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Abstract. A Shimura variety is a higher-dimensional analog of a modular

curve, the theory of which is reformulated by Deligne in the 1970s. In this

expository paper, we begin with the definition of general Shimura varieties.
Afterward, we turn to introduce special cases of Shimura varieties that serve

as the moduli space of a family of abelian varieties. We conclude with a brief

discussion of canonical models.
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1. Introduction

The goal of this paper is to introduce the definition of Shimura varieties with
some motivations provided and to establish the modular interpretation of Shimura
varieties in some specific cases. Shimura varieties are generalizations of modular
curves and have played an important role in the research of number theory. As
every abelian variety over C can be associated with a Hodge structure, the moduli
space of a family of abelian varieties over C can be regarded as a parametrizing
space of variation of Hodge structures and thus is a finite union of locally symmetric
varieties. A locally symmetric variety is of the form Γ\M where M is a hermian
symmetric domain and Γ is an arithmetic group acting on M . In the case of
modular curves Xi(N)(i = 0, 1), M is the complex upper half plane H1 and Γ is
the congruence group Γi(N). A hermian symmetric domain can be expressed in
terms of algebraic groups as G(R)/K where G is a real adjoint algebraic group
and K ⊂ G(R) is some compact subgroup. According to Deligne’s definition in his
paper [4], a Shimura variety is defined by a Shimura datum including a reductive
group G over Q and a G(R)-conjugacy class X of homomorphisms h : C× → G(R)
satisfying certain axioms.

This paper is divided into two parts. In Section 2 and 3, we introduce the def-
inition of Shimura varieties, including realizing the hermitian symmetric domain
as a parameter space for Hodge structures, constructing a complex variety from a
Shimura datum (G,X) and discussing the first properties of Shimura varieties. In
the rest of this paper, we attempt to interpret some Shimura varieties as moduli
spaces classifying a family of abelian varieties. In Section 4, we organize the nec-
essary knowledge of abelian varieties. Here we describe how to associate a Hodge
structure to every abelian variety over C, introduce the structures of abelian vari-
eties to occur in later sections, and explain the representability of the moduli space
of abelian varieties. In Section 5, we survey Siegel and PEL-type Shimura varieties
and the corresponding moduli problems. In Section 6, we discuss the notion of
canonical models which says that the model of a Shimura variety over its canonical
field of definition exists and is uniquely determined by the information of some
special points.

1.1. Notations for algebraic groups. Let G be an algebraic group. Gad is
defined to be the quotient of G induced by the adjoint representation of G on
its Lie algebra g. There are some important subgroups of G. G◦ is the Zariski
connected component of G containing the identity. The derived group Gder is the
subgroup generated by the commutators. Z(G) is the center of G. The radical
R(G) is the maximal connected normal solvable subgroup of G and the unipotent
radical Ru(G) is given by all the unipotent elements in R(G).

Definition 1.1. Let G be an algebraic group. G is called reductive if Ru(G) = {e};
G is called semisimple if R(G) = {e}. G is called simple if there is no nontrivial
normal connected subgroup of G.

Proposition 1.2. Let G be an algebraic group. G is reductive if and only if it is
the almost direct product of a torus and a semisimple group. These groups can be
given by Z(G)◦ and Gder.
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For a reductive group G, there is a diagram (see [4], 1.1)

(1.3) Gder

�� ""
Z //

!!

G
ad //

v

��

Gad

T

where T is the largest commutative quotient ofG. The column and the row are short
exact sequences, and the diagonal maps are isogenies with the kernel Z(Gder) =
Z ∩Gder. It gives an exact sequence 1→ Z ∩Gder → Z ×Gder → G→ 1.

Proposition 1.4. Let G be a reductive group, then Gad is semisimple.

Lemma 1.5. If G is a semisimple connected Lie group with trivial center, then it
is isomorphic to a direct product of simple groups with trivial centers.

Proof. See [3], IV.14.2. □

This lemma can be applied in particular to Gad(R) when G is reductive since the
real points of an algebraic group over R yield a real Lie group. Some other results
concerning the real points of reductive algebraic groups over R shall be used later
in this article.

Proposition 1.6. For a surjective homomorphism ϕ : G→ H of algebraic groups
over R, the map ϕ(R) : G(R)→ H(R) is surjective.

Proof. See [8], 5.1. □

Theorem 1.7 (Cartan 1927). Let G be a semisimple algebraic group over R. If G
is simply connected group G, then G(R) is connected.

Proof. See [12], Theorem 7.6. □

Corollary 1.8. For a reductive group G over R, G(R) has only finitely many
connected components (for the real topology).

Let G be an algebraic group over Q, the cohomology groupHi(Q, G) is defined to
be Hi(Gal(Qa/Q), G(Qa)). Similarly, for a finite field extension K/Q, Hi(K,GK)
is defined. We will say that an algebraic group G over Q satisfies the Hasse principle
if Hi(Q, H)→

∏
l≤∞H1(Ql, H) is injective.

Proposition 1.9. Let G be a simply connected semisimple algebraic group over Q.

(1) For every finite prime l, The group H1(Ql, G) is trivial.
(2) G satisfies Hasse principle.

Proof. See [12], Theorem 6.4, 6.6. □

2. Variation of Hodge Structures

In this section, we explain Deligne’s realization of a hermitian symmetric domain
as the parameter space for a variation of Hodge structures.
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2.1. The definition of Hodge structure.

Definition 2.1. A Hodge structure is a real vector space V together with a Hodge
decomposition, we also write it as V . A Hodge decomposition of V is a decompo-
sition of complex vector space

V (C) =
⊕

p,q∈Z×Z
V p,q

such that V p,q=V q,p. The type of the Hodge structure is {(p, q) ∈ Z×Z | V p,q ̸= 0}.
Let V be a Hodge structure.

⊕
p,q=n V

p,q is stable under complex conjugation,

thus there exists a real subspace Vn ⊂ V such that Vn(C) =
⊕

p,q=n V
p,q. V =⊕

n Vn is called the weight decomposition of V . If V = Vn, then the Hodge structure
is said to have weight n.

The Hodge filtration associated with a Hodge structure of weight n is

F • : · · · ⊃ F p ⊃ F p+1 ⊃ . . . , F p =
⊕
r≥p

V r,s ⊂ V (C).

Let V and W be two Hodge structures. A morphism of Hodge structures is a
linear map V →W sending V p,q to W p,q.

Let V and W be two Hodge structures of weight m and n, then the tensor
product of V and W is defined to be a Hodge structure of weight m+ n on V ⊗W
as

(V ⊗W )p,q =
⊕

r+r
′
=p

s+s
′
=q

V r,s ⊗W r
′
,s

′

Definition 2.2. An integral (resp. rational) Hodge structure is a free Z (resp. Q)
module together with a Hodge structure of V (R) such that the weight decomposition
is defined over Q.

Example 2.3. A Hodge structure arises from a complex structure of a real vec-
tor space. Let J be a complex structure on a real vector space V . We define
V −1,0, V 0,−1 to be the +i,−i eigenspaces of J acting on V (C), then V (C) =
V −1,0 ⊕ V 0,−1 gives V a Hodge structure associated with the complex structure.

Conversely, giving a Hodge structure of type {(−1, 0), (0,−1)} amounts to giving
a complex structure. Since in this case, the Hodge filtration is (F−1 ⊃ F 0 ⊃ F 1) =
(V (C) ⊃ V 0,−1 ⊃ 0), and R-linear isomorphism V → V (C)/F 0 defines the complex
structure on V . Moreover, A integral Hodge structure of type {(−1, 0), (0,−1)}
amounts to giving a lattice in a C-vector space.

The Hodge structures can be interpreted in terms of representations of a torus.
Before further illustration, we recall a basic fact about the representations of a
torus.

Proposition 2.4. Let T be a torus over a field k and split over a Galois extension
K of k. Let V be a k-vector space with a representation ρ of TK on K ⊗ V . Then
K ⊗ V =

⊕
χ∈X∗(T ) Vχ. ρ is defined over k if and only if σ(Vχ) = Vσχ, for all

σ ∈ Gal(K/k), χ ∈ X∗(T ).

Proof. See [9], 12.30. □

Let S = ResC/R Gm be a torus over R, which is called Deligne torus. Then,
S(R) = C∗ and SC ≃ Gm × Gm. The character of SC are the homomorphisms
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(z1, z2) → zr1z
s
2 with (r, s) ∈ Z × Z. Let V be a real vector space. Then to give a

Hodge structure on V is the same as to give a representation of S on V , following
Proposition 2.4. Also, the weight construction and the filtration associated with
a Hodge structure can be interpreted this way. The explicit correspondences are
stated as follows.

Proposition 2.5. A representation h : S→ GL(V ) corresponds to a Hodge struc-
ture on V in which the Hodge decomposition is V p,q = {v ∈ V (C) | hC(z1, z2)v =

z−p
1 z−q

2 v}. The Hodge structure is also denoted by (V, h).

(1) The weight homomorphism w : Gm → S is defined to be the morphism
such that w(R) : Gm(R) → S(R) is r 7→ r−1 : R× → C×. Then the weight
decomposition corresponds to the representation wh := w◦h : Gm → GL(V )
in the sense of Proposition 2.4. A rational Hodge structure is equivalent to
saying that the wh is over Q.

(2) Define µh to be the cocharacter of GL(V ) over C such that µh(z) = hC(z, 1).
Then F p

hV =
⊕

r≥p Vµh,−r

Definition 2.6. Let (V, h) be a Hodge structure. Weil operator is defined to be
the R-linear map C = h(i). Then C acts as iq−p on V p,q and C2 acts as (−1)n
on Vn. Let Q(m) be the unique Hodge structure of weight −2m with underlying
vector space (2πi)mQ. Z(m) and R(m) is defined similarly.

In the following definitions, (V, h) is assumed to be of weight n. Let R = Z,Q
or R. A Hodge tensor is a multilinear form t : V r → R such that the map V ⊗
V ⊗ · · · ⊗ V → R(−nr/2) is a morphism of Hodge structures. A polarization of
(V, h) is a Hodge tensor ψ : V × V → R(−n) such that ψC(u, v) := (2πi)nψ(u,Cv)
is symmetric and positive-definite. Then ψ is symmetric or alternative according
to n is even or odd, which can be directly derived from the definition.

More generally, if (V, h) be an R-Hodge structure of weight n, then a polarization
of (V, h) is a bilinear form ψ : V × V → R such that ψR is a polarization.

Example 2.7. Now we rewrite Example 2.3 from this perspective. A complex
structure on a real vector space V , by definition, is a homomorphism h : C× →
GLR(V ) of R-algebra. h is always derived from a morphism between algebraic
groups h : S → GL(V ). (V, h) gives the same Hodge structure as in Example 2.3,
and the Weil operator C coincides with J in the complex structure. Moreover, the
functor (V, (V −1,0, V 0,−1)) → (V,C) is an equivalence from the category of real
Hodge structures of type {(−1, 0), (0,−1)} to the category of real vector spaces
with complex structures.

In this very case, a polarization is an alternating bilinear form ψ : V × V →
2πiR = R(1) such that, for every u, v ∈ V (R),

(2.8)

ψR(Ju, Jv) = ψR(u, v), and

1

2πi
ψR(u, Ju) > 0 if u ̸= 0

Then the form u, v 7→ ψJ(u, v) = ψR(u, Jv) is symmetric by the first condition and
positive-definite by the second condition.

2.2. Hermitian symmetric domains.

Definition 2.9. A (Riemannian, hermitian, ...) manifold M is homogeneous if its
automorphism group acts transitively. It is symmetric if for every p ∈M , there is an
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involution sp (called the symmetry at p) having p as its isolated fixed point, where
sp is an involution means sp is an automorphism of M and s2p = idM . A hermitian
symmetric space is defined as a connected symmetric hermitian manifold (M, g)
where M is a complex manifold and g is a hermitian metric, whose automorphism
group consisting of holomorphic isometries is denoted by Is(M, g).

Example 2.10. A prototypical example of the hermitian symmetric space is the

complex upper half plane H1 endowed with the metric
dxdy

y2
. The action of SL2(R)

on H1 by

(2.11)

(
a b
c d

)
z =

az + b

cz = d
,

(
a b
c d

)
∈ SL2(R), z ∈ H

gives the isomorphism between SL2(R)/{±I} and Is(H1, g). Notice that in this
case, the curvature is negative, which is the situation we shall be mainly interested
in.

Proposition 2.12. Let (M, g) be a symmetric space. Then Is(M, g) can be endowed
with compact-open topology and get a natural structure of a Lie group. The compact-
open topology is generated by the open subsets of the formW (C,U) = {g ∈ Is(M, g) |
g(C) ⊂ U} where C and U are respectively the compact and open subsets of M .

Proposition 2.13. Let (M, g) be a symmetric space. Then the following properties
hold:

(1) Is(M, g) is a finite-dimensional Lie group.
(2) Is(M, g)+ denoted the identity component of Is(M, g) acts transitively on

M .
(3) p ∈M , the subgroup Kp of Is(M, g) fixing p is compact.
(4) The natural map Is(M, g)+/Kp → M is an isomorphism of smooth mani-

folds. On passing to the tangent spaces, Lie(Is(M, g))/Lie(Kp) ≃ TgtpD.

Proof. See [8], 1.5. □

Hermitian symmetric spaces are classified according to the curvature of the met-
ric g.

Proposition 2.14. There are three families of hermitian symmetric spaces.

(1) (M, g) is called noncompact type if it is of negative curvature, which is
also called hermitian symmetric domain. Then, M is simply connected and
Is(M, g)+ is adjoint and noncompact. An example is H.

(2) (M, g) is called compact type if it is of positive curvature. Then, M is
simply connected and Is(M, g)+ is adjoint and compact. An example is
P1(C).

(3) (M, g) is called euclidean if it is of zero curvature. M is euclidean if and
only if it is a quotient of Cg by a discrete subgroup of translations. So M
is obviously not necessarily simply connected, since an example is C/Λ.

Every hermitian symmetric space decomposes into a product M0×M−×M+ where
M0, M−, M+ are respectively euclidean, noncompact type, and compact type.

Proof. See [7], VIII. □
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Remark 2.15 ([7], VIII). A hermitian symmetric domain is a simply connected
complex manifold. What about the converse? It can be shown every symmetric
bounded domain in Cn can be endowed with a structure of symmetric hermitian
domain. Here the first “symmetric” means the space is symmetric under holomor-
phic automorphisms. We begin by introducing a canonical metric on a bounded
domain.

Theorem 2.16. Every bounded domain (a domain means a nonempty open con-
nected subset) has a canonical hermitian metric called the Bergman metric. This
metric has negative curvature.

The construction of the Bergman metric is outlined as follows. Let D ⊂ V
be a domain and H(D) be the Hilbert space consisting of the holomorphic square-
integrable functions on D with inner product (f | g) =

∫
D
fgdv. Then the Bergman

kernel function K : D × D → C is defined to be K(z, ζ) =
∑

m em(z) · em(ζ)
where (em)m∈Z is a complete orthonormal set in H(D). It is the unique function
satisfying the following properties: (1) For any ζ ∈ D, (z 7→ K(z, ζ)) ∈ H(D); (2)

K(z, ζ) = K(ζ, z); (3) f(z) =
∫
D
K(z, ζ)f(ζ)dv(ζ) for all f ∈ H(D). Define the

hermitian metric to be h =
∑ ∂2

∂zi∂z̄j
logK(z, z)dzidz̄j .

Since the Bergman metric is canonical, it is invariant under the action of Hol(D).
Thus, a symmetric bounded domain D equipped with the Bergman metric becomes
a hermitian symmetric domain, and Is(D,h) = Hol(D). Conversely, it is known
that every hermitian symmetric domain has a unique hermitian metric such that
every embedding into some V as a bounded symmetric domain (these embeddings
exist) maps this metric to the Bergman metric up to a multiple on each irreducible
factor.

The rest of this section concentrates on reconstructing hermitian symmetric do-
mains in terms of algebraic groups.

Proposition 2.17. Let (M, g) be a hermitian symmetric domain. Then, Is(M∞, g)+ =
Is(M, g)∞ = Hol(M)+. Hence, Hol(M)+ acts transitively on M, Kp the stabilizer
of p in Hol(M)+ is compact, and Hol(M)+/Kp ≃ K∞.

Proof. See [7], VIII, 4.3. □

Proposition 2.18. Let (M, g) be a hermitian symmetric domain, and let h denote
the Lie algebra of Hol(M)+. There exists a unique connected algebraic subgroup G of
GL(h) such that inside GL(h), G(R)+ = Hol(M)+. Also, G(R)+ = Hol(M)∩G(R)

Proof. The finite-dimensional Lie group Hol(M)+ is adjoint, thus the adjoint rep-
resentation realizes it as a subgroup of GL(h). There exists an algebraic group
G ⊂ GL(V ) such that Lie(G) = [h, h] (see [3], 7.9). Since Hol(M)+ is semisimple,
[h, h] = h, then Lie(G) = h, which proves the first statement. The second follows
from [13], 8.5. □

Therefore, the real smooth manifold structure of a hermitian symmetric domain
M is M∞ = G(R)/Kp where G is an algebraic group and Kp is a compact closed
subgroup of G(R). The problem left is how to interpret the complex structure of
M . This is completed with the observation that there is complex rotation on every
point of a hermitian symmetric domain.
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Let U1 = {z ∈ C | |z| = 1} be the unit circle which is viewed as an algebraic
group over R.

Theorem 2.19. Let D be a hermitian symmetric domain. For each p ∈ D, there
exists a unique homomorphism up : U1 → Hol(D) such that up(z) fixes p and acts
on Tgtp(D) as multiplication by z.

The proof of this theorem is omitted (see [8], 1.9), which depends on the fact that
symmetric spaces are geodesically complete. However, one can easily understand

the idea and see how this works on H. Let p = i ∈ H, then ui(z) =

(
a b
b −a

)
where a+ bi is a square root of z.

Conversely, to depict which representation up : U1 → Hol(D)+ ≃ G(R)+ is
derived from the complex structure, the notion of Cartan involutions is introduced.

Definition 2.20. Let G be a connected algebraic group over R, and let g 7→ g
denote complex conjugation on G(C). An involution θ of G is said to be Cartan if
the Lie group G(θ)(R) := {g ∈ G(C) | g = θ(g)} is compact.

Theorem 2.21. Let G be a connected algebraic group over R. There exists a
Cartan involution of G if and only if G is reductive, in which case any two are
conjugate by an element of G(R).

Proof. See [13], I 4.3. □

Example 2.22. Let G be a connected algebraic group over R. We say that G is
compact if G(R) is compact.

(1) The identity map is a Cartan involution if and only if G is compact.
(2) ([13], I 4.4) If G allows a faithful representation G ↪→ GL(V ) with V a real

vector space. Then G is reductive if and only if G is stable under g 7→ gt

for a suitable choice of a basis for V , in which case all Cartan involution
arises from g 7→ (gt)−1.

(3) Let θ be an involution of G. There is a unique real form G(θ) of GC such
that complex conjugation on G(θ)(C) is g 7→ θ(g), and all compact real
forms of GC arise in this way.

If G is a compact real algebraic group, every finite-dimensional real representa-
tion G → GL(V ) carries a G-invariant positive-definite symmetric bilinear form.
Choose any positive-definite symmetric bilinear form f(·, ·) and an invariant mea-
sure dg on G, then the form fG(·, ·) =

∫
G
f(·, ·)dg is a desired one. Conversely, if

the faithfully finite-dimensional real representation of G carries such a form, then
G is compact. The criterion of Cartan involution in Proposition 2.24 is based on
this fact.

