
IMAGINARY QUADRATIC EUCLIDEAN DOMAINS

RICHARD CHEN

Abstract. The purpose of this paper is to give an introduction to some ele-

mentary but important concepts in Algebraic Number Theory. To this end, the

first part of this paper discusses Euclidean Domains and Unique Factorization
Domains. In particular, we show that every Unique Factorization Domain

is a Greatest Common Divisor Domain and that every Euclidean Domain

is a Unique Factorization Domain. The second part of this paper discusses
structures called Imaginary Quadratic Domains. Building upon the previous

section, we give a complete characterization of which Imaginary Quadratic

Domains are Euclidean.
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1. Euclidean Domain and Unique Factorization Domain

Definition 1.1. A commutative ring is a set R with two binary operations on R
called addition, denoted +, and multiplication, denoted · , satisfying the following
ring axioms:

(1) (Commutative Laws) For all a, b ∈ R, a+ b = b+ a and a · b = b · a.
(2) (Associative Laws) For all a, b, c ∈ R, (a+b)+c = a+(b+c) and (a ·b) ·c =

a · (b · c).
(3) (Identity Laws) There exist elements 0, 1 ∈ R such that a + 0 = a and

a · 1 = a for all a ∈ R.
(4) (Inverse Law) For any a ∈ R, there exists −a ∈ R such that a+ (−a) = 0.
(5) (Distributive Law) For all a, b, c ∈ R, a · (b+ c) = a · b+ a · c.
For convenience, generally we will use ab to denote a · b, and we will use the ring

axioms implicitly.

Remark 1.2. Let R be a commutative ring. Let a ∈ R. We will use the notation
an with n ∈ N to denote a · · · a︸ ︷︷ ︸

n times

.

Lemma 1.3. Let R be a commutative ring. Let a ∈ R. Then a · 0 = 0.

Proof. We have a · (1 + 0) = a · 1 + a · 0 = a + a · 0 and a · (1 + 0) = a · (1) = a.
Then a+ a · 0 = a. Subtracting a, this gives the result. □
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Definition 1.4. An integral domain is a commutative ring R such that for all
a, b ∈ R, if ab = 0, then a = 0 or b = 0.

Lemma 1.5. Let R be an integral domain. Let a, b, c ∈ R such that c ̸= 0 and
ac = bc. Then a = b.

Proof. We have ac = bc. Rearranging, we obtain ac − bc = c(a − b) = 0. Since
c ̸= 0, then a− b = 0, so a = b. □

Definition 1.6. Let R be an integral domain. Let a, b ∈ R with b ̸= 0. We say
that b divides a in R (denoted b |R a) if there exists r ∈ R such that a = rb. When
obvious, we will not specify the integral domain in which b divides a and simply
write b | a.

Observation 1.7. Let R be an integral domain. If a ∈ R is non-zero, then a | a
since a · 1 = a.

Lemma 1.8. Let a, b, c ∈ R such that a = b+ c. Suppose r ̸= 0 ∈ R such that r | b
and r | c. Then r | a.

Proof. We have b = xr and c = yr for some x, y ∈ R. Then a = xr+ yr = r(x+ y).
Thus r | a. □

Lemma 1.9. Let R be an integral domain. Let a ∈ R and some non-zero b, c ∈ R
such that c | b and b | a. Then c | a.

Proof. By definition, b = rc and a = sb for some r, s ∈ R. Then a = s(rc) = (rs)c
by substitution. By definition, c | a. □

Definition 1.10. Let R be an integral domain. The units of R are the elements
which divide 1. Equivalently, u ∈ R is called a unit if and only if there exists v ∈ R
such that uv = 1. We call v the multiplicative inverse of u and denote it u−1.

Observation 1.11. By commutativity, the multiplicative inverse of any unit in an
integral domain is a unit itself.

Observation 1.12. Let R be an integral domain. For any a ∈ R and unit u ∈ R,
a = a · 1 = a(uu−1) = (au−1)u. Thus u | a.

Definition 1.13. Let R be an integral domain. Let a, b ∈ R. We call b an associate
of a in R if there exists some unit u ∈ R such that a = ub. The set of all associates
of a in R is denoted [a]R, or simply [a].

Remark 1.14. One can show that in Definition 1.13, we have defined an equiva-
lence relation on an integral domain that partitions it into equivalence classes. This
means that if R is an integral domain, then

(1) For any a ∈ R, a ∈ [a].
(2) For any a, b ∈ R, a ∈ [b] if and only if b ∈ [a].
(3) For any a, b, c ∈ R, if a ∈ [b] and b ∈ [c], then a ∈ [c].

