with associated
integers mi for each i. Recall that from Lemma 8.1, we can take the primes in the
factorization of mi to be arbitrarily large. By doing this, we can choose mi that are
all relatively prime. We can also ensure that L(ζm1

, . . . , ζmi−1
) ∩ Q(ζmi

) = Q for
all i. We let E be the compositum of all of the fields Ei. Then, L(ζm1 , . . . , ζmr ) =
E(ζm1 , . . . , ζmr ). Let G denote the Galois group of L/K, and Gi denote the Galois
group of Q(ζmi

)/Q. The Galois group of L(ζm1
, . . . , ζmr

)/K is thus isomorphic to

G×G1 × · · · ×Gr.
From the proof of Lemma 8.1, each field Ei is the fixed field of the subgroup

(8.2) Hi ×G1 × · · · ×Gi−1 ×Gi+1 × · · · ×Gr.
Here, Hi is a subgroup of G×Gi. To describe Hi, let σ be an some fixed generator
of G, and τi be the automorphism from Lemma 8.1 that generates a cyclic subgroup
of Gal(K(ζmi

)/K). Then, Hi is the subgroup of G×Gi generated by (pi, L/K)×
(pi,K(ζmi

)/K) and σ × τi. To illustrate everything we have done so far, we have
the following field extension diagram.

L(ζm1
, . . . , ζmr

) = E(ζm1
, . . . , ζmr

)

L(ζmi) = E(ζmi) LE

LEi E

L Ei

K

Now, I claim that Gal(LE/E) ∼= Gal(L/K). In fact, this isomorphism is given
by restriction to L. This is true if and only if L ∩ E = K. E is the fixed field
of the intersection of the subgroups in (8.2). Therefore, σ × τ1 × · · · × τr fixes E.
The fixed field of L is 1 × G1 × · · · × Gr, so 1 × τ1 × · · · × τr fixes L. Thus, both
automorphisms fix L ∩ E, meaning that the automorphism σ × 1 × · · · × 1 fixes
L∩E. We can self-compose this automorphism and multiply by an automorphism
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that fixes L to get an arbitrary element of G×G1×· · ·×Gr, all of which fix L∩E.
Therefore, we must have L ∩ E = K.

Theorem 8.3. Let L/K be a finite cyclic extension. Then, if c is an admissible
cycle for L/K, then c is a conductor of the Artin map for L/K.

Proof. Following our discussion from Section 6, c is a conductor if and only if
ker(ωc) = PcN(c, L/K). In the cyclic case, it is easier to prove the latter condition.
Later, we will use the definition of a conductor to extend this theorem to arbitrary
finite abelian extensions.

We first note that it suffices to prove that ker(ωc) ⊂ PcN(c, L/K). Since we are
in the cyclic case, Lemma 6.3 gives that

[I(c) : PcN(c, L/K)] = [L : K],

and the surjectivity of the Artin map, Theorem 6.5, gives that

[I(c) : ker(ωc)] = [L : K],

meaning that ker(ωc) = PcN(c, L/K), as desired.
Additionally, it is sufficient to prove the statement of our theorem for the minimal

admissible cycle f, which follows from the discussion in the last paragraph of Section
6.

Let f be the minimal admissible cycle for L/K, and consider a fractional ideal
a ∈ I(f) that is in the kernel of the Artin map, i.e. (a, L/K) = 1. We may write a
as a product of prime ideals in K:

a =

r∏
i

paii .

As described earlier, we construct fields Ei, corresponding to roots of unity ζmi ,
satisfying Lemma 8.1 for each prime pi in the factorization of a. Let E be the
compositum of the Ei.

Let σ be a generator of Gal(L/K). For each prime pi, we must have that

(paii , L/K) = σdi ,

for some 0 ≤ di < # Gal(L/K).
Recall that Gal(LE/E) ∼= Gal(L/K). By Theorem 6.5, we can select a fractional

ideal bE of E that is relatively prime to f and all the mi, such that

(bE , LE/E) = σ.

Using Proposition 6.1iii, if we let bK = NE
KbE , then we have that

(bK , L/K) = σ.