Definition 2.23. Let G be a real algebraic group, and C be an element of G(R)
such that C2 is in the center of G(R) (i.e. ad(C) is an involution). A C-polarization
on a real representation V of G is a G-invariant bilinear form ϕ such that the form
ϕC : (u, v) 7→ ϕ(u,Cv) is symmetric and positive-definite.

Proposition 2.24. If ad(C) is a Cartan involution of G, then every finite-dimensional
real representation carries a C-polarization; conversely, if a faithful finite-dimensional
real representation carries a C-polarization, ad(C) is a Cartan involution.
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Proof. Let G→ GL(V ) be a finite-dimensional real representation of G and ϕ be a
G invariant bilinear form on V . ϕ′ has a sesquilinear extension of ϕ on V (C) such
that ϕ′(u, v) = ϕC(u, v). Moreover, ϕ′ is hermitian (and positive-definite) if and
only if ϕ is symmetric (and positive-definite). By the definition of ϕ′, ϕ′(gu, gv) =
ϕ′(u, v) for all g ∈ G(C), u, v ∈ V (C). Then, ϕ′(gu,C(C−1gC)v) = ϕ′(u,Cv).
Thus, ϕ′C is invariant under G(adC). With these in mind, the equivalent relationship
in the statement clearly holds. □

Since all the homomorphism U1 → GL(V ) of real Lie groups is algebraic, up
constructed in Theorem 2.19 is algebraic. We finally obtain the following theorem
to construct and classify hermitian symmetric domains in terms of real algebraic
groups.

Theorem 2.25. Let D be a hermitian symmetric domain, and let G be the asso-
ciated real adjoint algebraic group. The homomorphism up : U1 → G attached to a
point p of D has the following properties:

(a) Only the characters z, 1, z−1 occur in the representation of U1 on Lie(G)C de-
fined by Ad ◦ up.

(b) ad(up(−1)) is a Cartan involution.
(c) up does not project to 1 in any simple factor of G.

Conversely, let G be a real adjoint algebraic group, and let u : U1 → G satisfy the
above properties. Then the set D of conjugates of u by elements of G(R)+ has a
natural structure of a hermitian symmetric domain for which G(R)+ = Hol(D)+

and u(−1) is the symmetry at u.

Proof. Let D be a hermitian symmetric domain, G and Kp be defined as before.
Then up|Kp is trivial and up(z) acts on Lie(G)/Lie(Kp) ≃ TgtpD as multiplication
by z. So (a) holds. The (b) follows from the fact that the symmetry at a point
of a symmetric space gives a Cartan involution of G if and only if the space has
negative curvature (see [7], V 2). By (b), if up projects to the identity map in a
simple factor, the factor should be of compact type, contradicting the assumption.
This proves (c).

For the converse, letD be the set ofG(R)+-conjugates of u. The centralizerKu of
u in G(R)+ is closed subgroup and contained in {g ∈ G(C) | g = u(−1)·g ·u(−1)−1).
So according to the condition (b), it is compact. The expression D ≃ G(R)+/Ku

bringsD a structure of a real smooth manifold. Since Tgtu(D) ≃ Lie(G)/Lie(Ku) =
Lie(G)/Lie(G)o, (a) gives Tgtu(D) the structure of C vector space. Then the
homogeneity ofD endowsD with an almost-complex structure, which can be proved
integrable (see [16]). Then it will makeD into a complex manifold. BecauseKu acts
on the tangent space TgtuD and Ku is compact, there is a Ku-invariant positive-
definite bilinear form on TgtuD, then it becomes a hermitian metric on TgtuD
since u(i) ∈ Kp. Because of the homogeneity of D, D then becomes a hermitian
symmetric space, which is a hermitian symmetric domain because each simple factor
of its automorphism group is a noncompact semisimple group because of condition
(b, c).

□

2.3. Variation of Hodge structures. Before our discussion of the variation of
Hodge structures, we have to introduce several definitions.
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When n is an integer, letGd(V (C))(0 < d < n) be the Grassmanian, the C-points
on which classifies the set of d-dimensional subspaces of V . When d = (d1, · · · , dr)
with n > d1 > · · · > dr > 0, let Gd(V (C)) be the flag variety whose C-points
classifies the set of flags F : V ⊃ V 1 ⊃ · · · ⊃ V r ⊃ 0,dimV i = di. There is a
natural map Gd(V (C))→

∏
iGdi

(V (C)) : F 7→ (V i).

Definition 2.26. let S be connected complex manifold and V a real vector space
of dimension . For every point s ∈ S. we have a Hodge structure hs on V of weight
n (independent of s). Let V p,q

s = V p,q
hs

and F p
s = F p

s V = F p
hs
.

The family of Hodge structures (hs)s∈S on V is called continuous if, for fixed p
and q, the dimension d(p, q) is constant and the map S → Gd(p,q)(V (C)) : s 7→ V p,q

s

is continuous.
The family is said to be holomorphic if the map ϕ : S → Gd(V (C)) is holomor-

phic, d = (· · · , d(p), · · · ), d(p) = dimF p
s V . Then the differential of ϕ gives the

morphism dϕs : TgtsS → TgtF•
s
(Gd(V (C))) ⊂

⊕
p Hom(F p

s , V (C)/F p
s ).

The family is said to satisfy Griffiths transversality if the image of dϕs is con-
tained in Hom(F p

s , F
p−1
s /F p

s ) for all s. When a family satisfies Griffith transversal-
ity, it is called a variation of Hodge structures.

Let V be a real vector space, and let T be a family of tensors on V including
a nondegenerate bilinear form t0. Let d : Z × Z → N be a symmetric function
such that: (1) for almost all but finite p, q, d(p, q) = 0, and (2) d(p, q) = 0 unless
p+ q = n. Now we define S(d, T ) to be the set of all Hodge structures h on V such
that:

(1) dimV p,q
h = d(p, q) for all p, q;

(2) each t ∈ T is a Hodge tensor for h;
(3) t0 is a polarization for h.

The topology of S(d, T ) comes from its natural embedding in
∏

d(p,q)̸=0Gd(p,q)(V (C)).

Theorem 2.27. Let S+ be a connected component of S(d, T ). Then the following
properties hold.

(1) The space S+ has a unique complex structure with which (hs) is a holomor-
phic family of Hodge structure.

(2) With this complex structure, S+ is a hermitian symmetric domain if (hs)
is a variation of Hodge structure.

(3) Every irreducible hermitian symmetric domain is of the form S+ for a
suitable choice of V, d and T .

Proof of Theorem 2.27. (1) Because the Hodge filtration determines the Hodge de-
composition, the map ϕ (defined in Definition 2.26) is injective. Let G be the
smallest algebraic subgroup of GLV such that h(S) ⊂ G for all h ∈ S+. Take a
h0 ∈ S+, then G(R)+ can act on S+ by conjugation. Following from an argument
of Deligne, this action is transitive. Let K0 be the closed subgroup of G(R)+ fixing
h0, then S

+ = G(R)+/K0 is a smooth manifold. G is a closed subgroup in GL(V ),
which gives the embedding g = Lie(G) ↪→ End(V ) and it is equivariant for the ad-
joint action of G on both sides. Then h0(seen as a homomorphism S → G) makes
the injection an inclusion of Hodge structures. Clearly, g00 = Lie(K0). Therefore,
Tgth0

S+ ≃ g/g00 ≃ gC/F
0. gC/F

0 is a complex vector space and by the inclusion of

Hodge structures, it is a complex subspace of End(V (C))/F 0 ≃ Tgth0
(Gd(V (C))).

The composition map g/g00 ↪→ End(V (C))/F 0 is just (dϕ)h0
. As this works for all
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h0 ∈ S+, S+ acquires an almost complex structure, which can be shown integrable.
So, S+ is equipped with a complex structure, and the above discussion explains
that with this complex structure, ϕ is holomorphic. It is clear that this complex
structure is the unique one making the conditions true.

(2) As the theorem 2.25 says, we just need to construct U1 → Gad satisfy-
ing some conditions. Since h0(r) ∈ Z(G) for r ∈ R, z 7→ h0(

√
z) is a well de-

fined homomorphism u0 : U1 → Gad. Let C = u0(−1) = h0(i). The faithful
representation G → GL(V ) carries a C-polarization, namely t0. Thus, adC is
a Cartan involution on G. Griffiths transversality guarantees that the image of
(dϕ)h0

: g/g00 ↪→ End(V (C))/F 0 is in F−1End(V (C))/F 0End(V (C)). Therefore,
(G, u0) satisfies condition (b) in theorem 2.25. As condition (c) is obviously sat-
isfied, it is concluded that S+ is the hermitian symmetric domain associated to
(G, u0).

(3) Let D be an irreducible hermitian symmetric domain attached to (G, u0)
where G is a real adjoint algebraic group and u0 : U1 → G is such that only
the characters z, 1, z−1 occur in Ad ◦ u0 and ad ◦ u0(−1) is a Cartan involution
(see Theorem 2.25). Example 2.22 (b) shows that G admits a self-dual faithful
representationG→ GL(V ). Thus, there exists aG-invariant nondegenerate bilinear
form t0. Find a set of tensors T containing t0 as in the following proposition.

Proposition 2.28. For any faithful self-dual representation G → GL(V ), there
exists a finite set T of tensors of V such that G is the subgroup of GL(V ) fixing the
t in T .

Let h0 be the composition of the morphisms S z 7→z/z̄−−−−→ U1
u0−→ G→ GL(V ). Then

it defines a Hodge structure on V such that each t ∈ T is a Hodge tensor for h0
and t0 is a polarization for h. It also can be checked that D is naturally identified
with a component of S(d, T ) via this composition. □

Let S be a complex manifold and F be a local system of Z-modules on S. Suppose
a Hodge structure hs is assigned to Fs⊗R for every s ∈ S. Then F and the family
of Hodge structures is said to be a variation of integral Hodge structures on S if
(F ⊗R, (hs)) is a variation of Hodge structures on every open subset on which the
local system F is trivial. Therefore, when S is simply connected, this definition is
simply the previous one. In this more general case, we can consider the universal
covering T → S and lift the variation of Hodge structures to the simply connected
space T .

2.4. Locally symmetric varieties. Let us now consider locally symmetric vari-
eties, namely the space of the form Γ\D where D is a hermitian symmetric domain
and Γ is an arithmetic group with a canonical structure of algebraic variety to be
introduced.

We demonstrate the following geometric property of such space. The proof is
not hard and omitted.

Proposition 2.29. Let D be a hermitian symmetric domain and Γ be a discrete
subgroup of Hol(D)+. If Γ is torsion-free, then Γ acts freely on D. Also, there is
a unique complex structure on Γ\D for which the quotient map π : D → Γ\D is a
local isomorphism.

To invoke the discussion of arithmetic subgroups, we give the following defini-
tions.
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Definition 2.30. Two subgroups S1 and S2 of a group H are commensurable if
S1 ∩ S2 has finite index in both S1 and S2. Commensurability is an equivalence
relationship.

Let G be an algebraic group over Q. A subgroup Γ of G(Q) is arithmetic if it is
commensurable with G(Q) ∩ GLn(Z) for a embedding G ↪→ GLn. This definition
is independent of the choice of the embedding.

Let H be a real Lie group. A subgroup Γ of H is arithmetic if there exists an
algebraic group G over Q, a surjective homomorphism G(R)+ → Hol(D)+ with
compact kernel, and an arithmetic subgroup Γ0 of G(Q) such that Γ0 ∩ G(R)+
maps onto Γ.

We proceed to discuss a few properties of arithmetic groups.

Proposition 2.31. Let ρ : G → G′ be a surjective homomorphism. If Γ ⊂ G(R)
is arithmetic then so is ρ(Γ) ⊂ G′(Q).

Proof. See [12], Theorem 4.1. □

Under the condition that G → G′ is surjective, G(Q)+ → G′(Q)+ is far from
surjective. An example is SL2(Q)+ → PGL2(Q)+, as an image element can be rep-
resented by a matrix with determinant in Q×2. However, the arithmetic subgroups
are preserved under the isogenies.

Let Γ be an arithmetic subgroup of G(Q), Γ is discrete but does not nec-
essarily have finite covolume in G(R). A counterexample is G = Gm/Q and
Γ = {±1} ⊂ Gm(Q). Thus, if Γ is of finite covolume, there should not exist
nonzero homomorphism G→ Gm. In the case of G reductive, this is sufficient, and
with some more conditions, we can even tell if the space Γ\D is compact.

Theorem 2.32. Let G be a reductive group over Q and Γ be an arithmetic subgroup
of G(Q).

(1) The space Γ\G(R) has finite volume if and only if Hom(G,Gm) = 0. In
particular, this condition holds if G is semisimple.

(2) Γ\G(R) is compact if and only if Hom(G,Gm) = 0 and G(Q) contains no
unipotent element.

Proof. See [12], Theorem 4.12, 4.13. □

Proposition 2.33. Let H be a semisimple real Lie group that admits a faithful
finite-dimensional representation. Every arithmetic subgroup Γ of H is discrete of
finite covolume.

Proof. See [8], 3.6. □

The natural examples of arithmetic subgroups are congruence subgroups.

Definition 2.34. Let G be a reductive algebraic group over Q, and choose one
embedding G ↪→ GLn. Define Γ(N) = G(Q) ∩ {g ∈ GLn(Z) | g ≡ In mod N}. A
congruence subgroup of G(Q) is any subgroup containing some Γ(N) as a subgroup
of finite index.

This definition is actually independent of the choice of embedding. Unlike arith-
metic subgroups, the image of a congruence subgroup under an isogeny does not
need to be congruence.
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Remark 2.35. Are all arithmetic subgroups congruence subgroups? For split
simply connected groups other than SL2, this is true, but SL2 and all nonsimple
connected groups have many noncongruence arithmetic subgroups.

When does a discrete subgroup of finite covolume become an arithmetic group?
A Theorem of Margulis states that for a noncompact simple real Lie group except
those isogenous to SO(1, n) or SU(1, n), all discrete subgroups of finite covolume
are arithmetic. It fails in the case of SL2 can be shown easily.

So far, we talk about D(Γ) = Γ\D as a complex manifold. The next two key
theorems endow it with the canonical structure of an algebraic variety.

Theorem 2.36 (Barly and Borel 1966, [1]). Let D(Γ) = Γ\D be the quotient
of a hermitian symmetric domain D by a torsion-free arithmetic subgroup Γ of
Hol(D)+. Then D(Γ) has a canonical realization as a Zariski-open subset of a
projective algebraic variety D(Γ)∗.

Definition 2.37. An algebraic variety D(Γ) arising as in the theorem is called a
locally symmetric variety.

This is called Barly and Borel compactification. Recall the case of modular
curves. We set H∗ = H ∪ P1(Q) and extend the action of Γ on H to H∗. Then
Γ\H∗ is a compact Riemann surface, and the modular forms of high levels embed
it as a projective algebraic variety. Γ\H is this one-dimensional variety with finite
points moitted, then is a quasi-projective variety. In the general case, the proof is
similar. The variety D(Γ)∗ is equal to Proj(

⊕
n≥0An) where An is the vector space

of automorphic forms for the n-th power of the canonical automorphy factor.

Theorem 2.38 (Borel 1972, [2]). Keep the notations of Theorem 2.36. Let V
be a nonsingular quasi-projective variety over C. Then every holomorphic map
f : V an → D(Γ)an is regular.

Corollary 2.39. The structure of algebraic variety on D(Γ) is unique.

Remark 2.40. Theorem 2.36 holds when Γ is torsion, but Theorem 2.38 fails then.

Theorem 2.41. Let D(Γ) be the quotient of a hermitian symmetric domain D by
a torsion-free arithmetic group Γ of Hol(D)+. Then D(Γ) has only finitely many
automorphisms.

Proof. See [8], 3.21. □

3. Definition of Shimura Varieties

3.1. Definition of connected Shimura varieties.

Definition 3.1. A connected Shimura datum is a pair (G,D) consisting of a
semisimple algebraic group G over Q and a Gad(R)-conjugacy class D of homo-
morphism u : U1 → Gad

R satisfying the following conditions:

SU1 for all u ∈ D, only the characters z, 1, z−1 occur in the representation of U1

on Lie(Gad)C defined by Ad ◦ u;
SU2 for all u ∈ D, ad(u(−1)) is a Cartan involution on Gad

R ;
SU3 Gad has no Q-factor H such that H(R) is compact.
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The conditions (SU1) and (SU2) are the same as the requirement listed in The-
orem 2.25. But the condition (SU3) is somehow different from what we have stated
before since H is restricted in the Q factor of G. It says G is of noncompact type.
This is an innocent assumption because we can replace G with its quotient by a
compact normal subgroup over Q and it changes things a little.

Recall the exact sequence of algebraic groups over R

0→ Gm
w−→ S→ U1 → 0,

where the maps on R-points are 0 → R× r 7→r−1

−−−−→ C× z 7→z/z̄−−−−→ U1 → 0. Then a ho-
momorphism u : U1 → Gad

R satisfying (SU1) is the same as having a homomorphism
h : S → Gad

R such that only characters z/z̄, 1, z̄/z occur in the representation of S
on Lie(Gad)C defined by Ad ◦ h. In fact, given such a u, h is just the composition
of u with the second map in the exact sequence. Conversely, given such a h, as it is
of weight 0 it arises from a u that satisfies (SU1) and u(z) = h(

√
z) which is inde-

pendent of the choice of square root. Therefore, we have the following alternative
definition of connected Shimura datum.

Definition 3.2. A connected Shimura datum is a pair (G,D) consisting of a
semisimple algebraic group G over Q and a Gad(R)-conjugacy class D of homo-
morphism h : S→ Gad

R satisfying the following conditions:

SV1 for all u ∈ D, only the characters z/z̄, 1, z̄/z occur in the representation of S
on Lie(Gad)C defined by Ad ◦ h;

SV2 for all h ∈ D, ad(h(i)) is a Cartan involution on Gad
R ;

SV3 Gad has no Q-factor on which the projection of h is trivial.

Then equivalence of (SU3) and (SV3) under the other two conditions comes from
the following lemma which just restates what we have discussed in Section 2.

Lemma 3.3. Let H be an adjoint real Lie group, and let u : U1 → H be a homo-
morphism satisfying SU1,2. Then the following conditions are equivalent:

(1) u(−1) = 1;
(2) u is trivial;
(3) H is compact.

Proposition 3.4. Giving a connected Shimura datum is the same as giving

(1) a semisimple algebraic group G over Q of the noncompact type,
(2) a hermitian symmetric domain D, and
(3) an action of G(R)+ on D defined by a surjective homomorphism Gad(R)+ →

Hol(D)+ with compact kernel.

Proof. Assume (G,D) is a connected Shimura datum. Decompose Gad
R = H1×· · ·×

Hs where Hi are simple factors. Let ui be the projective of u into the factor Hi(R).
If Hi is compact, then ui = 1 following the above proposition. Otherwise, (Hi, ui)
corresponds to a hermitian symmetric domain Di and Hi(R)+ = Hol(D′

i)
+. Let

D be the product of Di for all i such that Hi is not compact. Moreover, there is
a surjective morphism Gad(R)+ → Hol(D)+ with compact kernel. The converse is
similar. □

Definition 3.5. Let (G,D) be a connected Shimura datum. A connected Shimura
variety relative to (G,D) is an algebraic variety of the form D(Γ) where Γ an
arithmetic subgroup of Gad(Q)+ containing the image of a congruence subgroup
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of G(Q)+ such that its image Γ in Hol(D) torsion-free. These algebraic varieties
form an inverse system with respect to the inclusion of arithmetic subgroups. This
inverse system is denoted Sh◦(G,D), called the connected Shimura variety attached
to (G,D).