Moreover, it follows that for any a, b ∈ R, a and b are associates if and only if
[a] = [b]. We will assume familiarity with these facts for brevity.

Observation 1.15. Let R be an integral domain. Let a, b ∈ R such that they are
associates. If a = rb for some r ∈ R, then it can be shown that r is a unit by
Lemma 1.5.
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Lemma 1.16. Let R be an integral domain. Let a, b ∈ R be non-zero. Then a and
b are associates if and only if a | b and b | a.

Proof. If a and b are associates, then a | b and b | a by definition. If a and b divide
each other, then a = rb and b = sa for some r, s ∈ R. Then a = r(sa). Rearranging,
a− r(sa) = a(1− rs) = 0. Since a ̸= 0, we have 1− rs = 0, so 1 = rs. Thus r and
s are units, so a and b are associates. □

Lemma 1.17. Let R be an integral domain. The set of all units in R is [1].

Proof. Suppose u ∈ R is a unit. Then 1 = uu−1. By Definition 1.13, u ∈ [1].
Suppose x ∈ [1]. Then 1 = vx for some unit v ∈ R. By definition, x is unit. Thus,
r ∈ R is a unit if and only if r ∈ [1], i.e., [1] is the set of all units in R. □

Remark 1.18. Let R be an integral domain. Following Lemma 1.17, we will now
call [1] the set of all units in R.

Lemma 1.19. Let R be an integral domain. Let u, v ∈ R. Then u, v ∈ [1] if and
only if uv ∈ [1].

Proof. Suppose u, v ∈ [1] . Then (uv)(u−1v−1) = (uu−1)(vv−1) = 1 · 1 = 1. Thus,
uv ∈ [1]. Suppose uv ∈ [1]. Then (uv)(uv)−1 = u(v(uv)−1) = v(u(uv)−1) = 1.
Thus, u, v ∈ [1]. □

Observation 1.20. Let R be an integral domain. By induction, u1, . . . , un ∈ [1]
if and only if u1 · · ·un ∈ [1].

Definition 1.21. Let R be an integral domain. An element 0 ̸= π ∈ R is called
prime if π ̸∈ [1] and for all non-zero a, b ∈ R, if π | ab, then π | a or π | b.

Remark 1.22. Let R be an integral domain. By induction, if π ∈ R is prime and
π | a1 · · · an for some ai ∈ R, then π | ai for some i. We will use this fact implicitly.

Definition 1.23. Let R be an integral domain. An element 0 ̸= π ∈ R is called
irreducible if π ̸∈ [1], and if whenever π = ab for some a, b ∈ R, then a or b must
be a unit.

Lemma 1.24. Let R be an integral domain. Let π be a prime of R. Then π is
irreducible.

Proof. Suppose π = ab for some a, b ∈ R. Then a | π and b | π. Since π | ab, by
Definition 1.21 π | a or π | b. Without loss of generality, let π | a. Then π and a
are associates, so b ∈ [1]. □

Corollary 1.25. Let R be an integral domain. Let a, b ∈ R be prime. If b | a, then
[a] = [b].

Proof. We have a = rb for some r ∈ R. By Lemma 1.24, a is irreducible, so r ∈ [1]
since b ̸∈ [1] by Definition 1.21. Then [a] = [b]. □

Definition 1.26. Let R be an integral domain. R is called a unique factorization
domain (UFD) if every non-zero, non-unit element r ∈ R can be written as a unique
product r = uπ1 · · ·πm for some irreducibles πj ∈ R and u ∈ [1]. This product is
unique in that if r = vq1 · · · qn for some irreducible elements qi ∈ R and v ∈ [1],
then m = n, and there exists a permutation ϕ of {1, . . . ,m} such that for all j,
[πj ] = [qϕ(j)].



4 RICHARD CHEN

Remark 1.27. Let R be a UFD. One can show that every non-zero, non-unit
element r ∈ R can be written as a unique product r = uπe11 · · ·πemm for some
distinct irreducibles πj ∈ R, ej ∈ N, and u ∈ [1]. These irreducibles are distinct
in that [πj ] ̸= [πi] for all i ̸= j. This product is unique in that if r = vqp11 · · · qpnn
for some irreducibles qi ∈ R, pi ∈ N, and v ∈ [1], then m = n, and there exists a
permutation ϕ of {1, . . . ,m} such that for all j, [πj ] = [qϕ(j)] and ej = pϕ(j). We
will use this fact implicitly.