We now note that pi is a norm from Ei to K, since pi splits completely in Ei by
8.1, and is thus the image of any prime lying above pi via the norm map. bK is a
norm from Ei to K, since the norm map is transitive, meaning that

bK = NE
KbE = NEi

K (NE
Ei
bE).

By the multiplicativity of the norm, the fractional ideal paii b−diK is a norm from

Ei to K. We write this as paii b−diK = NEi

K A, for a fractional ideal Ai in Ei. By

the multiplicativity of the Artin symbol, we can deduce that (paii b−diK , L/K) = 1.
Proposition 6.1iii, along with the fact that Gal(LEi/Ei) ∼= Gal(L/K) via restriction
to L, implies that (Ai, LEi/Ei) = 1.
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Notice that LEi ⊂ Ei(ζmi
) by Lemma 8.1, so we can apply 7.4 to find a conductor

ci of the extension. Note that we may take ci highly divisible by the factors of f
and all integers mi. Then, we have that

Ai = (βi)N
LEi

Ei
Bi,

where βi ≡ 1 (mod× ci), and Bi is a fractional ideal in LEi prime to ci. If we apply
the norm from Ei to K and use the continuity of norms, we get

paii b−diK = (NEi

K βi)N
Ei

K NLEi

Ei
Bi = (NEi

K βi)N
L
KN

LEi

L Bi.

By the continuity of local norms, taking ci to be large enough ensures that NEi

K βi ≡
1 (mod× f). Taking the product of the above equation for all i gives

(8.4) ab
−

∑
di

K =
(∏

NEi

K βi

)
NL
K

(∏
NLEi

L Bi

)
.

Our initial hypothesis tells us that
∏

(paii , L/K) = σ
∑
di = 1. Therefore [L : K]

divides
∑
di, as σ is a generator of a cyclic group of order [L : K]. Let n = [L : K],

and take a prime ideal p of K. The ideal pdn is a norm from L to K for any
integer by the following argument. Take a prime ideal P of L lying above p. By
2.5, NL

KP = pf , where f divides n. Therefore, there exists some integer j = dn/f
such that the norm of Pj is equal to pdn. Applying multiplicativity, any nth power

of a fractional ideal in K is a norm from L to K. Thus, b
∑
di

K ∈ N(f, L/K), and
multiplying this to both sides of (8.4) shows that a ∈ PfN(f, L/K). We now have
our desired containment, and we are done. �

Corollary 8.5. Let L/K be a finite abelian extension of number fields. Then, if c
is an admissible cycle for L/K, it is a conductor of the Artin map for L/K.

Proof. Using Galois theory, we can associate intermediate fields of L/K with sub-
groups of G = Gal(L/K). Due to the structure theorem, a finite abelian group is
the direct product of finitely many finite cyclic groups. We can thus take finitely
many subgroups of G, call them Hi, such that G/Hi is cyclic and the intersection
of the Hi is 1. These correspond to intermediate fields Fi which have compositum
L. An element of Gal(L/K) is equal to 1 if and only if its restriction to each of the
Fi is 1.

Let f be the minimal admissible cycle of L/K. By Theorem 8.3, any admissible
cycle of Fi/K is a conductor for the Artin map for Fi/K. Since f is an admissible
cycle for L/K, it is also an admissible cycle for all of the Fi/K, since taking a smaller
field extension results in a larger group of norms. Therefore, f is a conductor for
the Artin maps on each Fi/K, meaning that Pf is contained in the kernel of each
Artin map. This means that Pf is also contained in the kernel of the Artin map for
L/K. Therefore, f is a conductor of the Artin map for L/K. �

9. Quadratic Reciprocity

As mentioned in the introduction to this paper, one of the motivations to study
Artin reciprocity is to generalize many classical reciprocity laws, including quadratic
reciprocity. In this section, I will explain how quadratic reciprocity arises as a
consequence of Artin reciprocity. To formulate the standard statement of quadratic
reciprocity, we need the following definition of the Legendre symbol.
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Definition 9.1. Let p be a prime and a ∈ Z such that p - a. The Legendre symbol
is given by (

a

p

)
=

{
1, if x2 ≡ a (mod p) has a solution

−1, if x2 ≡ a (mod p) has no solution.

