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Abstract. We provide necessary background and results from hyperbolic dy-

namical systems and smooth ergodic theory to prove the Pesin entropy formula.

We then briefly describe SRB measures.

Contents

1. Introduction 1
2. Measure Theory & Entropy 2
3. Dynamical Systems 5
4. Manifolds 6
5. Lyapunov Exponents & Hyperbolicity 8
6. The Lorenz Attractor 9
7. The Pesin Entropy Formula 14
8. SRB Measures 22
9. Conclusion 23
Acknowledgments 23
References 23

1. Introduction

Dynamical systems theory studies ideas of structure-preserving operators. Thus, it
is well-suited to applications in the physical sciences and beyond.

Arising in the late 19th century as the study of stable and unstable fixed points
on a surface, dynamical systems theory evolved towards concentrating on flows,
or structure-preserving maps. This study accelerated towards the mid-to-late 20th
century and eventually resulted in ideas surrounding structural stability and hy-
perbolicity, which breaks down movement of a system into its stable and unstable
parts [1].

In the 21st-century, work in information theory, coupled with preexisting dynam-
ics study, led to proofs of the Margulis-Ruelle inequality and the Pesin entropy
formula. These results describe that entropy of a dynamical system under certain
conditions can be measured as the sum of the rates of divergence (or expansion) in
that system. These ideas are discussed extensively in Section 7 and their applica-
tions in Section 8.
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What follows are the required definitions and results necessary to rigorously prove
Pesin’s formula, alongside a few examples pertaining to measure and ergodic theory.

2. Measure Theory & Entropy

To understand the outcome(s) of a changing system, it is necessary to introduce
the concept of a probability measure. Probability measures allow us to encode
information about the outcome(s) of a given event. We use definitions from [2].

Definition 2.1. Let X be a set. A σ-algebra A is a collection of subsets of X that
has the following properties:

(1) ∅ ∈ A and X ∈ A
(2) if A ∈ A then (A \A) ∈ A
(3) if {Ai}∞i=1 ∈ A, then

⋃∞
i=1Ai ∈ A and

⋂∞
i=1Ai ∈ A.

A pair (X,A) is a measurable space, and elements of A are denoted as measurable
sets.

Definition 2.2. Let X be a set and A be a σ-algebra on X. Then A is the Borel
σ-algebra of X if A is comprised of all of the open sets of X, and a Borel set is an
element of the Borel algebra A.

We use σ-algebras to define which parts of an arbitrary set on which we can provide
a well-defined measure.

Definition 2.3. Given a measureable space (X,A), we define a measure as a
function µ : A → [0,∞] such that

(1) µ(∅) = 0
(2) The sum of the measure of pairwise disjoint sets is the measure of their

sums, i.e. µ(
⋃∞

i=1Ai) =
∑∞

i=1 µ(Bi)

One important measure is titled the Lebesgue measure. We will not provide the for-
mal definition, but intuitively, Lebesgue measure provides a metric of volume in Rn.

We call (X,A, µ) a measure space. In the case where the measure of the whole
space is 1, i.e. µ(X) = 1, the triplet is called a probability space.

Example 2.4. To gain intuition for probability spaces, consider a coin flip. The
two possible outcomes, heads and tails, are represented by X, so X = {heads, tails}.
We may define A as {heads, tails, ∅, {heads, tails}}. Finally, µ is defined as follows:
µ(heads) = 0.5, µ(tails) = 0.5, µ(∅) = 0, µ({heads, tails}) = 1. With (X,A, µ) de-
fined, we represent the probability of each outcome in the entire sample space X as
a function of µ. Probability measures act similarly on more complex sample spaces;
they are functions to represent all of the possible outcomes and their likelihood.

Definition 2.5. Given X and its σ-algebra A, a measure µ is absolutely continuous
with respect to another measure ν if µ(A) = 0 when ν(A) = 0 for A ∈ A.

Absolute continuity lays the foundation for the first fundamental theorem of cal-
culus to hold. Similarly, absolute continuity provides a foundation for the Radon-
Nikodym Theorem.

Definition 2.6. Given X and its σ-algebra A, a measure µ is σ-finite if X is the
countable union of subsets Ai ∈ A, where µ(Ai) <∞.
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Theorem 2.7 (Radon-Nikodym). Let µ be a σ-finite positive measure on a measur-
able space (X,A) and let ν be another measure on (X,A) such that ν is absolutely
continuous with respect to µ. Then there exists a µ-integrable non-negative function
f which is measurable with respect to A s.t.

ν(A) =

∫
A

fdµ

By the fundamental theorem of calculus and the Radon-Nikodym Theorem, there
exists a function dµ

dν which can equate the two measures, called the Radon Nikodym
derivative. The proof can be found in [2].

With measures defined, we are equipped to quantify change in a given system,
which we represent using mappings.

Definition 2.8. If (X1,A1, µ1) and (X2,A2, µ2) are probability spaces, then a
mapping T : X1 → X2 is measurable if for all A ∈ A2, T

−1A ∈ A1. Measurable
mappings are measure preserving if for all A ∈ A2, µ1(T

−1A) = µ2(A1). If T is
a bijective measure preserving transformation and T−1 is also measure preserving,
then T is invertible.

Most often we will work with measure preserving transformations (or mpts) which
are operators, or send a probability space to itself.

Now assume we have a well-defined mpt. We want to build some intuition for the
outcome of the mpt under some given initial condition. The equivalent way to
represent this question is that we want to know the quantity of information we
lack prior to the event occurring. This concept is defined as entropy. For example,
let’s return to our coin flip example. Because there are only two outcomes (heads
or tails), we can represent the outcome of n coin flips using only a binary code.
Hence, the information gained per coin flip is 1 bit. We measure entropy using the
following as a tool:

Definition 2.9. A partition α of a space X comprises of finitely many sets, each of
which are pairwise disjoint, and whose union equals X. The join of two partitions
α, β is α ∨ β := {A ∩ B : A ∈ α,B ∈ β}. We can also express the join of many
partitions α1, . . . , αn as

∨n
i=1 αi. Finally, T

−1α := {T−1A,A ∈ α}.

Then we define entropy as the following.

Definition 2.10. Let T : (X,A, µ) → (X,A, µ) be an mpt and let α be a partition
of X. Suppose for each Ai ∈ A, µ(Ai) = pi. Then denote the probability vector of
T as the n-tuple of probabilities for each event in A, i.e. (p1, p2, . . . , pn)

T . Define
H = −

∑
pi log pi (assume 0 log 0 = 0). Then the entropy h for α is defined as:

h(T ;α) := lim
n→∞

1

n
H(

n−1∨
i=0

T−1α)

The entropy over all partitions h(T ) is the supremum over the entropies for each
partition.

The impracticality involved in taking the supremum over all partitions makes the
Shannon-Breiman-McMillan Theorem useful. Before introducing it, we discuss rel-
evant properties of a dynamical system.
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Definition 2.11. An mpt T : (X,A, µ) → (X,A, µ) is ergodic if the following
property holds: for any A ∈ A such that T−1A = A, then µ(A) = 0 or µ(A) = 1.
Equivalently, invariant functions on X are constant almost everywhere on X.

Remark 2.12. Almost everywhere, also denoted as a.e., is defined to be everywhere
except at sets with measure 0.

Now, let T be as defined in Definition 2.11.

Definition 2.13. T (or the measure µ under T ) is mixing if for any A1, A2 ∈ A,
limn→∞ µ(T−nA ∩B) = µ(A)µ(B).

