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1. Introduction

This article explores two distinct infrastructures addressing a longstanding issue: S-modules
developed by Elmendorf, Kriz, Mandell, and May, and orthogonal spectra developed by Mandell
and May. Both approaches offer various advantages. As the pioneering model in the closed sym-
metric monoidal category, constructing S-modules poses challenges, particularly evident in the
semi-product construction. However, its standard model category ensures that all objects are fi-
brant. On the other hand, orthogonal spectra, while not the initial model from a diagrammatic
approach (with symmetric spectra by Hovey, Shipley, and Smith taking that honor), combines the
strengths of both S-modules and symmetric spectra. It is straightforward to construct, leveraging
the convenience of starting from the category of finite-dimensional inner product spaces, itself a
closed symmetric monoidal category, allowing for a symmetric and commutative smash product.

The article also delves into transitioning from standard cases to equivariant settings, introducing
group actions of a compact Lie group G. The focus lies on providing a survey under the equivariant
assumption. Both equivariant models are constructed in a coordinated fashion, guiding the creation
of sphere objects associated with representations. Additionally, their model categories are direct
and natural, defining weak equivalences in the realm of normal ”stable equivalences.” Ultimately,
the model categories are Quillen equivalent, granting flexibility in choosing the contextually relevant
model based on the crucial information presented at the survey’s conclusion.
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2. Equivariant S-modules

2.1. The construction of the symmetric monoidal category. As we have seen in the Intro-
duction, we need categories of spectra that are functors from symmetric monoidal categories to
symmetric monoidal categories, in order to get a good internal smash product. Since we focus on
the equivariant version of spectra, we should take the action of a group G into consideration. Here
we give the construction of the universe U in terms of the direct sum of some G-representations.

Construction 2.1. A universe U for the group G contains countably infinite dimensional orthog-
onal representations of G, such that

(1) The trivial representation R ∈ U .
(2) Once a finite dimensional representation V ⊂ U , then the infinite direct sum of V with

itself also belong to U .

Throughout this paper, we work with a complete, or genuine universe, i.e. U contains all of
G’s irreducible representations. We will explain the convenience to do so in the chapter equivariant
orthogonal spectra. Now we can give the definition of G-prespectrum and G-spectrum by taking
source from the universe and target from the based G-spaces.

Definition 2.2. (1) A G-prespectrum X consists of based G-spaces X(V ) for indexing G-
spaces V ⊂ U and structure maps σ : ΣW−V X(V ) → X(W ) for V ⊂ W which is a based
G-map, and σ is an identity once V = W . The evident transitivity diagram must commute
when V ⊂ W ⊂ Z, i.e.

ΣZ−V X(V ) = ΣZ−W (ΣW−V X(V )) X(Z)

ΣZ−WX(W )

σV,Z

ΣZ−WσV,W
σW,Z

commutes. A map f : X → Y of prespectra consists of based maps f(V ) : X(V ) → Y (V )
that commute with the structure maps σ; f is a G-map if each f(V ) is a G-map between
G-spaces.

(2) AG-spectrum is aG-prespectrum whose adjoint structureG-maps σ̃ : X(V ) → ΩW−V X(W )
are homeomorphisms of G-spaces.

We denote the category of G-prespectra and G-spectra by PG and SG. There is a spectrification
G-functor L : PG → SG which is left adjoint to the forgetful functor l : SG → PG. We can see
this construction easily in the case that each adjoint structure map σV,W : E(V ) → ΩW−V E(W )
for the G-prespectrum E is an inclusion, we then define the spectrification LE of E to be

LE(V ) = colimV⊂W ΩW−V E(W ).

To underline the change of universes under the external smash product, consider the category SGU
of G-spectra indexed on the universe U . Write U j for the direct sum of j copies of U . It’s easy to
find for positive integer j we have a external smash product ∧ : (SGU)j → SGU

j , explicitly,

(E1 ∧ ... ∧ Ej)(V1 ∧ ... ∧ Vj) = E1(V1) ∧ ... ∧ Ej(Vj).

Since our aim is to have a closed symmetric monoidal category, we should have internal smash
product with its adjoint function functor. Without loss of generality, we need only define the
internal smash product for two G-spectra, then the condition of finite internal product is given
inductively. The idea is, since U is complete, then U2 is isomorphic to U . If we have linear
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isometry f from U2 to U , then f is an isometric isomorphism, and we can give one internal type
smash product f∗(E1 ∧ E2) explicitly by

f∗(E1 ∧ E2)(W ) = (E1 ∧ E2)(f
−1(W ))

The problem is, this kind of internal smash product depends on the choice of linear isometry. To
deal with this problem, we consider all the linear isometries.

Construction 2.3. (1) Define the set I (U,U ′) to be the set of linear isometries between G-
universes U and U ′. Here we do not need the isometries to be G-linear, but have G-actions
on I (U,U ′) be conjugation.

(2) Given a space A and a map α : A → I (U,U ′). For a spectrum E indexed on the G-universe
U , the semi-product A⋉ E is a spectrum indexed on the G-universe U ′.

Here the space A with the map α coarsely gives the union of the internal type smash products
as f we described above. If we let L (i) = I (U i, U) and consider the union of smash products

L (2)⋉ (E1 ∧ E2)

which is too big to be associative. As a result we have to quotient something. One problem is, we
expect the single action from L (1) to Ei (if it exists) to be an isomorphism of Ui indexed on the
same G-universe, but it actually includes a lot more. Then for the embedding L (1) × L (1) into
L (2), we calculate the action of L (1) on each Ei respectively for repeatedly too many times. In
conclusion, we choose the spectra which have the L (1) action on them, for such spectrum E, we
denote L (1) ⋉ E by LE. Before giving the normal definition of internal smash product we need,
let us clear some properties and notions.

Property 2.4. The sign L specified by the L (1) action is actually a monad in the category of
G-spectra indexed on the G-universe U . The product

µ : LLE ∼= (L (1)× L (1))⋉ E → L (1)⋉ E = LE

is induced by the compositional product L (1)× L (1) → L (1). The unit

η : E ∼= {1}⋉ E → L (1)⋉ E = LE

is induced by the evident inclusion {1} → L (1). Both the product map and unit map are G-maps.
It’s easy to check that L is associative and unital which verify it to be a monad.

Property 2.5. A spectrum with an action of L (1), which we denote it by an L-spectrum, specified
by the G-map ξ : LM → M , is actually an L-algebra. This is equivalent to say the following
diagrams commutes :

LLM LM M LM

LM M M

Lξ

ξ

µ

ξ

µ

ξ
=

And the morphism between the L-algebra are G-maps f : M → N such that the following diagram
commutes:

LM LN

M N

ξM

f

Lf

ξN
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Property 2.6. The linear isometries G-operad L (j) comes together with the structure map

γ : L (k)× L (j1)× ...× L (jk) → L (j1 + ...+ jk)

γ(g; f1, ..., fk) = g · (f1 ⊕ ...⊕ fk).

Thus we have map γ : L (2) × L (1) × L (1) → L (2) which can be regarded as a right action of
L (1)× L (1) on L (2).