Lemma 1.28. Let R be a UFD. Let a, b ∈ R be non-zero, non-unit. Suppose
a = uα1 · · ·αm and b = vβ1 · · ·βn for some irreducibles αj , βi ∈ R and u, v ∈ [1].
Then b | a if and only if n ≤ m, and there exists a permutation ϕ of {1, . . . ,m}
such that for all i, [βi] = [αϕ(i)].

Proof. Suppose b | a. We have a = rb for some r ∈ R. Suppose r ̸∈ [1]. Note r ̸= 0,
or else a = 0 by Lemma 1.3. Then r = wγ1 · · · γl for some irreducibles γk ∈ R and
w ∈ [1]. Let βn+k = γk for all k. By substitution,

uα1 · · ·αm = (wγ1 · · · γl)(vβ1 · · ·βn) = (vw)(β1 · · ·βn+l).
By Lemma 1.19 vw ∈ [1]. Then, by uniqueness, m = n + l, so n < m, and there
exists a permutation ϕ of {1, . . . ,m} such that for all i, we have [βi] = [αϕ(i)]. The
case for r ∈ [1] follows similar logic.

Now suppose n ≤ m, and there exists a permutation ϕ of {1, . . . ,m} such that
[βi] = [αϕ(i)] for all i. Then, for all i, we have αϕ(i) = xβi for some x ∈ [1]. Thus

a = (u)(

n∏
i=1

αϕ(i))(

m∏
j=n+1

αϕ(j)) = (u)(

n∏
i=1

xiβi)(

m∏
j=n+1

αϕ(j))

for some xi ∈ [1]. Since 1 = vv−1 and b = vβ1 · · ·βn, one can show

a = (vv−1)(u)(

n∏
i=1

xiβi)(

m∏
j=n+1

αϕ(j)) = (b)(uv−1
n∏
i=1

xi

m∏
j=n+1

αϕ(j)),

and hence b | a. □

Remark 1.29. In Lemma 1.28, if we suppose a = uαp11 · · ·αpmm and b = vβq11 · · ·βqnn
for some distinct irreducibles αj , βi ∈ R, pj , qi ∈ N, and u, v ∈ [1], then one can
similarly show that b | a if and only if n ≤ m, and there exists a permutation ϕ of
{1, . . . ,m} such that [βi] = [αϕ(i)] and qi ≤ pϕ(i) for all i.

Proposition 1.30. In a unique factorization domain, every irreducible element is
prime.

Proof. Let R be a UFD. Let π ∈ R with π irreducible. Suppose π | ab for some
non-zero, non-unit a, b ∈ R. Then a = uα1 · · ·αm and b = vβ1 · · ·βn for some
irreducibles αj , βi ∈ R and u, v ∈ [1]. Let αm+i = βi for all i. Substituting, we
have

ab = (uα1 · · ·αm)(vβ1 · · ·βn) = (uv)(α1 · · ·αm+n).

By Lemma 1.19, uv ∈ [1]. We have π = 1 · π. Then [π] = [αk] for some k ∈
{1, . . . ,m+n} by Lemma 1.28. Thus, [π] = [αj ] for some j or [π] = [βi] for some i.
Without loss of generality, suppose [π] = [αj ]. Then π | αj by Lemma 1.16. Since
αj | a, by Lemma 1.9, π | a. Suppose either a ∈ [1] or b ∈ [1]. One can show by
similar logic that π | a or π | b. Note a and b cannot both be units. Otherwise,
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applying Lemma 1.19, we have ab = rπ ∈ [1], and so π ∈ [1]. By definition, π is
prime. □

Definition 1.31. Let R be an integral domain. Let a, b ∈ R with a ̸= 0. A greatest
common divisor (GCD) of a and b in R is some g ̸= 0 ∈ R such that for all r ∈ R,
r | a and r | b if and only if r | g. The set of all GCDs of a and b in R is denoted
gcdR(a, b), or simply gcd(a, b).

Observation 1.32. Let R be an integral domain. Let a, b ∈ R with a ̸= 0. If
g ∈ gcd(a, b), then g ̸= 0. Thus g | g, so g is a common divisor of a and b, or g | a
and g | b, by Definition 1.31.

Lemma 1.33. Let R be an integral domain. Let a, b ∈ R with a ̸= 0. Then
g0 ∈ gcd(a, b) if and only if [g0] = gcd(a, b).

