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Abstract. We demonstrate the viability of using category theory to explore

the foundations of quantum theory. To do so, we use category theory to

prove Bell’s theorem, which asserts that quantum mechanics does not admit
a refinement as a local hidden variables theory. Assuming no knowledge of

category theory or quantum theory, we work from basic categorical notions

to construct a category of quantum processes. Using this construction, we
prove that quantum processes are non-signaling. Finally, we use a thought

experiment to give a non-probabilistic proof of Bell’s theorem and discuss the

possible mathematical origins of non-locality.
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1. Introduction

Applied category theory is an emerging field that uses the abstract tools of
category theory to model real-world phenomena. Categorical quantum mechanics—
a sub-field of applied category theory—has yielded substantial results in the theories
of quantum computing and quantum foundations.

We demonstrate the promise of using categorical quantum mechanics to investi-
gate the foundations of quantum theory by proving and analyzing Bell’s theorem.
Bell’s theorem places a restriction on using hidden variables theories to refine quan-
tum mechanics. A hidden variables theory is a theory that replicates the results
of quantum mechanics and is realistic, which means that the results of measure-
ments are stored by variables that exist regardless of whether or not measurements
occur. As we will see, quantum mechanics is not a realistic theory, but it can be
refined into a hidden variables theory that is realistic. Bell’s theorem shows that
such a hidden variables theory must be non-local, which means that it allows for
the instantaneous transfer of information—a contradiction of special relativity.

In Section 2, we construct a category of quantum processes by defining †-
hypergraph categories and then specifying some “quantum” structure. In Section 3,
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2 AJ DEROSA

we discuss causal structures and prove that quantum processes are non-signaling;
then, we consider parity calculations for a GHZ-Mermin thought experiment to
derive a contradiction between categorical quantum mechanics and local hidden
variables theories. In Section 4, we conclude with a brief discussion of the mean-
ing of Bell’s theorem and avenues of further exploration using categorical quantum
mechanics.

2. Categorical quantum mechanics

Broadly, our aim is to construct a theory of processes. The most basic thing we
should be able to model with such a theory is performing one process after another.
That is, we want to compose processes. An emphasis on composition is inherent in
category theory, so we begin there.

Definition 2.1. A category C consists of a collection of objects ob(C) = {A,B,C, ...}
and a collection of morphisms f, g, h, .... A morphism f : A → B maps object A
to object B. And for every object A, there is an identity morphism 1A : A → A.
For morphisms f : A → B, g : B → C, there exists the composite morphism
gf : A→ C. (Read “g following f.”) Composition is subject to two axioms:

(1) Unitality : For any morphism f : A→ B,

1Bf = f = f1A.

(2) Associativity : For any morphisms f : A→ B, g : B → C, h : C → D,

(hg)f = h(gf) =: hgf.

We denote categorical notions with wire diagrams. Morphisms are denoted as
boxes, and objects are denoted as wires going into and out of boxes. In this paper,
we read diagrams from bottom to top, so f : A→ B is denoted as follows.

(2.2) f

A

B

:= f : A→ B

Given f : A→ B and g : B → C, we denote the composite morphism gf : A→ C
by connecting boxes as follows. And an identity morphism is just a plain wire.

(2.3)

f

g

A

C

:= gf : A→ C

A

:= 1A : A→ A

Another basic thing we should be able to model is performing two processes “at
the same time.” For this, we need a particular type of category, for which we need
the following two preliminary notions.

Definition 2.4. A functor F : C → D is a map between categories C,D. A functor
consists of an object F (C) ∈ ob(D) for every object C ∈ ob(C) and a morphism
F (f) : F (C) → F (C ′) in D for every morphism f : C → C ′ in C. Functors are
subject to two axioms:
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(1) Distributivity over composition: For all f, g in C such that there exists gf
in C, we have F (g)F (f) = F (gf).

(2) Identities map to identities: For all C ∈ ob(C), we have F (1C) = 1F (C).

Definition 2.5. Given categories C,D, there exists a product category C × D. For
every pair of objects C ∈ ob(C), D ∈ ob(D), there is an object (C,D) ∈ ob(C × D).
For every pair of morphisms f : C → C ′ in C, g : D → D′ in D, there is a morphism
(f, g) : (C,D) → (C ′, D′) in C × D.

