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Abstract. We present the most important techniques to establish regularity

of energy minimizers in smooth calculus of variations, explain their connection

to elliptic partial differential equations, and show how they are applied to
some classical problems. We prove the theorems of De Giorgi and Schauder to

verify that minimizers are smooth, resolving Hilbert’s 19th problem. Finally,

we tackle the obstacle problem, a canonical example of nonsmooth calculus of
variations using Calderon-Zygmund estimates.
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1. Introduction

In Partial Differential Equations (PDE), the minimization of energy is an im-
portant class of problems, where we seek to minimize some I[·] that takes functions
and maps them to R. The study of these energy functionals is called calculus of
variations. We will limit ourselves to studying second-order energy functionals.

Definition 1.1. The energy functional I has the explicit form

I[w] =

∫
U

L(Dw(x), w(x), x)dx

where w satisfies some requisite conditions, and for U ⊂ Rd, L : Rd × R × U is a
smooth function. We call L the Lagrangian.

These requisite conditions are necessary in order for the functional to make sense,
such as requiring regularity on w, so that Dw exists, or an integrability condition
on Dw and w so that I[·] makes sense, or a boundary condition w = g on ∂U .
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Remark 1.2. Suppose some particular function u satisfies the requisite conditions
(we say u is admissible), and is the minimizer among all such functions satisfiying
the requisite conditions. Then for some smooth function η ∈ C∞

c (U), u + εη is
admissible. If we set i(ε) = I[u+εη] i is a real-valued function, so classical calculus
techniques apply. Because u is a minimizer of I, i′(0) = 0. Expanding,

i′(0) =

∫
U

n∑
i=1

Lpi
(Du, u, x)ηxi

+ Lz(Du, u, x)ηdx

=

∫
U

−
n∑

i=1

[(Lpi
(Du, u, x))xi

+ Lz(Du, u, x)]η = 0

for all test functions η ∈ C∞
c (U), which implies that u solves the PDE

(1.3) −
n∑

i=1

(Lpi
(Du, u, x))xi

+ Lz(Du, u, x) = 0

in the weak sense. We call (1.3) the Euler-Lagrange equation.

This is a powerful characterization of the minimizers of energy functionals. But
immediately, there are three questions to answer. First: what is the right space
for these functions to exist in? Choosing the right space will make the PDE well
posed. Second: does the function that minimizes I[·] even exist? Without it, our
techniques would not give us any information. Third: If the minimzer exists, how
smooth is it?

For the first question, the answer is W 1,q. An integrability condition on u and
∇u and selecting the correct q allows I to be well defined on the whole space. Then
we call A = {u ∈ W 1,q : u = g on ∂U} the admissible set, and functions belonging
to A admissible. For the second question, we can show existence for an extremely
large class of functionals with only some light assumptions.

Finally, the question of regularity.

Example 1.4. One of the most famous variational problems is to minimize

I[u] =

∫
U

1

2
|∇u|2,

for which the Euler-Lagrange equation is ∆u = 0, that is, u is harmonic1 and there-
fore smooth. This result, known as Dirichlet’s principle, implies that a harmonic
function on U is a minimizer of I[·] among all functions that equal u on ∂U .

For this Lagrangian L(p, z, x) = F (p) = |p|2/2, F is smooth, uniformly convex,
has quadratic growth. In fact, minimizers to any energy functionals which have
smooth, uniformly convex, and quadratic growth Lagrangians are indeed smooth.
But for many years, this question of regularity remained unanswered. It is not
possible to find an explicit form for a minimizer to an arbitrary Lagrangian, so
trying to take derivatives directly isn’t possible. Thus we are limited to studying
the minimizers in terms of calculus of variations processes, such as looking at the

1Specifically, u solves ∆u = 0 in the weak sense. Looking at mollifiers of u, noting that they

satisfy the mean-value property and are therefore harmonic, then since uε → u uniformly, proves
that u also satisfies the mean-value property. Therefore u is harmonic in the regular sense. We

will use the fact that weakly harmonic functions are harmonic multiple times.
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Euler-Lagrange equations that minimizers solve. We will specifically study energy
minimizers of the form

(1.5) I[·] =
∫
U

aij∂iu∂ju+ fu =

∫
U

⟨A∇u,∇u⟩+ fu =

∫
U

F (∇u) + fu.

for aij uniformly elliptic, which solves the equation div(∇F (∇u)) = div(f), or
∂i(aij∂ju) = ∂ifi.

2

Theorem 1.6 (Existence of minimizer). Let

I[w] =

∫
U

aij∂iw∂jw + gw,

for aij uniformly elliptic and g smooth. Then I[·] attains its minimum on the
admissible set A = {w : w ∈ H1, w = f on ∂U} for f ∈ H1.

Proof. First, we want to show that I[·] is convex. I[·] is linear in the g(x)u(x) term,
so we only need to worry about the first term. Let u, v be in the admissible set.
We wish to show that for t ∈ [0, 1], 0 ≤ tI(u)+ (1− t)I(v)− I(tu+(1− t)v), which
expanding, is

t(1− t)

∫
U

⟨A∇u,∇u⟩ − ⟨A∇u,∇v⟩ − ⟨A∇v,∇u⟩+ ⟨A∇v,∇v⟩ =

t(1− t)

∫
U

⟨A(∇u−∇v),∇u−∇v⟩ ≥ t(1− t)λ

∫
U

|∇(u− v)|2 ≥ 0

as desired. I is also continuous, since the H1 includes a norm on ∇u. For coerciv-
ity, we need a poincare inequality for fixed boundary data. Since u − f has zero
boundary, we have the Poincare-type inequality