Proof. Suppose g0 ∈ gcd(a, b). If g1 ∈ gcd(a, b), then g0 | g1 and g1 | g0 since both
are common divisors of a and b. By Lemma 1.16, g1 ∈ [g0]. Thus, gcd(a, b) ⊂ [g0].
Suppose γ ∈ [g0]. By Lemma 1.16, γ | g0 and g0 | γ. Let r0 ̸= 0 ∈ R such that
r0 | a and r0 | b. By Definition 1.31, r0 | g0. By Lemma 1.9, r0 | γ. Suppose
r1 ̸= 0 ∈ R such that r1 | γ. By Lemma 1.9, r1 | g0. By Definition 1.31, r1 | a and
r1 | b. By Definition 1.31, γ ∈ gcd(a, b). Thus, [g0] ⊂ gcd(a, b), so [g0] = gcd(a, b).
If [g0] = gcd(a, b), then g0 ∈ gcd(a, b) trivially. □

Remark 1.34. Let R be an integral domain. Let a, b ∈ R with a ̸= 0. We write
[g] = gcd(a, b) if g is a GCD of a and b following Lemma 1.33.

Lemma 1.35. Let a, b ∈ R with a ̸= 0. Then a | b if and only if [a] = gcd(a, b).

Proof. Suppose a | b. Let r0 ̸= 0 ∈ R such that r0 | a. By Lemma 1.9, r0 | b. Any
element r1 ∈ R that divides a and b divides a. Then [a] = gcd(a, b) by Definition
1.13. Suppose [a] = gcd(a, b). Then a is a common divisor of a and b, so a | b. □

Observation 1.36. Let R be an integral domain. Let a ∈ R and u ∈ [1]. Then
u | a, so gcd(a, u) = [u] = [1] by Lemma 1.35. Let b ̸= 0 ∈ R. Then 0 = 0 · b by
Lemma 1.3, so b | 0. Thus gcd(b, 0) = [b] by Lemma 1.35.

Proposition 1.37. Let R be a UFD. Let a, b ∈ R with a ̸= 0. Then gcd(a, b) ̸= ∅.

Proof. By Observation 1.36, we may assume a, b ̸∈ [1] and b ̸= 0. Then a =
uαp11 · · ·αpmm and b = vβq11 · · ·βqnn for some distinct irreducibles αj , βi ∈ R, pj , qi ∈
N, and u, v ∈ [1]. Let

G = {αj | [αj ] = [βi] for some i}.
If G ̸= ∅, we can assign the symbols γ1, . . . , γx, with x ≤ m and x ≤ n, to every
element in G. Then there exist permutations ψ of {1, . . . ,m} and ω of {1, . . . , n}
such that [γy] = [αψ(y)] = [βω(y)] for all y. Define

zy = min(pψ(y), qω(y))

for all y, and let g = γz11 · · · γzxx . Since zy ≤ pψ(y) and zy ≤ qω(y), we have g | a and
g | b by Remark 1.29. Thus, any divisor of g is a common divisor of a and b by
Lemma 1.9.

Now suppose r ̸= 0 ∈ R such that r | a and r | b. If r ∈ [1], then we know
r | g. Otherwise, r = wλs11 · · ·λsll for some distinct irreducibles λk ∈ R, sk ∈ N,
and w ∈ [1]. By Remark 1.29, we have l ≤ m, and there exists a permutation
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ϕ of {1, . . . ,m} such that [λk] = [αϕ(k)] with sk ≤ pϕ(k) for all k. We also have
l ≤ n, and there exists a permutation τ of {1, . . . , n} such that [λk] = [βτ(k)] with
sk ≤ qτ(k) for all k. Thus, [λk] = [αϕ(k)] = [βτ(k)] and sk ≤ min(pϕ(k), qτ(k)) for all
k. This implies

[λk] = [γψ−1(ϕ(k))] and sk ≤ zψ−1(ϕ(k))

for all k. By Remark 1.29, r | g, and so gcd(a, b) = [g] by Definition 1.31.
If G = ∅, then [aj ] ̸= [bi] for all i, j. Thus, for any r ̸= 0 ∈ R such that r | a

and r | b, we have r ∈ [1]. Thus, r | 1. It follows that gcd(a, b) = [1] since any unit
divides a and b. □

Definition 1.38. Let R be a UFD. Let a, b ∈ R such that a ̸= 0. We say that a
and b are co-prime if gcd(a, b) = [1].