Mixing can intuitively summarize to: given two sets in space, the probability of their
intersection after infinite iterations will approach their independent probabilities.
Even more simply, the elements in a set A will be equidistributed–or ”mixed”–in
another set B after infinite iterations. Using this intuition, we then have that the
only sets which remain exactly the same after just one iteration are trivial, either
having a measure of zero or a measure of one. Thus, mixing is a stronger property
than ergodicity. We also see that Bernoulli systems (those isomorphic to a Bernoulli
shift, see Definition 3.1), are all mixing.

Theorem 2.14 (Shannon-Breiman-McMillan). Given an ergodic mpt T : (X,A, µ) →
(X,A, µ), almost everywhere we have

(2.15) sup
ϵ>0

lim sup
n→∞

−1

n
logµA(x, ρϵ;n) = h(T )

where {ρϵ} is comprised of functions such that 0 < ρϵ ≤ ϵ and
∫
− log ρϵdµ <∞.

We summarize this to: the entropy of an ergodic mpt is the asymptotic rate of
decrease of the mpt at individual points. The proof can be found in [3]. We also
state a relevant theorem called the Poincare recurrence theorem.

Theorem 2.16 (Poincare Recurrence). Let (X,A, µ) be a measure space and let f
be an mpt on (X,A, µ). Then for every A ∈ A, the set

{x ∈ A | there exists N s.t. fn(x) /∈ A, for all n > N}
has measure zero.

The proof can be found in [4]. Poincare Recurrence states that an mpt will return
to its starting point infinitely, except at measure zero. Maps which define specified
points’ return to their initial states are titled Poincare maps, and are useful to
break down systems. In addition, Egorov’s theorem will be helpful.

Theorem 2.17 (Egorov’s). Let (X,A, µ) be a measure space and let E ∈ A s.t.
µ(E) < ∞. Let {fn} be a sequence of measurable functions on E s.t. fn is finite
almost everywhere and {fn} is convergent in E to a finite limit (not necessarily
uniform). Then for every ϵ > 0, there exists some subset A ⊂ E s.t. µ(E −A) < ϵ
s.t. {fn} converges uniformly on A.

Egorov’s theorem allows us to deduce a uniformly convergent sequence of functions
from a sequence which is not necessarily uniformly convergent by taking a subset
of the original set the sequence acts on. The proof can be found in [4]. Finally, we
introduce the product measure, and cite an important result relating to it, called
Fubini’s theorem [2].



THE PESIN ENTROPY FORMULA 5

Definition 2.18. Let (X,A1, µ) and (Y,A2, ν) be two measure spaces where µ and
ν are σ-finite. We call a measurable rectangle a set with a form A1 × A2, where
A1 ∈ A1, A2 ∈ A2. Let C0 be the collection of finite unions of disjoint measurable
rectangles, such that for all C ∈ C0,

(1) C is of the form
⋃n

i=1(A1i ×A2i) for A1i ∈ A1, A2i ∈ A2

(2) if i ̸= j, (A1i ×A2i ∩ (A1j ×A2j ) = ∅.
We then have that (A1×A2)

c = (A1×Ac
2)∪ (Ac

1×A2), and the intersection of two
measurable rectangles is a measurable rectangle. Thus, C0 is an algebra. We can
then define a product σ-algebra

A1 ×A2 = σ(C0)

This definition gives rise to Fubini’s theorem.

Theorem 2.19 (Fubini’s Theorem). Let f : X×Y → R be measurable with respect
to A1 ×A2. Let µ and ν be σ-finite measures on X and Y (respectively). If either
f is non-negative or

∫
|f(x, y)|d(µ× ν)(x, y) <∞, we have the following:

(1) for each x, the function y 7→ f(x, y) is measurable with respect to A2

(2) for each y, the function x 7→ f(x, y) is measurable with respect to A1

(3) the function g(x) =
∫
f(x, y)νdy is measurable with respect to A1

(4) the function h(y) =
∫
f(x, y)µdx is measurable with respect to A2

(5) the following holds:∫
f(x, y)d(µ× ν)(x, y) =

∫ ∫
f(x, y)dµ(x)dν(y)

=

∫ ∫
f(x, y)dν(y)µ(dx)

Fubini’s theorem states the existence of functions on product spaces and summarizes
that on product spaces, the order of integration with respect to either measure is
arbitrary.

3. Dynamical Systems

We’ve described a dynamical system as a structure-preserving map acting on a
defined space, but here we make this description rigorous. These definitions are
attributed to Young [5] and Teschl [6].

Definition 3.1. If µ0 is a probability measure on X0 = {1, . . . , k} where µ0{i} =
pi, and µ is the product measure of µ0 on X defined as Π∞

−∞X0, then define a
shift operator T as follows: if xi is the ith coordinate of x ∈ X, then T (xi) =
xi+1, defined as the (p1, . . . , pk) Bernoulli shift. Systems which are isomorphic to
Bernoulli shifts are Bernoulli.

A Bernoulli shift involves shifting elements in a space one by one. Thus, one way
to study complex flows is to reduce (or attempt to reduce) them to a Bernoulli shift.

To begin discussing flows we first describe a function f acting on an interval I to
itself. Applying f , n number of times then leads to a discrete dynamical system. If
f is invertible, then we can also apply the transform −n times, or ”go backwards”.

Remark 3.2. Before continuing, we clarify that going forward, Ck(X) will refer
to the set of all functions that are k times continuously differentiable on a given
space X.
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Construction 3.3. Consider a differential equation dx
dt = f(x) with an initial value

of x(0) = x0, where f ∈ Ck(M,Rn), k ≥ 1, and M is an open subset of Rn. We
can associate this ODE to a vector field on Rn, representing values equal to dx

dt ,
or the ”slopes” at given points. Integrating curves in this vector field with given
initial conditions produces ”integral curves”, which represent specific solutions to
the ODE. Based on existence and uniqueness theorems (which will not be proven
here), there exists a unique maximal integral curve ϕx at each point x defined on
an interval Ix = (T−(x), T+(x)). Define W as the following:

(3.4) W =
⋃

x∈M

Ix × {x} ⊂ R×M

Then the flow of the differential equation is defined as

(3.5) Φ :W →M, (t, x) → ϕ(t, x)

where we define ϕ(t, x) as the maximal integral curve at each x. These flows estab-
lish continuous dynamical systems.

We can now treat f as an arbitrary flow (function) on X, a compact metric space.
The orbit of a given point x is {fn(x)}∞n=−∞, or the flow evaluated at a given
point, iterated endlessly. If there exists some n ∈ Z such that fn(x) = x, then
we denote x as a periodic point and its orbit as periodic; we also call n its period.
A fixed point x is a periodic point with period 1. A set Λ ∈ X is invariant f(Λ) = Λ.

Now, we state the Birkhoff Ergodic Theorem [7]. Let (X,A, µ) be a probability
space and let f : X → X be an mpt. Let ϕ be integrable with respect to µ; we may
also denote this property as ϕ ∈ L1(µ). Define ϕn(x) =

1
n

∑n−1
j=0 ϕ ◦ f j(x), and let

the limit average ϕ̂ be limn→∞ ϕn(x).

Theorem 3.6 (Birkhoff Ergodic Theorem). Under the conditions stated above, ϕ̂

is defined a.e. and
∫
ϕ̂dµ =

∫
ϕdµ. In addition, if f is ergodic under µ, then

ϕ̂(x) =
∫
ϕdµ a.e.

Birkhoff’s theorem asserts that a system’s ”time average” is equivalent to its ”space
average” almost everywhere for an mpt. Similarly to Poincare recurrence (The-
orem 2.16), Birkhoff’s theorem has a variety of applications when studying the
asymptotic behavior of an mpt.