Because the map Gad(R)+ → Hol(D)+ has compact kernel, then its intersection
with the discrete subgroup Γ is finite, which means the kernel of map Γ → Γ is
finite. By definition, Γ is an arithmetic subgroup in Hol(D)+. Then Theorem
2.36, 2.38 apply to D(Γ) = Γ\D. In particular, D(Γ) is endowed with the unique
structure of an algebraic variety, and the natural quotient map D(Γ) → D(Γ) is
regular with Γ′ ⊂ Γ. Thus, this family of algebraic varieties D(Γ) forms an inverse
system. Moreover, the varieties Γ\D with Γ a congruence subgroup of G(Q)+ are
cofinal in this inverse system.

In the definition of connected Shimura varieties, we ask Γ to contain the image
of a congruence group of G(Q)+. This condition is equivalent to the inverse image
of Γ is a congruence group, which can be deduced from Proposition 2.31. Because
π : G(Q)+ → Gad(Q)+ is usually far from surjective, as shown in the example
before Proposition 2.31, the family in this definition is much larger than the family
of the images of the congruence subgroups of G(Q)+.

Example 3.6. This example is to show one reason why we do not replace G by
Gad in the definition of connected Shimura varieties. let G = SL2 and D = H.
Then Sh◦(G,D) is the family of modular curves Γ\H with Γ be a torsion-free
arithmetic subgroup containing some image of Γ(N). However, if we take G =

SLad
2 = PSL2. The congruence subgroup of PSL2(Q) is many fewer. Remark

2.35 provides a positive result when the two notions of congruence subgroup and
arithmetic subgroup coincide.

Example 3.7. Let B be a quaternion algebra over a totally real field F . Then
B⊗QR ≃

∏
v:F↪→RB⊗F,v R. The classification of semisimple algebra over R shows

B ⊗F,v R is isomorphic either to the quaternions H or to M2(R). Let G be the
semisimple algebraic group over Q such that

G(Q) = Ker(Nm : B× → F×).

Then,

(3.8) G(R) ≃ H×1 × · · · ×H×1 × SL2(R)× · · · × SL2(R),
where H×1 = Ker(Nm : H× → R×) is isomorphic to a sphere topologically. There-
fore, G is of noncompact type if at least one SL2(R) occurs and D is a product
of copies of H, one for each copy of SL2(R). Note that the action of G(R) on D
depends on the choice of isomorphism in Equation 3.8. It can be checked (G,D)
satisfies (SU1, 2, 3) and hence is a connected Shimura datum. The dimension of
D(Γ) is the same as the number of M2(R) occurring in B ⊗F,v R. If B ≃ M2(F ),
then G(Q) has unipotent elements, and so followed from Theorem 2.32 it is not
compact. In this case the varieties D(Γ) are called Hilbert modular varieties. On
the other hand, if B is a division algebra, then G(Q) has no unipotent elements,
thus D(Γ) are compact and projective as algebraic varieties.

3.2. Adelic description. Af is the ring of finite adeles, defined to be the restricted
topological product Af =

∏
l(Ql,Zl) where l runs over the finite primes of Q. Af

is isomorphic to Ẑ⊗Z Q.
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Let V be an affine variety over Q, it needs more concern to define V (Af ) as
a topological group. We may choose a Z-model of V to define “V (Zl)”, how-
ever, the restricted topological product is independent of the choice of Z-model.
A quick explanation is as follows. Let α : V = SpecA → Am

Q be a closed im-
mersion and let the coordinates be x1, · · · , xm. Let Z[x1, · · · , xm]/I be the Z-
subalgebra of A generated by the xi. Then it defines the Zariski closure Vα of
V ∩ Am

Z in Am
Z . Let V (Zl) be the Zl points in Vα. For another embedding β,

coordinates y1, · · · , yn, and Vβ = SpecZ[y1, · · · , yn]/J , there is a d ∈ Z such that
Z[1/d][x1, · · · , xm]/I ≃ Z[1/d][y1, · · · , yn]/J , because yj can be expressed as poly-
nomials of xi with rational coefficients and vice versa. It follows that when l is
coprime to d, these two embeddings give the same V (Zl). Thus, the restricted
topological product V (Af ) =

∏
l(V (Ql), V (Zl)) is well-defined this way. Here is an

example. When V = Gm, Gm(Af ) =
∏

l(Q
×
l ,Z

×
l ) = A×

f is the ring of finite ideles.
The appearance of congruence subgroups in the definition of Shimura varieties

is natural from the adelic perspective. As a result, Shimura varieties have adelic
descriptions.

Proposition 3.9. let K be a compact open subgroup of G(Af ). Then K ∩G(Q) is
a congruence subgroup of G(Q), and every congruence subgroup arises in this form.

Proposition 3.10. Let (G,D) be a connected Shimura datum with G simply con-
nected. Let K be a compact open subgroup of G(Af ), and let Γ = K ∩G(Q) be the
corresponding congruence subgroup of G(Q). The map x 7→ [x, 1] defines a bijection

(3.11) Γ\D ≃ G(Q)\D ×G(Af )/K.

The right side means G(Q)\(D × G(Af ))/K, where G(Q) acts on both D and
G(Af ) on the left, and K acts only on G(Af ) on the right. Moreover, this is a
homomorphism with D endowed with the usual topology and G(Af ) endowed with
the adelic topology or the discrete topology.

G is simply connected if any isogeny G′ → G with G′ connected is an isomor-
phism. Theorem 1.7 shows that in this case, G(R) is connected, so G(R)+ = G(R).
Then G(Q) ⊂ G(R) acts on D via the action of G(R)+.

The proof of the above adelic description exploits the strong approximation
theorem.

Theorem 3.12 (Strong Approximation). let G be an algebraic group over Q. If
G is semisimple, simply connected, and of noncompact type, then G(Q) is dense in
G(Af ).

Proof. See [12], Theorem 7.12. □

Example 3.13. The following examples show that all the conditions in the theorem
are necessary.

(1) G = Gm is not semisimple, then Q× is not dense in Af .
(2) G = PGL2 is not simply connected, then the determinant defines the com-

mutative diagram

PGL2(Q) //

��

Q×/Q×2

��
PGL2(Af ) // A×

f /A
×2
f
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and Q×/Q×2 is not dense in A×
f /A

×2
f .

(3) G is of compact type. If G(Q) were dense in G(Af ), then G(Z) = G(Q) ∩
G(Ẑ) would be dense in G(Ẑ). But one fact is that G(Z) is discrete in G(R)
so is finite.

Proof of Proposition 3.10. Because K is open, the above strong approximation the-
orem shows that G(Af ) = G(Q) ·K. Therefore, all elements in G(Q)\D×G(Af )/K
can be represented by [x, 1] for some x ∈ D. [x, 1] and [x′, 1] represent the same
element if and only if there exist g ∈ G(Q) and k ∈ K such that gk = 1, gx = x′,
which is equivalent to say there is a g ∈ K ∩ G(Q) = Γ such that gx = x′. Thus,
the bijection in the statement holds.

For the second statement, consider the commutative diagram

D D × (G(Af )/K)

Γ\D G(Q)\D ×G(Af )/K.

x 7→(x,[1])

[x]7→[x,1]

Since K is open, G(Af )/K is discrete, then the upper map is a homeomorphism of
D onto its image. It follows that the lower map is a homeomorphism. □

As we mentioned in Definition 3.5 that the connected Shimura variety relative to
(G,D) form an inverse system, it is natural to concern the inverse image lim←−Γ\D
and its adelic description of this system. The example lim←−Z/nZ = Ẑ motivates us

to consider the projective limit lim←−Γ\D as sort of completion of D, and it turns

out to be G(Q)\D ×G(Af ).

Proposition 3.14. Let (G,D) be a connected Shimura datum. Then lim←−K
G(Q)\D×

G(Af )/K = G(Q)\D ×G(Af ).

Lemma 3.15. Let G be a topological group acting continuously on a topological
space X and (Gi)i∈I be a directed family of subgroups of G. The following properties
hold.

(a) The canonical map h : X/
⋂
Gi → lim←−X/Gi is continuous.

(b) h is injective if the stabliser of x in Gi is compact for all i ∈ I and x ∈ X.
(c) h is surjective if the orbit xGi is compact for all i ∈ I and x ∈ X.

Proof. (a) is directly from the universal property of inverse limit.
For (b), if x, x′ ∈ X map to the same image in lim←−X/Gi, then for each i ∈ I,

Gi(x, x
′) = {g ∈ Gi | gx = x′} is nonempty. The assumption implies that Gi(x, x

′)
is compact. Since (Gi) is a directed family,

⋂
i(
⋂

iGi)(x, x
′) = Gi(x, x

′) is not
empty. Therefore, x, x′ maps to the same image in X/

⋂
Gi, then h is injective.

For (c), let (xiGi) ∈ lim←−X/Gi, then
⋂
xiGi is nonempty since by assumption

xiGi is compact for each i. Choose x ∈
⋂
xiGi, then the image of x ·

⋂
Gi is (xiGi).

Thus, h is surjective. □

Proof of Proposition 3.14. It can be easily checked that all hypotheses in (a, b, c)
in the above lemma hold if every Gi is compact and every orbit xGi is Hausdorff.
In what follows we check this in our case of the directed family of all open compact
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subgroupsK ofG(Af ). It will suffice to show that for each [x, g] ∈ G(Q)\D×G(Af ),
[x, g] ·K is Hausdorff when K is sufficiently small. let [x, a] and [x, b] be two distinct
points in [x, g] ·K. Let Γ = G(Q)∩ aKa−1 be a discrete subgroup of G(Q). When
K is sufficiently small, Γ is torsion-free, then there exists a neighborhood V of a in
D such that gV ∩V =. We claim the images of V ×{a} and V ×{b} do not intersect.
This is because if there is g ∈ G(Q) such that g(V ×{a})∩V ×{b} ≠, ga = b, thus
gaK = bK. Since aK = bK by assumption, then g ∈ aKa−1 ∩ G(Q) = Γ. Then
the claim is proved because of the way to choose V . Therefore, every K-orbit is
Hausdorff when K is sufficiently small and the lemma applies. □

Remark 3.16. The inverse limit of Sh◦(G,D) exists as an algebraic variety, which
is even locally noetherian and regular. Therefore, one can regard Sh◦ → Γ\D as an
algebraic version of universal covering. To be specific, the T -completion of G(Q)+

acts on Sh◦ like the action of G(R)+ on D. Also, it is possible to recover the inverse
system from Sh◦ and the action.

3.3. Definition of Shimura varieties.

Definition 3.17. A Shimura datum is a pair (G,X) consisting of a reductive group
G over Q and a G(R) conjugacy class X of homomorphisms h : S→ GR satisfying
the following conditions:

SV1 for all h ∈ X, the Hodge structure on Lie(GR) defined by Ad ◦h is of the type
{(−1, 1), (0, 0), (1,−1)};

SV2 for all h ∈ D, ad(h(i)) is a Cartan involution on Gad
R ;

SV3 Gad has no Q-factor on which the projection of h is trivial.

For every h ∈ X satisfying (SV1), ad ◦ h defines a Hodge structure of weight
0, so the corresponding weight morphism wh = h|Gm

factor through the centre
Z = Ker(G → Gad). Thus, wh is unchanged by the conjugation of G and does
not rely on the choice of h ∈ X. It is denoted by wX and called the weight
homomorphism.

Note that in contrast to a connected Shimura datum, the target of a h is GR
but not Gad

R . The condition (SV1) here is compatible with (SV1) defined earlier
because Lie(GC) = Lie(ZC) ⊕ Lie(Gad

C ) and Ad ◦ h acts trivially on Lie(ZC). The
following proposition further explains the relationship between Shimura data and
connected Shimura data.

Proposition 3.18. Let G be a reductive group over R. For a homomorphism
h : S→ G, let h̄ : S→ Gad be the composition of h with G→ Gad. If X is a G(R)-
conjugacy class of homomorphism S → G, let X be the conjugacy class consisting
h̄ for every h ∈ X.

(a) The map X → X : h 7→ h̄ is injective and its image is a union of connected
components of X.

(b) Let X+ be a connected component of X and X
+

be its image in X. If (G,X)

satisfies (SV1-3), then (Gad, X
+
) satisfies SV1-3. Moreover, the stabiliser of

X+ in G(R) is the inverse image of Gad(R)+ in G(R). This subgroup of G(R)
is denoted by G(R)+, and π0(X) ≃ G(R)/G(R)+.

Proof. (a) Since Ker(G → Gad) ∩ Ker(G → T ) = Z(Gder) is a finite discrete
group and S is connected, a homomorphism h : S → G is trivial if and only if its
projections on Gad and T are trivial. Then it is decided by the two projections.
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Because all h lie in one G(R)-conjugacy class, their projection to T is the same.
Therefore, in X, h is uniquely decided by its projection on Gad, then the injectivity
in (a) holds. According to the theory of the hermitian symmetric domain, Gad(R)+
acts transitively on each component of X. Because G(R)+ → Gad(R)+ is surjective
(Proposition 1.1), the rest of (a) holds.

(b)The first assertion is obvious. The second assertion comes from the result of

(a) and the fact that the stabilizer of X
+
in Gad(R) is Gad(R)+.

□

Corollary 3.19. Let (G,X) be a Shimura datum, and let X+ be the connected
component of X. Then X+ can be regarded as the G(R)+ conjugacy class of homo-
morphism h̄ : S→ Gad

R . Thus, X is a finite disjoint union of hermitian symmetric
domain and (Gder, X+) is a connected Shimura datum.

Definition 3.20. Let (G,X) be a Shimura datum. For a compact open subgroup
K of G(Af ), define

ShK(G,X) = G(Q)\X ×G(Af )/K.

A Shimura variety relative to (G,X) is a variety of the form ShK(G,X) for some
small compact open subgroup K of G(Af ). The Shimura variety Sh(G,X) attached
to a Shimura datum (G,X) is the inverse system of varieties equipped with an action
of G(Af ).

In this definition, K is asked to be sufficiently small in consideration of realizing
ShK(G,X) as a variety, which shall be explained later. In the following, we attempt
to understand G(Q)\X × G(Af )/K, and we can see when K is sufficiently small,
G(Q)\X × G(Af )/K is a union of connected Shimura varieties. We shall also
develop an understanding of its connected components.

This implies why we consider Shimura varieties regardless of connected Shimura
varieties arising naturally from locally symmetric varieties. Every locally sym-
metric variety is defined over a number field, but one natural question is if there
exists a “natural” field of definition of G(Q)\X × G(Af )/K which only depends
on the datum (G,X) but not on K. It turns out this is true for Shimura varieties
ShK(G,X), but it is not true for the connected components of ShK(G,X), the con-
nected Shimura varieties. This is just like the simple case X = SpecQ[x]/(x2 + 1),
where X is defined over Q and each component is defined over the quadratic exten-
sion Q(i). As we can see soon, the number of connected components of ShK(G,X)
increases as K gets much and much smaller. So there is no way to expect the
connected Shimura varieties to have such good properties. However, on the other
hand, the set of connected components (which is actually a 0-dimensional Shimura
variety) is always defined over a “natural” field by class field theory. This crucial
property of Shimura varieties will be discussed in Chapter 6.

Lemma 3.21. For every open subgroup K of G(Af ), the set G(Q)+\G(Af )/K is
finite.

The case that Gder is simply connected shall be proven in Theorem 3.28

Lemma 3.22. Let C be a set of representatives for the double closet space G(Q)+\G(Af )/K.
Let X+ be a connected component of X. Then

(3.23) G(Q)\X ×G(Af )/K ≃
⊔
g∈C

Γg\X+
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where Γg = gKg−1 ∩ G(Q)+ is a subgroup of G(Q)+. Moreover, this is a homeo-
morphism.

Theorem 3.24 (Real Approximation, [4]). Let G be a connected algebraic group
over Q, then G(Q) is dense in G(R).
Lemma 3.25. For every connected component X+ of X, the natural map

G(Q)+\X+ ×G(Af )→ G(Q)\X ×G(Af )

is a bijection.

Proof. Because G(R) acts transitively on X and G(Q) is dense in G(R) (real ap-
proximation theorem), every element in G(Q)\X × G(Af ) can be represented by
[x, a] where x ∈ X+, a ∈ G(Af ). Then the statement follows from Proposition 3.18
since the stabilizer of X+ in G(R) is G(R)+. □

Proof of Lemma 3.22. For g ∈ C, define the map Γg\X+ → G(Q)+\X+×G(Af )/K :
[x] 7→ [x, g]. It can be easily checked that this map is injective and thatG(Q)+\X+×
G(Af )/K is the disjoint union of the images of these maps variating g ∈ C. The
second assertion can be proved similarly to the paralleled assertion in Proposition
3.10. □

We now turn to consider Γg\X+. To make it an algebraic variety, we want to
apply Theorem 2.36 and 2.38, then Γg is asked to be torsion-free. In fact, it is known
that when K is sufficiently small, Γg is neat, then the image of Γg in Aut(X+) is
torsion-free and arithmetic. Hence, Γg\X+ becomes a locally symmetric variety.
Under this condition, ShK(G,X) is a finite disjoint union of locally symmetric
varieties. This is the reason why we askedK to be sufficiently small in the definition
of Shimura varieties. Moreover, when K ′ ⊂ K is an inclusion of sufficiently small
open compact subgroups of G(Af ), the natural map ShK′(G,X) → ShK(G,X) is
regular.

There is a natural action of G(Af ) on the Shimura variety Sh(G,X), the inverse
system. For a ∈ G(Af ), there is a map T (a) : ShK(G,X) → Sha−1Ka(G,X). The
action on C-points is G(Q)\X ×G(Af )/K → G(Q)\X ×G(Af )/a

−1Ka : [x, g] 7→
[x, ga]. This is a right action because T (gh) = T (h) ◦ T (g).

A general philosophy is that we want to relate representations of G(AF ) and
Gal(F̄ /F ) (F can be either a global field or a local field), so some objects that
both can act on nicely are needed. The significance put on Shimura varieties is
because they are perfect candidates for this purpose.

Definition 3.26. Let (G,X) and (G′, X ′) be Shimura data.

(1) A morphism of Shimura data (G,X)→ (G′, X ′) is a homomorphism G→
G′ sending X → X ′.

(2) A morphism of Shimura varieties Sh(G,X) → Sh(G′, X ′) is an inverse
system of regular maps of algebraic varieties compatible with the action of
G(Af ).

Remark 3.27. Obviously, a morphism of Shimura data induces a morphism of
Shimura varieties. Deligne also proved that if the homomorphism G → G′ is in-
jective, the morphisms of Shimura varieties is a closed immersion, which means for
every sufficiently small compact open subgroup K ′ of G′(Af ), there is a compact
open subgroup K of G(Af ) such that the map ShK(G,X) → ShK′(G′, X ′) is a
closed immersion.



AN INTRODUCTION TO SHIMURA VARIETIES 21

In Lemma 3.22, we show a Shimura variety ShK(G,X) is a union of locally sym-
metric varieties whose connected components are one-one correspondent to the ele-
ment in G(Q)+\G(Af )/K which is finite as stated in Lemma 3.21. Actually, when
Gder is simply connected, the set of connected components is a zero-dimensional
Shimura variety.