Definition 2.7. Mimic the tensor product, we define the internal product of two L-spectra E1 and
E2 to be the coequalizer of

(L (2)× L (1)× L (1))⋉ (E1 ∧ E2) L (2)⋉ (E1 ∧ E2).
γ⋉(E1∧E2)

L (2)⋉(ξ∧ξ)

In the diagram the upper arrow is given by the right action we mentioned above, while the lower
one is given by the structure map of L-spectra. We denote the smash product defined in this way
by E1 ∧L E2.

Theorem 2.8. The smash product of L-spectra is associative. Formally, there is a natural isomor-
phism of L-spectra

(M ∧L N) ∧L P ∼= M ∧L (N ∧L P ).

Proof. Since for algebra over a monad we have a split coequalizer

LLE LE E,
Lξ

µ

we get a conclusion as in the tensor product of rings that E ∼= L (1) ⋉L (1) E for any L-spectrum
E. Then

(M ∧L N) ∧L P ∼= L (2)⋉L (1)2 (L (2)⋉L (1)2 (M ∧N) ∧ (L (1)⋉L (1) P ))

∼= (L (2)⋉L (1)2 L (2)× L (1))⋉L (1)3 (M ∧N ∧ P )

∼= L (3)⋉L (1)3 M ∧N ∧ P

and similar for the calculation of M ∧L (N ∧L P ) with the same result. The last step of the
calculation uses a result from Hopkins, that for i, j ≥ 1,

L (2)× L (1)× L (1)× L (i)× L (j) L (2)× L (i)× L (j) L (i+ j)γ

id×γ2

γ×id

is a split coequalizer of spaces. Therefore,

L (i+ j) ∼= L (2)⋉L (1)2 L (i)× L (j)

□

And we also have the smash product is natural commutative, derived from the canonical isomor-
phism

L (2)⋉M ∧N ∼= L (2)⋉ t∗(M ∧N) ∼= L (2)⋉N ∧M

in which the map t is the transposition isomorphism between U2. In fact, if we substitute L (2) by
L (2)× L (1)× L (1) we get a similar isomorphism, and then we make a comparison between two
diagrams of coequilizers.

Recall that we need a closed symmetric monoidal category, now we have the commutativity and
associativity, but not unital as we have not found a suitable unit with respect to the internal smash
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product for L-spectra. In fact, we cannot find such a unit for all L-spectra. However, there is a
candidate. For the sphere spectrum SG indexed in the G-universe U , it sends V ⊂ U to the one
point compactification SV .

Theorem 2.9. Let M be an L-spectrum, then there is a natural map of L-spectra λ : SG∧L M → M

Lemma 2.10. There is an infinite suspension functor Σ∞ from the category of G-spaces to the
category of G-spectra which is left adjoint to the infinite loop functor Ω∞ which takes the zero space
of G-spectra. Since a based G-space can be regarded as a G-spectrum indexed on the zero universe
{0}, we can rewrite Σ∞X = L (0)⋉X.

Proof of 2.9. We start with the the special case when M = LX for some spectrum X. Then λ is
given by the map

SG ∧L LX = L (2)⋉L (1)2 (L (0)⋉ S0) ∧ (L (1)⋉X)

∼= (L (2)×L (1)2 L (0)× L (1))⋉ (S0 ∧X)

→ L (1)⋉X = LX

The last arrow uses the structure map of linear isometries G-operads. For the general case M , the
map is just induced by a map of coequilizer diagrams

SG ∧L LLM SG ∧L LM SG ∧L M

LLM LM M

□

To make the candidate of unit become a real unit, we shrink the scope of G-spectra we focus.

Definition 2.11. Define an SG-module to be an L-spectrum M which is unital in the sense that

λ : SG ∧L M → M

is an isomorphism. Let MG denote the full subcategory of SG[L] (the category of L-spectra).

Remark 2.12. We define the category GM at the same time. Its objects are the same as MG’s
but its morphisms are the G-fixed points of the arrows in MG. Notice MG is enriched over GT
while GM is enriched over T . We define the G-fixed category GM because we need a category of
SG-modules with G-equivariant map to define a model structure. The notation is similar for other
categories with G-actions.

The last step for constructing a closed symmetric monoidal category is to build a reasonable
smash product and function spectra (as a functor), in which the former one is left adjoint to the
latter one. In fact, although we have chosen the SG-modules as the right category, we have the
smash product and function spectra in the category of L-spectra, and they already have the good
adjunction property. We will list the result below, and then modify them to be the smash product
and function spectra in MG.

Theorem 2.13. Let M ,N and P be L-spectra. There is a function L-spectrum functor FL (M,N),
contravariant in M and covariant in N , such that

GS [L](M ∧L N,P ) ∼= GS [L](M,FL (N,P )).
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Definition 2.14. For SG-modules M and N , define

M ∧G N = M ∧L N, FG(M,N) = SG ∧L FL (M,N).

Lemma 2.15. The functor SG ∧L (−) : GS [L] → GM is adjoint to the inclusion l : GM →
GS [L].

Proof. Let M be an G-module and N be an L-spectrum. Given a map f : M → SG ∧L N of
SG-modules, we can have a map λ ◦ f : M → M between L-spectra. Conversely, given a map
g : M → N between L-spectra, we can have a map (id ∧ g) ◦ λ−1 : M → S ∧L N of SG-modules.
From the naturality of λ, the diagram

M S ∧L M

N S ∧L Nλ

λ−1

id∧(λ◦f)λ◦f
f

commutes. Using it it’s easy to see our construction s are inverse bijections. □

Theorem 2.16. The category GM is a closed symmetric monoidal category due to the adjunction

GM (M ∧G N,P ) ∼= GM (M,FG(N,P ))

for SG-modules M ,N , and P .

Proof. Combine the 2.15 and the adjunction of L-spectra, we have natural isomorphisms

GM (M,FG(N,P )) = GM (M,SG ∧L FL (N,P ))

∼= GS [L](lM, FL (N,P ))

∼= GS [L](M ∧L N,P )

∼= GM (M ∧G N,P )

□

2.2. The model structure of SG-modules. As in the general case, to define a model structure
on GM , we have to point out the explicit classes of fibrations, cofibrations and weak equivalences.
Then it’s formal to verify the axioms of model category by using the classes of maps we define at
the beginning. It’s more convenient to give these classes for GM , since we have very special “cell”
objects like those in the CW complexes theory, and we can use them to reformulate the classes of
cofibrations and acyclic cofibrations, which is very direct.

2.2.1. Weak Equivalence.

Definition 2.17. Write π(E,E′)G for the set of homotopy classes of maps E → E′ in GS . Then
for H ⊂ G,n ∈ Z and E ∈ GS , define the homotopy group

πH
n (E) = π(G/H+ ∧ Sn

G, E)G.
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Or equivalently, since we always have E(0) is homeomorphism to ΩV E(V ) from the definition of
G-spectra, so

πH
n (E) = π(G/H+ ∧ Sn

G, E)G
∼= colimV π(G/H+ ∧ Sn

G(V ), E(V ))

∼= colimV π(G/H+ ∧ Sn ∧ SV , E(V ))

∼= colimV π(G/H+ ∧ Sn,ΩV E(V ))

∼= colimV π(G/H+, E(0))

= πH
n (E(0)).