Now we can define the category we need.

Definition 2.6. A symmetric monoidal category (C, I,⊗) consists of a category C,
unit object I, and functor ⊗ : C ×C → C subject to the following conditions. (Note
we use infix notation to refer to the functor, so ⊗ maps the object (A,B) to the
object denoted A⊗B.)

(1) Unitality : For all A ∈ ob(C), there exists an isomorphism λA : I ⊗ A ∼= A.
Similarly, there exists an isomorphism ρA : A⊗ I ∼= A.

(2) Associativity : For all A,B,C ∈ ob(C), there exists an isomorphism αA,B,C :
(A⊗B)⊗ C ∼= A⊗ (B ⊗ C).

(3) Symmetry : For every A,B ∈ ob(C), there exists an isomorphism σA,B :
A⊗B ∼= B ⊗A.

In the case of a strict symmetric monoidal category, the isomorphisms are equalities.

And similarly for morphisms. To denote morphisms f ⊗ g, we draw the boxes
in parallel or as one composite box. Similarly, objects A ⊗ C are denoted as two
parallel wires or one composite wire.

(2.7) f g

B

A

D

C

= f ⊗ g

A

B

C

D

= f ⊗ g

A⊗ C

B ⊗D

The unit object is the empty diagram.

Finally, symmetry lets us swap objects, which we denote as swapping wires.

A

A

B

B

This is a fairly vanilla category of processes. To make things quantum, we’ll need
a way to consider entanglement, for which we’ll need non-⊗-separable morphisms.
These come with a compact closed category.

Definition 2.8. Given symmetric monoidal category (C, I,⊗) and object A ∈
ob(C), a dual of A consists of an object A∗ ∈ ob(C), a unit morphism ηA : I →
A∗ ⊗A, and a counit morphism ϵA : A⊗A∗ → I such that the following diagrams
commute.

(2.9)

A⊗ I

A⊗A∗ ⊗A I ⊗A

1A⊗ηA
1A

ϵA⊗1A

I ⊗A∗

A∗ ⊗A⊗A∗ A∗ ⊗ I

ηA⊗1A∗
1A∗

1A∗⊗ϵA
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C is a compact closed category if it contains a dual object A∗ for every object A ∈ C.
Objects are self-dual if A∗ = A.

We denote the unit and counit as a cup and cap, respectively.

:= η := ϵ

Thus, (2.9) is equivalent to the following identity.

(2.10) = =

The next basic thing we ask from our theory is that we can “undo” processes.
For this, we need a dagger, for which we require a preliminary definition.

Definition 2.11. Given a category C, there exists an opposite category Cop, which
satisfies ob(Cop) = ob(C), and for all morphisms f : A → B in C, there exists a
morphism fop : B → A in Cop.

Definition 2.12. A †-category (read as “dagger category”) (C, †) consists of a
category C and a functor † : C → Cop such that † maps a morphism f : A → B in
C to f† : B → A in Cop. † is subject to two axioms.

(1) Identity on objects: A† = A.
(2) Involution on morphisms: (f†)† = f .

Given a morphism f : A → B, we denote f† as a vertically reflected box. (Addi-
tionally, we refer to f† as the adjoint of f .)

f†

A

B

:= f

A

B

Remark 2.13. f† : B → A does not necessarily “undo” f : A → B in the sense
that it is not necessarily the case that f†f = 1A. When this is the case, we say
that f is an isometry. If it is also the case that ff† = 1B , we say that f is unitary.

Definition 2.14. A †-compact closed category (C, I,⊗, †) consists of a compact
closed category (C, I,⊗) and a functor † that satisfy the following compatibility
conditions.

(1) Distributivity over monoidal functor : (f ⊗ g)† = f† ⊗ g†.

(2) Dagger of counit is dual unit : ϵ†A = ηA∗ .

We now add some structure to our objects, which essentially ensures that “copy-
ing” and “deleting” data follow intuitive rules.