∥u− f∥L2 ≤ C∥∇u∥L2 + C∥∇f∥L2 =⇒ ∥u∥L2 ≤ C∥∇u∥L2 + C1∥f∥H1

and since the second term is fixed, we know that ∥u∥ is controlled by ∥∇u∥. So

I[u] ≥ λ

∫
U

|∇u|2 − ∥g∥L2∥u∥L2 ≥ λ∥∇u∥2L2 − ∥g∥L2(C∥∇u∥L2 + C1∥f∥H1)

Since the quadratic term dominates the linear term, as ∥u∥H1 (which is comparable
to ∥∇u∥L2) grows large, I[u] → ∞, and we have coercivity. Now, by Evans [1]
Theorem 8.2.2, we conclude that the minimizer exists. □

To see that minimizers are smooth, we will show three important regularity
theorems:

Theorem 1.7 (Interior H2 regularity). Let u ∈ H1(U) be a weak solution to
∂i(aij∂ju)) = ∂ifi. Then u ∈ H2

loc.

Theorem 1.8 (De Giorgi). Let u ∈ H1(B2) be a weak solution to ∂i(aij∂j(u)) =
∂ifi, and suppose that the coefficient matrix aij is measurable and uniformly elliptic
with constants λI ≤ aij ≤ ΛI. Then u ∈ Cα(B1) for some α.

Theorem 1.9 (Schauder). Let aij ∈ Ck,α(B1) be a uniformly elliptic matrix. Let
f : B1 → R be such that fi ∈ Ck,α(B1). Then if ∂i(aij∂ju) = ∂ifi, then u ∈ Ck+1,α.

Using these regularity theorems, we will conclude that minimizers of such energy
functionals are smooth, an important result illuminated by the following example:

2Here we are using summation notation. We are minimizing
∫
U ⟨A∇w,∇w⟩ which corresponds

to the Euler-Lagrange equation
∑d

i=1 ∂ifi = div(f) = div(A∇u) =
∑d

i=1

∑d
j=1 ∂i(aij∂ju).
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Example 1.10 (Hilbert’s 19th Problem). Take

I[u] =

∫
U

F (∇u)

so that D2F is bounded and uniformly elliptic, i.e. λI ≤ D2F ≤ ΛI in the sense
of symmetric matrices. Note that the boundedness and ellipticity imply quadratic
growth. The Euler-Lagrange equation to this is

(1.11) div(∇F (∇u)) = 0 =⇒ ∂i(Fij(∇u)∂j(∂ku)) = 0,

after taking a derivative. This is the general case to Example 1.4. By using De
Giorgi and Schauder, we can conclude that the solution is indeed smooth.

The first step to Hilbert’s 19th Problem is the H2 estimate. Given that u is H2,
then we may take an arbitrary partial derivative on the Euler-Lagrange equation,
say in the ej direction, to find that v = ∂ku solves a uniformly elliptic equation
∂i(∂ijF (∇u)∂jv) = 0, with ∂ijF (∇u) = aij . De Giorgi then implies that v ∈ Cα,
so that u ∈ C1,α =⇒ D2F (∇u) ∈ Cα. Then by Schauder, v solves an equation
with Cα coefficients, so v is C1,α, so u is C2,α. Then by Schauder again, v solves
an equation with C1,α coefficients, so v is C2,α. Reapplying Schauder estimates
concludes that u is smooth on the interior. For decades, De Giorgi’s theorem was
the missing step needed to start the infinite iteration that Schauder estimates imply.

It is indeed true that minimizers to (1.5) are smooth under the conditions that
all of the coefficients and f are smooth, which is the general form to Hilbert’s
19th problem. However, it is more complicated to show regularity theorems for
∂i(aij∂ju) = ∂ifi, which corresponds to the full energy functional (1.5), than for
∂i(aij∂ju) = 0, which corresponds to (1.11). For Hilbert’s 19th problem, it is
enough to show the theorems with zero right hand side, that is, f ≡ 0. However,
extensions of the aforementioned theorems with right hand side and lower order
terms do exist. For the sake of brevity, we will show the H2 and De Giorgi theorems
with zero right hand side, and briefly discuss their full versions, and show Schauder
with right hand side.

2. H2 Theory

The first theorem necessary in our journey to show smoothness is to prove that
minimizers have weak second derivatives, that is, minimizers are in H2.

Theorem 2.1. Suppose u ∈ H1(B1) is a solution to the equation div(∇F (∇u)) = 0
for F smooth, uniformly convex, and such that λI ≤ D2F (p) ≤ ΛI for all p ∈ B1.
Then u ∈ H2

loc(B1).

Proof. Fix 0 ≤ |h| ≤ 1/4 and choose an arbitrary unit vector e. Then, set

v =
u(x+ he)− u(x)

h
.

Since u ∈ H1(B1), v ∈ H1(B3/4). Showing that u ∈ H2
loc is equivalent to showing

that ∇v is bounded in L2 indepdendently of choice of e and h.
Now, since u is a solution on B1,

(2.2) 0 =
1

h

(
∂xi

∂F

∂pi
(∇u(x+ he))− ∂xi

∂F

∂pi
(∇u(x))

)
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in B3/4. Then because we can rewrite

∂pi
F (z)− ∂pi

F (w) =

∫ 1

0

∂2F

∂pipj

(tz + (1− t)w(zj − wj)dt,

we conclude from (2.2) that

0 = ∂xi

(
1

h

∫ 1

0

∂2F

∂pipj

(t∇u(x+ he) + (1− t)∇u(x))(∂xju(x+ he)− ∂xju(x))dt

)
.