4. Manifolds

Often, flows are defined on some generalization of a surface to higher dimensions.
These ”higher-dimensional surfaces” are rigorously defined as manifolds. We as-
sume the reader is familiar with the definition of a topological space and follow the
definitions in [8].
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Definition 4.1. Let M be a topological space. M is a smooth topological manifold
if

(1) M is Hausdorff: for every p, q ∈ M , there exists disjoint open subsets
U, V ∈M s.t. p ∈ U , q ∈ V .

(2) M is second countable: there exists a countable basis for the topology of
M and

(3) M is locally Euclidean: for every p ∈M , there exists an open neighborhood
U ⊂M s.t. U ∋ p and U is diffeomorphic to an open subset in Rn.

(4) there exists a maximal smooth atlas A associated to M , where a maximal
smooth atlas denotes a family of charts on M which are pairwise smoothly
compatible and which cannot be contained by any other smooth atlas on
M

An intuitive summation of this definition is a surface which can be generalized to
higher dimensions, and whose points are continuous or differentiable at all orders.

Definition 4.2. LetM be a smooth manifold and let p ∈M . We call a linear map
X : C∞(M) → R a derivation at p if

X(fg) = f(p)Xg + g(p)Xf

for all f, g ∈ C∞(M). The set of all derivations at p is called the tangent space at
p, and we denote it as T pM . We call an element v ∈ T pM a tangent vector at p.

Using manifolds, we can concretely apply the theory of ordinary differential equa-
tions to integral curves on M , but the specifics will not be required here, so we
omit this. However, we will describe specific functions and properties of functions
on manifolds. For example, we define an attractor :

Definition 4.3. Let f : M → M be smooth on M . We call a compact invari-
ant set Λ attracting if there is a neighborhood U ⊂ Λ such that for all x ∈ U ,
limn→∞ d(fn(x),Λ) = 0. If Λ is topologically transitive we call it an attractor. We
define topologically transitive as follows: for any two open sets U, V ⊆ Λ, there
exists some t ∈M s.t. f(t, U) ∩ V ̸= ∅.

Finally, we give a definition of foliations, which will be useful in the future to ”break
down” a manifold into subspaces.

Definition 4.4. A foliation F on M is a partition of M into disjoint subsets
A1, . . . An such that

(1) For all p ∈M , there exists some neighborhood U such that Ai ∩U =
⋃
Aj ,

where each Aj are pairwise disjoint and Aj ∈ F
(2) Each leaf Ai is a smooth submanifold in M
(3) The tangent spaces of the leaves at each point p on M span a subspace of

the tangent space TpM
(4) For all p ∈M , p ∈ Ai for some Ai ∈ F , and

⋃n
i=1Ai =M

We will also define a Riemannian manifold.

Definition 4.5. A smooth manifold M is Riemannian if there exists a defined
positive-definite inner product gp on the tangent space TpM at all p ∈ M . The
family gp of inner products is titled the Riemannian metric.
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5. Lyapunov Exponents & Hyperbolicity

Lyapunov exponents allow us to quantify the asymptotic rates of contraction or
expansion in a dynamical system.

Let v ∈ Rm and let A be an invertible m×m matrix, where a ∈ R for all a ∈ A. If
we write A in its Jordan canonical form, we see that A is decomposed into invariant
subspaces E1 ⊕ · · · ⊕ En, such that for each i ≤ n, there exists some λi such that
for all v ∈ Ei (v ̸= 0), limn→∞

1
n log |Anv| = λi. Here, λi are the eigenvalues and

encode information about the rate of change of A after n repetitions at the given
vector v.

Theorem 5.1 (Oseledet’s, or the Multiplicative Ergodic Thm.). Assume T :
(X,A, µ) → (X,A, µ) is an mpt of a probability space, and A is an invertible
m×m matrix which represents T . Then almost everywhere, there exists a filtration
of subspaces:

{0} = V0(x) ⊊ V1(x) ⊊ · · · ⊊ Vr(x) = Rm

and associated λ1(x) < · · · < λr(x) such that for all v ∈ Vi(x)−Vi−1(x), λ+(x, v) =
λi(x) and limn→∞

1
n log |detAn(x)| =

∑
λi(x)[dimVi(x)− dimVi−1(x)].

We call each λi with its associated dimVi(x)−dimVi−1(x) Lyapunov exponents and
their multiplicities (or fractal dimensions), respectively. The proof can be found in
[9].

As a consequence of the Multiplicative Ergodic Theorem we can break a manifold
down into ”stable” and ”unstable” foliations as follows [14]:

Definition 5.2. Let λ1 > · · · > λn be the positive Lyapunov exponents of (f, µ),
where f is an ergodic mpt acting on a compact C2 Riemannian manifold and µ
is the associated Borel invariant probability measure. We then define n nested
invariant foliations

W 1 ⊂ · · · ⊂Wn,W i = ⊕j≤iEj

Then if λr−s+1 > · · · > λr are the negative Lyapunov exponents,

W 1 ⊂ · · · ⊂W s,W i = ⊕j>r−iEj

The concept of a system being partially stable and partially unstable can be helpful
when analyzing particular systems. This property is titled hyperbolicity.

Definition 5.3. Let M be a compact R∞ Riemannian manifold, and f : M →
M be a diffeomorphism (a differentiable map on a manifold with a differentiable
inverse). Let TxM be the tangent space at x on M . Λ ⊂M is uniformly hyperbolic
set if:

(1) for all x ∈ Λ, TxM = Es(x)⊕ Eu(x)
(2) Tf(Es(x)) = Es(f(x)), Tf(Eu(x)) = Eu(f(x)), and
(3) for some C ≥ 1 and 0 < λ < 1, |Tfn(v)| ≤ Cλn|v| for all x ∈ A, v ∈

Es(x), n ≥ 0 and similarly
(4) |Tf−n(v)| ≤ Cλn|v| for all x ∈ A, v ∈ Eu(x), n ≥ 0

Foliations as defined in Definition 5.2 will prove helpful when defining unstable and
stable foliations on a manifold on which we wish to deduce entropy, relating to an
important result titled the Stable Manifold Theorem.
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Theorem 5.4 (Stable Manifold). Let U ⊂ Rn be open and ϕt : U → U the flow of
a C1 vector field f : U → Rn. Assume that x0 is a fixed point of f and let Es → Rn

be the stable subspace for Df(x0), or the span of all eigenvectors for eigenvalues
with negative real part. Let Ecu = Ec ⊕ Eu ⊂ Rn be the center-unstable subspace
for Df(x0), corresponding to eigenvectors of eigenvalues with positive or zero real
part. Then there exists some r > 0 and some C1 function ψ : B(x0, r)∩Es → Ecu

such that the set

W s := {x+ ψ(x) | x ∈ B(x0, r) ∩ Es}

obeys the following:

(1) W s is positively invariant and
(2) Given an initial condition x ∈W s,

lim
t→∞

ϕt(x) = x0

Thus we have that near a fixed point on a manifold, there exists some local stable
manifold in which points asymptotically approach the fixed point. The proof can
be found in [10].

6. The Lorenz Attractor

As an application of the past four sections, we provide a brief introduction to the
Lorenz attractor. The general proof and results not shown here can be found in [11].
Lorenz’s system of differential equations is known for highlighting a phenomenon
called sensitivity to initial conditions.