Definition 2.15. A †-special commutative Frobenius algebra (†-SCFA) (A,µ, η, δ, ϵ)
consists of an object A, multiplication µ : A⊗ A → A, unit η : I → A, comultipli-
cation δ : A→ A⊗A, and counit ϵ : A→ I that satisfy the following axioms.

(1) Associativity : µ(µ⊗ 1) = µ(1⊗ µ).
(2) Unitality : µ(η ⊗ 1) = 1 = µ(1⊗ η).
(3) Coassociativity : (δ ⊗ 1)δ = (1⊗ δ)δ.
(4) Counitality : (ϵ⊗ 1)δ = 1 = (1⊗ ϵ)δ.
(5) Frobenius law : (1⊗ µ)(δ ⊗ 1) = δµ = (µ⊗ 1)(1⊗ δ).
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(6) Commutativity : compatible with symmetry.
(7) Special law : µδ = 1.

In our wire diagrams, we denote these morphisms as follows.

(µ, η, δ, ϵ) =

(
, , ,

)
In diagram form, the axioms of a †-SCFA are as follows.

(1)

=

(2)

= =

(3)

=

(4)

= =

(5)

= =

(6)

=

(7)

=

We can now replace wire diagrams with the far-more-interesting spider diagrams.

Definition 2.16. Given a Frobenius algebra (A,µ, η, δ, ϵ) where A is in a sym-
metric monoidal category (C, I,⊗), a spider #n

m : A⊗m → A⊗n is defined to be
the morphism given by applying µ composed with itself (m− 1) times followed by
applying δ composed with itself (n − 1) times. We denote this as a node with m
input wires and n output wires.

m
{ }

n

We use this notation because it does not actually matter how we compose various
instances of µ, η, δ, ϵ to create a morphism. All that matters is the number of inputs
and outputs. We formalize this with the following theorem.

Theorem 2.17. Fix a Frobenius algebra (A,µ, η, δ, ϵ) in a symmetric monoidal
category (C, I,⊗). Suppose we have the morphism f : A⊗m → A⊗n constructed
only from µ, η, δ, ϵ using composition and the monoidal functor ⊗ and containing
only one connected component. Then, f = #n

m.

Replacing all wires with spiders, we end up with a useful type of category.
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Definition 2.18. A †-hypergraph category consists of a †-symmetric monoidal cat-
egory (C, I,⊗, †) such that every object A ∈ ob(C) is equipped with a Frobenius
algebra along with certain compatibility conditions.

Recall the cups and caps from Definition 2.8. We define them for a hypergraph
category as follows.

(2.19) := :=

We just need to check that they satisfy (2.10).

Theorem 2.20. A hypergraph category with self-dual objects and units and counits
defined as in 2.19 is compact closed.

Proof.

(2.19)
=

(2.17)
=

(2.17)
=

(2.19)
=

□

But what use is this sort of category for quantum theory? Quantum processes
are traditionally represented as matrices, and what do matrices have to do with
†-hypergraph categories? It turns out that Mat(C)—the category whose objects
are natural numbers and whose morphisms M : m → n are n ×m matrices—is a
†-hypergraph category1.

With the next two definitions, we generalize notions that typically pertain to
matrices.

Definition 2.21. We define a transpose functor T : C → C. T is the identity on
objects. And given a morphism f : A → B, the transpose fT : B → A is defined
as follows, and its box is denoted as a 180◦ rotation of f .

fT

A

B

:= f

A

B

:= f
A

B

Definition 2.22. We define a conjugate functor ∗ : C → C. ∗ is the composite
functor †T . Thus, it is the identity on objects and maps morphisms to their adjoint
transpose. We denote the box for conjugate morphisms as a horizontal reflection
of f .

f∗

B

A

:=

 f

A

B


†

= f

B

A

1We will not get into the details of this fact here, but we refer the interested reader to [2].
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And we can generalize a few more notions from the standard formalism of quan-
tum mechanics.

Definition 2.23. A state ψ : I → A is a morphism from the unit object. Similarly,
an effect π : A → I is a morphism to the unit object. A scalar λ : I → I is a
morphism from the unit object to itself. We have the following notations.