Now set

ãij(x) =

∫ 1

0

∂2F

∂pipj

(t∇u(x+ he) + (1− t)∇u(x))dt,

so that ãij is an average of the aij that correspond to u. Therefore, ãij inherits
the same ellipticity as aij . Moving the 1/h inside the integral, it follows that
0 = ∂xi(aij∂xjv) inside B3/4. Now fix the cutoff function φ ∈ C∞

c (B3/4) such that

φ = 1 on B1/2. Testing the above equation with vφ2, we obtain

0 =

∫
B3/4

ãij∂jv∂i(vφ
2) =

∫
B3/4

φ2aij∂jv∂iv + 2

∫
B3/4

vφãij∂jv∂iφ.

Then subtracting the first term and applying Hölder’s inequality, we find

λ

∫
B3/4

φ2|∇v|2 ≤
∫
B3/4

|φ2aij∂iv∂jv| ≤ 2

∫
B3/4

|vφãij∂iφ∂jv| ≤

2Λ

(∫
B3/4

φ2|∇v|2
)1/2(∫

B3/4

v2|∇φ|2
)1/2

.

Finally, we can conclude that∫
B1/2

|∇v|2 ≤
∫
B3/4

φ2|∇v|2 ≤ 4
Λ2

λ2
∥∇φ∥L∞

∫
B3/4

v2.

By Evans [1] Theorem 5.8.3, we know that ∥v∥L2(B3/4) ≤ C∥∇u∥L2(B1), from which

we conclude that ∥∇v∥L2(B1/2) is uniformly bounded. From this, we can conclude

that u is H2
loc after rescaling and applying the above calculation. For the case with

a righthand side, look at ∆v, then test with the same equation, and use Young’s
inequality with ε to cancel extra terms. □

3. De Giorgi’s Theorem

The next step to showing regularity of minimizers is De Giorgi’s theorem. We
will prove the theorem for a specific type of energy functional, which solves the PDE
∂i(aij∂ju) = 0 for aij uniformly elliptic. Critically, there are no other assumptions
on aij , so it could be very discontinuous—zooming in will not necessarily improve
the equation. The proof of Schauder estimates rely on having some control on
the aij , so zooming in flattens out the equation. Instead of scaling, like in the
proof of Schauder’s estimates, De Giorgi’s brilliant argument studied the extrema
of solutions. We will use the following lemma to achieve regularity:

Lemma 3.1 (Improvement of oscillation). Let f : B1 → R be continuous. If there
exists some 0 < θ < 1 such that for every Br(x) ∈ B1,

oscBr/2
f ≤ (1− θ) oscBr f,

then f ∈ Cα(B1/2) for some α depending on θ.
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Proof. Recall that oscX f = supX f − infX f . Let M = oscB1
f , fix x, y ∈ B1/2, let

z = (x+ y)/2, and r = |x− y|. Then

|f(x)− f(y)| ≤ oscBr(z) f.

Even though x, y /∈ Br(z), continuity allows us to take this inequality. Then for
some n, we know that 2−(n+2) ≤ |x, z| = |y, z| ≤ 2−(n+1), and equivalently d(x, y) ≤
2−n. This means we can double the radius of Br(z) a total of n times until we are
outside of B1. Reapplying the conditions of the lemma, we obtain

oscBr(z) f ≤ (1− θ)n oscB(2n)r
f ≤ (1− θ)nM ≤ |x− y|− log2(1−θ)M

Since 0 < (1 − θ) < 1, α = − log2(1 − θ) ≥ 0 is our desired Hölder exponent. We
conclude that [f ]Cα ≤ oscB1 f . □

We now have a new way of looking at regularity. Critically, we only need to
prove the improvment of oscillation lemma at scale 1/2, that is, show that

sup
B1/2

u ≤ (1− θ) sup
B1

u

By invariance of the Euler-Lagrange equation under scaling, this is sufficient to
meet the conditions of the Lemma 3.1, as long as θ is based on ellipticity constants
and ∥u∥L∞ . For some solution u, we scale with ur(x) = u(rx) with r < 1, to
obtain that supB1/2

ur(x) ≤ (1− θ) supB1
ur(x), which is equivalent to supBr/2

u ≤
(1− θ) supBr

u. Note that ur(x) solves ∂i(a
r
ij∂jur(x)) = 0, where arij(x) = aij(rx),

an equation with the same uniform ellipticity that u solves3 and has same or less
L∞ norm than u. So the half-ball estimate holds for ur, which is what we wanted.

To use it, we will prove the following steps. First, we will show an L∞ bound
from an L2 bound, which rules out the minimizer having interior spikes and so that
we can make sense of supBr

u. Second, we will control the maximum and minimum
of u on smaller and smaller balls. Finally, we can use the improvement of oscillation
lemma to take the L∞ bound to an Cα bound.

Notation 3.2. We write the specific energy functional J to be

J [u] =

∫
U

aij∂iu∂ju

for aij uniformly elliptic and symmetric. This is because the Euler-Lagrange
equation associated with the energy functional J [·] is the divergence form PDE
−2

∑n
i,j=1 ∂i(aij∂ju) = 0, or equivalently ∂i(aij∂ju) = 0. The existence of a min-

imizer to J [·] is guaranteed by Theorem 1.6. For the first step, we will study
subsolutions and supersolutions to obtain the L∞ bound.

Definition 3.3. u : U → R is a subsolution to the equation ∂i(aij∂ju) ≥ 0 if for
any H1

0 function φ : U → R with φ ≥ 0, φ = 0 on ∂U , we have∫
U

aij∂iu∂jφ ≤ 0.

We call u a supersolution if −u is a subsolution.