Lemma 1.39. Let R be a UFD. Let α1, α2 ∈ R be non-zero, non-unit, and co-
prime. Suppose [α1 · α2] = [βn] for some non-zero, non-unit β ∈ R and n ∈ N.
Then, [α1] = [xn] and [α2] = [yn] for some x, y ∈ R.

Proof. We have β = uπe11 · · ·πemm , α1 = vθp11 · · · θprr , and α2 = wρq11 · · · ρqss for some
distinct irreducibles πi, θj , ρk ∈ R, ei, pj , qk ∈ N, and u, v, w ∈ [1]. Let Ei = nei for
all i so that

βn = (uπe11 · · ·πemm )n

= (un)(πne11 · · ·πnemm )

= (un)(πE1
1 · · ·πEm

m ),

and let θr+k = ρk and pr+k = qk for all k so that

α1 · α2 = (vθp11 · · · θprr )(wρq11 · · · ρpss )

= (vw)(θp11 · · · θpr+s

r+s ).

We have z(α1 · α2) = βn for some z ∈ [1]. Then we can obtain

(zvw)(θp11 · · · θpr+s

r+s ) = (un)(πE1
1 · · ·πEm

m )

by substituting from above. By Lemma 1.19, un ∈ [1] and (vwz) ∈ [1]. We have
gcd(α1, α2) = [1] since α1 and α2 are co-prime. By Proposition 1.37, [θj ] ̸= [ρk]
for all j, k. Then, by uniqueness, m = r + s, and there exists a permutation ϕ of
{1 . . . ,m} such that [πϕ(j)] = [θj ] and Eϕ(j) = neϕ(j) = pj for all j. Thus,

α1 = vθ
neϕ(1)

1 · · · θneϕ(r)
r = (v)(θ

eϕ(1)

1 · · · θeϕ(r)
r )n.

Then [α1] = [xn] where x = θ
eϕ(1)

1 · · · θeϕ(r)
r . Similarly [α2] = [yn], where y =

ρ
eϕ(r+1)

1 · · · ρeϕ(r+s)
s . □

Observation 1.40. In Lemma 1.39, if instead [βn] = [α1 · · ·αw] for some non-zero,
non-unit, and pairwise co-prime αz ∈ R, then it can be shown inductively for all z
that [αz] = [xn] for some x ∈ R.

Definition 1.41. A Euclidean Domain (R, d) is an integral domain R with a degree
function d : R \ {0} −→ N such that for all a, b ∈ R with b ̸= 0, there exist q, r ∈ R
such that a = qb+ r, and either r = 0, or d(r) < d(b).

Lemma 1.42. Let R be an integral domain. Let a, b ∈ R with b ̸= 0. Suppose there
exist q, r ∈ R such that a = qb+ r. Then gcd(a, b) = gcd(b, r).
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Proof. Suppose there exists some g0 ∈ R such that [g0] = gcd(a, b). Let s ̸= 0 ∈ R
such that s | b and s | r. Then s | qb by Lemma 1.9, so s | a by Lemma 1.8. Thus
s | g0 by Definition 1.31. If t ̸= 0 ∈ R such that t | g0, then t | a and t | b by
Definition 1.31. We have a = qb+ r, and thus r = a− qb. By Lemma 1.8, t | r, so
[g0] = gcd(b, r) by Definition 1.13. By similar logic, if there exists some g1 ∈ R such
that [g1] = gcd(b, r), then [g1] = gcd(a, b). Otherwise, gcd(a, b) = gcd(b, r) = ∅. □

Proposition 1.43. Let (R, d) be an Euclidean Domain. Let a, b ∈ R with b ̸= 0.
Then gcd(a, b) ̸= ∅. Moreover, there exist m,n ∈ R such that gcd(a, b) = [ma+nb].

Proof. We have:

a = q1b+ r1

b = q2r1 + r2

...

ri−2 = qiri−1 + ri

for some qi, ri ∈ R such that d(ri+1) < d(ri), where b = r0. The sequence of natural
numbers d(r0) > . . . > d(ri) cannot be infinite by the well-ordering principle.
In particular, there exists n ∈ N such that rn = 0 and rn−2 = qnrn−1. Thus,
gcd(rn−1, rn−2) = [rn−1] by Lemma 1.35. By Lemma 1.42, we have gcd(a, b) =
[rn−1]. Rearranging, we obtain:

r1 = a− q1b

r2 = b− q2r1

...

rn−1 = rn−3 − qn−1rn−2.