The statement of quadratic reciprocity is as follows:

Theorem 9.2. Let p and q be distinct odd primes. Then,(
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

Although there are many more elementary ways to prove quadratic reciprocity
(an exercise in [4] jokingly asks the reader to count the proofs of the theorem
stated in the textbook before coming up with a new proof), we will prove it as a
consequence of Artin reciprocity.

We first state a useful theorem by Dedekind and Kummer that we will use to
rephrase quadratic reciprocity in terms of the splitting of prime ideals in quadratic
extensions of Q.

Theorem 9.3. Let K = Q(α) be a number field, where α ∈ OK . Let f ∈ Z[x] be the
minimal polynomial of α. Then, for any prime p that does not divide [OK : Z[α]],
we let f denote the reduction of f mod p, which is a polynomial in Fp[T ]. Suppose

that f factors as

f(T ) = π1(T )e1 · · ·πg(T )eg ,

where the πi are distinct monic irreducibles in Fp[T ]. Then, pOK factors into prime
ideals in OK as

pOK = pe11 · · · pegg ,
where the pi are all distinct. Furthermore, for all i, fi = [(OK/pi) : Z/p] = deg(πi).

Proof. A proof this theorem is tangential to the focus of this paper, so I will not
provide one here. An excellent proof is provided in [1]. �

.

Corollary 9.4. Let p and q be distinct primes. p is a square mod q if and only if
q splits completely in K = Q(

√
p).

Proof. Since K is a quadratic extension of Q, we have an explicit description of
OK , which is proved in [4]:

OK =

{
Z[
√
p], p ≡ 2, 3 (mod 4)

Z
[
1+
√
p

2

]
, p ≡ 1 (mod 4).

In the first case, [OK : Z[
√
p]] = 1, and in the second, [OK : Z[

√
p]] = 2. Since q

is an odd prime, Theorem 9.3 applies with α =
√
p and f(T ) = T 2 − p. So q splits

completely in K if and only if f factors as the product of two linear polynomials
mod q. This is equivalent to p being a square mod q. �

Now, we can prove Theorem 9.2 using Artin Reciprocity.
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Proof. Let p∗ = (−1)(p−1)/2p. Then, p∗ ≡ 1 (mod 4). By Corollary 9.4, p∗ is
a square mod q if and only if q splits completely in L = Q(

√
p∗). Additionally,

Q(
√
p∗) ⊂ Q(ζp), and this can be proved using Gauss sums. This is shown in

Proposition 6.3.2 of [4]. Therefore, as a consequence of Lemma 7.1, q does not
ramify in L, so we can use the Artin symbol.

Now, note that the Artin symbol (q,Q(
√
p∗)/Q) = 1 if and only if the Frobenius

of the residue class field extension is the identity, which occurs when the residue
class degree is equal to 1. Since q does not ramify in Q(

√
p∗), this is equivalent to

q splitting completely in Q(
√
p∗).

By Theorem 7.2, p∞ is a conductor for L/Q. By Artin reciprocity, Pp∞ is
contained in the kernel of the Artin map, and thus

I(p∞)

Pp∞
∼=
(

Z
pZ

)×
� Gal(Q(

√
p∗)/Q) ∼= {±1}.

Note that the representatives of I(p∞)
Pp∞

∼=
( Z
pZ
)×

are simply the ideals (a) with a ∈ Z
and 1 ≤ a ≤ p− 1.

So q being in the kernel of the Artin map is equivalent to q (thought of as an
element of (Z/pZ)×) mapping to 1 ∈ Gal(K/Q). But there is only one surjection
from (Z/pZ)× to {±1}, namely the one that sends the squares to 1 and non-squares
to −1. Therefore, p∗ is a square mod q if and only if q is a square mod p. That is,(

p∗

q

)
=

(
q

p

)
.

Using the fact that
(−1
q

)
= (−1)(q−1)/2 and the multiplicativity of the Legendre

symbol, (
p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.

�
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