3or ∂i(a
r
ij∂jur(x)) = ∂if

r
i (x), in which case the regularity on f stays the same, and the right

hand side even gets smaller in norm. The ellipticity stays the same as well.
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Remark 3.4. Importantly, u is a subsolution if and only if J [u] ≤ J [u− v] for all
v ∈ H1

0 (U) with v ≥ 0. That is, u is a subsolution if and only if any downward per-
turbation increases the energy. First, we note that since aij∂iu∂ju = ⟨A∇u,∇u⟩ ≥
λ|∇u|2, J [·] is nonnegative. For the forwards direction, we expand and find

J [u− v] =

∫
U

aij(∂iu− ∂iv)(∂ju− ∂jv) = J [u]− 2

∫
U

aij∂iu∂jv + J [v].

Since u is a subsolution, the middle term is nonnegative, and since J [v] is positive,
we conclude that J [u] ≤ J [u−v]. For the converse, let u be such that J [u] ≤ J [u−v]
for all v ∈ C∞

c , v ≥ 0. Fix v. For any ε > 0, we have that J [u] ≤ J [u− εv]. Since

J [u− εv] =

∫
U

aij(∂iu− ε∂iv)(∂ju− ε∂jv) = J [u] + ε2J [v]− 2ε

∫
U

aij∂iu∂jv

we know that

0 ≤ J [u− εv]− J [u] = ε2J [v]− 2ε

∫
U

aij∂iu∂jv.

and finally

2ε

∫
U

aij∂iu∂jv ≤ ε2J [v] =⇒ 2

∫
U

aij∂iu∂jv ≤ εJ [v].

Sending ε→ 0, we conclude that
∫
U
aij∂iu∂jv ≤ 0, and therefore u is a subsolution.

Additionally, if u is a subsolution, then u+ is a subsolution as well. If we write
u = u+−u−, then expanding J [u] = J [u+−u−] and seeing that ∂iu+ is nonnegative
where ∂iu− is zero and vice versa gives J [u] = J [u+] + J [u−]. Moreover, if we
let w = (u+ − v)+ − u− < u for some v positive, the same calculation yields
J [w] = J [(u+ − v)+] + J [u−]. Therefore J [u+] = J [u] − J [w] + J [(u+ − v)+].
Since u is a subsolution and w ≤ u, J [u] ≤ J [w], which implies that J [u+] ≤
J [(u+ − v)+] ≤ J [u+ − v]. Therefore, u+ is a subsolution.

Using these properties, we will show the L∞ bound after the following inequality:

Lemma 3.5 (Cacioppoli). Let u ≥ 0 be a solution in Br+δ. Then there exists some
C > 0 such that

∥∇u∥L2(Br) ≤ Cδ−1∥u∥L2(Br+δ)

Proof. Set φ = uη2 as a smooth cutoff function where η = 1 on Br and η = 0 on
∂Br+δ such that |∇η| ≤ Cδ−1. Then∫

Br+δ

aij∂iu∂juη
2 ≤ 2

∫
Br+δ

aij |u∂iuη∂iη|

We can use the fact that from symmetry

2aijpiqj ≤ aijpipj + aijqiqj

with pi =
√
2
−1
∂iuη and qi =

√
2∂jηu which gives

2

∫
Br+δ

aij |u∂iuη∂iη| ≤
1

2

∫
Br+δ

aij |∂iu∂juη2|+ 2

∫
Br+δ

aij |u2∂iη∂jη|

so subtracting off the first term from both sides and multiplying by 2 gives∫
Br+δ

aij∂iu∂juη
2 ≤ 4

∫
Br+δ

aij |u2∂iη∂jη|.
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The right sides becomes

4

∫
Br+δ

aij |u2∂iη∂jη| ≤ 4Λδ−2

∫
Br+δ

|u|2

and the left is ∫
Br+δ

aij∂iu∂juη
2 ≥ λ

∫
Br

|∇u|2,

so dividing and taking square roots we find

∥∇u∥L2(Br) ≤ 2

√
Λ

λ
δ−1∥u∥L2(Br+δ),

as desired. □

Now we can finish the desired bound. The proof is based on a nonlinear iteration,
and uses the fact that combining the Sobolev and Cacioppoli inequalities gives a
reverse Hölder inequality after stepping in. We will show that we can bound the
higher norm (L2∗(Br)) by a lower norm, but on a slightly smaller ball (L2(Br−ε)).
The scaling factors are chosen to allow for a limit to be taken.4

Lemma 3.6. Let u : B2 → R be a nonnegative subsolution to ∂i(aij∂ju) ≥ 0, then

sup
B1

u ≤ Cd,λ,Λ∥u∥L2(B2).

The interpretation is that subsolutions cannot have upward spikes, and equivalently,
supersolutions cannot have downward spikes.

Proof. It is equivalent to show that there exists some δ based on d, λ,Λ such that if
∥u∥L2(B2) < δ , then ∥u∥L∞(B1) ≤ 1. Now we consider the following program: Let

lk = 1− 2−k, rk = 1 + 2−k, uk = (u− lk)+, ak = ∥uk∥L2(Brk
).

Because the rk are decreasing and uk ≥ uk+1 ≥ . . ., we know the ak are decreasing
as well. Additionally, if we are able to show that the ak → 0, then we have shown
the L∞ bound u ≤ 1, since ak → ∥(u− 1)+∥L2 . Applying Hölder’s inequality with
p = 2∗/2, we find

ak+1 =

[ ∫
Brk+1

|uk+1|2 · χ{uk+1>0}

]1/2
≤

[(∫
Brk+1

|uk+1|2
∗
)2/2∗(∫

Brk+1

χ{uk+1>0}

)(2∗−2)/2∗]1/2
= ∥uk+1∥L2∗ (Brk+1

)|{uk+1 > 0 ∩Brk+1
}|1/d.