Similarly we have πH
−n(E(Rn)). The homotopy groups of an SG-module are the homotopy groups

of its underlying G-spectrum.

Now we have the definitions of homotopy groups in the context of G-spectra and SG-modules,
it’s natural to say that a morphism between two G-spectra (or SG-modules) is a weak equivalence
if it induces isomorphisms between all homotopy groups with n and H varying.

2.2.2. q-fibrations. For the q-fibrations, here we use the special notation q to avoid some ambiguities,
it actually denotes the real fibrations in our model structure. We start from the category of Serre
fibrations (q-fibrations) in the category of spectra, that is, a Serre fibration of spectra is a map that
satisfies the RLP with respect to the set of all inclusions

i0 : Σ∞
q CSn → Σ∞

q CSn ∧ I+.

For the equivariant case, since the sphere objects are different, we adjust that for G-spectra, a Serre
fibration is a map satisfying the RLP with respect to the set of all inclusions

i0 : Σ∞
V (G/H+ ∧ CSn) → Σ∞

V (G/H+ ∧ CSn) ∧ I+.

Apply monad L on GS and combine the adjunction

GS [L](LX,A) ∼= GS (X,A),(2.18)

the q-fibrations in SG[L] are the maps that satisfies the RLP with respect to the set of inclusions

Li0 : LΣ∞
V (G/H+ ∧ CSn) → LΣ∞

V (G/H+ ∧ CSn) ∧ I+.

These maps deserve to be called Serre fibrations of L-algebras. Up to now, we get the Serre
fibrations in different categories step by step, they are very close to the original Serre fibrations in
the category of spectra, since we just use the very simple adjunction in which the right adjoint is
exactly the forgetful functor. However, for SG-modules the story is a little different, since if we
combine two adjunctions we get a new adjuction

GM (SG ∧L LX,M) ∼= GS [L](LX,FL (SG,M)) ∼= GS (X,FL (SG,M))

in which the right adjoint is not forgetful functor! As a result, when we use this adjunction to
define the Serre fibrations in the category of GM , we want somehow to define them to be the maps
satisfying RLP with respect to

SG ∧L Li0 : SG ∧L LΣ∞
V (G/H+ ∧ CSn) → SG ∧L LΣ∞

V (G/H+ ∧ CSn) ∧ I+.

as we have done for L-spectra. This definition corresponds to the maps between function spectra
to be Serre fibrations in the category of G-spectra. To be more specific, we have the theorem
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Theorem 2.19. The category GM is a model category with weak equivalence created in GS . Its
q-fibrations are the Serre fibrations of SG-modules, which are maps f : M → N of SG-modules such
that

F (id, f) : FL (SG,M) → FL (SG, N)

is a Serre fibration of spectra.

Here we need to remind, GM ’s weak equivalences are created in GS means the maps are weak
equivalences in GM if they are weak equivalences when regarded as maps in GS . Furthermore,
there is a conclusion saying that for any L-spectrum M , λ : M → FL (SG,M) is a weak equivalence
of L-spectra. Then from the commutative diagram

M FL (SG,M)

N FL (SG, N),

f

λN

λM

F (id,f)

f is a weak equivalence if and only if FL (id, f) is, which means although the definition of a morphism
in GM to be a q-fibration is not itself when being regarded as a map in GS , the weak equivalences
are unchanged. And this is why for GM we do not need to define its homotopy groups differently
from homotopy groups in GS .

2.2.3. q-cofibrations. Since we have a very explicit description for weak equivalences and q-fibrations,
we can define the q-cofibrations in GM to be the maps which satisfy the LLP with respect to the
acyclic q-fibrations (the maps which are q-fibrations and weak equivalences at the same time).

2.2.4. The proofs of model structure theorems. We introduce following theorem illustrating the
construction of model category of GM .

Theorem 2.20. The category GS is a model category with respect to the weak equivalences and
Serre fibrations. If T : GS → GS is a monad that preserves reflexive coequalizers and satisfies
the ”Cofibration Hypothesis”, then GS creates a model structure in GS [T].

The settings of this theorem is complex, and we need some explanations.

Remark 2.21 (Cofibration Hypothesis). Consider we have a functor T : C → C [T], being a
left adjoint, perserves coproducts. And we have “sphere objects” in C . For example, they are
G/H+ ∧ Sn in the category of G-spaces, and

󰁓∞
V (G/H+ ∧ Sn) in GS , and so on. We consider a

pushout in C [T] of the general form

TE A

TCE B

i

where E is a wedge of sphere objects. The Cofibration Hypothesis means that the map i is a
cofibration of G-spectra or SG-modules, depending on the ground category.

This setting mimics the fact in the category of pointed topological spaces that the inclusions of
subcomplexes are cofibrations. Once the hypothesis is satisfied in the ground category, we have
the inclusions of the relative cell T-algebras are q-cofibrations. In fact, these maps generate all the
q-cofibrations in our model category of T-algebras, i.e. a map is a q-cofibration if and only if it is a
retract of a relative cell T-algebra. The maps TE → TCE are q-cofibrations is proved in 2.28, and
the inclusions of relative cell T-algebras form a generator set of q-cofibrations is shown in 2.30.
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Remark 2.22. The condition for L to be a continuous monad that preserves reflexive coequalizers
is to make category GS [T] have all indexed colimits, thus we can do pushout work with no worry.

Remark 2.23. GS creates a model structure on GS [T] means that GS [T] has a forgetful functor
to GS , and GS [T] is a model category in which a map is a weak equivalence or q-fibration if it is
a weak equivalence or q-fibration when regarded as a map in GS .

Remark 2.24. We care about the model structure of GM in this section. Actually, all the proofs
play equally well if we change the ground category from GS to GM . And if we let T to be the
identity monad, we get simply the model structures of GS and GM .

We then prove 2.20 by checking the axioms of model category verbatimly.
First, to prove “2 out of 3” is trivial.
Second, the retract axiom is also not hard, and we just prove for the case of q-fibrations.

TΣ∞
V (G/H+ ∧ CSn) E1 E2 E1

TΣ∞
V (G/H+ ∧ CSn) ∧ I+ B1 B2 B1

Ti0 p1 p2 p1

f h

g k

In the diagram map p1 : E1 → B1 is a retract of a q-fibration p2 : E2 → B2. The red arrow
is induced by the RLP of p2 with respect to the Ti0 class. Then its composition with h gives the
RLP of p1 with respect to Ti0.

Third, we define the q-cofibrations as the maps satisfying LLP with respect to the acyclic q-
fibrations. So we only have to check that the q-fibrations satisfy the RLP with respect to the
acyclic q-fibrations. This will be proved later. Fourth, the essential part of the proof, is about
showing that arbitrary maps factor appropriately. The proof depends on an important conclusion
called “small object argument”. In the following context, let C be either GS or GM .

Definition 2.25. Define a finite pair ofG-spectra to be a pair of the form (Σ∞
V (G/H+∧B),Σ∞

V (G/H+∧
A)), where B is a finite based CW complex, A is a subcomplex, and dim(V ) ≥ 0. Define a finite
pair of L-spectra to a pair obtained by applying L to be a finite pair of spectra, and similarly for
SG-modules.