ψ π λ

Remark 2.24. The Born rule of quantum mechanics typically states that the
probability of an effect π given a state ψ is given by the inner product ⟨π | ψ⟩. We
have a different way of getting a scalar from a state and effect: composition.2

P (π | ψ) =

ψ

π

Definition 2.25. A basis B = {ψi : I → A}i is a set of states such that for any
morphisms f, g : A → B, if for all ψi ∈ B we have that fψi = gψi, then f = g and
vice versa. That is,∀ψi ∈ B

f

ψi

=

g

ψi

 ⇐⇒

 f = g



We say a basis with |B| = D has dimension D.

Definition 2.26. Given objects A,B, a zero morphism is a morphism 0AB : A→ B
such that for any morphism f : A→ B,

0BBf = f0AA = 0AB 0CD ⊗ f = 0(C⊗A)(D⊗B)

We use zero morphisms to model impossible processes. Intuitively, if any con-
stituent of a process is not possible, then the whole process is not possible. This is
consistent with the above definition: if a diagram contains a single zero morphism,
the entire diagram is a zero morphism. We may omit the subscript on zero mor-
phisms, understanding the (co)domain from context. Thinking of zero morphisms
as the analogue of the number 0 and the unit morphism as the analogue of the
number 1, we have an intuitive definition of orthonormal bases.

Definition 2.27. A basis is orthonormal if for all ψi, ψj ∈ B,

ψ†
jψi =

{
I if i = j

0 else
.

2This yields a probability for quantum processes (which we haven’t defined yet) but not in
general.
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That is,

ψj

ψi

=

{
I if i = j

0 else
.

Definition 2.28. A category enriched in commutative monoids consists of a cate-
gory C and for every pair of objects A,B a zero morphism 0AB and a commutative
monoid (C(A,B),+, 0)3 that is compatible with composition. That is, for mor-
phisms f, g, h : A → B, j : B → C, and k : D → A the following properties are
satisfied.

(1) Associativity : (f + g) + h = f + (g + h)
(2) Commutativity : f + g = g + f
(3) Unitality : f + 0 = f = 0 + f
(4) Zero property : 0f = 0 = g0
(5) Left distributivity : j(f + g) = (jf) + (jg)
(6) Right distributivity : (g + f)k = (gk) + (hk)

This structure enables us to take sums of morphisms. We can then define prob-
abilistic processes as sums of morphisms.

(2.29) f =

n∑
i=1

pi fi := (p1 ⊗ f1) + (p2 ⊗ f2) + · · ·+ (pn ⊗ fn)

Remark 2.30. As is unavoidable in quantum mechanics, we will deal with prob-
abilities throughout this paper. However, our main proof will not be probabilistic,
so we are content to omit the scalars pi and prove things up to a scalar. To denote
equality up to a scalar, we use ≡.

From the distributivity properties in Definition 2.28, we deduce that sums dis-
tribute over a diagram. That is, if a diagram contains at least one probabilistic
process, then the entire diagram is probabilistic.

Example 2.31.

n∑
i=1

fi g

j

h

( ) =

n∑
i=1


fi g

j

h


It’s certainly a nice bonus that this structure gives us a notion of probabilistic

processes—especially since they are a central part of quantum mechanics. But we
introduced the idea of a zero process to define orthonormal bases (ONBs). Recall
that in a †-hypergraph category, every object is equipped with a †-SCFA; it turns
out that there is a sort of equivalence between ONBs and †-SCFAs.

3The notation C(A,B) denotes the set of morphisms A → B.
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Theorem 2.32. For any †-SCFA, the set of states {ψi}i such that

ψi

=

ψi ψi

is an ONB; every †-SCFA uniquely determines and is uniquely determined by an
ONB.

A sketch of the proof is given in [2].
This means we can define the constituents of an †-SCFA in terms of an ONB.

Suppose we have an ONB B = {ψi}i. Then, we define the associated †-SCFA as
follows.