Observing that uk+1 > 0 ⇐⇒ uk > 2−k−1 and applying Chebyshev’s inequality,

|{uk+1 > 0} ∩Brk+1
|1/d = |{uk > 2−k−1} ∩Brk+1

|1/d =

|{u2k > 22(−k−1)} ∩Brk+1
|1/d ≤

[
22(k+1)

∫
Brk+1

u2k

]1/d
≤ 22(k+1)/da

1/d
k

4Importantly, when we use sup and inf from here on, we mean the essential supremum and
essential infimum. If we can change u to equal infinity on a measure zero set, it is still a solution.
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Now define ηk to equal 1 on Brk and 0 on ∂Brk−1
. The Sobolev inequality yields

∥uk+1∥L2∗ (Brk+1
) ≤ ∥uk+1ηk+1∥L2∗ (Rd) ≤ C∥∇(uk+1ηk+1)∥L2(Brk−1

),

and Cacioppoli’s inequality (Lemma 3.5) yields

C∥∇(uk+1ηk+1)∥L2(Brk−1
) ≤ C2k∥uk+1ηk+1∥L2(Brk

) =

C∥∇uk+1∥L2(Brk
) ≤ C2k∥uk∥L2(Brk

).

Finally, we conclude

ak+1 ≤ C22/d2k(1+2/d)a
1+1/d
k = Chka

1+1/d
k .

For a new C in the last inequality, and h = 21+2/d > 2. But then, if a0 ≤ [C−1h−d]d,

a1 ≤ Ca
1+1/d
0 = Ca0[C

−1h−d] = a0h
−d.

Now we work by induction. We claim that for all k, ak ≤ ak−1h
−d, which holds

for the base case k = 1. To show the statement for k + 1, we need to show that
ak+1 ≤ akh

−d. Since

a
1/d
k ≤ a

1/d
k−1h

−1 ≤ a
1/d
k−2h

−2 ≤ · · · ≤ a
1/d
0 h−k =⇒

ak+1 ≤ Chkaka
1/d
0 h−k = Caka

1/d
0 ≤ akh

−d

so the statement holds for k + 1, and we have shown the inductive step. We can
conclude that

ak ≤ a0(h
−kd)

which approaches zero as k → ∞. Thus ∥(u − 1)+∥L2(B1) = 0 =⇒ supB1
u ≤ 1

as desired. Analyzing our constants, we know that a0 = ∥u∥L2(B2) needs to be less

than [C−1h−d]d for C based on the Cacioppoli and Sobolev constants, which are
based on ellipticity and dimension, and h dependent on dimension, which concludes
the estimate. □

Now, we use the improvement of oscillation lemma.

Proposition 3.7. Let u : B2 → R be a nonnegative supersolution. Then there is a
constant ε such that if

|{x ∈ B2 : u(x) ≥ 1}| ≥ (1− ε)|B2|,

then u(x) ≥ 1/2 almost everywhere on B1.

Proof. Set v = (1 − u)+. Since v is a subsolution, Lemma 3.6 gives supB1
v ≤

C||v||L2(B2) ≤ C(|{u ≤ 1}|) = C|B2|ε. If ε = 1
2C|B2| , supB1

v ≤ 1/2 which im-

plies 1/2 ≤ infB1 u as desired. Since C is dependent on ellipticity constants and
dimension, ε is also dependent on ellipticity constants and dimension. □

We use this to obtain a bound on the oscillation.

Proposition 3.8. Let u : B2 → R be a subsolution with −1 ≤ u ≤ 1 and
|{u ≤ 0}| ≥ δ0. Define

δk = |{x ∈ B1 : u(x) > 1− 2−k}.

Then δk → 0.
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Proof. Let wk = 2k(u − (1 − 2−k))+, so that δk = |{wk > 0}|. Note that wk is a
subsolution, 0 ≤ wk ≤ 1, and the wk have bounded H1(B1) norms. First, the fact
that 0 ≤ wk ≤ 1 gives bounds on ∥wk∥L2(B1). Second, since wk is also a solution to
∂i(aij∂jwk) = 0, Lemma 3.5 implies that ∥∇wk∥L2(B1) ≤ C∥wk∥L2(B2) ≤ C|B2|, so
we have a uniform bound on ∥∇wk∥L2(B1) and thus a uniform bound on ∥wk∥H1(B1).

Moreover, if wk(x) < 1/2, then

(u(x)− (1− 2−k))+ < 2−(k+1) =⇒ u(x)− (1− 2−(k+1)) < 0 =⇒ wk+1(x) = 0.

The sets where 0 < wk < 1/2 are therefore disjoint, and the δk are decreasing.
Now, if the proposition were false, then |{wk = 1}| > δ′ for all k and therefore
|{u(x) = 1}| > δ′ for some δ′ > 0. If we consider vk(x) := min(2wk, 1), then |{vk =
0}| > δ0 and |{vk = 1}| > δ′. We claim that |{0 < wk < 1/2}| = |{0 < vk < 1}| > ε
for all k, that is, the δk decrease by at least ε every iteration.

Assume to the contrary that there does not exist such a bound. Then there
exists some sequence fn ∈ H1 uniformly bounded but with |{fk = 0}| > δ0 and
|{fk = 1}| > δ′ under the condition that |{0 < fn < 1}| → 0. By Rellich-
Kondrachov this sequence embeds compactly into L2 and converges to an indicator
function of a non measure zero set, which cannot be in H1, reaching the desired
contradiction.