Lemma 2.26 (Small Object Argument). Let F be a set of maps in C [T], each of which is of
the form TE → TF for some pair (F,E) in C . Then any map f : X → Y in C [T] factors as a
composite

X
i−→ X ′ p−→ Y,

where p satisfies the RLP with respect to each map in F and i satisfies the LLP with respect to any
map that satisfies the RLP with respect to each map in F .

Sketch Proof. Let X = X0, we construct a “tower” of Xi’s and take the colimit, getting the “inclu-
sion” and “projection” which are our i and p respectively. We construct a commutative diagram

X0 X1 ... Xn Xn+1 ...

Y Y ... Y Y ...

ini0

id id

f=p0 p1 pn pn+1
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as follows. Suppose inductively we have constructed pn. Consider all maps from a map in F to
pn. Each such map fits in a commutative diagram

TE Xn

TF Y.

α

pn

We collect all such diagram and add them together, then take the pushout of the diagram, denote
it Xn+1. Then there is a induced map pn+1 from Xn to Y . It’s easy to see pn+1 ◦ in = pn, where
in : Xn → Xn+1 is the canonical inclusion.

󰁣
TE Xn

󰁣
TF Xn+1

Y.

Σα

in

pn

pn+1

Let X ′ = colimXn, and then we also get canonical inclusion i : X → X ′, and p : X ′ → Y is
got by passage to colimit from the pn’s. Now we have to show that i and p satisfy the properties
correspondingly. Firstly, each in and therefore i satisfies LLP with respect to the maps that satisfy
the RLP with respect to maps in F . To show p satisfies RLP with respect to maps in F , we need
to find a map g : TF → X ′ to make the diagram commutes

TE X ′

TF Y.

pi

α

g

From the Cofibration Hypothesis, we know that X ′ is the colimit of sequences of q-cofibrations. We
can see a conclusion in [] III.1.7 saying that the natural map

colimC [T](TE,Xn) → C [T](TE, colimXn)

is bijective. Thus the map α : TE → X ′ factors through some Xk, and TF maps into Xn+1 as in
the former commutative diagram. Then compositing with inclusion from Xn+1 to X ′, we get the
required g : TF → X ′.

□

With this important conclusion, we can let F be different classes of maps which induce different
factorizations. We will iterately use the adjunction 2.18, and we would not analyse the chasing
process repeatedly.

Theorem 2.27. Any map f : X → Y in C [T] factors as p ◦ i, where i is an acyclic q-cofibration
that satisfies the LLP with respect to any q-fibration and p is a q-fibration.

Sketch. Let F be the set of pairs obtained by letting (B,A) run through all pairs of spaces (G/H+∧
CSn∧I+, G/H+∧CSn∧{0}+) where n ≥ 0. We can see that a map is a q-fibration if and only if it
satisfies the RLP with respect to every map in F , and every map in F is an acyclic q-cofibrations.
These are direct from the definitions. Then use 2.26 to factor f . Then p is a q-fibration and i
satisfies LLP with respect to all q-fibrations and thus is a q-cofibration. Use the fact that the free
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functor T and its adjoint forgetful functor preserve homotopies, we know each in is a deformation
retract and so is i. Thus i is an acyclic q-cofibration. □

Theorem 2.28. Any map f : X → Y in C [T] factors as p ◦ i, where i is a q-cofibration and p is
an acyclic q-fibration.

Sketch. Let F be the set of pairs (G/H+∧CSn, G/H+∧Sn) where n ≥ 0. This time we can check
easily a map of T-algebra is an acyclic q-fibration if and only if it satisfies the RLP with respect to
all of the maps in F (the reason is similar to πn(X,A) = 0 if and only if every map in πn(X,A) is
homotopic to a map which maps Dn into A rel Sn−1). This also proves the inclusions TE → TCE
we mentioned in 2.21 are q-cofibrations. Then use 2.26 directly. □

To complete constructing a model category, we only have to prove the RLP of q-fibrations with
respect to acyclic q-cofibrations.

Theorem 2.29. The q-fibrations satisfy the RLP with respect to the acyclic q-cofibrations.

Sketch. If there is a map from any acyclic q-cofibration f : E → F to a q-fibration h : A → B, we
have a commutative diagram

E′ E A

F F B

fp

i

g
h

in which we apply 2.26 to f such that i is an acyclic q-cofibration and p is a q-fibration. Since f and
i are both weak equivalences, so is p. The red dotted arrow is induced by the fact that f satisfies
LLP with respect to acyclic q-fibration p. Then we get f is in fact a retract of i, so f satisfies LLP
with respect to q-fibrations as i does.

□

Remark 2.30. Use the same technique, we can prove that a map of T-algebras is a q-cofibration
if and only if it is a retract of a relative cell T-algebra.

We have prove more that everything needed to construct the model category of GM or just GS .
To make life easier, or more clear, we restate the settings in a neater way.

Definition 2.31 (Sphere Objects). (1) A generalized sphere G-spectrum is a G-spectrum of
the form Σ∞

V (G/H+ ∧ Sn), where V is an indexing G-space V in the G-universe U, n ≥ 0,

and H ⊂ G. Write S−V
G = Σ∞

V S0 as the desuspention with indexing G-space V .
(2) A generalized sphere SG-module is an SG-module of the form FE ≡ SG ∧L LE where E is

a generalized sphere G-spectrum.

Definition 2.32 (Generating (acyclic) Cofibrations). (1) A generalized generating q-cofibration
in GM is a map of the form E → CE = E ∧ I+, where E is a generalized sphere object
and CE is the cone on E.

(2) A generalized generating acyclic q-cofibration is a map of the from i0 : CE → CE ∧ I+,
where E is a generalized sphere object.

Theorem 2.33 (Model Category Settings). Here we consider the category GS and GM of G-
spectra and SG-modules, then

(1) A map in either category is a weak equivalence if it induces an isomorphism on all homotopy
groups πH

n .
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(2) A map is a generalized q-cofibration if it is a retract of a relative cell G-complex defined in
terms of generalized generating q-cofibrations.

(3) A map is a restricted q-fibration if it satisfies RLP with respect to all generalized generating
acyclic q-cofibrations.

Remark 2.34. Actually, 2.33 specifies a convenient way to describe a model category by giving the
weak equivalences, the generating set of cofibrations and the generating set of acyclic cofibrations.
In such a setting, a map is an (acyclic) fibration if it satisfies RLP with respect to each map in
the generating set of (cofibrations) acyclic cofibrations; a map is an (acyclic) cofibration if it is a
retract of a relative cell complex in terms of generating (acyclic) cofibrations.

In next chapter, we will also give the model structure of equivariant orthogonal spectra by
specifying the generating sets of cofibrations and acyclic cofibrations. We will not give the detailed
proof there, as the verification for it to be a model structure is similar to this chapter: they are in
fact verifying that Kan Recognition Theorem holds for the generating sets we provide.

Theorem 2.35 (Kan Recognition Theorem). Let C be a category with all small limits and colimit
and W a class of maps satisfying 2-out-of-3. If I and J are sets of maps in C such that

(1) both I and J permit the small object argument;
(2) LLP(RLP(J)) ⊂ LLP(RLP(I)) ∩W;
(3) RLP(I) ⊂ RLP(J) ∩W;
(4) one of the following holds

1) LLP(RLP(I)) ∩W ⊂ LLP(RLP(J));
2) RLP(J) ∩W ⊂ RLP(I),

then there is the stucture of a cofibrantly generated model category on C with

1. weak equivalences WC := W ;
2. generating cofibrations I;
3. generating acyclic cofibrations J.