Let G be an algebraic group, define T (R)† = Im(Z(R) → T (R)) and T (Q)† =
T (Q) ∩ T (R)† (T,Z are defined as in Diagram 1.3). Because Z → T is surjective
and T (R)† contains T (R)+, therefore T (R)† and T (Q)† are of finite index in T (Q)
and T (R) respectively.

Theorem 3.28. Assume Gder is simply connected. Let v : G → T be the natural
map. For K sufficiently small, the natural map

(3.29) G(Q)\X ×G(Af )/K → T (Q)†\T (Af )/v(K)

defines an isomorphism

(3.30) π0(ShK(G,X)) ≃ T (Q)†\T (Af )/v(K)

Moreover, T (Q)†\T (Af )/v(K) is finite, and the connected component over [1] is
canonically isomorphism to Γ\X+ where Γ is the image of K ∩G(Q)+ in Gad(Q)+

Proof. We claim the following results under the conditions of the statement.

(a) G(R)+ = Gder(R) · Z(R).
(b) T (Q)† is the image of G(Q)+ through v.
(c) v : G(Af )→ T (Af ) is surjective and sends compact open subgroups to compact

open subgroups.

Assume these claims. Then the morphism (3.29) in the statement is defined by

G(Q)\X×G(Af )/K ≃ G(Q)+\X+×G(Af )/K
[x,g]7→[v(g)]−−−−−−−−→ v(G(Q)+)\T (Af )/v(K) = T (Q)†\T (Af )/v(K).

The fiber over [1] is Γ1\X+ where Γ1 is defined in Lemma 3.22.
We now check the claims. For (a), Gder(R) is connected (Theorem 1.7) so it

maps onto Gad(R)+ (Proposition 1.1). So we have one side inclusion G(R)+ ⊃
Gder(R) · Z(R) on hand. Consider the diagram

1 Z ′(R) Z(R)×Gder(R) G(R) H1(R, Z ′)

1 Z ′(R) Gder(R) Gad(R) H1(R, Z ′),

z 7→(z−1,z) (z,g) 7→zg

(z,g)7→g

then for g ∈ G(R), g ∈ G(R)+ ⇔ image of g in Gad(R) lies in the image of Gder(R)
⇔ image of g in H1(R, Z ′) is 0 ⇔ g ∈ Z(R)×Gder(R), which proves the converse
inclusion and the desired equality.

(b) There is an exact sequence 0 → Gder → G → T → 0. Since H1(Q, Gder) →
H1(R, Gder) is injective (Hasse principle shown in Proposition 1.9), by definition
an element t of T (Q)† can be lifted to Z(R) ⊂ G(R), then it can be lifted to
g ∈ G(Q). Also by definiton, g is in Z(R)·Gder(R) = G(R)+ (Claim (a)). Therefore,
g ∈ G(Q)

⋂
G(R)+ = G(Q)+. The converse is simpler.

(c) The surjection comes from the Hasse principle in Proposition 1.9. The proof
of the second statement is omitted.

The finiteness follows Proposition 3.31 below which states that T (Q)\T (R) ×
T (Af )/(T (R)× T (Ẑ)) is finite. When K is sufficiently small, v(K) is contained in



22 HANG CHEN

T (Ẑ). Since T (Ẑ) is compact and v(K) is open, the quotient T (Ẑ)/v(K) is finite.
So T (Q)†\T (Af )/v(K) is finite because T (Q)† is of finite index in T (Q). □

Proposition 3.31. Let T be a torus over Q. Let T (Zl) = {a ∈ T (Ql) | χ(a) is

integral for all χ ∈ X∗(T )} and T (Ẑ) =
∏

l T (Zl). Then the class group H(T ) of

T defined as H(T ) = T (Q)\T (R)× T (Af )/(T (R)× T (Ẑ)) is finite.

Proof. When T = ResF/Q Gm with F a number field, then the class group of T is
equal to the class group of F , thus finite. For a proof of general case, one can refer
to Ono’s paper [11]. □

Remark 3.32. Let Y = T (R)/T (R)† and endow Y with discrete topology. Y
is also isomorphic to T (Q)/T (Q)† because T (Q) is dense in T (R) (real approxi-
mation theorem). Therefore, under condition in Theorem 3.28, π0(ShK(G,X)) ≃
T (Q)†\T (Af )/v(K) ≃ T (Q)\Y × T (Af )/v(K) = Shv(K)(T, Y ).

Example 3.33. Let (G,X) = (GL2,H±
1 ) and K = K(N). Then T = Gm and

Y = R/R+ ≃ ±1 becase T † = T+. Thus, π0(ShK(G,X)) = T (Q)\{±1}×A×
f /(1+

NA×
f ) ≃ (Z/NZ)× ≃ Gal(Q[ζN ]/Q).

Passage to limit is more subtle in this case compared to the connected case. Let
K be a compact open subgroup of G(Af ) and Z(Q)− be the closure of Z(Q) in
Z(Af ). Then

ShK(G,X) = G(Q)\X × (G(Af )/K)

≃ G(Q)

Z(Q)
\X × (G(Af )/Z(Q) ·K)

≃ G(Q)

Z(Q)
\X × (G(Af )/Z(Q)− ·K)

Theorem 3.34. Let (G,X) be a Shimura datum. Then

(3.35) lim←−
K

ShK(G,X) =
G(Q)

Z(Q)
\X × (G(Af )/Z(Q)−)

The proof can be found in Deligne’s paper ([5], 2.1.10), and the main property
used is that the action of G(Q)/Z(Q) on X×(G(Af )/Z(Q)−) is proper. In (3.35), if
Z(Q) is discrete in Z(Af ), then Z(Q)− = Z(Q) and lim←−K

ShK(G,X) = G(Q)\X ×
G(Af ).

Thus, some simplifications to the theory of Shimura varieties occur when some
additional axioms are satisfied.

• SV2 For all h ∈ X, ad(h(i)) is a Cartan involution on GR/wX(Gm).
• SV4 The weight is rational, which means the weight homomorphism wx :
Gm → GR is defined over Q.

• SV5 the group Z(Q) is discrete in Z(Af ).
• SV6 The torus Z◦ splits over a CM-field.

(SV4) corresponds to rational Hodge structures which occur in the cohomology
of abelian varieties. Thus, a Shimura variety is a moduli variety for motives when
(SV4) holds and a fine moduli variety when additionally (SV5) holds. When (SV6)
holds, w is defined over a totally real field, and the reflex field of the Shimura
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variety is either a totally real or a CM field. We have shown that with SV5, the
inverse limit of Shimura varieties has a simple expression. Furthermore, we have
some criterion for (SV5) when Z = T is a torus.

Proposition 3.36 ([14], 3.5). Let T be a torus over Q, every arithmetic subgroup
of T (Q) of finite index contains a congruence subgroup.

Let T (Z) be an arithmetic subgroup of T (Q). For example, T (Z) = Hom(X∗(T ),O×
L )

Gal(L/Q).
This proposition says that the congruence subgroup problem has a positive answer
for tori. Then the induced topology on T (Q) from the injection T (Q) ⊂ T (Af ) can
be described as T (Z) is open, and the induced topology on T (Z) is the profinite
topology. Therefore, T (Q) is discrete ⇔ T (Z) is discrete ⇔ T (Z) is finite.

Example 3.37. (1) T = Gm, T (Z) = ±1 is finite. So, T (Q) is discrete.

(2) K = Q(
√
d). Let T = {a ∈ K× | Nm(a) = 1}, then T (Z) = O×

K . Therefore,
T (Q) is discrete if d < 0, and T (Q) is not discrete if d > 0.

A torus T is said to be anisotropic over a field k if there is no character χ : T →
Gm defined over k. If T is a torus over R, T is anisotropic if and only if T (R) is
compact.

Proposition 3.38. Let T be a torus over Q, and T a be the largest anisotropic
subtorus of T over Q. Then T (Q) is discrete in T (Af ) if and only if T a is
anisotropic over R or equivalently T a(R) is compact.

Moreover, if T splits over a CM field L (i.e. Z = T and (SV6) holds), let ι be
the complex conjugation on L. Take T+

L =
⋂

ιχ=−χ Ker(χ : TL → Gm) to be the
largest subtorus of T splitting over R. Thus, following from the above proposition,
T (Q) is discrete in T (Af ) if and only if T+ splits over Q.

4. Abelian Varieties

Definition 4.1. An abelian variety A over a field k is a complete algebraic variety
over k with a group law m : X ×X → X such that m and the inverse map i are
both morphisms of varieties.

It can be proven an abelian variety is projective, everywhere non-singular, and
commutative as a group scheme. (See [10], §4)

4.1. Complex abelian varieties. The abelian varieties over C, as complex man-
ifolds, are complex tori. This fact provides them with the corresponding Hodge
structures. But when a complex torus can be endowed with a structure of abelian
varieties? How is a Hodge structure corresponding to a complex abelian variety
distinct from what corresponds to a general complex torus?

We first show complex abelian varieties are complex tori as complex manifolds.
The map exp : Tgt0A → A(C) is a universal covering map of Lie groups, and the
kernel of this map is a discrete group in Tgt0A ≃ Cn where n is the dimension of A.
Therefore, A(C) ≃ V/Λ where Λ is a full lattice in complex vector space V ≃ Cn.
A complex manifold of the form V/Λ is called a complex torus.

Proposition 4.2. LetM = V/Λ be a complex torus. H1(M,Z) ≃ Λ, and H1(M,Z) ≃
HomZ(Λ,Z). Moreover, there is a canonical isomorphism Hd(M,Z) ≃ HomZ(

∧d
Λ,Z).
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Then, Hd(M,C) ≃ Hd(M,Z)⊗C ≃
∧d

Hom(Tgt0M,C). In fact, for all d-closed
forms ω, [ω] ∈ Hd(M,C) is represented by a unique translation-invariant n-form

ωα where α ∈ Hom(
∧d

Tgt0M,C).
A more general result is stated in the following proposition.

Proposition 4.3. Let Y = X/G, where G is a discrete group acting freely and
continuously on a good topological space X. Let π : X → Y be the quotient map.
For any sheaf F over Y , there is a natural map

ϕ : Hp(G,Γ(X,π∗F))→ HP (Y,F)

which is compatible with the cup product. If Hi(X,π∗F) = 0, i ≥ 1, ϕ is an
isomorphism.

Proof. See [10], Appendix to §2. □

The natural map ϕ can be defined using Cech cochains in a natural approach.
The map defined in Proposition 4.2 differs from ϕ by composing with the canonical

isomorphism Hi(Λ,Z) ≃
∧i

Hom(Λ,Z) ≃ Hom(
∧i

Λ,Z). When i = 2, H2(Λ,Z) ≃∧2
Hom(Λ,Z) is given by [F ] → [AF ] in which F : Λ × Λ → Z and AF (u, v) =

F (u, v)− F (v, u).
Since Hi(V, ϕ∗F) = 0 for all sheaf F onM , then there is a commutative diagram

induced by the exact sequence 0→ Z→ OM → O×
M → 0 of sheaves on M :

H1(Λ, H∗) H2(λ,Z)
∧2

Hom(Λ,Z)

Pic(M) H1(M,O∗
M ) H2(M,Z)

δ

≃ ≃

≃

≃

c1

δ

where H = Γ(V,OV ), and c1 maps a line bundle to its Chern class. The Neron-
Severi group NS(M) is defined to be the image of c1. Let Pic0(M) = Ker(c1) be
the subgroup of Pic(M) consisting of topologically trivial line bundles.

Therefore, the Chern class of a line bundle L ofM corresponds to an alternating
2-form Φ on Λ with values in Z. Lefschetz theorem on (1, 1)-classes tells that c1(L)
is of form (1, 1), which means Φ(iu, iv) = Φ(u, v) under the above isomorphism.
An alternating (1, 1)-form Φ on Λ corresponds to a unique Hermitian form H on
V such that H(x, y) = Φ(ix, y) + iΦ(x, y) and Φ(x, y) = ImH(x, y). Thus, NS(X)
can be considered to consist of the hermitian form on V whose image part takes
integral values on lattice Λ. Further results are stated in the following explicit way.

Theorem 4.4 (Appell-Humbert). Let H be a hermitian form on V such that
ImH(Λ,Λ) ⊂ Z. Let α : Λ → U1 be the map satisfying α(u1 + u2) = eiπΦ(u1,u2) ·
α(u1) · α(u2), ui ∈ Λ (such maps exist for every given H).

If we put eu(z) = α(u)eπH(z,u)+1/2πH(u,u) for u ∈ Λ, then u 7→ eu is 1-cocycle
on U with coefficients in H∗ called Appell-Humbert cocycle, which determines an
element in H1(Λ, H∗) ≃ Pic(M). The associated line bundle on M denoted by
L(Φ, α) is the quotient of C× V by the action of Λ: for u ∈ Λ, ϕu(x, z) = (eu(z) ·
x, z + u), the Chern class of which is Φ ∈ H2(M,Z).

The tensor product of these line bundles is given by L(H1, α1) ⊗ L(H2, α2) ≃
L(H1 +H2, α1α2).
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Conversely, any line bundle L on the complex torus M is isomorphic to an
L(H,α) for a unique (H,α) as above.

Proof. See [10], §2. □

Appell-Humbert theorem provides the following commutative diagram:

0 Hom(Λ, U1) {(H,α) as above} {H as above} 0

0 Pic0(M) Pic(M) NS(M) 0

≃ ≃ ≃

Theorem 4.5 (Lefschetz). Let M be a complex torus and L(H,α) be a line bundle
on M as defined in the above Theorem 4.4. Then, L is ample if and only if H is
positive-definite.

Proof. See [10], §3. □

When a complex torus M becomes algebraic? This asks when M is the complex
space associated to an abelian variety over C, which is equivalent to asking if there
exists an ample line bundle on M . The above theorem shows the line bundle is
ample if and only if the hermitian form H associated to its Chern class is positive-
definite.

The isomorphism Λ ⊗ R ≃ V defines a complex structure J on Λ ⊗ R and
therefore a integral Hodge structure of type {(−1, 0), (0,−1)} on Λ. Furthermore,
M 7→ (H1(M,R), J) induces the equivalence between the category of complex tori
and integral Hodge structures of type {(−1, 0), (0,−1)}. (A holomorphic morphism
between two complex V/Λ → V/Λ′ is easily checked to be induced by a group
homomorphism Λ′ → Λ.)

Definition 4.6. A Riemann form forM is an alternating form Φ : Λ×Λ→ Z such
that {

ΦR(Ju, Jv) = ΦR(u, v) for all u, v ∈ V , and

ΦR(u, Jv) > 0 for all u ̸= 0,
(4.7)

or equivalently 2πΦ is a Hodge polarization of the Hodge structure on Λ associated
to M .

A complex torus is said to be polarizable if there exists a Riemann form. Then
Theorem 4.5 can be reformulated in the following way.

Theorem 4.8. The complex torus is projective if and only if it is polarizable.

Theorem 4.9 (Riemann’s Theorem). The functor A→ H1(A,Z) is an equivalence
from the category AV of abelian varieties over C to the category of polarizable
integral Hodge structure of type {(−1, 0), (0,−1)}.

To understand these results and the notion of polarization, we proceed to discuss
dual abelian varieties.

Proposition 4.10. Denote Pic0(M) by M̂ . Then it has a natural structure of com-

plex torus as V
∗
C/Λ

′, where Λ′ = {v ∈ V ∗
C |< u, v >∈ Z, for all u ∈ Λ}. The univer-

sal line bundle onM×M̂ parametrizing Pic0(M) is defined by H((u1, v1), (u2, v2)) =<
u1, v2 > + < u2, v1 > and α((u, v)) = exp(−πiIm(< u, v >)).
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Proof. First, we construct a group isomorphism V ∗
R /Λ

∗ → Hom(Λ, U1) where Λ
∗ =

{v ∈ V ∗
R |< u, v >∈ Z, for all u ∈ Λ}. By the Appell-Humbert theorem, Pic0(M) ≃

Hom(Λ, U1). The map is defined to be v 7→ (u 7→ exp(2πi < u, v >)) and it
is obviously a group homomorphism. Since if v1 − v2 ∈ Λ∗, for every u ∈ Λ,
exp(2πi < u, v1 >) = exp(2πi < u, v2 >), the map is well-defined. A similar
argument shows that it is injective. Given a homomorphism α : Λ → U1 and a Z-
basis e1, · · · , en of Λ, we can choose a1, · · · , an ∈ R such that α(et) = exp(2πiat),
then v ∈ V ∗

R /Λ
∗ : ei 7→ ai is an inverse image of α, explaining the surjection.

Therefore, Pic0(M) ≃ V ∗
R /Λ

∗ as groups.

Because V ∗
R → V

∗
C : g 7→ −g(iv) + ig(v) is an isomorphism (the inverse map is

taking the imaginary part) and the image of Λ∗ under this map is Λ′, V ∗
R /Λ

∗ can

be identified with V
∗
C/Λ

′ which is a complex torus. Therefore, M̂ is viewed as a
complex torus whose points are elements in Pic0(M). □

Given a hermitian from H on V such that the imaginary part of H takes integral
values on the lattice Λ, it defines a map ϕH : M 7→ M̂ by u 7→ H(·, u). It is well-
defined ensured by the conditions on H. Then, ϕH is an isogeny if and only if H
is non-degenerate. Moreover, giving a Riemann form Φ is equivalent to giving an
isogeny M → M̂ which is called polarization. We also call Φ a polarization.

Definition 4.11. With a suitable choice of a basis of Λ, Φ can be represented

by a matrix E =

(
0 D
−D 0

)
, where D is a diagonal matrix D = (d1, ..., dn) for

some non-negative integers d1, ..., dn such that d1 | d2 | ... | dn. The form Φ is
non-degenerate if these integers are nonzero. D = (d1, ..., dn) is called the type of
the polarization Φ. A polarization is called principal if its type is (1, ..., 1).

The type of the polarization Φ is D = (d1, ..., dn) means the kernel of the asso-

ciated isogeny M → M̂ is isomorphic to Z/d1Z× · · · × Z/dnZ.
Proposition 4.12. L ∈ Pic(M) defines an associated hermitian form, thus a map

ϕL :M → M̂ . ϕL has the following properties:

(1) The kernel of ϕL is K(L) ≃ Λ⊥/Λ where Λ⊥ = {v ∈ V | for all u ∈
Λ,ΦL(u, v) ∈ Z};

(2) ϕL is trivial ⇔ ΦL = 0 ⇔ L ∈ Pic0(M);
(3) ϕL is surjective ⇔ K(L) is finite ⇔ L is ample.

Proof. All these properties can be induced by the Appell-Humbert theorem. □

4.2. Abelian varieties over any fields. To survey abelian varieties over any field
and define the moduli problems, we have to see the polarization and the Riemann
form algebraically. Basically, when X is an abelian variety over k, the functor
Pic0X/k is representable by an abelian variety X̂ over k called the dual abelian

variety of X. We use the etale fundamental group to replace Λ = H1(X,Z) in
the last section, which can be written explicitly as the Tate module. Every ample
L ∈ Pic(X) defines an isogeny X → X̂ called a polarization. Then a Riemann
form can be associated to each polarization. We start with the construction of dual
abelian varieties.

Theorem 4.13 (Theorem of The Cube). Let X be any variety and Y be an abelian
variety, and f, g, h be morphisms from X to Y . Then for every L ∈ Pic(Y ),

(f + g+ h)∗L ≃ (f + g+ h)∗L⊗ (f + h)∗L⊗ (g+ h)∗L⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.
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Proof. See [10], §6. □

Theorem 4.14 (Theorem of Square). Let X be an abelian variety over k and
x, y ∈ X(S) where S is a scheme over k. Let Tx be the translation of X × S and
its action on sections of X × S → S is t 7→ t + x. Then for all line bundles L,
T ∗
x+yL⊗ L ≃ T ∗

xL⊗ T ∗
yL.