But now δk < δk−1− ε < · · · < (1− δ0)−kε, so taking k large we see this cannot
be true. Therefore we must have that δk → 0. □

Corollary 3.9. Let v : B2 → R be a nonnegative supersolution. Assume that
|{x ∈ B2 : v(x) ≥ 1}| ≥ δ. Let δk = |{x ∈ B1 : v(x) < 2k}|. Then δk → 0.

If we take v = 1 − u and observe that it is a supersolution, the statements are
equivalent.

Proposition 3.10 (Weak Harnack inequality). Let u : B2 → R be a nonnegative
supersolution. Assume that |{x ∈ B2 : u(x) ≥ 1}| ≥ δ. Then infB1

u ≥ θ for some
θ > 0 depending on δ, ellipticity constants, and dimension.

Proof. Let ε be the one from Proposition 3.7, which depends on ellipticity constants,
and dimensions. Choose k large so that δk < ε|B2|. Then the supersolution 2ku
has the property that {2ku(x) ≥ 1} ≥ (1− ε)|B2|. Therefore 2ku(x) ≥ 1/2 on B1,
that is, 2−k−1 ≤ u on B1 as desired. □

Again, this proposition has a subsolution form:

Corollary 3.11. Let u : B2 → R be a subsolution such that u ≤ 1. Assume that
|{x ∈ B2 : u(x) ≤ 0}| ≥ δ. Then supB1

u ≤ 1− θ.

Lemma 3.12. Let u : B2 → [0, 1] be a solution. Then

oscB1 u ≤ (1− θ)

for θ > 0 depending on dimension and ellipticity constants.

Proof. In the first case, let |{x ∈ B2 : u(x) ≥ 1/2}| ≥ |B2|/2. Then applying a
scaled version of the Weak Harnack Inequality (Proposition 3.10) implies that u ≥ θ
on B1. Since 2u is also a solution, and

|{x ∈ B2 : 2u(x) ≥ 1}| ≥ |B2|/2,
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we know that infB1
2u ≥ θ1 =⇒ infB1

u ≥ θ for θ = θ1/2. We conclude that
because supu ≤ 1, oscB1 u ≤ 1 − θ. Because the set that 2u ≥ 1 is fixed in size, θ
is based only on ellipticity and dimension.

In the second case, let |{x ∈ B2 : u(x) ≤ 1/2} ≥ |B2|/2|. Applying a scaled
version of the subsolution form of the Weak Harnack inequality (Corollary 3.11),
we know that u ≤ 1− θ on B1, so that oscB1

u ≤ 1− θ. Similarly, θ is based only
on ellipticity and dimension. □

Now we arrive at the theorem. We need to use an iteration.

Theorem 3.13 (De Giorgi). Let u ∈ H1(B2) be a weak solution to ∂i(aij∂j(u)) =
0, and suppose that the coefficient matrix aij is measurable and uniformly elliptic
with constants λI ≤ aij ≤ ΛI. Then u ∈ Cα(B1) for some α.

Proof. By the first step, we have an L∞ bound for u. Set ũ = u/∥u∥∞ so that
ũ : B2 → [0, 1]. Note that ũ is a solution as well, but to ãij . Now choose x0, r such
that Br(x0) ⊂ B1. Now, write

ux0
(x) = (ũ

(r
2
(x− x0)

)
− inf

Br(x0)
ũ)

1

supBr(x0) ũ

So that ux0
: B2 → [0, 1] solves ∂i(ãij(r/2(x − x0))ux0

(x)) = 0 in B2. Since ux0

solves an equation with the same ellipticity constants as ũ or better, we apply
Lemma 3.12 and conclude that oscB1 ux0 ≤ (1− θ) = (1− θ) oscB2 ux0 . But since

( sup
Br(x0)

ũ ) oscB2
ux0

(x) = oscB2
ũ
(r
2
(x− x0)

)
= oscBr(x0) ũ,

and similarly (supBr(x0) ũ) oscB1
ux0

(x) = oscBr/2(x0), so we can conclude that

oscBr/2(x0) ũ ≤ (1− θ) oscBr(x0) ũ

for θ absolute, meeting the conditions of Lemma 3.1. Since ũ is Cα(B1), so is u.
We conclude the estimate

∥u∥Cα(B1) ≤ C∥u∥L∞(B1) ≤ C∥u∥L2(B2).

□

Remark 3.14. What about the case ∂i(aij∂ju) = ∂ifi? De Giorgi theory also
applies in this scenario, with the estimate

(3.15) ∥u∥Cα(B1) ≤ C(∥u∥L2(B2) + ∥f∥Lq(B2))

for q > d. We can define a subsolution as satisfying ∂i(aij∂ju) ≥ ∂ifi weakly, that
is, for some test function φ ∈ C∞

c we have that∫
U

aij∂ju∂iφ ≤
∫
U

fi∂iφ.

Taking u+ as a subsolution, the L∞ bound we obtain is

(3.16) sup
B1/2

u+ ≤ C(∥u∥L2 + ∥f∥q)

via a Cacciopoli-type inequality testing with u+η
2. We can simply consider the case

q = ∞. Using (3.16) similarly as in the proof of Lemma 3.12 and Theorem 3.13 by
scaling vertically and iterating concludes the estimate. For a full proof including
even more lower order terms, see [5], Theorem 4.1.
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The reason we treat q > d comes from scaling; set ur(x) = u(rx) so that ur
solves ∂i(a

r
ij∂jur) = r∂if

r
i , where a

r
ij(x) = aij(rx) and fri (x) = fi(rx). Thus the

ellipticity of the equation stays constant when we zoom in. But the righthand side
has the Lq norm

r

(∫
B2

|f(rx)|q
)1/q

= r1−d/q∥f∥Lq(B2r).

so we need 1− d/q > 0 ⇐⇒ q > d in order for the righthand side not to blow up.
So, for generality, we can take q = ∞.