In the practice, to give a cofibratly generating model structure for equivariant S-modules, we
introduce the generating sets of acyclic cofibrations and cofibrations in 2.27 and 2.28, respectively.
Then, (2) in 2.35 holds automatically by definition; 2.26 states the fundamental model of “small
object argument” for our setting, combining with 2.27 and 2.28 we prove (1) and (4) in 2.35. At
last, (3) in 2.35 is proved in 2.28. This makes the statements in 2.33 clear.

3. equivariant orthogonal spectra

3.1. Basic constructions. Following the publication of [1], Mandell, May, Schwede, and Shipley
proposed an alternative approach to establish a well-behaved symmetric monoidal category. They
introduced various types of spectra as modifications of ”diagram spectra,” essentially framing them
as categories of functors mapping from distinct special symmetric monoidal categories to the pointed
topological spaces category. This chapter will present equivariant orthogonal spectra as an exem-
plary model of diagram spectra, demonstrating its straightforward and convenient applicability in
construction.

Recall that the most technical step of building a symmetric monoidal category is constructing
the product. Our important motivation to overcome it comes from Day Convolution Theorem.

Theorem 3.1 (Day Convolution Theorem). Let (J ,⊕, 0) be a small symmetric monoidal category
enriched over a cocomplete closed symmetric monoidal category (V ,⊗, 1). Then the enriched functor
category [J ,V ] is closed symmetric monoidal.
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Here, the ⊕ and ⊗ are product of the two symmetric monoidal categories, respectively. If X,Y
are two functors from J to V , then the dotted arrow in the following picture representing the new
commutative and symmetric product (we denote it by “∧” temporarily) of the category [J ,V ]
comes from the Left Kan Extension.

J × J V × V V

J

⊗X×Y

⊕ ∧

Explicitly, the day convolution product ∧ is given by the coend of the functor

J (−⊕−, C)⊗X(−)⊗ Y (−) : P op
/C × P/C → V .

Here C is a fixed object in J , P/C is the category of pairs over C, i.e. objects (A,B) ∈ J × J
such that there is a morphism from A⊕B to C. Then for any C in J , we have

(X ∧ Y )(C) =

󰁝

P/C

J (A⊕B,C)⊗X(A)⊗ Y (B).

Here J (A ⊕ B,C) is viewed as a pointed topological space since J is enriched over V . In our
settings V is cocomplete and P/C is small, so the coend is the coequalizer of

󰁣
(A,B)→(A′,B′) J (A′ ⊕B′, C)⊗X(A)⊗ Y (B)

󰁣
(A,B)∈P/C

J (A⊕B,C)⊗X(A)⊗ Y (B)

As a corollary, it’s easy to calculate directly with the help of the evident adjuction

[J ,V ](X ∧ Y, Z) ∼= [(J × J ),V ](X∧Y, Z ◦ ⊕).

in which ∧ is the evident external symmetric product. Now we can introduce the explicit roles of J
and V in our construction of equivariant orthogonal spectra. First, we also want the new spectra
to go out of a G-universe, and output a G-topological space. Second, we should give the elements
in the G-universe a categorical structure, such that the category is enriched over the category
of topological G-spaces. Inspired by these ideas, we give the following definitions of equivariant
orthogonal spectra.

Definition 3.2. The indexing category JG is the topological G-category whose objects are finite
dimensional real orthogonal representations V of G. Let O(V,W ) denote the Stiefel manifold of
(possibly nonequivariant) orthogonal embeddings V → W . For each such embedding we have an
orthogonal complement W − V , giving us a vector bundle over O(V,W ). The morphism object
JG(V,W ) is its Thom space, which is a pointed G-space.

It’s easy to verify that JG is a symmetric monoidal category enriched over TG. Since it has

(1) Composition map JG(V,W ) ∧ JG(U, V ) → JG(U,W ) which is in fact composed in JG

by the formula (g, y) ◦ (f, x) = (g ◦ f, g(x) + y).
(2) Direct sum on arrows: ⊕ : JG(V,W )∧JG(V

′,W ′) → JG(V ⊕V ′,W ⊕W ′). specified by
the direct sum of spaces and embeddings (f, x)⊕ (g, y) = (f ⊕ g, x⊕ y).

Definition 3.3. An orthogonal G-spectrum E is a functor JG → TG. We will denote its value on
V by E(V ) and the category of orthogonal G-spectra JGT .
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As a reminder, here TG is the category of pointed G-spaces and all (not necessarily equivariant)
continuous pointed maps. Using the functoriality of orthogonal G-spectra, we can easily get the
structure maps for orthogonal G-spectra. For two finite dimensional G-representations V and W ,
we have a nature map

󰂃V,W : JG(V,W ) ∧ E(V ) → E(W ).

This structure map contains more information than the usual “Whitehead’s” structure map, as we
can see in a degenerated case.

Remark 3.4. Given the definition of an orthogonal G-spectrum E, if G is trivial, we get E a
functor J → T , where J is the topological category of finite dimensional orthogonal vector
spaces with morphism spaces as before. Such vector spaces are determined by their dimensions, so
the structure maps degenerate to those maps like

󰂃n,n+1 : J (n, n+ 1) ∧ E(n) → E(n+ 1).

Recall that we also have another definition for the spectra, in which version the structure map is
like

󰂃n : ΣE(n) → E(n+ 1).

This structure map actually chooses an orthogonal embedding Rn → Rn+1, and we smash E(n)
with the one-point compactification of the orthogonal complement. However, for our orthogonal
G-spectra, the structure maps factor through J (n, n + 1) ∧O(n) E(n) and they turn out amount

to a family of maps ΣE(n) → E(n + 1) parameterized by all orthogonal embeddings Rn → Rn+1.
This makes equivariant orthogonal spectra a coordinate free construction.

Definition 3.5. For an object V of JG, define the orthogonal G-spectrum V ∗ represented by V
by V ∗(W ) = JG(V,W ). In particular, 0∗ = SG. Define the shift desuspension spectrum functors
FV : TG → JGT and the evaluation functors EvV : JGT → TG by FV (A) = V ∗ ∧ A and
EvV (X) = X(V ). Then FV and EvV are left and right adjoint:

JGT (FV A,X) ∼= TG(A,EvV X).

This is a direct result of enriched Yoneda lemma.

Notation 3.6. Let Σ∞ = F0 and Ω∞ = Ev0. These are the suspension orthogonal G-spectrum
and zeroth space functors. Note that Σ∞A = SG ∧A. Similarly, let Σ∞

V = FV and Ω∞
V = EvV ; we

let S−V = Σ∞
V S0 and call it the canonical (−V )-sphere.

Then, we can introduce the “tautological representation” of orthogonal G-spectra, and give a
specific picture of its smash product (that is associative and commutative as the product of the
symmetric monoidal category JGT ).