Proof. Take Y = X, f = x, g = y the constant morphisms and h = id in (4.13),
then this result follows. □

Therefore, ϕL : X(k)→ Pic(X), x 7→ T ∗
xL⊗L−1 is a homomorphism from X(k)

to Pic(X).

Definition 4.15. Let X be an abelian variety over k. Then Pic0(X) is defined
to be the subgroup of Pic(X) consisting of the line bundles L such that ϕL is the
trivial morphism.

It can be easily checked that the image of ϕL for any L ∈ Pic(X) is contained
in Pic0(X). So in what follows, we consider ϕL as a map X(k) to Pic0(X). Here is
a useful equivalent condition for a line bundle to be in Pic0(X). If L ∈ Pic(X),

L ∈ Pic0(X)⇔ T ∗
xL⊗ L−1 = m∗L⊗ p∗1L−1 ⊗ p∗2L−1|X×{x} is trivial for all x ∈ X

⇔ m∗L ≃ p∗1L⊗ p∗2L on X ×X
One result follows is that for any f, g : Y → X where Y is a variety and X is an
abelian variety, then (f + g)∗L ≃ f∗L⊗ g∗L for L ∈ Pic0(X). Thus,

(4.16) [n]∗L ≃ Ln, L ∈ Pic0(X).

Another result is that if L is a line bundle on X × S where X is an abelian variety
and S is a scheme, Ls ∈ Pic0(X) for every s ∈ S if and only if this holds for one
s ∈ S. To prove this, one can apply the theorem of the cube tom∗L⊗p∗1L−1⊗p∗2L−1

on X ×X × S.
ϕL can be further defined as a morphism between functors. Let S/k be a scheme

and f : S → X ∈ X(S), denote p1 : XS = X × S → X the projection to the first
factor and p2 : XS → S the projection to the second factor. Define the translation

Tf : XS → XS such that the p1 ◦ Tf is the composition X × S id×f−−−→ X ×X m−→ X
and p2 ◦ Tf = p2. Let

Pic0X/k(S) = {L ∈ Pic(XS) | Ls ∈ Pic0(X), all s ∈ S}/p∗2(Pic(S)).

Thus, a functor ϕL : X → PicX/k is constructed as (f : S → X) 7→ T ∗
f p

∗
1L⊗p∗1L−1.

K(L) is defined to be the kernel of ϕL.

Proposition 4.17. K(L) is representable by a subgroup scheme of X. K(L) is
finite if and only if L is ample on X.

Proof. See [10], §6. □

Let M = m∗L ⊗ p∗1L−1 ⊗ p∗2L−1 on X × X, then K(L) can be defined as the
maximal subscheme of X such that M |K(L)×X is trivial.

Theorem 4.18. Let X be an abelian variety over k and L be an ample line bundle
on X. Then for any N ∈ Pic0(X), there exists x ∈ X such that N ≃ T ∗

xL ⊗ L−1.
Therefore, ϕL : X → Pic0X/k is surjective.
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Proof. See [10], §8, 13. □

Therefore, we define the dual abelian variety X̂ to be the quotient abelian variety
X/K(L) and expect X̂ to represent Pic0X/k with a universal line bundle P onX×X̂.

Then the pullback of P along π : X → X̂ has to be M , therefore, we define the
Poincare line bundle P on X×X as the quotient of the line bundleM by a suitable
action of K(L)×{0} lifting the translation action on X×X. For the details of this
construction, refer to Mumford’s book.

Theorem 4.19. X̂ represents Pic0X/k and the Poincare line bundle P is the uni-
versal line bundle.

Proof. See [10], §8, 13. □

Proposition 4.20. Let X, Y be two abelian varieties and P be a line bundle on
X × Y such that its restrictions on X ×{0} and {0}× Y is trivial, then P induced

morphism f : X → Ŷ and g : Y → X̂. Then, the following are equivalent:

(1) f is an isomorphism;
(2) g is an isomorphism;
(3) |χ(P )| = 1.

Proof. See [10], §13. □

The proposition indicates that the notion of dual abelian varieties is symmetric,

and there is a canonical isomorphism from X to
ˆ̂
X defined by the Poincare line

bundle.

Proposition 4.21. If f : X → Y is a morphism of abelian varieties, then the

pullback of line bundles gives the dual morphism f̂ : Ŷ → X̂. The kernel of f and

f̂ are naturally dual as finite group schemes.

Proof. If S is a scheme,

Ker(f̂)(S) = {L ∈ Pic(Y × S) | f∗(L) ≃ X × S × A1}
= {Liftings of translation action of Ker(f)(S) on X × S to X × S × A1}
= HomS(Ker(f),Gm)

□

Let X be an abelian variety over C. In the analytic theory of complex abelian
varieties, the Riemann form associated to a line bundle is defined to be an alternat-
ing form on Λ = H1(X,Z) = π1(X)ab. Here, in order to deal with abelian varieties
over an arbitrary field, the replacement of H1(X,Z) is the etale fundamental group.

Let [n] denote the multiplication by n, then {[n] : X → X} is a cofinal system
of etale coverings of X. The reason is for any finite etale f : Y → X, the map
[deg f ] : X → X factors through f . Let Xn be the kernel of [n], then the automor-

phism group of the covering X
prop:[n]−−−−−→ X is isomorphic to Xn(k). So we continue

to introduce some properties of [n] and Xn, and then define the Riemann form
algebraically.

Let X be an abelian variety over k of dimension 2g, then the following properties
of [n] and Xn follow from Theorem 4.13.

Corollary 4.22. L ∈ PicX, [n]∗L ≃ L(n2+n)/2 ⊗ [−1]∗L(n2−n)/2.
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Proof. Take f = [n + 1], g = id, h = [−1] and the equality can be proved by
induction. □

Corollary 4.23. deg[n] = n2g.

Proof. Assume L′ is an ample line bundle. Then L = L′⊗[−1]∗L′ is again ample and

[n]∗L = Ln2

. Consider the intersaction number deg[n]L · · · · ·L = [n]∗L · · · · · [n]∗L =

Ln2 · · · · · Ln2

= n2gL · · · · · L ̸= 0. Thus, deg[n] = n2g. □

Corollary 4.24. If n ̸=char k, Xn(k̄) ≃ (Z/nZ)2g.

Proof. If n ̸=char k, [n] is separable. Therefore, #Xn(k̄) = deg[n] = n2g. Note
that when m|n, Xm is a subgroup of Xn. Then the elementary group theory shows
that the only group possible Xn(k̄) is (Z/nZ)2g. □

Take f = [n] where n is a integer coprime to char k, then f̂ = [n] by (4.16).

There is a natural pairing Xn×X̂n → Gm by Proposition 4.21. This pairing factors
through µn, then, there is a natural pairing en : Xn × X̂n → µn. Since this is the
pairing arising naturally from dual group schemes, it is non-degenerate.

Definition 4.25. The Riemann form EL associated to a line bundle L is the map
Xn ×Xn → µn given by EL(x, y) = en(x, ϕL(y)).

Regarding Xn(k) as a free Z/n module of rank 2 dimX, eL is a Z/n bilinear
form on Xn(k).

Definition 4.26. When l ̸= char k is a prime, the l-adic Tate group Tl(X) is

defined to be lim←−Xln , where the inverse system is · · · → Xln+1
·n−→ Xln

·n−→ Xln−1 →
· · · .

Let µl∞ = Tl(Gm). Then the pairing en extends to en : Tl(X) × Tl(X̂) → µl∞ .
Also, the Riemann form can be extended to be defined as a pairing on Tl(X), like
EL : Tl(X)× Tl(X)→ µl∞ .

Proposition 4.27. Let X be an abelian variety and L be a line bundle on X. Let
l ̸= char k be a prime, then the Riemann form EL on Tl(X) is skew-symmetric.

Proof. See [10], §20. □

Proposition 4.28 ([10], §20). Let X be an abelian variety of dimension g and
L be a line bundle on X, and l ̸= char k be a prime. Then there is a generator
v ∈ HomZl

(
∧2g

Tl(X), µ⊗g
l∞ ) such that for any g divisors D1, · · · , Dg on X, let Li

is the corresponding line bundles, then EL1 ∧ · · · ∧ ELg = (D1 · · · · ·Dg) · v.

This proposition shows how the Riemann form relates to the intersection of the
line bundles, which is compatible with the Riemann form in the last section derived
from the Chern class of line bundles. The next proposition finally connects the
algebraic construction with the former analytic construction when k = C.

Proposition 4.29. X is an abelian variety over C, If L = L(H, a) is a line bundle
on X = V/Λ, E = ImH, and π : V → X is the natural map. Let πl be the natural
morphism Λ → Tl(X) : u 7→ (π(u/ln))n and ζ = (e2πi/l

n

)n ∈ µl∞ be a canonical
basis element. Then

EL(πlu, πlv) = −E(u, v) · ζ

Proof. See [10], §24. □
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A polarization of abelian varieties is an isogeny ϕL : X → X̂ where L is an
ample line bundle on X. The type of the polarization is D = (d1, · · · , dn) if
Ker(ϕL)(k̄) ≃ Z/d1Z× · · · × Z/dnZ.

4.3. Endormorphism ring. Define Hom0(X,Y ) = Q⊗ZHom(X,Y ) and End0(X) =
Q⊗Z End(X). Then we can define the category AV0(k) of abelian varieties up to
isogenies to be the category whose objects are abelian varieties over k and mor-
phisms from X to Y is Hom0(X,Y ) and the composition of two morphisms is the
obvious one. It is actually the localization of the additive categoryAV(k) of abelian
varieties over k with respect to isogeny. Since {[n] : X → X} is a cofinal system of
isogenies with target of X, then lim←−X′→X isogeny

Hom(X ′, Y ) ≃ Hom0(X,Y ), which

verifies the two definition is the same. We proceed to introduce some ingredients
needed in the further discussion of endomorphism rings of abelian varieties. This
section is necessary in understanding the PEL moduli problem since PEL stands
for polarization, endomorphism, and level structure.

Theorem 4.30 (Poincare Complete Reducibility Theorem). If X is an abelian
variety and Y is an abelian subvariety, there is a subvariety Z such that Z ∩ Y is
finite and Y + Z = X.

Proof. See [10], §19. □

This theorem says AV0(k) is a semi-simple abelian category. An abelian variety
is called simple if it has no nontrivial abelian subvariety, and any abelian variety is
isogeneous to a unique product of simple abelian varieties.

Proposition 4.31. If X is a simple abelian variety, End0(X) is a division algebra.

Proof. Every element f ∈ EndX\{0} is an isogeny by the definition of simple
abelian variety, thus is invertible in End0X. □

Proposition 4.32. Let X be an abelian variety. End0(X) is a semisimple algebra.

Proof. By Theorem 4.30, X is isogeneous to Y d1
1 × · · · × Y dn

n where Yi are distinct

simple abelian varieties. Therefore, End0X ≃ Md1(End
0Y1) × · · · ×Mdn(End

0Yn)
is a semisimple algebra. □

Theorem 4.33. Let X,Y be two abelian varieties over k and l be a prime ̸=char
k. f ∈ Hom(X,Y ) restricts to maps f : Xln → Yln and induces a map Tl(f) :
Tl(X)→ Tl(Y ) called the l-adic representation which can be extended to Tl : Zl ⊗Z
Hom(X,Y )→ HomZl

(Tl(X), Tl(Y )). Then it is injective.

Proof. See [10], §19. □

Since Tl(X) is a free Zl-module of rank 2g where g = dimX, this theorem
presents the finiteness of the rank of Hom(X,Y ).

Corollary 4.34. Hom(X,Y ) ≃ Zρ, where ρ ≤ 4 dimX · dimY .

Proof. Note that Hom(X,Y ) is torsion-free, since Ker[n] is finite and [n] ◦ f = 0⇔
f = 0. Then this statement follows Theorem 4.33 □

Corollary 4.35. End0(X) is a finite-dimensional semisimple algebra over Q.

f 7→ deg f acts as a natural norm on End0X, and we can also construct a trace
on End0X using the degree map.
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Theorem 4.36. The function ϕ 7→ deg ϕ on EndX extends to a homogeneous
polynomial function of degree 2g on End0X.

Proof. We have shown deg[n] = n2g and deg(nf) = deg[n] deg f = n2g deg f . So, it
will suffice to show that for ϕ, ψ ∈ EndX, deg(nϕ+ψ) is a polynomial on n. Since
deg(nϕ + ψ) = χ((nϕ + ψ)∗L)/χ(L) for an ample line bundle L. It will suffice to
show that χ((nϕ+ ψ)∗L) is a polynomial on n. This follows the induction and an
application of Theorem 4.13. □

Theorem 4.37. Let f ∈ EndX where X is an abelian variety over k, and l be
a prime ̸=char k. Then deg f = detTl(f). Hence, deg([n] − f) = P (n) where
P (t) is the characteristic polynomial det(t− Tl(f)) of Tl(f) acting on TlX. P has
coefficients in Z and P (f) = 0.

Proof. See [10], §19. □

Definition 4.38. The above polynomial P (t) ∈ Z[t] (independent of l) is called the
characteristic polynomial of f . Its constant term and the negative of the coefficient
of t2g−1 are called the norm Nmf and trace Trf of f respectively.

Let A be a simple abelian variety, then End0(A) is a division algebra over Q.
Let K be the center of End0(A), then End0(A) ×K K̄ ≃ Md(K̄) for some d ∈ Z
and [End0(A) : K] = d2. Recall the following well-known facts before some further
discussion.

Lemma 4.39. Let A be a finite-dimensional associative simple algebra over a field
Γ with center Λ separable over Γ. There is a canonical norm form N0 and a
canonical trace form Tr0 of A over Λ such that any norm form (resp. trace form)
of A over Γ is of the type (NmΛ/Γ ◦N0)k with some integer k (resp. ϕ ◦Tr0 where

ϕ : Λ → Γ is a Γ-linear form). If [A : Λ] = d2, N0 is homogeneous of degree d.
NmΛ/Γ ◦ N0 is called the reduced norm of A over Γ and TrΛ/Γ ◦ Tr0 is called the
reduced trace of A over Γ.

Proposition 4.40. Let A be a simple abelian variety and K be the center of
End0(A). [K : Q] = e, [End0(A) : K] = d2, then de|2g.

Proof. This proposition follows Lemma 4.39 and Theorem 4.37. □

Definition 4.41. Let A be a simple abelian variety, and keep the same notation.
A is of CM type if de = 2g.

There is another structure called Rosati involution on End0X to be defined.

Definition 4.42. Fix an ample line L on an abelian variety X over k, then ϕL :
X → X̂ is an isogeny, and then an isomorphism in M(k). The Rosati involution on
End0(X) associated with L is defined to be the involution f 7→ f ′ = ϕ−1

L ◦ f ◦ ϕL,
for every f ∈ End0(X).

Proposition 4.43. The Rosati involution on End0(X) satisfies the following prop-
erties:

(1) f ′′ = f , f 7→ f ′ is Q-linear and (ϕψ)′ = ψ′ϕ′.
(2) Let l ̸= char k, and let EL be the Riemann form of L on Tate module TlX,

then EL(ϕx, y) = EL(x, ϕ′y).



32 HANG CHEN

(3) Tr(ϕϕ∗) =
2g

Lg
(Lg−1 · ϕ∗L). Therefore, ϕ 7→ Tr(ϕϕ∗) is a positive-definite

quadiatic form on End0X.

Proof. See [10], §20, 21. □

The first two properties directly follow the definition. They show f 7→ f ′ is really
an involution and f ′ is the transpose of f with respect to EL. The third property in-
dicates the essential positivity of the Rosati involution, which becomes the key point
to classify the structure of End0A for simple A. This property can be induced by

Theorem 4.28. The only thing to check is
(EL)∧(g−1) ∧ (EL ◦ (ϕ× ϕ))

(EL)∧g
=

1

g
Tr(ϕϕ′),

which is purely a linear algebra problem.
The classification of End0A for simple abelian variety A is due to Albert. We

just cite the results that will be used in this article. As usual, K is the centre of
End0A. Let K0 be the subfield of K fixed by the Rosati involution. Then, K = K0

is totally real, or K is a CM field and the involution is the conjugation due to the
following lemma.

Lemma 4.44. Let K be a number field with a positive involution σ ∈ Gal(K/Q),
which means σ2 = id and Tr(aσ(a)) > 0. K0 ⊂ K is the fixed field of σ. Then, it
lies in one of the two cases:

(1) K = K0 is a totally real field.
(2) K = K0(

√
α), where α ∈ K0 and K0 is totally real. α satisfies

√
α /∈ K,

σ(
√
α) = −

√
α and for every homomorphism ρ : K0 → R, ρ(α) < 0. Thus,

K is totally imaginary over K0 and a CM field.

Proposition 4.45. Let A be a simple abelian variety of CM type. Then End0A is
a CM field.

Proof. See [10], §21. □

4.4. Abelian schemes and moduli problems.

Definition 4.46. An abelian scheme over a scheme S is a smooth proper group
scheme with connected geometric fibers. Being a group scheme, X is equipped with
the following structures:

(1) a unit section e : S → X,
(2) a multiplication morphism m : X ×S X → X, and
(3) an inverse morphism i : X → X,

such that the usual axioms for abstract groups hold.

Let X be an abelian scheme over S, the functor PicX/S : Sch/S→ Grp is defined
as

PicX/S(T ) = {L ∈ Pic(X ×S T )}/p∗2(PicT )}
= {(L, ι) | L ∈ Pic(X ×S T ), ι : L|e×T ≃ OT }

Theorem 4.47. Let X be a projective abelian scheme over S. Then the functor
PicX/S is representable by a smooth separated S-scheme which is locally of finite
presentation over S.

The smooth scheme PicX/S equipped with the unit section corresponding to the

trivial line bundle OX admits a neutral component Pic0X/S which is an abelian
scheme over S.
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Definition 4.48. Let X/S be a projective abelian scheme. The dual abelian

schemeX̂/S is the neutral component Pic0X/S of the Picard functor PicX/S . The

Poincare sheaf P is the restriction of the universal invertible sheaf on X×S PicX/S

to X ×S X̂.

Definition 4.49. Let X/S be an abelian scheme. A polarization of X/S is a

symmetric isogenyϕ : X → X̂ which locally for the etale topology of S, is of
the form ϕL for some ample line bundle L of X/S. The polarization is of type
D = (d1, · · · , dn) (d1 | · · · | dn) if for every geometric point s̄ ∈ S, ϕs̄ is of type D.

Fix positive integers n, N and a type D = (d1, · · · , dn) with d1 | · · · | dn such
that dn is prime to N . Let A be the following moduli problem: for every scheme S
over Z[(Ndn)−1], A(S) is the set of isomorphy classes of triples (X,λ, η):

(1) X is an abelian scheme over S,

(2) λ : X → X̂ is a polarization of type D, and
(3) η is an isomorphism between two symplectic spaces (Z/NZ)2 → X[N ],

where the symplectic structure on (Z/NZ)2 is the standard one, namely the one

presented by the matrix

(
0 1
−1 0

)
, and the symplectic structure on X[N ] is given

by the polarization λ and the natural pairing Xn × X̂N → Gm.

Theorem 4.50 (See [6], 2.3.1). When N is large enough (with respect to D), the
functor A defined above is representable by a smooth quasi-projective scheme over
Z[(Ndn)−1].