Definition 6.1. Let f be a diffeomorphism on a compact manifoldM . A dynamical
system displays sensitivity to initial conditions if there exists some δ > 0 such that
for all ϵ > 0, x ∈ M , there exists some y ∈ M,n ∈ N such that |x − y| < ϵ and
|fn(x)− fn(y)| > δ.

Such a property, which could be summarized as, minute changes in initial condi-
tions can lead to vastly different outcomes in the system, lead to the phenomenon
commonly called the ”Butterfly Effect”. The Lorenz equations are a system which
exemplify this effect:

dx

dt
= 10(y − x)

dy

dt
= 28x− y − xz

dz

dt
= xy − 8

3
z

It has previously been proven by Tucker that under certain initial conditions and
parameters, the Lorenz equations form a robust attractor A which contains an
SRB measure ν with a positive Lyapunov exponent. SRB measures are defined
concretely in Section 8, but the specifics are not requried for the following proof.
We prove here that this measure is mixing.
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Figure 1. Image of the Lorenz attractor under the given param-
eters [13].

Firstly, we provide some background for the Lorenz equations. Their origin is an
equilibrium point with two negative eigenvalues and one positive eigenvalue, de-
noted as λss < λs < 0 < λu, and λu > |λs|.

To simplify our proof, we would like to construct a one-dimensional map that acts
as a representative for the Lorenz attractor.

From the Poincare Recurrence Theorem (Theorem 2.16), we have that points about
the origin will eventually return there, and thus we may define a Poincare map
around a locally linearized origin.

Construction 6.2. Begin by linearizing the cube [−1, 1]3 about the origin. Let

Σ = {x1, x2, x3) : |x1|, |x2| ≤ 1, x3 = 1}

Σ̃ = {(x1, x2, x3) : x1 = ±1, |x2|, |x3| ≤ 1}
Then define the first hit map P0 : Σ → Σ̃ as follows:

P0(x1, x2, 1) = (eλur0x1, e
λssr0x2, e

λsr0) = (sgn(x1, x̃2, x̃3)

where r0 represents the initial time of flight of the map.

Let eλur0x1 = sgnx1. We then have that r0 =−(ln |x1|)
λu

. Substituting, we have

P0(x1, x2, 1) = (sgnx1, |x1|βx2, |x1|α)

where α = |λs|
λu

∈ (0, 1) and β = |λss|
λu

> 0.

We call the compact region N ⊂ Σ such that the Poincare first return map
P : N \W s(0) → N is well-defined the ”trapping region”, and its existence was
proven by Tucker.

We then decompose P = P1 ◦ P0, where P0 is the ”forward” map as defined above
and P1 is the ”returning” map. Since P is well-defined, we then also have that P1

is well-defined and thus r1 ≤ ∞. Thus the total time of flight r = r0+ r1 is smooth
except for the logarithmic singularity at x1 = 0.
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From this lemma, we can acquire a hyperbolicity estimate about the origin. Before,
however, we define a cone [12].

Definition 6.3. Let E ⊂ Rn s.t. 0 < dimE < n and let F be such that E⊕F = Rn.
The standard unit cone determined by E and F is the set

K(E,F ) = {v = (v1, v2) : v1 ∈ E, v2 ∈ F, |v2| ≤ |v1|}

A cone in Rn with core E is the image T (K(E,F )) where T : Rn → Rn is a linear
automorphism s.t. T (E) = E.

A cone field is the collection of cones at points.

Lemma 6.4. The return map P admits a forward invariant cone field, or there
exists some cone C(u) ⊂ Σ, for all u ∈ N \W s(0), such that (dP )uC(u) ⊂ C(Pu).
In addition, there exists the hyperbolic constants c > 0, π > 1, such that for each
u ∈ N \W s(0),

||(dPn)uv|| ≥ cπn||v||
for v ∈ C(u), n ≥ 1.

As an immediate consequence, we can make assumptions regarding a foliation on
P with C1+ϵ leaves, ϵ > 0. If I = [−1, 1], define a singular one-dimensional map
f : I → I by dividing along stable leaves. Then r : I → R+ becomes a singular
map. If J = I \ {0}, then on J ,

(1) f is C1+ϵ

(2) |f (n)| ≥ cπn for all n ≥ 1
(3) C−1xα−1 ≤ f ′(x) ≤ C|x|α−1

(4) r(x) → ∞ as x→ 0 and
(5) |r(x)− r(y)| ≤ C| ln |x| − ln |y||, for all x, y ∈ R \ {0}

Using this construction, we have reduced the three-dimensional initial Lorenz equa-
tions (or attractor) to a Poincare map and then to a one-dimensional continuous
expanding map. We can also work backwards, by taking the natural extension of f
and then taking the suspension of P by the roof function r. We could also recover
the Lorenz flow as the natural extension of the suspension semiflow of the map f by
r, which is the geometric Lorenz flow construction. We omit the precise definitions
for such suspension and extensions. We begin our analysis of this one-dimensional
function, which will allow us to prove that the Lorenz attractor is mixing.

Definition 6.5. Let f : I → I such that f(0) be undefined. Let limx→0+ f(x) = −1
and limx→0− f(x) = 1 for x ∈ I. If f satisfies conditions (1), (2), and (3) as stated
above, then we call f a Lorenz-like expanding map. In addition, a semiflow ft is
called a geometric Lorenz semiflow if it is the suspension of a Lorenz-like expanding
map by a roof function r which satisfy conditions (4) and (5). We call a flow ft a
geometric Lorenz flow if it is the natural extension of a geometric Lorenz semiflow.

Definition 6.6. We define the map f : I → I as locally eventually onto (l.e.o) if
for all open U ⊂ J , there exists some k ≥ 0 such that fkU ∋ (0, 1).

If at some iteration of f the map on any open set eventually contains (0, 1), it is
locally eventually onto. Lorenz-like expanding maps which are l.e.o admit a unique
ergodic probability measure µ, which when suspended, ν = ur, defines an SRB
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Figure 2. The reduced Lorenz-like expanding map about the ori-
gin [11].

measure for the geometric Lorenz flow. This would prove that the Lorenz attrac-
tor, which is defined as a geometric Lorenz flow, is mixing.

It was previously known that semiflows and their suspended flows are Bernoulli, and
thus also mixing. Thus, we wish to show that Lorenz semiflows are weak mixing,
from which the general result would follow.

Theorem 6.7. Let ft be a geometric Lorenz flow. Let the associated one-dimensional
map f be l.e.o. Then ft is Bernoulli and mixing.

Proof. Let f : I → I be a Lorenz-like expanding map. We have that f admits an
induced map F which has the following properties: there exists an open interval
Y ⊂ I s.t. Y ∋ 0 and a.e. there exists a partition P = {ω} of Y where each ω ∈ P
is an interval. The return function R : Y → N is constant on each ω such that
F (x) = fR(x)(x) restricts to a diffeomorphism F |ω : ω → Y for each {ω} and such
that the following holds.

(1) there exists λ > 1 such that |DFω| ≥ λ, for all ω
(2) for all ω, log gω is Holder (uniformly in ω, where g is the differential matrix

of the inverse of F |ω : ω → Y ),
(3) R is Lebesgue integrable, and finally

(4) 0 /∈ ¯fkω, 0 ≤ k < R(ω), for all ω

From prior results, we have if these conditions are satisfied then there exists a
unique invariant ergodic measure µ that is absolutely continuous with respect to
Lebesgue and whose support includes Y . These conditions allow for the following
lemma to hold:
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Lemma 6.8. If f : I → I admits an induced map F : Y → Y which satisfies the
above conditions with absolutely continuous ergodic measure µ, then let r : I → R+

be a Holder roof function with a logarithmic singularity at 0. Let ϕ : I → S1 be a
µ-measurable function such that, almost everywhere,

eir = (ϕ ◦ T )ϕ−1

Then ϕ has a version that is Holder on Y .