4. Harnack Inequality for Elliptic PDEs

By using De Giorgi’s theorem, we are able to establish a Harnack inequality for
uniformly elliptic equations with no regularity on aij .

Proposition 4.1. There are universal constants C, q > 0 such that the following
holds: for any r < R such that B4R(x0) ⊂ B2, we have

inf
BR(x0)

u ≥ C(r/R)q inf
Br(x0)

u.

Proof. We may assume that u > 0 by looking at the solution u + ε. For the sake
of notation, all balls are centered at x0. Set a = infBr

u so that Br ⊂ {u/a ≥
1}. Then applying the Weak Harnack inequality (Proposition 3.10), we know that
infB2r

u/a ≥ θ. Then u/(aθ) ≥ 1 on B2r, so applying again, infB4r
u/(aθ) ≥ θ for

the same θ. Iterating until BR ⊂ B2nr, we obtain

inf
BR

u

aθn
≥ inf

B2nr

u

aθn
≥ 1.

But since 2−n ≤ (r/R)n, and 0 < θ < 1 will be very small,

θn = 2log2 θn

= (2−n)log2(1/θ) ≥ (1/2)log2(1/θ)(r/R)log2(1/θ).

Thus

inf
BR

u ≥ a(1/2)log2(1/θ)(r/R)log2(1/θ)

and we are done. Notice that we can conclude u(0) ≥ crq infBr
u □

Now we are ready to state the theorem. The strategy of the proof is to work
by contradiction. If the Harnack inequality is not true, then we can construct a
converging sequence xk ∈ B1/2 such that u(xk) → ∞, contradicting the L∞ bound
of De Giorgi.

Theorem 4.2. Let u : B2 → R be a nonnegative solution. Then there exists a
universal constant C such that supB1/8

u ≤ C infB1/8
u.

Proof. Contruct a sequence xk ∈ B1/2 by picking x0 ∈ B1/2 such that u(x0) =
supB1/2

u. Then choose xk+1 in the following way - for some rk+1, set xk+1 to be

the point where u(xk+1) = supBrk
(xk)

u. Then since u(0)c−1r−q
k ≥ infBrk

(xk) u, we

have

u(xk)− u(0)c−1r−q
k ≤ u(xk)− inf

Brk
(xk)

u = sup
Brk−1

(xk−1)

u− inf
Brk

(xk)
u ≤

sup
Brk

(xk)

u− inf
Brk

(xk)
u ≤ (1− θ) sup

Brk
(xk)

u = (1− θ)u(xk+1)
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and finally we can conclude that

(4.3) u(xk+1) ≥
u(xk)− c−1r−q

k u(0)

1− θ

where 1− θ comes from Lemma 3.12. Note that 1− θ is fixed, based on the same
argument as in Theorem 3.13,

Then, set

M =
supBa

u

u(0)
.

for some a small to be determined later. We claim that if M is sufficiently large,
then we can choose xk such that xk → ∞. To see this, take θ from Lemma 3.12
and select β > 0 such that (1− θ)(1+ β) ≤ 1− β < 1. Suppose that we can choose
u(xk) ≥M(1+ β)k−1u(0). Choose rk = aδk, with a > 0 small and δ ∈ (0, 1) yet to
be chosen. We know that
(4.4)

u(xk+1) ≥ u(0)
M(1 + β)k−1 − c−1a−qδ−kq

1− θ
≥ u(0)

M(1 + β)k−1 − c−1a−qδ−kq

1− θ

So for the iteration to hold, we need that u(xk+1) ≥ M(1 + β)ku(0), which is
equivalent to showing that

M(1 + β)k−1 − c−1a−qδ−kq

1− θ
≥M(1 + β)k ⇐⇒

1

(1 + β)(1− θ)
− 1

caqδkqM(1 + β)k(1− θ)
≥ 1.

Since 1 < (1 + β)(1 − θ), we know that the statement makes sense, and we just
need the second term to be small enough. Now, choose δ so that δq(1 + β) > 1.
Then choose a so that we do not escape B1/2, i.e. a

∑
δk < 1/2. Since the rest

of the terms in the denominator are not based on k, we know that the inequality
is true for k large, and that the second term decreases as k increases. So if the
inequality is true for k = K, it is true for all k ≥ K. Now, simply choose M to be
large enough so that the statement is true for k = 1, and the iteration holds.

The base case is just our assumption on M . So if M is too large, then we can
select xk such that u(xk) → ∞. However, we also know that u ∈ Cα

loc so is bounded
on B1 from De Giorgi (Theorem 3.13), which is a contradiction.

Therefore, supB1/4
u ≤ Mu(0) for M depending only on absolute constants.

Finally, if we consider ũ = u(x − x0) for x0 ∈ B1/4, then select δ so that the
iteration on ũ does not exceed B1 and reapply the above, we can conclude that

sup
B1/8

u ≤ sup
B1/4(x0)

u ≤ sup
B1/4

ũ ≤Mũ(0) =Mu(x0)

for all x0 ∈ B1/8. Therefore supB1/8
u ≤M infB1/8 u as desired. □

5. Schauder Estimates

De Giorgi’s proof allows for a cleaner proof of Schauder’s estimate. Unlike De
Giorgi’s proof, Schauder’s proof relies on the classical techniques of zooming in
over and over to achieve some sort of flatness. Given Cα regularity, scaling makes
the equation flatter and flatter. The strategy of the proof will be to zoom in,
then perturb the solution by smaller and smaller amounts until we have reached a
perturbation that squeezes the solution into a very thin hyperplane. For each scale,
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we find a plane near which we can trap the solution with appropriate control on
the error. From this, we can conclude C1,α regularity.