A sketch proof is given below to show roughly how this moduli space is con-
structed. Two properties of the ample bundles on abelian varieties are used in the
construction.

Proposition 4.51 (See [10], §17). Let L = L(D) be an ample line bundle on an
abelian variety A. Then, |2D| is base point free and Ln is very ample when n ≥ 3.

Theorem 4.52 (Vanishing, see [10], §16). Let L be a line bundle on X. If K(L)
is finite, there is a unique integer i = i(L), 0 ≤ i(L) ≤ g, such that Hj(X,L) = 0
for j ̸= i and Hi(X,L) ̸= 0. Moreover, L is ample if and only if i(L) = 0.

Sketchy proof of Theorem 4.50. Let X be an abelian scheme over S and X̂ be its
dual abelian scheme, and let λ : X → X̂ be a polarization of type D = (d1, · · · , dn).
P is the Poincare line bundle on X ×S X̂. Define L∆(λ) = (idX , λ)

∗P . We claim
that λL∆(λ) = 2λ. In fact, locally for etale topology, we can assume λ = λL for
some line bundle over X which is relatively ample. Then

(4.53)

L∆(λ) = ∆∗(idX × λ)∗P
= ∆∗(m∗L⊗ p∗1L−1 ⊗ p∗2L−1)

= [2]∗L⊗ L−2

λ[2]∗L = 4λL, deduced from Proposition 4.22. Thus, λ[2]∗L⊗L−2 = 2λL.

(4.53) also shows that L∆(λ) is a line bundle relatively ample locally over S,
then L∆(λ) is a relatively ample line bundle over S. Then L∆(λ)3 is very ample
by Proposition 4.51. Together with Theorem 4.52, Riπ∗L

∆(λ) = 0, i > 0 and
M = π∗L

∆(λ) is a vector bundle on S of rank m+ 1 = 6nd, where d =
∏

i di.



34 HANG CHEN

An isomorphism α : Pm
S → PS(M) is called a linear rigidification of a polarized

abelian scheme (X,λ). Define functor H which assigns every S to isomorphy classes
of quadruples (A, λ, η, α) where α is a linear rigidification of (X,λ). There is a
natural forgetting functorial morphism H → A : (A, λ, η, α) 7→ (A, λ, η), which is
a PGL(m + 1)-torsor. Each linear rigidification provides an embedding X ↪→ Pm

S .
With Theorem 4.52 and since the rank of vector bundle M is m, we obtain a

functorial morphism f : H → HilbQ(t),1(Pm), where HilbQ(t),1(Pm) is the Hilbert
scheme of 1-pointed subschemes of Pm with Hilbert polynomial Q(t) = 6ndtn. We
cite the following result.

Proposition 4.54. The morphism f identifies H with an open subfunctor of

HilbQ(t),1(Pm) which consist of pointed smooth subschemes of of Pm.

This can be explained by a theorem of Grothendieck, which shows any smooth
projective morphisme f : X → S over a geometrically connected base S with a
section e : S → X has an abelian scheme structure if and only if one geometric
fiber Xs does.

Since a polarized abelian varieties with principal N -level structure has no trivial
automorphisms, PGL(m+ 1) acts freely on H. Thus, take A to be the quotient of
H by this free action. This construction depends on the GIT theory. □

5. Examples of Shimura Varieties and Moduli Intepretations

In this section, we survey some important cases of Shimura varieties by specifying
the reductive group G in Definition 3.17, and introduce the modular interpretations
of these Shimura varieties. To be more specific, C-points on a Shimura variety
parameterize a family of abelian varieties, which can be attained immediately when
we combine the adelic description of the Shimura variety and the knowledge of
abelian varieties mentioned in the last section. Furthermore, the moduli space
constructed in Theorem 4.50 provides an integral model for a Shimura variety, and
it turns out to be canonical in the sense of what is to be defined in the next section.

5.1. Siegel modular varieties.

Definition 5.1. Let k be a field of characteristic ̸= 2. (V, ψ) is a symplectic space of
dimension 2n over k if V is a 2n-dimensional k vector space and ψ is a nondegenerate
alternating form. A subspace W of V is totally isotropic if ψ(W,W ) = 0. A
symplectic basis of a symplectic space V is a basis (e±i)1≤i≤n such that

ψ(ei, e−i) = 1, for 1 ≤ i ≤ n
ψ(ei, ej) = 0, for j ̸= ±i.

With some basic linear algebra knowledge, one can see every symplectic space
has symplectic bases. Then every maximal totally isotropic subspace of V is of
dimension n, called a lagrangian.

Definition 5.2. Let (V, ψ) be a nonzero symplectic space. The group of symplectic
similitude GSp(ψ) is defined to be the group of automorphisms of V preserving ψ
up to a scalar. Thus

GSp(ψ)(k) = {g ∈ GL(V ) | ψ(gu, gv) = v(g) · ψ(u, v) for some v(g) ∈ k×}
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where v : GSp → Gm is a homomorphism. The symplectic group Sp(ψ) is defined
to be the kernel of v.

Sp(ψ) is actually the derived group of GSp(ψ) and we have a diagram like (1.3)

(5.3) Sp(ψ)

�� %%
Gm

//

##

GSp(ψ)
ad //

v

��

GSp(ψ)ad

Gm

The kernel of the diagonal maps is the centre of Sp(ψ) = Gm ∩ Sp(ψ) = µ2.

When dimV = 2, dimk Hom(
∧2

V, k) = 1, then GSp(ψ) = GL2 and Sp(ψ) = SL2

(because there is a unique symplectic structure on the vector space). This is the
case of classical modular curves, where SL2 acts on the complex upper surface H1.
Now we define the Siegel upper space Hn as a generalization of H1 with an action
of GSp.

Definition 5.4 (Siegel upper half space). The Siegel upper half space Hg of degree
g consists of the symmetric complex g×g matrices Z = X+iY with positive-definite
imaginary part Y . It is a complex manifold by identifying the set of symmetric
complex matrices with Cg(g+1)/2 with the map (zij) 7→ (zij)j≥i. The symplectic
group Sp2g(R) is the group fixing the alternating form

∑g
i=1 xiy−i−

∑g
i=1 x−iyi on

R2g where {e1, · · · , eg, e−1, · · · , e−g} is a basis. Then

Sp2g(R) =
{(

A B
C D

)
AtC = CtA AtD − CtB = Ig
DtA−BtC = Ig BtD = DtB

}
The group Sp2g(R) acts transitively on Hg by(

A B
C D

)
Z = (AZ +B)(CZ +D)−1.

The matrix

(
0 −Ig
Ig 0

)
acts as an involution on Hg, the only fixed point of

which is iIg. Therefore, Hg is a homogeneous and symmetric complex manifold.

Identifying the set of symmetric complex matrices with Cg(g+1)/2, the map Z 7→
(Z − iIg)(Z + iIg)

−1 maps Hg to a bounded open set of Cg(g+1)/2. Actually, the
image of this map is Dg consisting of the symmetric complex matrices Z such that
Ig− z̄tZ is positive-definite. Using the Bergman metric for the bounded domain, we
can endow an invariant hermitian metric onHg. Thus, Hg is a hermitian symmetric
domain with this metric.

Fix a symplectic space (V, ψ) of dimension 2g over Q, and let GSp = GSp(ψ)
and Sp = Sp(ψ). In the spirit of Theorem 2.25 and 2.27, we construct X+ as a
conjugacy set of h : S → Sp, and it can be identified with Hg after a choice of a
symplectic basis for V .

Let X+ denote the set of complex structures J on V (R) such that ψ is a
polarization of Hodge structure (V, hJ). (2.8) shows that this is equivalent to
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ψ(Ju, Jv) = ψ(u, v) and ψJ is positive-definite. Moreover, a direct calculation
indicates

(5.5) ψ(Ju, Jv) = ψ(u, v)⇔ ψ(zu, zv) = |z|2ψ(u, v) , for all z ∈ C×

Thus, If J ∈ X+, J ∈ Sp(R), hJ(z) ∈ GSp(R) for all z ∈ C×, and hJ(z) ∈ GSp(R)
for all |z| = 1. For a symplectic basis (e±i) of V , a complex structure J ∈ X+

can be defined as Je±i = ±e∓i. Conversely, if J ∈ X+, an orthonormal basis of
ψJ gives a symplectic basis defining J in this way. Therefore, with a choice of a
symplectic basis for V , X+ is identified with Hg. Let X

− denote the set of complex
structures J on V (R) such that −J ∈ X+ and let X = X+

⊔
X−.

GSp acts on X by conjugation (g, J) 7→ gJg−1. The action on corresponding
morphism C× → GSp(R) is given by hgJg−1(z) = ghJ(z)g

−1. Since ψgJg−1(u, v) =
v(g) · ψ(g−1u, g−1v), the stabilizer in GSp(R) of X+ is GSp(R)+ = {g ∈ GSp(R) |
v(g) > 0}. Because every J ∈ X corresponds to some symplectic basis, Sp(R)
acts transitively on X+. GSp(R) acts transitively on X since GSp(R) ̸= GSp(R)+.
Actually, g : e±i → e∓i interchanges X

+ and X− because v(g) = −1. In addition,
the identification of X+ and Hg with a choice of symplectic basis is compatible
with the action of GSp on both sets.

Denote X(ψ) by X and X(ψ)+ by X+.

Proposition 5.6. The pair (GSp(ψ), X(ψ)) is a Shimura datum and satisfies the
axioms (SV1)-(SV6). This is called a Siegel Shimura datum.

Proof. SV1 : GSp(ψ) is a subgroup of GL(V ), and this induces an injection Lie(GSp(ψ)) ↪→
Lie(GL(V )) ≃ Hom(V, V ). Lie(GL(V )) ≃ Hom(V, V ), and the action ad of GL(V )
on Hom(V, V ) under this isomorphism is (αf)(v) = α ◦ f ◦ α−1v, for α ∈ GL(V ),
f ∈ Hom(V, V ), v ∈ V .

For h = hJ where J is a complex structure on V , let V + = V −1,0 and V − =
V 0,−1, so V (C) = V + ⊕ V −. Therefore, h(z) acts on V +, V −, Hom(V +, V +) ⊕
Hom(V −, V −), Hom(V +, V −) and Hom(V −, V +) as z, z̄, 1, z̄/z and z/z̄ respec-
tively. Therefore, (SV1) holds.

SV2 : J2 = −1 lies in the centre of Sp(R), and ψ as a SpR-invariant form is a

J-polarization. By Proposition 2.24, J is a Cartan involution on GSpad.
SV3 : The symplectic group is simple over every algebraically closed field because

its root system is indecomposable. Therefore, Gad is Q-simple. As Gad(R) is not
compact, (SV3) holds.

SV4 : whJ
(r) acts on V as multiplication by r when r ∈ R× (consider a sym-

plectic basis corresponding to J). Then, wX : GmR → GL(V (R)) is r 7→ rI, r ∈ R×

defined over Q.
SV5 and SV6 : The centre of GSp is Gm, then (SV5) and (SV6) holds following

the definition and Example 3.37. □

The Siegel modular variety attached to (V, ψ) is defined to be the Shimura variety
Sh(GSp(ψ), X(ψ)).

Let K be a compact open subgroup of G(Af ). Define HK to be the groupoid
consisting of the following triples ((W,h), s, ηK), where

• (W,h) is a rational Hodge structure of type {(−1, 0), (0,−1)},
• s or −s is a polarization for (W,h), and
• ηK is K-orbit of Af -linear isomorphism V (Af ) → W (Af ) under which ψ
corresponds to an A×

f -multiple of s.
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A morphism ((W,h), s, ηK) → ((W ′, h′), s′, η′K) is an isomorphism of rational
Hodge structures b : (W,h) → (W ′, h′) sending s to cs′ where c ∈ Q such that
b ◦ η = η′ mod K.

Proposition 5.7. The set ShK(C) classifies the isomorphism classes of HK . In
particular, W appearing in a triple in HK is of the same dimension of V , then
there is an isomorphism a :W → V sending s to Q×-multiple of ψ. Then the map
HK/ ∼→ GSp(Q)\X ×GSp(Af )/K : ((W,h), s, ηK) 7→ [ah, a ◦ η]K is well-defined
and is a bijection.

Proof. We first check this map is well-defined. It will suffice to show the im-
age of a triple is defined independent of the choice of a. If ((W,h), s, ηK) →
((W ′, h′), s′, η′K) is an isomorphism induced by isomorphic b : (W,h) → (W ′, h′)
and choose a for ((W,h), s, ηK) and a′ for ((W ′, h′), s′, η′K), one can apply the
above independence to a′ ◦ b and a, then the map sends isomorphic triples to the
same class. The independence of a is explained as follows. If we choose another a′

instead of a, q = a′◦a−1 ∈ GSp and the map defined in the statement is unchanged.
We then explain two triples are isomorphic if they map the same class. In

every isomorphism class of HK , we can take a representative triple of the form
((V, h), ψ, ηK), where h ∈ X, η ∈ G(Af ), and a can be chosen to be id. Two
triples ((V, h), ψ, ηK) and ((V, h′), ψ, η′K) are isomorphic if and only if there exists
g ∈ GL(V )(Q), such that g◦h = h′, g sends ψ to cψ for some c ∈ Q×, and g◦η = η′.
g sends ψ to cψ, then g ∈ GSp(V )(Q). Thus (h, η) and (h′, η′) are in the same
class. Then the map is injective. It is surjective because ((V, h), ψ, gK) lies in the
inverse image of [h, g] for any [h, g] ∈ GSp(Q)\X ×GSp(Af )/K. □

Now we introduce the modular description of the C-points of Siegel varieties. Let
(V, ψ) be a symplectic space over Q. LetMK denote the groupoid whose objects
are triples (A, s, ηK), where

• A is an abelian variety over C,
• s or −s is a polarization on H1(A,Q), and
• η is an isomorphism V (Af ) → Vf (A) under which ψ corresponds to an

A×
f -multiple of s.

An isomorphism map (A, s, ηK)→ (A′, s′, η′K) is an isomorphism A→ A′ inM(C)
sending s to cs′ where c ∈ Q such that b ◦ η = η′ mod K.

Proposition 5.8. There is a canonical bijection MK/ ∼→ G(Q)\X × G(Af )/K
Thus, the set ShK(C) classifies the isomorphism classes ofMK .

Proof. From Proposition 5.7 and Theorem 4.9. □

Example 5.9. In the general setting of Siegel modular varieties, K is taken to be
any compact open subgroup of G(Af ). But as the case of familiar modular curves
Yi(N) = Γi(N)\H, there are some more concrete level structures together with
certain choices of K as congruence groups, which links the moduli interpretation
described here with moduli spaces introduced in Theorem 4.50.

Fix N,n,D as in Theorem 4.50. Let Λ be a free Z-module of rank 2n and E
be an alternating form on Λ with values in Z. Assume the type of E is D. Then
GSp(E ⊗ Q) has a natural Z-model G such that for any ring R, G(R) = {(g, c) ∈
GL(Λ⊗R)×R× | E(gx, gy) = cE(x, y), for any x, y ∈ Λ⊗R}. G is a group scheme
over Z and reductive over Z[1/d].
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Fix a prime p not dividing N or dn. For a prime l ̸= p, let KN,l be the compact
open subgroup of G(Ql) defined as:

• if l ̸ |N , then KN,l = G(Zl);
• if l|N , then KN,l = Ker(G(Zl)→ G(Zl/NZl).

To relate moduli problems A andMK , another A′ is introduced here to make this
relationship more clear. The functor A′ is defined as: for every scheme S whose
residual characteristics are 0 or p, the objects of the groupoid A′(S) are triples
(X,λ, η̃), where

• X is an abelian scheme over S,
• λ : X → X̂ is a Z(p)-multiple of a polarization of degree prime to p, such
that for every prime l and for every s ∈ S, the symplectic form induced by
λ on H1(Xs,Ql) is similar to U ⊗Ql, and
• for every prime l ̸= p, η̃l is a KN,l-orbit of symplectic similitude from
H1(Xs,Ql) to Λ⊗Ql which is invariant under π1(S, s). Assume for almost
all prime l, this orbit corresponds to the auto-dual lattice H1(Xs,Z).

A morphism between two triples (X,Λ, η̃) and (X ′,Λ′, η̃′) is a quasi-isogeny α : X →
X ′ of degree prime to p such that α∗(λ′) is a Z(p)

×-multiple of λ and α∗(η̃′) = η̃.
There is an obvious functor A → A′ assigning (X,λ, η) to (X,λ, η̃). η̃ is defined
as follows. When l ̸ |N , a KN,l-orbit η̃l in a triple is equivalent to an auto-dual
Zl-lattice of H1(X,Ql). When l|N , a KN,l-orbit η̃l in a triple is equivalent to
an auto-dual Zl-lattice of H1(X,Ql) together with a triviality of rigidification of
the pro-l-part of N -torsion points of Xs. In either case, H1(X,Zl) and the level
structure provides the desired η̃l. The key point is that this functor actually defines
an equivalence of categories.

Proposition 5.10. The functor A → A′ defines an equivalence of categories.

Proof. Only the definition of the functor needed in order to check the functor is
fully faithful. To see it is surjective, notice that for any triple (X,Λ, η̃) ∈ A′, there
is a (unique) quasi-isogeny α : X ′ → X such that α∗(η̃) identifies Λ ⊗ Zl with
H1(X

′,Zl). There is a unique way to pick a rigidification η′ of X ′[N ] compatible
with η̃l for l|N . Because the polarization α∗λ on X ′ is of the same type D as the
symplectic form E on U , (X ′, α∗λ, η′) ∈ A(S). □

Take KN =
∏

l ̸=pKN,l × G(Zp). It is now simple to identify the description

of A′ and MK , so A′(C), and thus A(C), is classified by the points on the Siegel
Shimura variety ShK(C) = G(Q)\X± × G(Af )/K. Since A is representable by a
scheme over Z[1/Ndn], it becomes a model of the Shimura variety ShK .

5.2. Shimura varieties of Hodge type.

Definition 5.11. A Shimura datum (G,X) is of Hodge type if there exists a
symplectic space (V, ψ) over Q and an injection ρ : G ↪→ GSp(ψ) carrying X to
X(ψ). Then the Shimura variety Sh(G,X) is said to be of Hodge type.

Lemma 5.12. There exist multilinear maps of Hodge structures ti : V ×· · ·×V →
Q(ri), 1 ≤ i ≤ n, such that G is the subgroup of GSp(ψ) fixing the ti, 1 ≤ i ≤ n.

LetHK denote the groupoid whose objects are the triples ((W,h), (Si)0≤i≤n, ηK),
where

• (W,h) is a rational Hodge structure of type {(−1, 0), (0,−1)},
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• s0 or −s0 is a polarization for (W,h),
• S1, · · · , sn are multilinear maps si :W × · · · ×W → Q(ri), 1 ≤ i ≤ n, and
• ηK is K-orbit of Af -linear isomorphism V (Af ) → W (Af ) under which
ψ corresponds to an A×

f -multiple of s0 and ti corresponds to si for i =
1, · · · , n.

A morphism ((W,h), s, ηK) → ((W ′, h′), s′, η′K) is an isomorphism of rational
Hodge structures b : (W,h)→ (W ′, h′) sending s to a Q× multiple of s′ and sending
si to s

′
i for i = 1, · · · , n such that b ◦ η = η′ mod K.

Proposition 5.13. ShK(C) classifies the isomorphism classes of HK . The map
can be defined in the same way as in Proposition 5.7.