Substituting recursively, we have rn−1 = ma+ nb for some m,n ∈ R. □

Proposition 1.44. Let (R, d) be a Euclidean Domain. Then every irreducible
element in R is prime.

Proof. Let π ∈ R be irreducible. Suppose π | ab for some non-zero a, b ∈ R, but
π does not divide a. We first show gcd(π, a) = [1]. Suppose r ̸= 0 ∈ R such that
r | π and r | a. Then π = sr for some s ∈ R. If r /∈ [1], then [s] ∈ [1] since π
is irreducible. Then π and r are associates, so π | r by Lemma 1.16. Then π | a
by Lemma 1.9, and hence a contradiction, so r ∈ [1]. Thus, r | 1. It follows that
gcd(π, a) = [1] since any unit divides π and a. Now by Proposition 1.43, there exist
m,n ∈ R such that mπ + na = 1. Multiplying by b, we obtain mπb + nab = b.
Then π | b by Lemma 1.8, so π is prime by Definition 1.21. This proof follows from
one given in Chapter 1 of [3]. □

Lemma 1.45. Let (R, d) be an Euclidean Domain. Let a ̸= 0 ∈ R. If a = bc for
some b, c ∈ R with c /∈ [1], then there exists some β ∈ [b] such that d(β) < d(a).
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Proof. We have:

b = q1a+ r1

a = q2r1 + r2

...

rn−2 = qnrn−1 + rn

for some qi, ri ∈ R such that d(ri+1) < d(ri), where a = r0, rn = 0, and gcd(a, b) =
[rn−1] as in Proposition 1.43. We have b | a since b ̸= 0, or else a = 0 by Lemma
1.3. Then gcd(a, b) = [b] by Lemma 1.35, so rn−1 ∈ [b]. If n = 1, then b = q1a, so
a | b. We have b | a. By Lemma 1.16, a and b are associates, so c ∈ [1], and hence
a contradiction. Then n > 1, so d(rn−1) < d(a). □

Corollary 1.46. Let (R, d) be a Euclidean Domain. Let r ∈ R be non-zero, non-
unit. Suppose r = a1 · · · an for some non-zero, non-unit ai ∈ R. Then n ≤ d(r).

Proof. Let k ∈ {1, . . . , n − 1}. Then
∏n−(k−1)
m=1 al = (

∏n−k
m=1 al)(an−(k−1)). Since

an−(k−1) ̸∈ [1], we have d(r) = d(a1 · · · an) > d(α1) > . . . > d(αn−1) ≥ 1 for some

αk ∈ [
∏n−k
m=1 al] by Lemma 1.45. Thus, n ≤ d(r). □

Proposition 1.47. Let (R, d) be a Euclidean Domain. Then R is a UFD.

Proof. Let r ∈ R be non-zero, non-unit. We show r can be expressed as a product
of a unit and some irreducibles in R. If r is irreducible, we have r = 1 · r, and we
are done. If not, then r = ab for some non-unit a, b ∈ R. Consider the set S =
{n ∈ N \ {1} | there are some non-zero, non-unit a1, . . . , an ∈ R and r = a1 · · · an}.
We have S ̸= ∅. By Corollary 1.46, for every s ∈ S, s ≤ d(r). Thus, there exists
some m ∈ S such that for every s ∈ S, s ≤ m. We have r = a1 · · · am = 1 ·a1 · · · am
for some ai ∈ R. Then each ai is irreducible, or else for some i, we have ai = bc
for some non-unit b, c ∈ R. It follows that there exists some l ∈ S with m < l, and
hence a contradiction. □

2. Imaginary Quadratic Domains

Definition 2.1. An imaginary quadratic domain is an integral domain Z[D] =

{a+ b
√
D | a, b ∈ Z} such that D is a square-free integer and D < 0.

Definition 2.2. The map N : Z[D] −→ N, N(a+ b
√
D) = a2 −Db2 is called the

norm map on Z[D].

Lemma 2.3. The norm map on Z[D] is multiplicative, i.e., for any a = α1 +

α2

√
D, b = β1 + β2

√
D ∈ Z[D], we have N(ab) = N(a)N(b).