Theorem 3.7. For an orthogonal G-spectrum E, we have an evaluation map V ∗ ∧ E(V ) → E.
We can compile all these maps and express the spectrum E in the form of the coend of D and E
where D is the functor JG → JGT specified by DV = V ∗. In other words, we have a natural
isomorphism

D⊗JG
E =

󰁝 V ∈skJG

V ∗ ∧ E(V ) −→ E

Since the category JG is small, the coend is exactly the coequalizer in the following diagram

󰁚
V,W∈skJG

W ∗ ∧ JG(V,W ) ∧ E(V )
󰁚

V ∈skJG
V ∗ ∧ E(V ) D⊗JG

E.
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Or we can say that a orthogonal G-spectrum E is the homotopy colimit of V ∗ ∧E(V ) when V runs
through all elements in skJG.

Proof. We first assert that the set JGT (X,Y ) of morphisms between two orthogonal G-spectra is
the equalizer in the category of based spaces displayed in the diagram

JGT (X,Y )
󰁔

d TG(X(d), Y (d))
󰁔

α:d→e TG(X(d), Y (e))
µ̃

ν̃

where the products run over the objects and morphisms of JG. For f = (fd), the αth component
of µ̃(f) is Y (α) ◦ fd and the αth component of ν̃(f) is fe ◦X(α).

X(d) Y (d)

X(e) Y (e).

fd

X(α)

fe

Y (α)

The identification of these two maps is equivalent to the commutativity of the above diagram, which
means f is a morphism between X and Y , i.e. f ∈ JGT (X,Y ). Furthermore, use the adjunction
in 3.5, we can get

󰁜

d

TG(X(d), Y (d)) ∼=
󰁜

d

JGT (d∗ ∧X(d), Y ) ∼= JGT (
󰁢

d

d∗ ∧X(d), Y ),

󰁜

α:d→e

TG(X(d), Y (e)) ∼=
󰁜

d,e

TG(JG(d, e) ∧X(d), Y (e)) ∼= JGT (
󰁢

d,e

e∗ ∧ JG(d, e) ∧X(d), Y ).

Since Y is chose arbitrarily, we get X is the coequalizer of the following diagram
󰁚

d,e e
∗ ∧ JG(d, e) ∧X(d)

󰁚
d d

∗ ∧X(d) X.

□

Thus if we write E = hocolimV V ∗ ∧ E(V ) for an orthogonal G-spectrum E, and the same for
other orthogonal G-spectra. Then we can define the smash product of E and F as the coequalizer
of 󰁚

V,V ′,W,W ′(W ⊕W ′)∗ ∧ JG(V,W ) ∧ JG(V
′,W ′) ∧ E(V ) ∧ F (V ′)

󰁚
V,V ′(V ⊕ V ′)∗ ∧ E(V ) ∧ F (V ′) .

The process is actually the same as we introduce at the beginning of this chapter, i.e. the construc-
tion using 3.1. It says the smash product of two orthogonal G-spectra is some kind of “colimit”
with inputs running through all objects and morphisms in the category JG.

3.2. Model Category of Equivariant Orthogonal Spectra. The final model structure we need
for equivariant orthogonal spectra is positive stable model structure. We shall introduce the level
model structure, and then “stabilize” it to get stable model structure. Finally, we restrict stable
model structure to get the positive stable model structure. One important reason we did not do this
for the model structure of equivariant S-modules is, the model structure of equivariant S-modules
is itself stable, and we did not need adjust our generating (acyclic) cofibration sets to avoid sphere
spectrum being fibrant. We will explain later.
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level model structure

stable model structure

positive stable model structure

stabilize

restrict

3.2.1. Level Model Structure of Orthogonal G-spectra. As what we did when introducing the model
structure, the most convenient way to give a model category is pointing out its generating cofibra-
tions and generating acyclic cofibrations. We will write the both sets for the level model structure
of equivariant orthogonal spectra directly, and this time we will not give the specific proof.

Definition 3.8. We will give the generating sets of (acyclic) cofibrations of G-spaces here in
convenience of translating them to be generating sets of (acyclic) cofibrations of orthogonal G-
spectra later. They are intuitive inclusions.

(1) Let I be the set of cell inclusions

i : (G/H × Sn−1)+ → (G/H ×Dn)+

where n ≥ 0 (S−1 being empty) and H runs through the (closed) subgroups of G.
(2) Let J be the set of inclusions

j : (G/H ×Dn)+ → (G/H ×Dn × I)+

and observe that each such map is the inclusion of a G-deformation retract.

Definition 3.9. Define FI to be the set of all maps FV i with V ∈ skJG and i ∈ I. Define
FJ to be the set of all maps FV j with V ∈ skJG and j ∈ J . It’s convenient to write them as
FI = {S−V } ∧ I+ and FJ = {S−V } ∧ J+.

Theorem 3.10. The level equivalence, generating q-cofibrations and generating acyclic q-cofibrations
for the level model structure of equivariant orthogonal spectra are as follows,

(1) For a map f : X → Y between orthogonal G-spectra, f is a level equivalence if each map
f(V ) : X(V ) → Y (V ) of G-spaces is a weak equivalence.

(2) The set FI = {S−V } ∧ I+ is the generating q-cofibrations.
(3) The set FJ = {S−V } ∧ J+ is the generating acyclic q-cofibrations.

Once we have generating sets, we can formulate the whole model category clearly.

(1) The level fibrations are the maps that satisfy the RLP with respect to FJ or, equivalently,
with respect to retracts of relative FJ-cell complexes.

(2) The level acyclic fibrations are the maps that satisfy the RLP with respect to FI or, equiv-
alently, with respect to retracts of relative FI-cell complexes.

(3) The q-cofibrations are the retracts of relative FI-cell complexes
(4) The level acyclic q-cofibrations are the retracts of relative FJ-cell complexes.

3.2.2. Stable Model Structure of Orthogonal G-spectra. The stabilization of level model structure is
realized by Bousfield Localization. The idea is, suppose we have a model category M (like the level
model structure in last section), then we

(1) Enlarge the class of weak equivalences in some way.
(2) Keep the same class of cofibrations as before.
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(3) Define fibrations in terms of right lifting properties with respect to the newly defined trivial
cofibrations. The class of trivial fibrations remains unaltered.

The enlargement of weak equivalences in step(1) above is due to Bousfield Localization. As a
result, we have more weak equivalences and more acyclic cofibrations in the new category, and thus
less fibrations.

Definition 3.11 (Notions about Localization). Suppose we have a model category N which is
enriched and bitensored(it means we can smash or map out of objects in M to objects in N to get
new objects in N ) over another model category M , and S is a set of morphisms in N . Then

(1) An object Z of N is called S-local if for each f : A → B in S, the map

f∗ : N (B,Z) → N (A,Z)

is a weak equivalence in M .
(2) A morphism g : X → Y in N is an S-equivalence if for each S-local object Z the map

g∗ : N (Y, Z) → N (X,Z)

is a weak equivalence in M .

We now apply these notions in the context of equivariant orthogonal spectra. Explicitly, we
already have level model structure which is enriched and bitensored over GT . Then we define the
set S to be natural maps

λV,W : FV⊕WSW = S−V⊕W ∧ SW → S−V = FV S
0

where V,W ∈ JG, it’s adjoint to the map

SW → (FV S
0)(V ⊕W ) ∼= O(V ⊕W )+ ∧O(W ) S

W

which sends w to e ∧ w where e is the identity element of O(V ⊕W ). The maps are important for
the reason: λ∗

v,w’s are exactly the adjoints of the structure maps of orthogonal spectra.