Due to some technicalities we omit the proof. Let r : I → R+ be a Holder roof func-
tion with a logarithmic singularity at 0 and let ft be the corresponding geometric
Lorenz semiflow with ergodic measure µr.

Lemma 6.9. Assume the geometric Lorenz semiflow is not weak mixing. Then
there exists a constant a > 0 and a measurable eigenfunction ψ : X → S1 continu-
ous on

⋃
k≥0 f

kY such that, almost everywhere,

(6.10) eiar = (ψ ◦ f)ψ−1

Proof. By the definition of weak mixing, ϕ ◦ ft = eiatϕ has no measurable solu-
tions ϕ : Xr → S1, for a > 0. Let ϕ be a measurable solution. By Fubini’s
Theorem (Theorem 2.19), there exists ϵ > 0, r > ϵ almost everywhere such that
ϕ ◦ ft(x, ϵ) = eiatϕ(x, ϵ) for almost every x ∈ X.

Let t = r(x), ψ(x) = ϕ(x, ϵ). If fr(x)(x, ϵ) = (fx, ϵ), then ψ ◦ f = eiarψ, so ψ is
a measurable solution to (6.10). We then have from Lemma 6.8 that there exists
some solution ϕ that is Holder continuous on Y .

We wish to show that ψ is continuous on
⋃

k≥0 f
kY . Let z = fky, y ∈ Y . Since

f(0) is undefined, we have that f jy ̸= 0, for j ∈ [k − 1]. Thus there exists an open
U ⊂ Y such that U ∋ y and 0 /∈ f jU for 0 ≤ j ≤ k− 1. Then there exists γ ∈ (0, 1)
such that ψ is Cγ on Y and eiark is C1 on U . Let zi = fkyi, yi ∈ U , i = 1, 2.
Applying (6.10),

ψ(z1)ψ(z2)
−1 = ψ(y1)ψ(y2)

−1eiark(y1)e−iark(y2)

We then have by statement (2) above that

ψ(z1)ψ(z2)
−1 ≤ D|y1 − y2|γ ≤ D(cλk)−λ|z1 − z2|γ

So we have that ψ is Holder continuous on fkU and thus at z. □

We now have the necessary tools to prove Theorem 6.7. Assume for the sake of
contradiction that ft is not weak mixing. By Lemma 6.9, there exists some a > 0
and a measurable eigenfunction ψ : I → S1 such that (6.10) is satisfied and ψ is
continuous on

⋃
k≥0 f

kY . Then since f is l.e.o, ψ is continuous on (−1, 1), so ψ is

continuous at f(±1). Iterating (6.10) we have

eiareiar◦f = (ψ ◦ f2)ψ−1

Evaluate along a sequence xn > 0 as xn → 0. We have ψ(xn) → ψ(0), ψ(f2xn) →
ψ(f(−1)), and r(fxn) → r(−1). Then (ψ ◦ f2)ψ−1 and eiar◦f both converge as
n → ∞. But for any n sufficiently large, we have bn > r ϵ

2n such that eiar(xn) is
divergent.
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We have that r is continuous on I\{0} and r(x) → ∞ as x→ 0, so there exists some
xn > 0 such that r(xn) = bn. Thus, e

iar(xn) diverges, which is a contradiction. □

7. The Pesin Entropy Formula

In the late 1970s, Ruelle proved the following inequality connecting the metric
entropy of a diffeomorphism f with invariant probability measure µ on a compact
manifold M as the following:

(7.1) hµ(f) ≤
∫
M

∑
λ+i midµ

In 1978, Pesin published the conditions under which equality holds; when µ is
absolutely continuous relative to the Lebesgue measure and f ′ is Holder continuous.
Here we closely follow the proof by Mane of this formula, which does not rely on
the use of Lyapunov charts or stable manifold theory [15].

Notation 7.2. For clarity we will let χ : M → R be defined as the sum of the
products of Lyapunov exponents and their multiplicities, i.e. χ =

∑
λ+i mi. Thus

the formula will henceforth be reduced to hµ(f) =
∫
M
χdµ.

For the duration of this proof we assume g :M →M is an mpt on a manifoldM and
let ρ : M → (0, 1) be a function such that log ρ is µ-integrable. For x ∈ M,n ≥ 0,
define Sn as the following:

(7.3) Sn(g, ρ, x) = {y | d(gj(x), gj(y)) ≤ ρ(gj(x)), 0 ≤ j ≤ n}
To summarize, we choose Sn at x to be the set of all points whose distance from
x is less than or equal to ρ(x) on any iteration of g up until the given n. Now, let
g and ρ be measurable with respect to a measure µ, and let g be invariant with
respect to µ. Define the following:

(7.4) hµ(g, ρ, x) = lim sup
n→∞

1

n
(− logµ(Sn(g, ρ, x)))

Here we define entropy of the system with respect to µ, g, ρ, x as the measure of the
greatest asymptotic average of the points bounded by ρ. We begin the proof with
the following lemmas:

Lemma 7.5. Let
∑∞

1 xn be a series, such that 0 < xn < 1 for all n, and
∑∞

1 nxn
converges. Then

∑∞
1 xn log(

1
xn

) converges.

Proof. Define N := {n ∈ N | log( 1
xn

) < n}. If for some n ∈ N, n /∈ N , we have

log(
1

xn
) ≥ n

so en ≥ 1
xn

, and thus e−n ≥ xn. Then we have

∞∑
1

xn log(
1

xn
)

≤
∑
n∈N

nxn +
∑
n/∈N

xn log
1

xn
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We also have that since t log(1/t) ≤ 2
e for all t ∈ N,

∞∑
1

xn log
1

xn

≤
∑
n∈N

nxn +
2

e

∑
n/∈N

√
xn

≤
∞∑
1

nxn +
2

e

∞∑
1

e−
1
2n

And since these two sums converge, the result follows. □

We now prove that we can find some countable partition on our manifold such that
the diameter of each atom is bounded by ρ almost everywhere.

Lemma 7.6. There exists a countable partition P of M such that H(P) <∞ and
if P(x) denotes the atom P ∈ P s.t. P ∋ x, diamP(x) ≤ ρ(x) almost everywhere.

Proof. Choose constants C > 0, r0 > 0 such that for all 0 < r ≤ r0, there exists a
partition P ′

r whose P ′(x) ≤ r and |P ′
r| ≤ C( 1r )

dimM . Define Un as follows:

Un := {x | 1

en+1
≤ ρ(x) ≤ 1

en
, n ≥ 0}

Since log ρ is integrable, we have that
∑∞

1 nµ(Un) is finite, so applying Lemma 7.5
to µ(Un), we have that

∑∞
1 µ(Un) log

1
µ·Un

also converges.

Let rn = 1
en+1 , n ∈ N, and let Q ∈ P ′

rn . Define a new partition P as follows:

P := Q ∩ Un, µ(Q ∩ Un) ̸= 0

We know that H(P) =
∑∞

n (−
∑

P∈P µ(P ) logµ(P )). Since −
∑m

i=1 xi log xi ≤
(
∑m

1 xi)(logm− log
∑m

1 xi), 0 < xi ≤ 1, i = {1, 2, . . . ,m}, we then have that

H(P) ≤
∞∑
0

µ(Un)[log |Prn − logµ(Un)]

≤
∞∑
0

µ(Un)[logC + dimM(n+ 1)− logµ(Un)]

Since we defined |Prn | ≤ (Cr )
dimM , the result follows. □

Using these lemmas, we have that for some g-invariant measure µ and some ν which
is absolutely continuous with respect to µ, the following holds. The metric entropy
with respect to µ is greater than or equal to entropy as defined in (7.4) with respect
to ν.