Now we introduce a modular description of the points on Shimura varieties of
Hodge type as in the Siegel case. LetMK denote the isomorphy classes of triples
(A, (si), ηK), where

• A is an abelian variety over C,
• s0 or −s0 is a polarization on H1(A,Q),
• s1, · · · , sn are Hodge tensors for A or its powers, and
• η is a K-orbit of isomorphisms V (Af )→ Vf (A) under which ψ corresponds

to an A×
f -multiple of s and each ti to si,

such that there exists an isomorphism a : H1(A,Q) → V sending s0 to a Q×-
multiple of ψ, si to ti each i ≥ 1, and h to an element of X. (∗)

An isomorphism map (A, s, ηK) → (A′, s′, η′K) is an isomorphism A → A′ in
AV0(C) sending s to cs′ with c ∈ Q×, si to s

′
i, and η to η′ modulo K.

Theorem 5.14. The set ShK(C) classifies the isomorphy classes ofMK .

One problem is that the condition (∗) is hard to check. In some PEL cases, a
trace condition serves as an alternative.

5.3. PEL Shimura varieties. In this section, we first introduce the definition of
PEL Shimura data and the relevant properties, then we describe the PEL moduli
problem and connect it to the Shimura varieties associated with some PEL Shimura
data. Basically, PEL type Shimura varieties can be interpreted as moduli spaces
of polarized abelian schemes with multiplication by the ring of integers of some
number field and some level structure, as “P” means “polarization”, “E” means
“endomorphisms” and “L” means “level structure”.

Definition 5.15. Let B be a semisimple Q-algebra with centre F . An involution
of a B is a Q-linear bijective map B → B : b 7→ b∗ such that (ab)∗ = b∗a∗ and
a∗∗ = a for every a, b ∈ B. An involution is said to be positive if TrB/Q(b

∗b) > 0
for all b ∈ B\{0}.

Let B be a k-algebra with involution ∗, a symplectic (B, ∗)-module is a B-module
V equipped with a skew-symmetric k-bilinear form ψ : V × V → k such that

ψ(b∗u, v) = ψ(u, bv) for all u, v ∈ V

Proposition 5.16. Let (B, ∗) be a semisimple k-algebra with involution. If the
field k is algebraically closed, then (B, ∗) is isomorphic to a product of pairs of the
following types:

• (A) Mn(k)×Mn(k), (a, b)
∗ = (bt, at);

• (C) Mn(k), a
∗ = at;
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• (BD) Mn(k), a
∗ = J · at · J−1 where J =

(
0 −I
I 0

)
;

Definition 5.17. Let (B, ∗) be a semisimple k-algebra with involution. The centre
of B is F and F0 is the subalgebra of invariants of ∗ in F . We say (B, ∗) has type
(A),(C) or (BD) if for all k homomorphism ρ : F0 → ka, (B ⊗F0,ρ k

a, ∗) has this
type.

Let (B, ∗) be a semisimple Q-algebra with involution and (V, ψ) be a faithful
(B, ∗)-symplectic module. Define G as a algebraic subgroup of GLB(V ) such that
for every Q-algebra R,

G(R) = {(g, µ(g)) ∈ GLB(V )(R)×R× | ψ(gx, gy) = ψ(µ(g)x, y) for any x, y ∈ V (R)}

Proposition 5.18. G is reductive, and it is connected if (B, ∗) is of the case (A)
or (C).

Proof. See [8], 8.7. □

Therefore, throughout this section, we assume (B, ∗) is of the case (A) or (C).
This assumption also provides us with other conveniences.

Assume there exists a homomorphism h : S → GR such that (V, h) is of type
{(−1, 0), (0,−1)} and the form ψ(u, h(i)v) is symmetric and positive-definite. Let
X denote its G(R)-conjugacy class. A quintuple (B, ∗, V, ψ, h) is called a rational
PE datum. The action of G on V defines an embedding G ↪→ GSp(ψ) which sends
X to X(ψ). In fact, for b ∈ B, denote the tensor (x, y) 7→ ψ(x, by) by tb, then an
element g ∈ GSp(ψ) commutes with b if and only if it fixes tb. Hence, (G,X) is
the Shimura datum of Hodget type associated with the system (V, {ψ, tb1 , · · · , tbs)
where {b1, · · · , bs} are taken to be a set of generators of B (as a Q-algebra). The
pair (G,X) satisfies the axioms (SV1-4), called a PEL Shimura datum.

Definition 5.19. Given a PE datum, let V1 be the complex vector space V (C)/F 0
h (V (C).

Define the trace map t : B → C to be t(b) = TrC(b|V1). Let x1, ..., xr be in-
determinates and V1 = F 0V/F . Define the determinant polynomial detV1

=
det(x1b1 + · · · + xrbr, V1 × C[x1, · · · , xr]) which is a homogenous polynomial of
degree dimC V1. The reflex field E of the PEL datum is the field of definition of the
isomorphism class of V1 as an B⊗Q C-module. That is the subfield of C generated
by the elements t(b), forb ∈ B, or equivalently, the subfield of C generated by the
coefficients of the polynomial detV1

. All that is defined above only depends on X
instead of depending on h.

As usual, the moduli problem attached to a PEL Shimura variety is illustrated.

Theorem 5.20. Let K be a open compact subgroup of G(Af ), then the C-points
on the corresponding Shimura variety ShK(G,X) classifies the isomorphy classes
of quadruples ((A, i), s, ηK), where

• A is an abelian variety over C,
• s or −s is a polarization on H1(A,Q),
• i is a homomorphism B → End0(A), and
• ηK is a K-orbit of isomorphisms V (Af ) → Vf (A) under which ψ corre-

sponds to an A×
f -multiple of s and each ti to si,

such that there exists a B-linear isomorphism a : H1(A,Q) → V sending s to a
Q×-multiple of ψ, and hA to an element of X. (∗)
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The following proposition presents that if B is a simple algebra, the pair (G,X)
only depends on G and X is nonempty. In this case, the PEL Shimura data is
called simple PEL data.

Proposition 5.21. There exists a homomorphism h : S→ GR such that (V, h) has
type {(−1, 0), (0,−1)} and 2πiψ is a polarization of (V, h). Moreover, h is unique
up to conjugation by an element of G(R).

Another problem left is when the condition (∗) in the above theorem holds. If
it holds, we have the following condition (∗∗):

(1) s(bu, v) = s(u, b∗v), and
(2) Tr(i(b)|Tgt0A) = TrC(b|V (C)/F 0

h (V (C))), h ∈ X. Notice the right-hand
side depends only on X.

However, it is not obvious if the condition (∗) can be derived from the condition
(∗∗). Let W = H1(A,Q). One difficulty owes to the existence of a B-linear iso-
morphism α : W → V sending s to a Q×-multiple of Ψ. The existence of η shows
that V and W has the same dimension, then there is a B ⊗Qa-linear isomorphism
α : V (Qa) → W (Qa) sending s to a Qa×-multiple of Ψ. Thus, it defines a cycle
a = (aσ = α−1 ◦ σα)α∈Gal(Q) ∈ H1(Q, G). The existence of η shows that the image

of this class is trivial in H1(Ql, G) for all prime l. Therefore, it determines a cycle
a ∈ Ker1(Q, G) = Ker(H1(Q, G) →

∏
lH

1(Ql, G)). The following lemma implies
that, under the assumption (B, ∗) is of type (A) and (C), (∗) holds if and only if
(∗∗) holds and a is trivial. It also shows, under the same assumption, that the
image of a in H1(R, G) is trivial.
Lemma 5.22 ([4], 5.7). (1) The Gder(R)-conjugacy class of h is uniquely de-

termined by the map t.
(2) In case (A), the isomorphism class of (V, ψ) is determined by t.
(3) In case (C), the isomorphism class of (V, ψ) is determined by dimV .

Proposition 5.23. Let (B, ∗) be of type (Aeven) or (C), and keep the notations in
Theorem 5.20. The condition (∗) in Theorem 5.20 is implied by the condition (∗∗).

Proof. See [8], 8.19. □

As in the Siegel case, we want to give some open compact subgroups K which
correspond to more concrete moduli problems. We can define some integral models
of G with the aid of integral PE datum.

Definition 5.24. An integral PE datum is a quintuple (O, ∗,Λ, ψ, h), where
(1) O is an order in a finite-dimensional semisimple Q-algebra B (that is, O is

a subring of B that is a free Z-module and spans the Q-vector space B),
(2) ∗ is a positive involution of O, i.e. it extends to a positive involution on B,
(3) Λ is an O-module that is finitely generated and free as a Z-module,
(4) ψ(·, ·) : Λ × Λ → Z is a Z-bilinear alternating map such that ψ(bx, y) =

ψ(x, b∗y) for x, y ∈ Λ, and
(5) h is a homomorphism S→ GR, where G is defined to be an algebraic group

over Z such that for every commutative ring R,

G(R) = {(g, µ(g)) ∈ EndO⊗ZR(Λ⊗ZR)×R× | ψ(gx, gy) = ψ(µ(g)x, y) for any x, y ∈ Λ⊗ZR},
and such that (V, h) has type {(−1, 0), (0,−1)} and the form ψ(u, h(i)v) is
symmetric and positive-definite.
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Fix a prime p such that the PEL datum is unramified at p. PEL moduli problem
over a discrete valuation ring with residual characteristic p is to be described. Fix
an integral N ≥ 3, consider the moduli problem B of abelian schemes with a PE-
structure and principal N -level structures. Let E be the reflex field of the PE
datum. The contravariant functor B assigns every OE,p = OE ⊗ Z(p)-scheme S a
groupoid B(S) whose objects are (A, λ, ι, η), where

(1) A is an abelian scheme over S,

(2) η : A→ Â is a polarization,
(3) ι : O → EndS(A) is a homomorphism such that the Rosati involution

induced by η restricts to the involution ∗ of O
det(β1x1 + · · ·+ βnxn,LieA) = detV1 ,

and for every prime l ̸= p and every geometric point s of S, the Tate
module Tl(As), equipped with the action of O and with the alternating
form induced by η, is similar to Λ⊗ Zl, and

(4) η is a similitude from A[N ] equipped with the symplectic form from the po-
larization and the action of O to Λ/NΛ that can be lifted to an isomorphism
H1(As,Ap

f ) with Λ⊗Z Ap
f , for every geometric point s.

Theorem 5.25. The functor which assigns to each OE,p-scheme S the set of iso-
morphy classes B(S) is smooth and representable by a quasi-projective scheme over
OE,p.

Proof. There is a natural forgetting functor B → A, the fiber of which is the
isomorphy set of ι. After choosing a Z-basis {b1, · · · , bn} of O, an ι is equivalent
to actions of b1, · · · , bn on A satisfying certain equations. Since A is representable
by a quasi-projective scheme shown in Theorem 4.50, it will suffice to use the next
lemma. □

Lemma 5.26 (See [6], 3.4.4). Let A be a projective abelian scheme over a locally
noetherian scheme S. Then the functor that assigns to every S-scheme T the set
End(AT ) is representable by a disjoint union of projective schemes over S.

For every prime l ̸= p, let KN,l =

{
KN,l = G(Zl) , l ̸ |N
Ker(G(Zl)→ G(Zl/NZl)) , l|N

and

KN,p = G(Zp) be a compact open subgroup of G(Ql). Let K =
∏
KN,l be a

compact open subgroup of G(Af ). It can be shown when the PEL datum is of type
A and C, B(C) is classified by G(Q)\X ×G(A)/K.

The way to prove this is similar to the Siegel case. We can define another
moduli problem B′ as follows: an object of B′(S) where S is a scheme over OE,p

is a quintuple (A, λ, ι, η̃), where

(1) A, ι are the same as in B(S),

(2) λ : A→ Â is a Z(p)-multiple of a polarization,
(3) fixing a geometric point s of S, for every prime l ̸= p, η̃ is a KN,l-orbit of

isomorphisms from Vl(As) to Λ⊗Ql compatible with symplectic forms and
action of O and stable under the action of π1(S, s).

A morphism from (A, λ, ι, η̃) to (A′, λ′, ι′, η̃′) is a quasi-isogeny α : A→ A′ of degree

prime to p carrying λ to a Q×-multiple of λ′ and carrying η̃ to η̃′.
There is a natural functor B→ B′ defines the equivalence of categories, similar

to Proposition 5.10. It is also easy to check that B′ describes the same moduli
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problem as MK defined earlier in this section. Therefore, Theorem 5.20 shows that
B(C) is classified by ShK(G,X)(C).

6. Canonical Models

The notion of canonical models is natural either when we survey models of the
Shimura varieties associated with tori or when we consider the moduli problems of
Shimura varieties. One of the most prominent properties of Shimura varieties is
that the canonical models exist for any Shimura variety. In this section, we first
introduce the basic theory of complex multiplication of abelian varieties. Next,
the tori case is discussed, which motivates the definition of canonical models. We
conclude with attempts to show the uniqueness and existence of canonical models,
where the existence is accomplished by combining the moduli interpretation and
complex multiplication theory.

6.1. Complex multiplication.

Definition 6.1. A number field E is a CM field if it is a quadratic totally imaginary
extension of a totally real field F . Then each embedding of F ↪→ R will extend to
two conjugate embeddings of E ↪→ C. A CM-type Φ of E is a subset Φ ⊂ Hom(E,C)
such that Hom(E,C) = Φ⊔ Φ̄ where Φ̄ consists of the conjugate of the embeddings
in Φ.

The involution a 7→ a∗ on E is defined by the nontrivial element in Gal(E/F ),
and the fixed field of it is F . It is a positive involution in the sense that for every
α : F → R, α(TrE/F (b

∗b)) > 0 for any b ∈ E.

Definition 6.2. Let E be a CM-field of degree 2g over Q. An abelian variety A
of dimension g is of CM type if there exists a CM field E and a homomorphism i :
E → End0A. A pair (A, i) of CM type (E,Φ) if as E⊗QC-module, Tgt0(A) ≃ CΦ.

Actually, if A = V/Λ is an abelian variety over C of CM type, where V ≃ Cg

and Λ is a full lattice in V , with the homomorphism i : E → End0A,then Λ⊗Q is a
one-dimensional E-module. Therefore, as E-module (via i),

∏
σ:E↪→C C ≃ E⊗QC ≃

Λ ⊗ C ≃ H1(A,C) ≃ H−1,0 ⊕ H0,−1 = Tgt0A ⊕ Tgt0A. Thus, (A, i) is always of
CM type (E,Φ) with a unique Φ.

Proposition 6.3. Let E be a CM field and Φ be a CM type of E. The complex
torus AΦ = CΦ/Φ(OE) is an abelian variety over C of CM type (E,Φ) with the
natural homomorphism iΦ : E → End0AΦ. Moreover, every abelian variety A over
C of CM type (E,Φ) is E-isogenous to (AΦ, iΦ).

Proof. To prove AΦ is an abelian variety, it will suffice to construct a Riemann form
on AΦ. Take α to be a totally imaginary element of E, which means σα = −α for the
nontrivial σ ∈ Gal(E/F ). α is further asked to be an algebraic integer and satisfy
for all ϕ ∈ Φ, Im(ϕα) > 0. Such α can be obtained by weak approximation theorem.
Define Ψ(u, v) = TrE/Q(αuv

∗), for u, v ∈ OE . Since α, u, v are all algebraic integers,
the form Ψ takes values in Z. To show this form is a Riemann form, observe that
Ψ =

∑
ϕ∈Φ Ψϕ, where Ψϕ(u, v) = TrC/R(ϕ(α) · u · v̄), u, v ∈ C. Because α is totally

imaginary, Ψϕ(u, v) = ϕ(α)(uv̄− ūv) ∈ R is alternating, and satisfies Ψϕ(u, iu) > 0
and Ψϕ(iu, iv) = Ψϕ(u, v).
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Assume (A, i) is an abelian variety over C of CM type (E,Φ). Let A = V/Λ and
O = E∩End(A). Choose any u ∈ Λ. As Λ⊗Q ≃ H1(A,Q) is a one-dimensional E-
module, [Λ : Ou] is finite. In addition, there exists an integerN such thatNOE ⊂ O
of finite index. Thus, A→ A′ = V/Ou→ V/OE(Nu) are isogenies between abelian
varieties of CM type (E,Φ). Since V/OE(Nu) ≃ AΦ, the proposition follows. □

Before starting the main theorem in this section, a few more definitions and
preparations are needed.

Proposition 6.4. Let (A, i) be an abelian variety of CM-type over C. Then (A, i)
has a model over Qa, uniquely determined up to isomorphism.

Definition 6.5. Let (E,Φ) be a CM-type. The reflex field E∗ of (E,Ψ) is the
subfield of Qa generated by

∑
ϕ∈Φ ϕ(a) ,a ∈ E. It is characterized by the following

two equivalent properties.

(1) σ ∈ Gal(Qa/Q) fixes E∗ if and only if σΦ = Φ.
(2) E∗ is the smallest subfield K of Qa such that there exists a K-vector field

V with an action of E for which TrK(a|V ) =
∑

ϕ∈Φ ϕ(a).

If an abelian variety A over C is of CM-type (E,Φ), Proposition 6.4 shows
that A has a model over K ⊂ Qa, which should contain E∗ by (2) in the above
definition. Take a E∗-vector space V as in (2), and it can be viewed as a E∗⊗Q E-
vector space. It is unique up to isomorphism in this view. Define the reflex norm
NΦ∗ : ResE∗/Q Gm → ResE/Q Gm as NΦ∗(a) = detE(a|V ), for a ∈ E∗×.

There is a connection between the Galois action on abelian varieties of CM type
and the Artin reciprocity map which will be stated in the main theorem. Let E be
a number field. According to class field theory, there exists a continuous surjective
homomorphism called Artin map recE : A×

E → Gal(Eab/E) such that for every

finite extension L/K, the restriction map recL/E : A×
E → Gal(L/E) is surjective

with kernel NmL/K(A×
L ). recL/E maps the idele α = (1, · · · , 1, π, 1, · · · , 1) (π at

place v is a prime element in OEv
) to the Frobenius element (v, L/E) ∈ Gal(L/E).

For the sake of simplicity, we shall use the reciprocal map artE(α) = recE(α)
−1

instead in the rest of this article.
Now we define the Galois action on abelian varieties of CM type. Let k be an

algebraically closed field and σ : k → k. Then σ induces a map A(k) → σA(k)
and further a map Vf (A) → Vf (σA). An endomorphism of A can base change

to an endomorphism of σA, giving the homomorphism σ : End0(A) → End0(σA).
Now let (A, i) be an abelian variety over C of CM type (E,Φ). Take k = C and
σ ∈ Aut(C/E∗). we can define σi : E → End0(σA) by the composition of i and
σ : End0(A) → End0(σA). Then (σA,σ i) is of CM type (E, σΦ) = (E,Φ) by the
definition of E∗.