:=
∑
i

 ψi ψi

ψi


:=

∑
i


ψi ψi

ψi



:=
∑
i

 ψi

 :=
∑
i

 ψi



(2.33)

This relationship between †-SCFAs and ONBs is key in categorical quantum
mechanics. We will use it to introduce the following quantum notions: phase,
complementarity, and measurement. First, however, we make things more concrete,
fixing dimension D = 2 and defining some bases. (Note we refer to two-dimensional
quantum systems as qubits.) We have the Z basis, denoted in green, for qubits.

(2.34) Z =

 0
,

1


In terms of Z, we define the X basis, denoted in red.

(2.35)
0

:=
1√
2

 +
0 1


1

:=
1√
2

 −
0 1


Thus, we have the following for Z basis state i.

(2.36)
0

i
=

0

i
=

1√
2

1

i
=

1

i
= (−1)i

1√
2

Definition 2.37. The Bloch sphere—a cross-section of which is shown below—is
a geometric representation of the possible states of a qubit, in which each ONB is
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represented as an axis.

0

1

0 1

Definition 2.38. A phase α : I → A is a special kind of state. One way to think
about a phase is as a rotation about an axis of the Bloch sphere. Thus, the phases
about any particular axis are isomorphic to the circle group U(1). We define phase
spiders (spiders that induce a phase on objects) with this group structure in mind.
The group identity is a phase of 0.

(2.39)

0

:=

The group sum is defined as follows (mod 2π).

(2.40)

α β

:=

α+ β

Remark 2.41. Using the Bloch sphere, we see that a phase of π about the X-axis
maps the 0 state of the Z basis to the 1 state of the Z basis. Thus, we have the
following facts4.

(2.42)
0

≡
0 π

≡
1

The Z and X bases are an example of a pair of bases with a special relation-
ship. We classify pairs of ONBs as coherent and/or complementary. (The following
definitions are general; red and green do not necessarily refer the Z and X bases.)

Definition 2.43. A pair of ONBs is coherent if

(2.44) = = =

4We elide a full treatment of where these facts come from and again refer the interested reader
to [2].
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Definition 2.45. A pair of ONBs is complementary if

S = where S =

Definition 2.46. A pair of ONBs is strongly complementary if it is coherent and

(2.47) =

Example 2.48. The Z and X bases are strongly complementary. A proof follows
directly from Definition 2.46 and (2.35).

Theorem 2.49. Strongly complementary ONBs are complementary.

Proof.

S =
(2.17)
=

(2.47)
=

(2.44)
≡

□

Definitions 2.43, 2.45, and 2.46 along with Theorem 2.49 indicate that strongly
complementary ONBs form a scaled Hopf algebra. As discussed in Remark 2.30,
we can omit the scalars and just work with the Hopf algebra equations.

Finally, we distinguish between quantum and classical processes.

Definition 2.50. A quantum process Φ : X → Y is a completely positive map.
That is, for some objects A,B,C such that X = A ⊗ A, Y = C ⊗ C and some
morphism f : A→ B ⊗ C, we have the following.

Φ

Y

X

= f f

B

CC

A A

Accordingly, we represent all things quantum with doubled (bold) lines and all
things classical with single lines.
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Definition 2.51. A measurement is a map from a quantum wire to a classical
wire. Measurement in some ONB is defined as µ in the associated †-SCFA.

:=

Quantum processes satisfy an additional property: if we “discard” the outputs of
a process, it is the same as discarding the inputs. We call such a property causality.
We can formalize this property. Recall that every object A comes equipped with a
counit ϵ : A→ I. Thus, I is termed a terminal object. We model a discard process
as a morphism to a terminal object. Then, we can formulate causality as follows.

Property 2.52. Let !A : A→ I denote the unique morphism from an object A to
terminal object I. A morphism f : A→ B is causal if !Bf =!A

At last, we bring everything we have discussed together:

Definition 2.53. We specify the category of quantum processes qm as follows.

(1) qm is a †-hypergraph c.
(a) (qm, I,⊗) is a symmetric monoidal category equipped with a dagger

functor † : qm → qmop. (See Definitions 2.6 and 2.12.)
(b) Every object is equipped with a †-SCFA. (See Definition 2.15.)

(2) Objects in qm are self-dual; cups and caps are defined as in (2.19). By
Theorem 2.20, qm is compact closed.