Theorem 3.12. For any orthogonal G-spectrum X,

λ∗
V,W : JGT (FV S

0, X) → JGT (FV⊕WSW , X)

coincides with the adjoint of X’s structure map σ̃ : X(V ) → ΩWX(V ⊕ W ) under the canonical
homeomorphisms

X(V ) ∼= TG(S
0, X(V )) ∼= JGT (FV S

0, X)

and

ΩWX(V ⊕W ) ∼= TG(S
W , X(V ⊕W )) ∼= JGT (FV⊕WSW , X).

Proof. Let X = FV S
0, then σ̃ can be identified as

JGT (FV S
0, FV S

0) JGT (FV⊕WSW , FV S
0)

TG(S
0, FV S

0(V )) TG(S
W , FV S

0(V ⊕W ))

σ̃

∼= ∼=

where the vertical ones are due to adjunctions. It’s easy to see, the map in TG(S
W , FV S

0(V ⊕W ))
sending w to e ∧ w corresponds to the identity map in JG(V, V ) ∼= TG(S

0, FV S
0(V )). Then we

can see λV,W is the image of the identity map on the left above, which explains our coincidence. □
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Corollary 3.13 (S-local Objects). The S-local objects in JGT are the orthogonal G-spectra whose
adjoints of structure maps are weak equivalences, i.e. classically defined G-Ω-spectra.

Corollary 3.14 (S-equivalences). A map g : X → Y is an S-equivalence if

g∗ : JGT (Y, Z) → JGT (X,Z)

is a weak equivalence for every G-Ω-spectrum Z, i.e g induces an isomorphism in every generalized
cohomology theory. Evidently, the level equivalences are all S-equivalences.

Then there is an important theorem that tells us, the S-equivalences coincides with our “classi-
cally defined” stable equivalences.

Definition 3.15 (π∗-equivalences). For subgroups H of G and integers q, define the homotopy
groups πH

q (X) of an orthogonal G-spectrum X by

πH
q (X) = colimV πH

q (ΩV X(V )) if q ≥ 0,

where V runs over the indexing G-spaces in U , and

πH
−q(X) = colimV⊇Rq πH

0 (ΩV−Rq

X(V )) if q > 0.

A map f : X → Y of orthogonal G-spectra is a π∗-isomorphism if it induces isomorphisms on all
homotopy groups.

Remark 3.16. We can see that, we do not need to do localization to S-modules because their un-
derlying spectra are G-Ω-spectra. The homotopy groups defined this way are stabilized themselves.

Theorem 3.17. A map of orthogonal G-spectra is a π∗-equivalence if and only if it’s an S-
equivalence(classically defined stable equivalence).

Sketch Proof. (1) π∗-isomorphism induces S-equivalence. Define RX = F (F1S
1, X) and find

RnX = F (FnS
n, X). The map λ1 : F1S

1 = S−1 ∧ S1 → S0 induces λ∗
1 : X → RX, and we

have a telescope from iterating this map. Take QX = colimn R
nX.

It’s easy to find πq(QX(m)) ∼= πq−m(X). For the special case that E is a G-Ω-spectrum,
the natural map ι : E → QE is a level equivalence. From the naturality of the functor
Q(−), for any orthogonal G-spectrum X and G-Ω-spectrum E, [X,E] is naturally a retract
of [QX,E].
The functor Q(−) also translates the π∗-isomorphisms into level equivalences, so if f : X →
Y is a π∗-equivalence, f

∗ : [Y,E] → [X,E] is a retract of the isomorphism Qf∗ : [QY,E] →
[QX,E] and is therefore an isomorphism. For more details, see Proposition 8.8, [2].

(2) S-equivalence induces π∗-isomorphism See the end of chapter 9 in [2].
□

Now we have successfully enlarge the weak equivalences from level equivalences to π∗-equivalences.
As we claim at the beginning of this chapter, we should also describe the enlarged generating set
of acyclic cofibrations. In the new model category, denote the new “weak equivalences”(the S-
equivalences or π∗-equivalences) by W ′ while the old “weak equivalences”(the level equivalences)
by W. Denote the new generating set of cofibrations by I ′ while the old generating set of cofibra-
tions by I = FI. Actually, we do not change this set, so I ′ = I. Denote the enlarged generating
set of acyclic cofibrations by J ′, while the old generating set of acyclic cofibrations (level acyclic
cofibrations) by J = FJ . We can write

J ′ = J ∪ J
′′
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where J ′′
is some non-empty set. The most important thing to verify is, the new W ′I ′ and J ′

satisfy the 2.35 in which the crucial parts are usually (3) and (4). Before write down the specific

J ′′
, we now introduce some knowledge about G-topological model category.
Suppose we have general model categories CG and GC where the latter one has G-equivariant

morphisms but the former one does not. We suppose there is a given model category on GC , and
CG is enriched over the category of G-spaces TG. For maps i : A → X and p : E → B in GC ,
define CG(i

∗, p∗) to be
CG(X,E) → CG(A,E)×CG(A,B) CG(X,B)

which is the map of G-spaces induced by the universal property of the pullback.

CG(X,E)

CG(A,E)×CG(A,B) CG(X,B) CG(X,B)

CG(A,E) CG(A,B)

i∗

p∗

i∗

p∗

CG(i∗,p∗)

Definition 3.18. A model category GC is G-topological if both

(1) The map CG(i
∗, p∗) is a Serre fibration of G-spaces when i is a q-cofibration and p is a

q-fibration.
(2) The map CG(i

∗, p∗) is a weak equivalence of G-spaces when either i or p is a weak equiva-
lence.

Remark 3.19. The model category of equivariant S-modules we constructed in the first chapter
and the level model category of equivariant orthogonal spectra are both G-topological.

The pair (i, p) has the lifting property if and only if GC (i∗, p∗) (passage to equivariant G-category
of CG) is surjective.

Construction 3.20. There are two pairs of analogues of CG(i
∗, p∗) above.

(1) For a map i : A → B of based G-spaces and a map j : X → Y in GC , passage to pushout
gives a map

i□j : (A ∧ Y ) ∪A∧X (B ∧X) → B ∧ Y

and passage to pullbacks gives a map

F□(i, j) : F (B,X) → F (A,X)×F (A,Y ) F (B, Y ),

where ∧ and F denote the tensor and cotensor in CG.
(2) In the closed symmetric monoidal category CG with product ∧C and internal function

functor FC . Then, for maps i : X → Y and j : W → Z in GC , passage to pushouts gives a
map

i□j : (Y ∧C W ) ∪X∧CW (X ∧C Z) → Y ∧C Z,

and passage to pullbacks gives a map

F□(i, j) : FC (Y,W ) → FC (X,W )×FC (X,Z) FC (Y, Z).
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And we have a lemma whose corollary helps a technical step in verifying the new generating set
J ′.