Proposition 7.7. Let µ be a g-invariant probability measure on M and let ν be
absolutely continuous with respect to µ (not necessarily g-invariant). Then we have
that a.e.

hµ(g) ≥
∫
M

hν(g, ρ, x)dµ
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Proof. Take P as the same partition from Lemma 7.6. By the Shannon-Breiman-
McMillan Theorem (Theorem 2.14) and our definition of metric entropy (Defini-
tion 2.10), we have

hµ(g) ≥ hµ(P, g) =
∫
M

lim
n→∞

1

n
[− logµ(Pn(x))]dµ

Thus it is left to show that limn→∞
1
n [− logµ(Pn(x))] ≥ hν(g, ρ, x) a.e.

Let P∞ be a σ-algebra generated by Pn, n ≥ 0 and let k :M → R be ν-integrable,
measurable with respect to P∞, and such that

∫
A
kdν = µ(A), A ∈ P∞. By the

Radon-Nikodym Theorem (Theorem 2.7), we have that a.e.

lim
n→∞

µ(Pn(x))

ν(Pn(x))
= k

Thus we have that

1

n
logµ(Pn(x))

=
1

n
log ν(Pn(x)) +

1

n
log

µ(Pn(x))

ν(Pn(x))

=⇒ lim
n→∞

1

n
[− logµ(Pn(x))] = lim

n→∞

1

n
[− logν(Pn(x))]

Since Pn(x) ⊂ Sn(g, ρ, x), we have that

lim
n→∞

1

n
[− logµ(Pn(x))] ≥ hν(g, ρ, x), a.e.

and the result follows.
□

Our ultimate argument will now be that
∫
M
hν(g, ρ, x)dµ ≥

∫
M
χdµ, but we must

introduce some concepts and lemmas first.

Definition 7.8. If E is a normed space and E1 ⊕E2 is a splitting of E, we define
γ(E1, E2) as the supremum of the norms of the projections π1 : E → E1, π2 : E →
E2. We also define an (E1, E2) graph G if there exists an open set U ⊂ E2, and a
C1 map Ψ : U → E such that G = {x+Ψ(x) | x ∈ U}. We also call

sup{ ||Ψ(x)−Ψ(y)||
||x− y||

| x, y ∈ U}

the dispersion of the graph.

Intuitively, on some splitting of a normed space E, we define a graph G as the set
of the elements of the open set added to some continuous map of the open set onto
the normed space. We also provide dispersion as a metric for the greatest slope of
the continuous map of U onto E, or more simply, the greatest magnitude that must
be added to points in our open set U to form G. We use these concepts to prove a
more technical lemma which establishes a constant for which the image of a graph
under a map F is also a graph with dispersions bounded by the same constant c.
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Lemma 7.9. Let λ > β > 1, α > 0, c > 0. There exists a δ > 0 that has the
following property. If the following properties are satisfied:

(1) if there exists a finite dimensional normed vector space E = E1 ⊕ E2 s.t.
γ(E1, E2) ≤ α

(2) and there exists F which is C1 and acts on some open ball Br(0) ⊂ E s.t.
F : Br(0) → E′, where E′ is another Banach space,

(3) and if F has the following properties:
(a) D0F

′ is an isomorphism and γ((D0F )E1, (D0F )E2)) < α
(b) ||(D0F )− (DxF )|| ≤ δ for all x ∈ Br(0)
(c) ||(D0F )v|| ≥ λ||v|| for all v ∈ E2 and
(d) ||(D0F )/E1|| ≤ β

Then for all (E1, E2) graphs G with dispersion ≤ c in Br(0), the image F (G) is a
((D0F )E1, (D0F )E2) graph with dispersion ≤ c.

Proof. We begin by notating F as follows:

F (x, y) = (
D0F

E1
x+ p(x, y),

D0F

E2
y + q(x, y))

For clarity, let L = D0F
E1

, T = D0F
E2

, so the formula simplifies to

F (x, y) = (Lx+ p(x, y), T y + q(x, y))

where p and q are some functions such that the partial derivatives with respect to
x, y have norm less than or equal to δα. Let U ⊂ E2 be open, and let Ψ : U → E be
a map whose graph {(Ψ(v), v) | v ∈ U} is G (such a function exists by the definition
of the graph). Then, we have

F (G) = {(LΨ(v) + p(Ψ(v), v), T v + q(Ψ(v), v)) | v ∈ U}

Now define Φ : U → (D0F )E2 as Φ(v) = Tv + q(ψ(v, v)). If v, w ∈ U , then

||Φ(v)− Φ(w)|| ≥ ||T (v − w)|| − ||q(Ψ(v), v)− q(ψ(w), w)||

Combining this inequality with property (3) of F , we have

||Φ(v)−Φ(w)|| ≥ λ||v−w||−δα(||Ψ(v)−Ψ(w)||+ ||v−w||) ≥ (λ−δα(1+c))||v−w||

If λ − δα(1 + c) > 1, then we have that Φ is a homeomorphism of U onto Φ(U)
such that Φ−1 has a Lipschitz constant less than or equal to 1

(λ−δα(1+c)) , and we

have that Φ(U) is also open.

Now, let Ψ̂ := Φ(U) → (D0F )(E1) be defined as

Ψ̂(v) = (LΨΦ−1)v + p(Ψ(Φ−1v)),Φ−1v)

Then we have that

F (G) = {(Ψ̂(x), x) | x ∈ Φ(U)}
Since Ψ̂ = Ψ̂ ◦ Φ−1, we have Ψ̂(w) = LΨ(w) + p(Ψ(w), w), so we have a final
inequality:

||Ψ̂(x)−Ψ̂(y)|| ≤ β||ψ(x)−ψ(y)||+δα(||ψ(x)−ψ(y)||+||x−y||) ≤ (cβ+δα(1+c))||x−y||

so we have that the dispersion of F (G) is less than or equal to the following:
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C
β + δα(1+c)

c

λ− δα(1 + c)
=
cβ

λ

1 + δα(1+c)
cβ

1− δα(1+c)
λ

< 1

when δ is sufficiently small, since c < 1, βλ < 1. □

Now let f be an mpt on a manifold M and let µ be absolutely continuous with
respect to Lebesgue measure on M . Define

Eu(x) = ⊕{Ej(x) | λj(x) > 0}, Es(x) = ⊕{Ej(x) | λj(x) ≤ 0}
In addition, write

∑
j = {x | dimEu(x) = j}, and S = {j ≥ 0 | µ(

∑
j) > 0}. If

j ∈ S, define µj as the measure given by µj(A) =
µ(A∩

∑
j)

µ(Ej)
, where A is a Borel

subset onM . We have then that hµ(f) =
∑

j∈S µ(
∑

j)hµj(f), and we want to show

that hµj(f) ≥
∫
M
χdµj . For clarity, we now refer to µj as µ and

∑
j as

∑
. Clearly

this property holds for j = 0, so assume j > 0. Let ϵ > 0. By Theorem 3.6 and
Theorem 2.17 (the Birkhoff Ergodic Theorem and Egorov’s Theorem, respectively),
we have that there exists a compact set K ⊂ M such that µ(K) ≥ 1 − ϵ, and
Es(x) ⊕ Eu(x) = TxM is continuous when x varies in K. Then for some N > 0,
there exists some λ > β > 1 such that if g = fN , the following holds:

(1) ||(Dxg
n)v|| ≥ λn||v||

(2) ||(Dxg
n) | Es(x)|| ≤ β, and

(3) log |det(Dxg
n)

Eu(x) | ≥ N(χ(x)− ϵ)n

for x ∈ K,n ≥ 0, v ∈ Eu(x).