(3) The set of morphisms consists of completely positive maps between objects
(including morphisms comprising †-SCFAs). (See Definition 2.50.)

(4) qm is enriched in commutative monoids. (See Definition 2.28.)
(5) For any †-SCFA, there is an associated phase group. (See Definition 2.38.)
(6) All morphisms satisfy Property 2.52.

3. Bell’s theorem

In this section, we prove the following statement of Bell’s theorem.

Theorem 3.1. If a hidden variables theory is local, then it is inconsistent with
quantum mechanics.

Let’s break down what this means. A hidden variable theory is a realistic refine-
ment of quantum mechanics. By “realistic,” we mean that the results of measure-
ments are stored by variables that exist whether or not a measurement is performed.
Locality refers to the consequence of special relativity that there is a maximum speed
of information, so for some events A,B, there is no causal relationship A→ B.

If quantum mechanics enabled communication between such events A and B
(a phenomenon known as signaling), then Bell’s theorem does not really give us
any new or surprising information. So first, we prove that quantum mechanics is
non-signaling. To do so, we represent a causal structure as a directed graph, where
vertices are events and an arrow A→ B indicates that A can affect B. We take the
transitive closure of the graph because if A affects B and B affects C, we have that
A affects C. Moreover, it must be that if A → B, then there is no arrow B → A.
Thus, a causal structure is a transitive directed acylic graph.
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Theorem 3.2. If a symmetric monoidal category C has a terminal object T such
that it satisfies Property 2.52, then it is non-signaling.

Proof. We fix an arbitrary causal structure (arbitrary transitive directed acyclic
graph). We then fix vertices A,B such that there does not exist an arrow A→ B.
A and B have an arbitrary shared history, vertices C such that there exist arrows
C → A and C → B; an arbitrary shared future, vertices D such that there exist
arrows A → D and B → D; and possibly an arrow B → A. We take the induced
subgraph containing A and B as well as their shared history and shared future. We
place arbitrary5 morphisms in C at the vertices of this subgraph.

A B

. . .

. . .

=⇒ fAA fB B

g1 g2 gm. . .

h1 h2 hn. . .

A causal arrow between morphisms means we can connect outputs to inputs to
form the following wire diagram.

fA fB

g1 g2 gm. . .

h1 h2 hn. . .

= (∗)

Let h = h1 ⊗ h2 ⊗ · · · ⊗ hn, and let g = g1 ⊗ g2 ⊗ · · · ⊗ gm. Then,

(∗) = fA fB

g

h

We now calculate what the output of fB should be. We discard the outputs of h
and fA since they are not connected to fB . Then, we apply Property 2.52 twice.

5Not entirely arbitrary—we require that they allow for the composition that comes next.
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(Here, we denote a discard process !A : A→ T as a horizontal line.)

fA fB

g

h

(2.52)
= fA fB

g

(2.52)
= fB

g

Thus, the output of fB is not a function of the existence of fA, so we conclude that
C is non-signaling. □

Corollary 3.3. qm is non-signaling.

With that fact established, we have an interest in proving Bell’s theorem. After
all, if quantum mechanics was signaling and allowed information to be transmitted
faster than the speed of light, it would seem obvious that any theory seeking to
reproduce the results of quantum mechanics would require similar faster-than-light
travel. Since we have just shown that quantum mechanics is non-signaling, we have
no reason to expect that a hidden variables theory6 must be non-local.

However, Bell’s theorem tells us that this is not the case: indeed, any hidden
variables theory that can replicate the predictions of quantum mechanics must be
non-local. This is a substantial restriction to place on hidden variable theories,
which are among many candidates for the correct way to formulate quantum me-
chanics.

Bell’s original proof of this theorem involved probabilities; the advantage of his
work and related probabilistic proofs is that they give us numerical values that can
be (and have been) checked by experiments. However, these probabilistic proofs do
not give much insight regarding what specific mathematical properties of quantum
mechanics lead to such non-locality.

We present a non-probabilistic proof of Bell’s theorem. Although it does not
make for a great experimental design, it makes some headway on this fundamental
question about non-locality.