Proof. We have

ab = (α1 + α2

√
D)(β1 + β2

√
D)

= (α1β1 +Dα2β2) + (α1β2 + α2β1)
√
D



IMAGINARY QUADRATIC EUCLIDEAN DOMAINS 9

and so

N(ab) = (α1β1 +Dα2β2)
2 −D(α1β2 + α2β1)

2

= ((α1β1)
2 + 2Dα1α2α2β2 + (Dα2β2)

2)

−D((α1β2)
2 + 2α1β2α2β1 + (α2β1)

2)

= (α1α2)
2 −D(α1β2)

2 −D(α2β1)
2 + (Dα2β2)

2

= (α2
1 −Dα2

2)(β
2
1 −Dβ2

2) = N(a)N(b).

by definition. □

Definition 2.4. Let x = y1 + y2
√
D ∈ Z[D]. The complex conjugate of x, denoted

x, is given by x = y1 − y2
√
D.

Lemma 2.5. Let x = y1 + y2
√
D ∈ Z[D]. Then N(x) = N(x) = xx.

Proof. By definition, xx = (y1 + y2
√
D)(y1 − y2

√
D) = y21 − Dy22 and N(x) =

y21 −D(−y2)2 = y21 −Dy22 . Then N(x) = y21 −Dy22 = N(x) = xx by definition. □

Lemma 2.6. Let u ∈ Z[D]. Then u ∈ [1] if and only if N(u) = 1.

Proof. Suppose u ∈ Z[D] is a unit. Then there exists u−1 ∈ Z[D] such that
uu−1 = 1. By Lemma 2.3, we have N(u)N(u−1) = N(uu−1) = N(1) = 1, so
N(u) = 1. Suppose N(u) = 1. By Lemma 2.5, N(u) = uu = 1, so u ∈ [1]. □

Lemma 2.7. In Z[D], 2 is irreducible if D ≤ −3.

Proof. Suppose 2 = ab for some a, b ∈ Z[D]. By Lemma 2.3, N(a)N(b) = N(ab) =
N(2) = 4. Thus, either N(a) = N(b) = 2, N(a) = 1 and N(b) = 4, or N(a) =
1 and N(b) = 4. In the last two cases, either a or b is a unit by Lemma 2.6.

Suppose N(a) = N(b) = 2. We have a = α1 + α1

√
D for some α1, α2 ∈ Z. Then

N(a) = N(α1 + α2

√
D) = α2

1 −Dα2
2 = 2. Since D ≤ −3, we have α2 = 0, or else

2 < −Dα2
2, and so 2 < N(a). Thus, N(a) = α2

1 = 2, but 2 is not a square, and
hence a contradiction. Then either a or b is a unit, so 2 is irreducible. □

Remark 2.8. Let D ∈ Z such that D is square-free. Then one can show the
product a

√
D for some a ∈ Z is not contained in Z unless a = 0.

Lemma 2.9. In Z[D], 2 does not divide
√
D, 1 +

√
D, nor 1−

√
D.

Proof. Suppose 2 |
√
D. Then

√
D = 2a for some a ∈ Z[D]. We have a =

α1 + α2

√
D for some α1, α2 ∈ Z. Then

√
D = 2(α1 + α2

√
D) = 2α1 + 2α2

√
D.

Rearranging, we obtain
√
D(1− 2α2) = 2α1. We have 2α1 ∈ Z. However,

√
D(1−

2α2) ̸∈ Z unless 0 = 1 − 2α2 by Remark 2.8. Then 1 = 2α2, so 2 ∈ [1]. However,

N(2) = 4 ̸= 1, and hence a contradiction to Lemma 2.6. Suppose 2 | (1 +
√
D).

Then 1 +
√
D = 2b for some b ∈ Z[D]. We have b = β1 + β2

√
D for some β1, β2 ∈

Z. Then 1 +
√
D = 2(β1 + β2

√
D) = 2β1 + 2β2

√
D. Rearranging, we obtain√

D(2β2 − 1) = 1− 2β1. We have 1− 2β1 ∈ Z. However,
√
D(2β2 − 1) ̸∈ Z unless

0 = 2β2 − 1 by Remark 2.8. Then 1 = 2β2, so 2 ∈ [1], but we know this is a

contradiction. By similar logic, 2 does not divide 1−
√
D. □

Theorem 2.10. If (Z[D], N) is a Euclidean Domain, then D ≥ −2.
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Proof. Suppose (Z[D], N) is a Euclidean Domain and D ≤ −3. By Proposition
1.47, Z[D] is a UFD. By Lemma 2.7, 2 is irreducible, so 2 is prime by Proposition

1.30. If D is even, then 2 divides D =
√
D ·

√
D, but 2 does not divide

√
D by

Lemma 2.9, and hence a contradiction to Definition 1.21. If D is odd, then 2 divides
1−D = (1+

√
D)(1−

√
D), but 2 does not divide 1 +

√
D nor 1−

√
D by Lemma

2.9, and hence a contradiction to Definition 1.21. This proof follows from one given
by Chris Eagle at [1] □

Lemma 2.11. Let a, b ∈ Z with b ̸= 0. Then there exist q, r ∈ Z such that a = qb+r
and |r| ≤ 1

2 |b|.