If x ∈ K, define

(7.10) Dr(x) = {x+ y1 + y2 | y1 ∈ Es(x), y2 ∈ Eu(x), ||y1|| ≤ r, ||y2|| ≤ r}
Let K2 > K1 > 0, r1 > 0 such that Bk,r(x) ⊂ Dr(x) ⊂ BK2r(x) for all x ∈ K, 0 <
r ≤ r1.

For the duration of this section we will now assumeM is a Euclidean space to avoid
cumbersome changes in coordinates, but the proof holds on a Riemannian manifold
with local coordinates. We now state and prove the final two lemmas required.
The first we will show establishes a constant ζ such that for a graph established
by stable and unstable subspaces for a periodic point x, the iterated map at that
point is also a graph, bounded by the same dispersion constant c.

Lemma 7.11. For all c > 0, there exists some ζ > 0 such that for some periodic
x ∈ K, if a set G ⊂ M is contained in the ball Bζm(x) and is an (Es(x), Eu(x))-
graph with dispersion ≤ c, then gm(G) is a ((Dxg

m)Es(x), (Dxg
m)Eu(x))-graph

with dispersion ≤ c.

Proof. Let α = sup{γ(Es(x), Eu(x)) | x ∈ K}, and let δ > 0 be given based on the
parameters α, β, c, λ, as given by Lemma 7.9. We want to show that there exists
some C > 0, 0 < t ≤ 1 s.t.

(7.12) ||(Dxg
n)− (Dyg

n)|| ≤ Cn||x− y||t, x, y ∈M.

Doing so would allow us to manipulate the inequality to be less than δ, which would
then allow application of Lemma 7.9.
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Let 0 < t ≤ 1, C0 > 0 such that ||(Dxg) − (Dyg)|| ≤ C0||x − y||t. g is Lipschitz
continuous, i.e. for all x, y ∈M ,

|g(y)− g(x)|
|y − x|

≤ A

where A is called the Lipschitz constant. Then A ≥ ||(Dxg)|| for all x ∈ M . Now
choose some C such that for all n ≥ 0, we have that

(7.13) C ≥ A+ C0
At+1

C

n

For n = 1, we have that ||(Dxg)− (Dyg)|| ≤ C0||x− y||t ≤ C||x− y||t, clearly. If it
holds for n = {1, . . . ,m}, then we have that

||(Dxg
m+1)− (Dyg

m+1)||
≤ ||(Dgm(x)g)− (Dgm(y)g)|| · ||(Dyg

m)||) + (||(Dgm(x)g)|| · ||(Dxg
m)− (Dyg

m)||)
≤ AmC0||gm(x)− gm(y)||t +ACm||x− y||t

≤ AmC0A
mt||x− y||t +ACm||x− y||t

≤ Cm+1||x− y||t

So using this inductive argument we have proven (7.12) holds. Now, take ζ > 0
such that (Cζt)n < δ, n ≥ 1. Then

||(Dyg
m)− (Dxg

m)|| ≤ Cm||x− y||t ≤ Cmζmt < δ, y ∈ Bζm(x)

The result follows from Lemma 7.9. □

Lemma 7.14. Let Λn(y) be the set of all w ∈ y+Eu(x) s.t. gj(w) ∈ D
ρ

gj(x)
K1

(gj(x))

for all 0 ≤ j ≤ n. If gn(x) ∈ K and y ∈ Es(x), if Λn(y) ̸= ∅, then gn(Λn(y)) is an
(Es(gn(x)), Eu(gn(x)))-graph with dispersion ≤ c.

Proof. The lemma holds for n = 0. Assume it holds for some m > 0. If gm
′
(x) ∈

K, gj(x) /∈ K, m < j < m′ and Λm′(y) ̸= ∅, then we have that

gm
′
(Λm′(y)) ⊂ gm

′−m(gm(Λm(y))) ∩D
ρ

gm
′
(x)

K1

(gm
′
(x))

We know that gm(Λm(y)) is an (Es(gm(x)), Eu(gm(x)))-graph with dispersion ≤ c
and

gm(Λm(y)) ⊂ D
ρ

gm(x)
K1

(gm(x))

⊂ B
k2ρ

gm(x)
K1

(gm(x)) ⊂ Bζm′−m(gm(x))

SinceN(gm(x)) = m′−m, by Lemma 7.9 it follows that gm
′
(Λm(y)) = gm

′−m(gm(Λm(y)))

is an (Es(gm
′
(x)), Eu(gm

′
(x)))-graph with dispersion c, and thus so is its subset

gm
′
(Λm′(y)).

□
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Theorem 7.15. Let g, f,M,K,Eu(x), Es(x), µ, χ be defined as above. Then

(7.16) hµ(f) =

∫
M

χdµ

Proof. Fix the constant c from Lemma 7.11 small enough such that there exists
some a > 0 such that if x ∈ K, y ∈M with |x−y| < a, then for all E ⊂ TyM which
is an (Es(x), Eu(x))-graph with dispersion ≤ c,

| log |det(Dyg)

E
| − log |det(Dxg)

Eu(x
|| ≤ ϵ

Recall that we defined Dr (7.10) as follows: Dr(x) = {x+y1+y2 | y1 ∈ Es(x), y2 ∈
Eu(x), ||y1|| ≤ r, ||y2|| ≤ r}, with K2 > K1 > 0, r1 > 0 such that Bk,r(x) ⊂
Dr(x) ⊂ BK2r(x) for all x ∈ K, 0 < r ≤ r1.

Now we define a new function N(x): If x ∈ K, define N(x) the least value N(x)
such that gN(x)(x) ∈ K.

We prove that N(x) is both well-defined and integrable at a.e. x. If Wj = {x ∈ K |
N(x) = j}, then

⋃
n≥0 g

n(K) =
⋃∞

j=1

⋃j−1
i=0 g

i(Wj) mod 0. Sets on the righthand
side of the union are pairwise disjoint, so

1 > µ(
⋃
n≥0

gn(K)) =

∞∑
j=1

j−1∑
i=1

µ(gi(Wj))

=

∞∑
j=1

jµ(Wj) =

∫
M

Ndµ

Now we extend the domain of N to all of M by setting N(x) = 0 for x /∈ K. Define
ρ : M → (0, 1) as ρ(x) = min(a, K1

K2
ζN(x)). Since N is integrable, log ρ is also

integrable. Let ν denote the Lebesgue measure on M .

We now show that there exists some K ′ ⊂ K with µ(M \K ′) ≤ 2
√
ϵ s.t.

(7.17) hν(g, ρ, x) ≥ N(χ(x)− ϵ− 4Cϵ)− ϵ

for µ-a.e. x, where C = sup{log | det(Dp(f)|
E | p ∈M,E ⊂ TpM}.

We have from the Birkhoff Ergodic Theorem (Theorem 3.6) that

µ({x | lim
n→∞

1

n
#{0 ≤ j ≤ n | gj(x) /∈ K} ≤

√
ϵ}) ≥ 1−

√
ϵ

Then there exists some compact set K1 ⊂ K such that µ(K1) ≥ 1 − 2
√
ϵ,N0 > 0

s.t. for all n ≥ N0, #{0 ≤ j ≤ n | gj(x) /∈ K} ≤ 2n
√
ϵ, for all x ∈ K1. Let

K ′ = K ∩K1. Then µ(K \K ′) ≤ µ(M \K1) ≤ 2
√
ϵ. Fix any x ∈ K ′. There exists

some B > 0 s.t.