Theorem 6.6. Let (A, i) be an abelian variety over C of CM type (E,Φ) and
σ ∈ Aut(C/E∗). For any s ∈ A×

E∗,f with artE∗(s) = σ|E∗ab, there exists a unique

E-linear isogeny α : A → σA such that α(NΦ∗(s) · x) = σx for all x ∈ VfA where
VfA =

∏
l prime VlA

The proof relies on the Shimura-Taniyama formula. To provide some insight
into this theorem, we shall introduce the Shimura-Taniyama formula for which a
lot more preparation work is needed, and then give a proof of the theorem assuming
the Shimura-Taniyama formula.
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Let A be an abelian variety over a number field K. Let B be a prime of K, OK,B

be the localization of OK at B and k = O/B be the residual field. A has good
reduction at B if it extends to an abelian scheme A over OK,B. The reduction of A
at B is an abelian variety Ā over k defined to be the special fiber A×OK,B

k. The

specialization map A(K) → Ā(k) is constructed as follows. Let x be a K point of
A, it extends to the unique OK,B point x′ : SpecOK,B → A, thus we get a k point

x̄ by the composition Spec k ↪→ OK,B
x′

−→ A.
For l ̸= char k, the specialization map restricts on A[ln] → Ā[ln] is an iso-

morphism, then it induced an isomorphism Vl(A) → Vl(Ā).Similarly, there is a
homomorphism End(A) → End(Ā). This is an injective map since it is compati-
ble with Vl(A) ≃ Vl(Ā). The injection End(A) → End(Ā) extends to an injection
End0(A)→ End0(Ā). If (A, i) is an abelian variety of CM type, composing i with
this injection gives Ā a CM structure (Ā, ī).

Proposition 6.7. Let (A, i) be an abelian variety of CM-type over a number field
K ⊂ C, then A has everywhere potential good reduction. This means for every
prime B ⊂ OK , after possibly replacing K by a finite extension, A will have good
reduction at B

An important observation is that the Frobenius map on the reduction of an
abelian variety over a number field can be lifted to the original abelian variety.

Lemma 6.8. Let (A, i) be an abelian variety of CM-type (E,Φ) over a number
field K ⊂ C and B ⊂ OK be a prime. Assume A has god reduction at B, and the
reduction of A at B is (Ā, ī) over Fq = OK/B. Then the Frobenius map πĀ of Ā
lies in ī(E).

Theorem 6.9 (Weil, [15]). For an abelian variety over Fq, the Frobenius map πA is

in the centre of End0(A). Regard πA as an algebraic number, it is a Weil q-number,
that is, for any embedding Q[πA]→ C, |ρ(πA)| =

√
q.

In order to determine a Weil q-integer π ∈ E, it suffices to know its value at every
place v of E above p = char q, which is accomplished by the Shimura-Taniyama
formula.

Theorem 6.10 (Shimura -Taniyama). Preserve the notations in Lemma 6.8. Fur-
ther, assume K is Galois over Q and contains all the conjugates of E. For a prime
v of E dividing q = pn, set Hv = {ρ : E → K | ρ−1(B) = pv. Then,

(6.11)
ordv(π)

ordv(q)
=
|Φ ∩Hv|
|Hv|

.

Proof. See [8], 10.10. □

Proof of Theorem 6.6. Since (A, i) and (σA,σ i) are both of CM type, there is an
E-linear isogeny α : A → σA due to Proposition 6.3. The composition map

Vf (A)
σ−→ Vf (σA)

Vf (α)
−1

−−−−−→ Vf (A) is AE,f = E ⊗Q Af -linear and Vf (A) is free
of rank one as AE,f -module. Thus, this map is the multiplication of a, for some
a ∈ Af . Varying α, a changes by multiplying an element of E×, then we attain
the well-defined map γ : Gal(Qa/E∗) → AE,f/E

× : σ 7→ [a]. This map factors
through Gal(E∗ab/E∗). Composing it with the reciprocity map artE∗ , we get a
homomorphism η : AE∗,f/E

∗,× → AE,f/E
×. The only remaining task is to show
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this homomorphism is induced by NmΦ∗ , which follows from the Shimura-Taniyama
formula. Because of the density theorem, one just needs to check this in the case
σ ∈ Gal(L/E∗) where L is Golais over E∗ and contains the field of definition of
A and E, and σ is a Frobenius element (B, L/E) such that A has good reduc-
tion at the prime B. In this situation, γ(σ) is calculated by Shimura-Taniyama
formula. □

6.2. Definition of canonical models.

Definition 6.12. Let (G,X) be a Shimura datum. A model of Sh(G,X) over a
subfield K of C is an inverse system M(G,X) = (MK(G,X))K of varieties over K
endowes with a right action of G(Af ) such that M(G,X)C = Sh(G,X).

We are going to introduce the “natural” field of definition of a Shimura variety,
the reflex field of a Shimura variety. Indeed, the reflex field of the Shimura datum
is, whenever the Shimura variety is a moduli variety in some natural way, the field
of definition of the moduli problem. Therefore, it is natural to ask the canonical
model of a Shimura variety be defined over the reflex field.

Definition 6.13. For a reductive group G over Q and a subfield k ⊂ C, we write
C(k) for the set of G(k)-conjugacy classes of cocharacters of Gk defined over k.
That is, C(k) = G(k)\Hom(Gm, Gk). A homomorphism k → k′ induces a map
C(k)→ C(k′). In particular, Aut(k′/k) acts on C(k′).

Assume G splits over K. Then GK contains a split maximal torus T . The Weyl
group W =W (GK , T ) = N/N◦ is a constant etale algebraic group where N is the
normalizer of T in GK .

Lemma 6.14. Let T be a split maximal torus in GK . Then the map

W\Hom(Gm, TK)→ G(k)\Hom(Gm, GK)

is bijective.

Proof. See [9], 17.105. □

This lemma implies all elements in W\Hom(Gm, TC) are defined over Qa as
the same is true for W and Hom(Gm, TC), indicating the map C(Qa) → C(C) is
bijective.

Let (G,X) be a Shimura datum. Each h ∈ X : S → GR induces a cocharacter
µh of GC as µh = hC ◦ r where r : Gm,C → SC, z 7→ (z, 1). Altering h with another
one conjugates µh, then X defines a class c(X) of C(C). Moreover, c(X) can be
seen as an element in C(Qa) with the bijection C(Qa)→ C(C).

Definition 6.15. The reflex field E(G,X) is the field of definition of c(X), which
is the fixed field of the subgroup of Gal(Qa/Q) fixing c(X).

Example 6.16 (The Case of Tori). Let G = T be a torus and h : S → TR be a
morphism. Then we get a Shimura datum (T, h) since (SV1-3) are trivially satisfied
in this situation. For every open compact subgroup K of T (Af ), T (Q)\T (Af )/K is
finite. Thus, a model MK(T, h) of ShK(T, h) over F ⊂ C is equivalent to an action
of Gal(F̄ /F ) on T (Q)\T (Af )/K. By passage to limit shown in (3.35), there should

be an action of Gal(F̄ /F ) on lim←−K
T (Q)\T (Af )/K = T (Q)\T (Af ) commuting with

the action of T (Af ). T (Q)\T (Af ) is an abelian profinite group, and it is actually
π0(T (Q)\T (Af )) with the obvious bijective map. Moreover, the action of Gal(F̄ /F )
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factors through Gal(F ab/F ). Hence, after composing with the Artin map, with the
aim of constructing such an action, it is necessary to construct a homomorphism
of groups η : F×\A×

F → T (Q)\T (Af ).
It will suffice to construct a morphism between algebraic groups ResF/Q Gm →

T . Given h, we have the corresponding cocharacter µh : Gm,C → T (C) defined
over a finite extension of Q, and the field of definition of µh is compatible with
the above definition of the reflex field E(T, h). If F contains E(T, h), µh induces
a F -homomorphism Gm → TF , and therefore a map ResF/Q Gm → ResF/Q T .
Composing it with the norm map NmF/Q : NF/QTF → T , we have the desired
ResF/Q Gm → T . When F = E(T, h) is taken to be the field of definition of µh, this
homomorphism r(h) : ResF/Q Gm → T is called the reciprocity morphism for (T, h).

This can be written in an explicit way: for P ∈ F×, r(h)(P ) =
∑

ρ:F→Qa ρ(µh(P ))

where
∑

ρ:F→Qa ρ(µh(P )) ∈ T (Qa) is stable under the action of Gal(Qa/Q) and

hence lies in T (Q).

Example 6.17. Let (E,Φ) be a CM-type, and let T = ResE/Q Gm. hΦ : S→ TR is

defined by the R-isomorphism T (R) = (E×Q R)× ≃ (CΦ)×. The map hΦ : S(C)→
T (C) is

C× × C× → (CΦ)× × (CΦ̄)× : (z1, z2) 7→ (z1, · · · , z1, z2, · · · , z2),

and the map µhΦ : C× → (CΦ)× × (CΦ̄)× : z 7→ (z, · · · , z, 1, · · · , 1). Hence, the
reflex field of Shimura datum (T, h) is just the reflex field of CM-type (E,Φ).

Example 6.18. When a PEL Shimura datum (G,X) is of type (A) and (C), the
reflex field E(G,X) defined here is compatible with the reflex field of the corre-
sponding PEL datum defined in Theorem 5.20, because E(G,X)/Q is generated
by th(b), b ∈ B.

Definition 6.19. A point x ∈ X is called special if there exists a torus T ⊂ G
such that hx(C×) ⊂ T (R). (T, x) is called a special pair in (G,X). When (SV4)
and (SV6) hold, the special points and special pairs are called CM points and CM
fields.

Remark 6.20. Notice that a point x ∈ X is special if and only if hx is fixed by
T (R) (ad(t) ◦ hx = hx for all t ∈ T (R)) in which T is a maximal torus of G.

Let (T, h = hx) ⊂ (G,X) be a special pair and let E(x) be the field of definition

fo µx. We define rx : A×
E(x) → T (Af ) to be A×

E(x)

r(h)−−−→ T (AQ)
project−−−−→ T (Af ) where

r(h) is the homomorphism defined in Example 6.16.

Definition 6.21. Let (G,X) be a Shimura datum, and let K be a compact open
subgroup of G(Af ). A model MK(G,X) of ShK(G,X) over E(G,X) is canonical
if, for every special pair (T, x) ⊂ (G,X), and a ∈ G(Af ),

• [x, a]K has coordinates in E(x)ab,
• σ[x, a]K = [x, rx(s)a]K , for all s ∈ A×

E(x) and σ = artE(x)(s) ∈ Gal(E(x)ab/E(x)).

A model M(G,X) of Sh(G,X) over E(G,X) is canonical if each MK(G,X) is
canonical.

Example 6.22 (The Case of CM Tori). Let (E,Φ) be a CM-type, and let (T, hΦ)
be the same as in Example 6.17. Then, E(T, hΦ) = E∗. Moreover, r(hΦ) :
ResE∗/Q Gm → ResE/Q Gm is the reflex norm NΦ∗ by direct computation.
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Let K be a compact open subgroup of T (Af ), and let V be a one-dimensional
E vector space seen as a Q-vector space with the action of T (Q), which gives an
embedding V ↪→ GL(V ). We assert that the Shimura variety ShK(T, hΦ) classifies
isomorphy classes of triples (A, i, ηK) in which (A, i) is an abelian variety over C
of CM type (E,Φ) and η is an E ⊗ Af -linear isomorphism V (Af ) → Vf (A). An
isomorphism (A, i, ηK) → (A′, i′, η′K) is an E-linear isogeny sending ηK to η′K.
The isomorphism set is called MK. There is a E isomorphism a : H1(A,Q) → V

sending hA to hΦ. The composition V (Af )
η−→ Vf (A)

a−→ V (Af ) defines an element
g ∈ T (Af ), since it is a (E ⊗ Af )

×-linear map, and therefore an element [g] in
T (Q)\T (Af )/K. This map MK → ShK(T, hΦ)(C) can be easily checked to be a
bijection.

There is a natural Galois action onMK . Let σ ∈ Aut(C/E∗), define σ(A, i, ηK) =
(σA,σ i,σ ηK) where (σA,σ i) is defined in last section and ση is defined to be the

composite V (Af )
η−→ Vf (A)

σ−→ Vf (σA). As all abelian varieties of CM type (E,Φ)
and the morphisms between them are defined over Qa as shown in Proposition 6.4,
this action factors through Gal(Qa/Q) and defines a model of ShK(T, hΦ) over E

∗

via the bijection map above. Then the main result of complex multiplication in
Theorem 6.6 shows exactly this model is canonical.

Example 6.23 (The Galois Action on Connected Components). Assume ShK(G,X)
has a canonical model. Then it will define an action of Aut(C/E(G,X)) on the set
π0(ShK(G,X)). When Gder is additionally simply connected, π0(ShK(G,X)) ≃
T (Q)\Y × T (Af )/v(K) is a zero-dimensional Shimura variety, where Y is the

quotient of T (R) by T (R)† (Theorem 3.28). Let h = v ◦ hx for any x ∈ X.
Then µh is a cocharacter of T defined over E(G,X). As shown in Example
6.16, it defines a homomorphism r = r(h) : A×

E(G,X) → T (AQ) and then deter-

mines a E(G,X)-model of π0(ShK(G,X)). This map r can be described explic-
itly as follows. σ ∈ Aut(C/E(G,X)). Let s be an element of A×

E(G,X) satisfying

artE(G,X)(s) = σ|E(G,X)ab and let r(s) = (r(s)∞, r(s)f ) ∈ T (R)× T (Af ). Then

(6.24) σ[y, a]K = [r(s)∞y, r(s)fa] ,for all [y, a] ∈ T (Q)\Y × T (Af )/v(K)

If (6.24) is used to define the canonical model of the zero-dimensional Shimura
varieties. We get the result that the π0 of a canonical model of Sh(G,X) is a
canonical model of Sh(T, Y ).

6.3. Uniqueness and existence of canonical models. Before the proof of
uniqueness, a general criterion is displayed below.

Proposition 6.25. Let k be a subfield of an algebraically closed field Ω, then the
functor V → VΩ + action of Aut(Ω/k) on V (Ω). A variety V over k is uniquely
determined by VΩ and the action of Aut(Ω/k) on V (Ω).

Theorem 6.26. (1) If ShK(G,X) and ShK′(G,X) have canonical models over
E(G,X), then T (g) is defined over E(G,X).

(2) A canonical model of ShK(G,X) (if it exists) is unique up to a unique
isomorphism.

(3) If, for all compact open subgroups K of G(Af ), ShK(G,X) has a canonical
model, then also does Sh(G,X), and it is unique up to a unique isomor-
phism.

The proof of this theorem relies on two key lemmas.
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Lemma 6.27 ([4], 5.1). For every finite extension L of E(G,X) in C, there exists
a special point x0 such that E(x0) is linearly disjoint from L.

Lemma 6.28. For any x ∈ X, {[x, a]K | a ∈ G(Af )} is Zariski dense in ShK(G,X).

Proof. See [8], 13.5. Mainly use the real approximation theorem. □

Proof of Theorem 6.26. Let (G,X) be a Shimura datum. We first show that there
exists a special point in X. Let x ∈ X and T be a maximal torus in GR containing
hx(S). Then T is the centralizer of a regular element in Lie(GR). The set of regular
elements is open in Lie(GR). So if λ0 ∈ Lie(G) is chosen sufficiently closed to λ,
λ0 will be regular. Let T0 be the centraliser of λ0, then it is a maximal torus in G.
A fact is that two maximal tori of GR in the same component conjugate to each
other. So there are some g ∈ G(R) such that T0 = gTg−1. Thus, gx is a special
point since hgx(S) = ghx(S)g−1 ⊂ T0(R).

proof of (1): To prove T (g) is defined over E(G,X), by Proposition 6.25, it will
suffice to show that T (g) is fixed by the action of Gal(C/E(G,X)). Let x0 be a
special point inX, we first that T (g) is fixed by the action of Gal(C/E(x0)). Choose
an s ∈ A×

E0
such that art(s) = σ|E(x0)

ab. Consider the following commutative
diagram holding for all a ∈ G(Af ):

[x0, a]K [x0, ag]K

[x0, rx0
(s)a]K [x0, rx0

(s)ag]K .

T (g)

σ σ

T (g)

By Lemma 6.28, this is enough to show T (g) is fixed by Gal(C/E(x0)). However,
Lemma 6.27 shows that Aut(C/E(G,X)) is generated by σ ∈ Gal(C/E(x0)) for
some x0 being special points in X.

(2) is immediately from (1), when we take K = K ′, g = 1. (3) is from (1) and
the definition. □

We have shown that, in many examples, the reflex field of Shimura varieties is
the natural field of definition of the moduli problems. One may further ask if the
moduli spaces we constructed in Theorem 5.9, 5.25 are canonical and if there is a
general approach to prove the existence of canonical models. We attempt to provide
a rough idea to these questions. Take Siegel Shimura varieties ShK for example.
Let (V, ψ) be a symplectic space over Q, and let (G,X) = (GSp(ψ), X(ψ)) be the
associated Shimura datum. We first find out the reflex field and special points in
this case.

Proposition 6.29. The reflex field E(G,X) = Q.

Proof. Our previous discussion on symplectic space shows that h : S→ G is always
of the form (z, z′) ∈ S(C) acts as z on L and z̄′ on L′ where L,L′ are comple-
mentary lagrangians in V (C). Then given such a pair (L,L′), the corresponding
µ(L,L′) : Gm → G(C) satisfies µ(z) acts as z on L and as 1 on L′ runs through
c(X). G(C) acts transitively on the pairs (L,L′), so on c(X). There exist pairs
of complementary lagrangians (L,L′) in V instead of V (C), then µ(L(C),L′(C)) is
defined over Q. Therefore, E(G,X) = Q. □
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Proposition 6.30. An abelian variety A over C is CM if and only if there exists
a torus T ⊂ GL(H1(A,Q)) such that hA(C×) ⊂ T (Q)

Proof. The statements depend solely on A up to isogeny, then we can assume A is
simple because of Theorem 4.30. Assume A is simple. Then, End0A is a CM field
E and H1(A,Q) is a one-dimensional E-module. Since hA(C×) commutes with
the action of E ⊗Q R on H1(A,R), hA(C×) ⊂ (E ⊗ R)× = ResE/Q(Gm)(R). Take
T = ResE/Q(Gm) ⊂ GL(H1(A,Q)), the “only if” part follows.

Conversely, assume hA(C×) ⊂ T (Q) for a torus T ⊂ GL(H1(A,Q)). As End0A
is the subalgebra of End(H1(A,Q)) preserving the Hodge structure, we have

End0A ⊃ {α ∈ End(H1) | α commutes with the action of T}.

Because T is a torus, H1(A,C) =
⊕

χ∈X∗(T )Hχ, thus EndT (H1(A,C)) contains

a C-algebra of degree 2 dimA. It follows that End0(A) contains a Q-algebra of
degree 2 dimA. Proposition 4.40 shows End0A is of 2 dimA dimension over Q,
thus is CM. □

Corollary 6.31. MK → ShK : (A, · · · ) 7→ [x, ·] is defined as before, then A is CM
if and only if x is special.

We first define an action of Aut(C) onMK . Let (A, s, ηK) ∈MK . σ(A, s, η) is
defined to be (σA,σ η,σ s), where σA,σ η are defined the same way as in Example
6.22. Recall s corresponds to an ample line bundle on A, and thus a rational divisor
D on A. σs is taken to be the Hodge tensor corresponding to σD on σA.

Proposition 6.32. Suppose that ShK has a model MK over Q for which the map
MK →MK(C) commutes with the action of Aut(C). Then MK is canonical.

Combining Proposition 6.32, Corollary 6.31 and Example 6.22, we immediately
obtain that the models constructed by Theorem 5.9 (when they base change to the
reflex field) are canonical.

In general, the action of Aut(C) onMK preserves the isomorphism classes and
induces an action of Aut(C) on ShK(C), denoted by ·. Keeping the notations on
Proposition 6.25, we have to show (ShK , ·) is in the essential image of this functor.
To complete this, one can make use of the following criterion. See [8], page 125.

Proposition 6.33. The pair (V, ·) arises from a variety over k if

(a) V is quasiprojective,
(b) · is regular, and
(c) · is continuous.
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