We use a thought experiment involving GHZ states.

Definition 3.4. The Greenberger–Horne–Zeilinger state (GHZ state) is the three-
qubit maximally entangled state, defined (up to a scalar) as follows.

+000 1 1 1

Lemma 3.5. The GHZ state is equivalent to the spider #3
0.

6a theory that replicates the results of quantum mechanics using realistic variables—variables
that have a value regardless of if they are measured
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Proof. Recall from Definition 2.27 that composing states in an ONB yields either
0 or I. Then, we recall (2.33) to substitute in spiders.

+000 1 1 1

(2.27)
= +

000

0

0

1 1 1

1

1

(2.27)
= +

000

0

0

1 1 0

1

0

+

0 0 1

0

1

+

1 1 1

1

1

(2.33)
=

0 0

+

1 1

= (∗)

We repeat the same process one more time, which gives us

(∗) =

0

+

1

We use (2.33) to substitute in a spider one more time and simplify.

(∗) (2.33)
=

(2.17)
=

□

Lemma 3.6. 7 For arbitrary phases α, β, γ

βα γ =

α+ β + γ

7For the rest of this paper, green and red denote the Z and X bases, respectively.
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Proof. Recalling Definition 2.38, we have the following.

βα γ =

α β γ

= (∗)

We simplify to one X spider via Theorem 2.17 and then add the phases together.

(∗) =

α β γ

(2.40)
=

α+ β + γ

We rewrite the quantum (doubled) spider as double classical spiders, which we
expand via Theorem 2.17. Then, we apply the rule from Definition 2.46 (indicated
by the dashed lines).

(∗) =

α+ β + γ

=

α+ β + γ

≡

α+ β + γ

We apply the rule from Definition 2.46 again. Finally, we simplify to one X spider
via Theorem 2.17 and rewrite the quantum wire.

(∗) ≡

α+ β + γ

≡

α+ β + γ

=

α+ β + γ

=

α+ β + γ

□

Lemma 3.7. We consider the scenario from Lemma 3.6. If α + β + γ = 0, then
the parity (Z2 sum) of the diagram is even (0).
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Proof. From Lemma 3.6, we have

βα γ ≡

α+ β + γ

=

0

= (∗)

Recalling Remark 2.41, we have

(∗) ≡

0

=

0 0

(2.33)
=

0 0

0

0 0

+
1 1

1

0 0

This simplifies according to the definition of ONBs. We compute the parity by
using an X spider to combine the three outputs.

(∗)
(2.27)
≡

0

=⇒

0

(2.17)
=

0

(2.33)
= +0 1

0 0

0 1

From the definition of the X basis, we have the following.

(∗)
(2.36)
≡ 1√

2 0
+

1√
2 1

(2.35)
≡

0
+

1
+

0
−

1
=

0

Thus, the parity is even (0). □

Lemma 3.8. We consider the scenario from Lemma 3.6. If α + β + γ = π, then
the parity (Z2 sum) of the diagram is odd (1).

Proof. The proof is given by the exact same steps as above. □

With all preliminaries taken care of, we proceed to prove Theorem 3.1.

Proof. Suppose that Alice, Bob, and Charlie are sufficiently separated such that
there is no causal arrow between any of them. Consider the following experiment.
Dave—who has a causal arrow to and from each party—prepares three qubits in a
GHZ state. He then sends one qubit each to Alice, Bob, and Charlie, along with
directions to apply a phase of either 0 or π

2 in the X basis. Alice, Bob, and Charlie
will then measure their qubits in the Z basis and communicate their results to Dave.
A phase of 0 in the X basis followed by a measurement in the Z basis is termed
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a Z measurement, and a phase of π
2 in the X basis followed by a measurement in

the Z basis is termed a Y measurement. Dave will ensure that one of the following
measurement combinations occurs: ZZZ, ZY Y , Y ZY , or Y Y Z.

The essence of this proof is to show that it is impossible for a local hidden
variables theory to store measurement outcomes for these four scenarios in advance
in a way that is consistent with quantum mechanics. We do this by computing the
overall parity of these four possible scenarios.