Lemma 3.21. Let i : A → B be a map of based G-spaces and let j : X → Y and p : E → F be
maps in GC . Then there are natural isomorphisms of G-maps

CG((i□j)∗, p∗) ∼= TG(i
∗,CG(j

∗, p∗)∗) ∼= CG(j
∗, F□(i, p)∗).

Corollary 3.22. Take the natural isomorphisms above and pass to G-fixed points, using 3.2.2, we
know (i□j, p) has the lifting property in GC if and only if (i,CG(j

∗, p∗)) has the lifting property in
GT .

Now we can describe the set J ′′
as all maps of the form i□λV,W . Where i ∈ I defined in 3.8 and

λV,W : FV⊕WSW → FV S
0. Here v and W are taken from skJG. Now

J ′ = FJ ∪ {i□λV,W }.
To verify all criterions in 2.35, we need to figure out, when does a map between orthogonal G-spectra
satisfy RLP with respect to J ′?

Theorem 3.23. A map p : E → B satisfies RLP with respect to J ′ if and only if p is a level
fibration and the diagram

EV ΩWE(V ⊕W )

BV ΩWB(V ⊕W )

σ̃

σ̃

pV ΩW p(V⊕W )

is a homotopy pullback for all V and W, i.e the map induced from EV to the pullback BV×ΩWB(V⊕W )

ΩWE(V ⊕W ) is a weak equivalence.

Proof. The map p has the RLP with respect to J ′ = FJ ∪ J ′′
means it is a level fibration and

has the RLP with respect to all maps of form i□λV,W . From 3.22 we know (i□λV,W ) has lifting
property if and only if (i,JGT (λ∗

V,W , p∗)) has lifting property for all i ∈ I, i.e if and only if

JGT (λ∗
V,W , p∗) is a acyclic Serre fibration of G-spaces.

JGT (λ∗
V,W , p∗) is in fact a Serre fibration. This is because λV,W is a q-cofibration and p is

a fibration. Since the level model category is G-topological, JGT (λ∗
V,W , p∗) is a Serre fibration.

Then, the map p has the RLP with respect to all maps of form i□λV,W if and only if JGT (λ∗
V,W , p∗)

is a weak equivalence. Since we have

JGT (λ∗
V,W , p∗) : JGT (FV S

0, E) → JGT (FV S
0, B)×JGT (FV ⊕WSW ,B) JGT (FV⊕WSW , E)

and use the adjunction, we have JGT (λ∗
V,W , p∗) is isomorphic to the map

EV → BV ×ΩWB(V⊕W ) Ω
WE(V ⊕W )

which is also induced by the universal property of pullback.
□

With this theorem we can verify 2.35 directly. We will not prove them one by one, but will show
the crucial one: (4)2), which states that RLP (J ′) ∩W ′ ⊂ RLP (I ′). We can translate this into a
theorem.

Theorem 3.24. A stable equivalence (S- or π∗-equivalence) p : E → B that satisfies the RLP with
respect to J ′, then p is a level acyclic fibration.
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Sketch Proof. From 3.23 we know p is a level fibration, so we only need to prove p is a level
equivalence. Suppose ΛE is the homotopy colimit of orthogonal G-spectrum E which is given by
ΛE(W ) = colimV ΩV E(V ⊕ W ). It is obviously an G-Ω-spectrum. We now take the diagram in
3.23 and pass it to colimit, we get

E ΛE

B ΛB

p Λp

is also a homotopy pullback. The functor Λ can translate the stable equivalence into level equiv-
alence, i.e Λp is a level equivalence. Then compare the long exact sequence (see [2] Theorem 6.9)
we know that p : E → B is also a level equivalence. □

Up to now we have verified W ′, I ′ and J ′ are stable equivalences, generating set of q-cofibrations
and generating set of acyclic q-cofibrations of the stable model category of orthogonal G-spectra,
respectively.

3.2.3. Positive Stable Model Structure of Orthogonal G-spectra. Let us modify the positive stable
model structure of orthogonal spectra by specifying.

Definition 3.25. We specify a new model category on the basic of stable model category of
orthogonal G-spectra as follows.

(1) For map f : X → Y of orthogonalG-spectra, it is a weak equivalence if it is a π∗-equivalence.
(2) The set of generating cofibrations is

{G+ ∧H S−W ∧ (Sn−1
+ → Dn

+) : n ≥ 0, H ⊆ G}

where W ranges over all representations of all subgroups H of G with WH ∕= 0.
(3) The set of generating acyclic cofibrations is

{G+ ∧H S−W ∧ (Dn
+ → Dn

+ ∧ I) : n ≥ 0, H ⊆ G}

where W ranges over all representations of all subgroups H of G with WH ∕= 0.

The restriction WH ∕= 0 is aim at driving sphere spectrum non-cofibrant. And we have two
reasons to do so:

(1) As the last theorem we will tell, we want a monoidal Quillen equivalence between equivariant
orthogonal spectra and S-modules. The left adjoint we produce goes from equivaraint
orthogonal spectra to S-modules. If this is a Quillen equivalence then it will preserve
cofibrant objects. However, in the stable model structure on equivariant orthogonal spectra,
the unit is cofibrant, which would imply its image is also cofibrant. Since the comparison
is supposed to be monoidal, this would imply the S-module SG is cofibrant. This is known
to be false, so such a Quillen equivalence does not exist. The positive model structure of
orthogonal spectra has different cofibrations, in particular, the unit is no longer cofibrant.

(2) The positive model structure is also built for equivariant commutative orthogonal spectra.
If we keep using the standard stable model category, since the forgetful functor preserves
fibrations and weak equivalences, the free/forgetful adjunction is a Quillen adjunction,
which is to say that the free functor preserves cofibrations and acyclic cofibrations. A
theorem of Ken Brown (see [4] Proposition 1.2.5) says that the free functor preserves weak
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equivalences between cofibrant objects. Even take a look at the non-equivariant case when
the group G is trivial, and we have weak equivalences

FV S
V → S

for V G ∕= 0. Take the free functor, we get
󰁢

n

(FV S
V )n/Σn →

󰁢

n

Sn/Σn

where (n) means smash power and Σn is the symmetric group. On the right, the n-th smash
power of S is S with trivial action by the symmetric group, so Sn/Σn = S. We also have
an important lemma (see [3] Lemma 8.4) which says

((EΣn)+ ∧ (FV S
V )n)/Σn → (FV S

V )n/Σn

is a weak equivalence. For example for n = 2, we get Σ∞RP∞
+ , which is not equivalent to

S. So the free functor does not preserve the weak equivalnce FV S
V → S and if we want

to have the free forgetful functor be a Quillen adjunction, we can’t have both of these be
cofibrant.

For the definitions of Quillen adjoint pairs and the way to verify whether they are Quillen
equivalence, see the appendix in [2]. And we have a theorem, which says that the model category
of equivariant S-modules and orthogonal spectra are Quillen equivalent. It means their homotopy
theory are “the same”, and we can use any of them in the context we need. For example, if we
want all objects to be fibrant, we can use S-modules. If we want all the objects to be treated as
CW -spectra, we can use orthogonal spectra...

Theorem 3.26. There is a strong symmetric monoidal functor N : GJ S → GM and a lax
symmetric monoidal functor N󰂒 : GM → GJ S such that (N,N󰂒) is a Quillen equivalence between
GJ S and GM .
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