Proof. Suppose 0 ≤ a and 0 < b. Consider the set S = {n ∈ Z | 0 ≤ a − nb}.
We have S ̸= ∅ because a − 0 · b = a − 0 = a ≥ 0. Since N ∪ {0} is well-ordered,
S has a least element, or there exists q0 ∈ Z such that 0 ≤ a − q0b < s for any
s ∈ S. Suppose b ≤ a − q0b. Then 0 ≤ a − (q0 + 1)b < a − q0b given 0 < b,
and hence a contradiction since a − (q0 + 1)b ∈ S. If a − q0b ≤ 1

2b, choose q = q0
and r = a − q0b. Otherwise, we have 1

2b < a − q0b < b. Subtracting b, we obtain

− 1
2b < a − (q0 + 1)b < 0, so |a − (q0 + 1)b| < 1

2b. Then choose q = q0 + 1 and
r = a − (q0 + 1)b. If a < 0 and 0 < b, then we have shown there exist q1, r1 ∈ Z
such that −a = q1b + r1 and |r1| ≤ 1

2b. Then choose q = −q1 and r = −r1. If
0 ≤ a and b < 0, then similarly there exist q2, r2 ∈ Z such that a = q2(−b) + r2
and |r2| ≤ 1

2 (−b) = 1
2 |b|. Then choose q = −q2 and r = r2. If a < 0 and b < 0,

then there exist q3, r3 ∈ Z such that −a = q3(−b) + r3 and |r3| ≤ 1
2 (−b) = 1

2 |b|.
Then choose q = q3 and r = −r3. One can check via direct computation that these
choices are satisfactory, or a = qb+ r and |r| ≤ 1

2b. □

Proposition 2.12. (Z[D], N) is a Euclidean Domain if D = −1 or D = −2.

Proof. Let a, b ∈ Z[D] with b ̸= 0. We have a = α1 + α2

√
D and b = β1 + β2

√
D

for some αi, βi ∈ Z. Then

ab = (α1 + α2

√
D)(β1 − β2

√
D)

= (α1β1 −Dα2β2) + (α2β1 − α1β2)
√
D.

Since N(b) ∈ Z, there exist by Lemma 2.11 q1, r1 ∈ Z such that

α1β1 −Dα2β2 = q1(N(b)) + r1 and |r1| ≤
1

2
N(b),

and there exist q2, r2 such that

α2β1 − α1β2 = q2(N(b)) + r2 and |r2| ≤
1

2
N(b).

Thus, we have, by substituting and rearranging,

ab = (q1 + q2
√
D)N(b) + (r1 + r2

√
D).

By Lemma 2.5, N(b) = bb. Then b divides ab and N(b), so it divides r1 + r2
√
D by

Lemma 1.8. Then there exists r ∈ Z[D] such that r1 + r2
√
D = rb. Thus,

ab = (q1 + q2
√
D)(bb) + rb = ((q1 + q2

√
D)(b) + r)b.
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Since b ̸= 0, we have a = (q1 + q2
√
D)b + r by Lemma 1.9. By Lemma 2.3 and

Lemma 2.5,

N(rb) = N(r)N(b)

= N(r)N(b)

and by substitution,

N(rb) = N(r1 + r2
√
D)

= r21 −Dr22

≤ (
1

2
N(b))2 −D(

1

2
N(b))2

by the inequalities above. Therefore,

N(r)N(b) ≤ (
1

2
N(b))2 −D(

1

2
N(b))2.

Dividing by N(b) and simplifying, we have

N(r) ≤ 1

4
N(b)−D

1

4
N(b).

If D = −1, then N(r) ≤ 1
2N(b). If D = −2, then N(r) ≤ 3

4N(b). Thus for D = −1

or D = −2, there exist q = q1 + q2
√
D, r ∈ Z[D] such that a = qb + r and either

r = 0 or N(r) < N(b). This proof follows from one by Tim Ratigan at [2]. □
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