0 0 0 0
π
2

π
2

π
2 0

π
2

π
2

π
2 0

= (∗)

By Lemmas 3.7 and 3.8,

(∗) ≡

1 10 1

(2.17)
=

1 10 1

Then,

(∗)
(2.33)
≡ 0 0

0 0 0 0

0 1 1 1

+ 0 1
0 0 1 1

0 1 1 1

+ 1 0
1 1 0 0

0 1 1 1

+ 1 1
1 1 1 1

0 1 1 1

Recalling the relationship between the Z and X basis, we have the following

(∗)
(2.36)
≡ 1

4

0 0

+
1

4

0 1

− 1

4

1 0

− 1

4

1 1
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From (2.33), we have

(∗)
(2.33)
≡

0
+ 0 + 0 −

1

(2.26)
=

0
−

1

Finally, from the definition of the X basis, we have

(∗)
(2.35)
≡

0
+

1
−

0
+

1
=

1
+

1
≡

1

Thus, the overall parity is odd. We now show that computing the overall parity
with local hidden variables yields the opposite result.

In a local hidden variables theory, the values for any possible measurement are
determined by variables that exist before the measurement. Each qubit faces two
possible measurements: a Z measurement or Y measurement. Thus, we need two
variables for each qubit. Moreover, these variables could be probabilistic, so we
have the following probability distribution.∑

i

pi zBiyAizAi yBi zCi yCi

We proceed to show that any state in this probability distribution yields a contra-
dictory result. We fix i and compute the overall parity of the four measurement
possibilities for this particular state. Note that the four boxes in this diagram are
merely labels denoting the four possible scenarios, which explain the number of
wires coming from each variable.

ZY YZZZ Y ZY Y Y Z

zBiyAizAi yBi zCi yCi

Each Z spider sends exactly two outputs to theX spider, so we simplify our drawing
of the diagram.

zBiyAizAi yBi zCi yCi

= (∗)
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By Definition 2.45,

(∗) ≡

zBiyAizAi yBi zCi yCi

By causality, Property 2.52, we can discard all of the states. And recalling Remark
2.41, we have the following.

(∗) ≡ =

0

≡
0

Thus, the overall parity is even, which contradicts the result from categorical quan-
tum mechanics. We conclude that any local hidden variables theory is inconsistent
with quantum mechanics. □

4. Discussion

It may not be immediately obvious why locality was the cause of the contra-
diction; why does this proof not refute hidden variables theories in general? If we
allow our hidden variables theory to be non-local, then we can have causal arrows
going both ways between Alice, Bob, and Charlie, so each measurement outcome
is informed by the other two. Then, we can use four global variables—one for each
measurement scenario—and ensure that the parity of each scenario agrees with the
calculation done with categorical quantum mechanics. This demonstrates how non-
locality is a special case of what is called contextuality, which is the idea that hidden
variables theories only work if they can store multiple measurement outcomes in
one variable.

After establishing non-locality in categorical quantum mechanics, it is then nat-
ural to ask what causes such behavior. Coecke et al. argue in [3] that non-locality
in GHZ-Mermin scenarios (such as the one in our proof) necessitate strongly com-
plementary ONBs. This is not surprising to us, as strong complementarity was
necessary in our proof to compute the parity with the local hidden variables the-
ory. It also turns out that the structure of the phase group is essential. For
example, one can restrict the phase group to four elements {0, π2 , π,

3π
2 } and obtain

a group isomorphic to Z4—and this still exhibits non-locality. In [2], Coecke and
Kissinger demonstrate how one can construct a seemingly quantum theory with a
phase group of Z2×Z2 that exhibits quantum behavior like strong complementarity
and non-separability but does not exhibit non-locality.
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Many of the categorical definitions are based on those from [1]. Other categorical
notions and the quantum theory is based on [2]. The proof of Theorem 3.2 is a
generalization of a proof presented in [2]. Depicting non-locality in categorical
quantum mechanics via GHZ-Mermin scenarios is done in [3] and using the same
scenario we present in [2]. All such arguments, including the one presented in this
paper, are based on [4]. Of course, the first proof of Bell’s theorem—given in a very
different manner—is [5].
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