ν(Sn(g, ρ, x)) = B

∫
Es(x)

ν[(y + Eu(x)) ∩ Sn(g, ρ, x)]dν

for all n > 0.
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Thus we wish to show that

lim sup
n→∞

inf
y∈Es(x)

1

n
[− log ν((y + Eu(x)) ∩ Sn(g, ρ, x))] ≥ N(χ(x)− ϵ− 4C

√
ϵ)− ϵ

Let Λny be as defined in Lemma 7.14. Since BK,r(x) ⊂ Dr(x) ⊂ BK2r(x), we have
that

Λn(y) ⊃ (y + Eu(x)) ∩ Sn(g, ρ, x)

and thus our claim is reduced to showing

(7.18) lim sup
n→∞

inf
y∈Es(x)

1

n
[− log ν(Λn(y))] ≥ N(χ(x)− ϵ− 4C

√
ϵ)− ϵ

To prove this claim take D > 0 s.t. D > volume(G), for all (Es(w), Eu(w)) graphs
G with dispersions ≤ c in Dρ(w)(w), w ∈ K. If gn(x) ∈ K, y ∈ Es(x),

D > vol(gn(Λn(y))) =

∫
Λn(y)

|det(Dzg
n)

TzΛn(y)
|dν

Let Fn = {0 ≤ j < n | gj(x) ∈ K}. If n ≥ N0, then

log |det(Dzg
n)

TzΛn(y)
| =

n−1∑
j=0

log |
det(Dgj(z)(g)

Tgj(z)gj(Λn(y))
|

≥
∑
j∈Fn

log |
det(Dgj(z)(g))

Tgj(z)gj(Λn(y))
| −NC(n−#Fn)

≥
∑
j∈Fn

log |
det(Dgj(z)(g))

Eu(gj(x))
| − ϵn−NC(n−#Fn)

≥
∑
j∈Fn

log |
det(Dgj(z)(g))

Eu(gj(x))
| − ϵn− 2NC(n−#Fn)

≥ nN(χ(x)− ϵ)− ϵn− 2NC(n−#Fn)

≥ nN(χ(x)− ϵ)− ϵn− 4NCn(n−#Fn)

Thus we have that D > ν(Λn(y)) · en(N(χ(x)−ϵ−4Cϵ)) for all y ∈ Es(x), n ≥ N0,
proving (7.18).

Now we have shown there exists some K ′ ⊂ K which follows (7.17), using Propo-
sition 7.7, we have

hµ(g) ≥
∫
M

hν(g, ρ, x)dµ

≥
∫
K′
hν(x)

≥ N

∫
K′
χµ−N(ϵ+ 4C

√
ϵ)− ϵ

≥ N

∫
M

χdµ−N(ϵ+ 6C
√
ϵ)− ϵ

=⇒ hµ(f) ≥
1

N
hµ(g) ≥

∫
M

χdµ− (ϵ+ 6C
√
ϵ)− ϵ

N
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ϵ is arbitrarily small, so assuming Ruelle’s inequality holds, we achieve the desired
equality

hµ(f) =

∫
M

χdµ

□

8. SRB Measures

Here we describe a specific conservative invariant probability measure. These were
introduced by Sinai, Ruelle, and Brown, and are thus titled SRB measures. We
cite surveys by Young and Wilkinson [5], [14], and [16].

Theorem 8.1. Let (f,A, µ) be an mpt on a manifold M with positive Lyapunov
exponents almost everywhere. Then Pesin’s formula (Theorem 7.15) holds if and
only if µ has absolutely continuous conditional measures on unstable manifolds.

The proof can be found in [5]. We use measures which fulfill this criteria as one
definition for SRB measures:

Definition 8.2. A measure which fulfills Theorem 8.1 is titled an SRB measure.

This definition is relatively unambiguous; an SRB measure is one which fulfills
Pesin’s formula (since one of the assumptions of Pesin’s formula is that µ is ab-
solutely continuous with respect to f and thus with respect to the unstable sub-
manifolds of f .) Interestingly, SRB measures were not discovered in the context of
Pesin’s formula; rather, they were derived for Anosov diffeomorphisms and Axiom
A attractors, defined as follows (respectively). Let f :M →M be a diffeomorphism
of a compact Riemannian manifold M .

Definition 8.3. We call f an Anosov diffeomorphism if for each x ∈ M , TxM =
Eu(x)⊕Es(x), where Eu and Es are Df -invariant, Df |Eu is uniformly expanding
and Df |Es is uniformly contracting.

Definition 8.4. Let Λ be an attractor of f (recall the definition of attractor given
in Definition 4.3). We call f an Axiom A attractor if TxΛ = Es ⊕ Eu, where Es

and Eu have the same properties as above.

In this context we introduce another equivalent method of characterizing an SRB
measure for an Axiom A attractor:

Theorem 8.5. Let f be a C2 diffeomorphism with Axiom A attractor Λ. Then
there is a unique f -invariant Borel probability measure µ on Λ such that for every
continuous ϕ on U , almost everywhere,

1

n

n−1∑
i=0

ϕ(f i(x)) →
∫
ϕdµ

Thus the convergence of the average of each continuous function composed with
the iterated map yields the integral of that continuous function. Finding SRB
measures for systems with attractors, absolutely continuous measures, and uniform
hyperbolicity is possible (we have studied them without naming them in our proof
of the Pesin entropy formula.) However, there is a case in which the existence
of SRB measures is highly non-trivial, and this is for systems with nonuniform
hyperbolicity.
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Definition 8.6. A conservative diffeomorphism f : M → M is nonuniformly hy-
perbolic if the invariant measure representing volume is hyperbolic. In this sense,
uniformly hyperbolic systems (those with Lyapunov exponents not equal to zero)
are also nonuniformly hyperbolic.

There are very few cases in which SRB measures for nonuniformly hyperbolic sys-
tems without uniform hyperbolicity have been found. One such example is for the
Henon mappings. These are a two-dimensional family of mappings in the plane,
defined as follows:

Ta,b :

(
x
y

)
7→

(
1− ax2 + y

bx

)
For a = 2, b = 0, Benedicks and Young constructed an SRB measure for this family
of attractors, given as follows.

Theorem 8.7. With Ta,b defined as above, there exists a rectangle ∆ = (a0, a1)×
(0, b1) in parameter space such that for all (a, b) ∈ ∆, T = Ta,b has an attractor
Λ. In addition, for all sufficiently small b > 0, there exists a positive measure set
∆b such that for all a ∈ ∆b, T = Ta,b admits a unique SRB measure µ which is
supported on the entire attractor and (T, µ) is Bernoulli.

We omit the proof, but state it to demonstrate that there is some argument for
the existence of SRB measures for nonuniformly hyperbolic systems. Both proofs
detailing these SRB measures (the preceding theorem and that the Lorenz attractor
is mixing, Theorem 6.7), use invariant cone fields in their results. More general
results constructing SRB measures are being studied, in contexts of both systems
with and without uniform hyperbolicity. Their practicality when describing chaotic
dynamical systems is apparent, however, and thus worth further investigation.

9. Conclusion

What preceded was a brief introduction to differentiable dynamical systems, smooth
ergodic theory, hyperbolicity, and a hint of chaos theory. Ultimately, this culmi-
nated in a proof of the Pesin entropy formula.
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