We will show a gain in regularity on minimizers of energy that look like

(5.1) I[u] =

∫
U

aij(x)∂iu∂ju+ f(x)u(x)dx.

Recall that the minimizer to (5.1) exists via Theorem 1.6. The Euler-Lagrange
equation corresponding to I[·] is of the form

∂i(aij∂ju) = ∂ifi.

Much like Di Giorgi, Schauder’s proof uses a new perspective on regularity:

Lemma 5.2 (Improvement of flatness). Let f ∈ C0(U). For any x0 in the interior
of U , there exists a linear function l(x) = a · (x − x0) + b so that for any ball
Br(x0) ∈ U ,

sup
Br(x0)

|f(x)− l(x)| ≤ Cr1+α

if and only if f ∈ C1,α(U).

Proof. We will prove that f is C1,α with the same Hölder constant C at every point.
Moreover, we can take b = f(x0). This is because at x0, we have

|f(x0)− b| ≤ Cr1+α =⇒ |f(x)− l(x)− f(x0) + b| ≤ 2Cr1+α

So if we take l1(x) = l(x)+f(x0)−b, l1 is a linear function that meets the conditions
of the lemma but with 2C instead of C. Then at x0, l1(x0) = f(x0). We also know
that f is differentiable at x0, since

sup
Br(x0)

|f(x)− f(x0)− a · (x− x0)|
r

≤ Crα → 0

as r → 0, so that ∇f(x0) = a. Now fix r so that Br(x0) ⊂ U . The inequality now
reads for |x− x0| = h < r,

|f(x)− f(x0)−∇f(x0) · (x− x0)| ≤ Ch1+α.

Now fix some x such that Br0(x) ∈ U , and then choose some y ∈ Br0(x). Set
r = |x− y|. For any z ∈ Br0(x), we know that

f(z) = f(x) + (z − x) · ∇f(x) +O(|z − x|1+α),

f(z) = f(y) + (z − y) · ∇f(y) +O(|z − y|1+α).

So taking the first line with z = y, we conclude that

f(z) = f(x) + (y − x) · ∇f(x) + (z − y) · ∇f(y) +O(|z − y|1+α) +O(|x− y|1+α).

Now equating this with the first line, we conclude

|(z − y) · (∇f(x)−∇f(y))| ≤ |O(|z − x|1+α) +O(|z − y|1+α) + Cr1+α|.

Therefore if we set z = y + r ∇f(x)−∇f(y)
|∇f(x)−∇f(y)| , the inequality yields

r|∇f(x)−∇f(y)| ≤ 4Cr1+α

so f is C1,α with absolute Hölder seminorm. The converse is straightforward and
follows from Taylor expansion. □

To use this approach for establishing regularity, we will need the following lemma:
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Lemma 5.3. Suppose u is a solution so that oscB1
u ≤ 1. Then for some r0 ∈ (0, 1),

there exists ε0 such that if

oscB1 aij < ε0, oscB1 f < ε0,

then there exists b ∈ Rd with |b| ≤ C0 where

(5.4) oscBr0

(
u(x)− b · x

)
≤ r1+α

0 .

The proof of the lemma is a perturbation compactness argument based on regularity
of the Laplacian.

Proof. We prove by contradiction. Suppose the lemma does not hold. Then there
exists some decreasing sequence εk → 0, solutions uk with coefficients akij for which

λI ≤ akij ≤ ΛI and fk ∈ Cα such that oscB1 a
k
ij , oscB1 f

k
i < εk such that there is

no vector |b| where (5.4) holds. We can consider the fk to be uniformly bounded,
just like we consider the akij to have the same ellipticity constants. The statement
we will prove will then have the condition that |f | ≤M for some arbitrary M and
λI ≤ aij ≤ ΛI for arbitrary 0 < λ ≤ Λ, so there is no loss of generality. Then
look at fk(0), uniform boundedness allows us to pass to a subsequence fkj so that
fkj (0) → fk1(0), and since the oscillations of fkj → 0, we conclude that fkj → f∞

a constant vector uniformly. Let us rename fkj as fk and Akj as Ak.
Now, write wk = uk− (uk)B1 , which solves the same equation, and has the same

oscillation. Using Poincare’s inequality, we know that

∥wk∥L2(B1) = ∥uk − (uk)B1
∥L2(B1) ≤ C∥∇uk∥L2(B1) = C∥∇wk∥L2(B1).

which amounts to saying that we only need to control ∥∇wk∥L2 to control ∥w∥H1 .
But then

λ

∫
U

|∇wk|2 ≤
∫
U

akij∂iw
k∂jw

k = −
∫
U

∂i(aij∂jw
k)wk = −

∫
U

∂ifiw
k =

∫
U

fki ∂iw
k

so that

λ∥∇wk∥2L2 ≤
∫
U

fk · ∇wk ≤ ∥∇wk∥L2∥fk∥L2 .

Since fk converges to f∞ a constant bounded function, we conclude that ∥∇wk∥L2

stays bounded as well. Then because the uk are bounded in H1, we can pass
to another weakly convergent subsequence. Furthermore, {uk} is compact in C0:
since ∥wk∥Cα(B1/2) ≤ C(∥wk∥L2(B1) + ∥fk∥L∞(B1)) via De Giorgi’s estimate (3.15),

and since Cα ⊂⊂ C0, we can extract the uniform limit wkj → w∞. Moreover, by

Arzela-Ascoli, we can also extract a uniform limit on the a
kj

ij → a∞ij , which is a
constant. Now for test functions v,∫

U

a∞ij ∂iu
∞∂jv =

∫
U

(a∞ij − akij)∂iu
∞∂jv + aijk (∂iu

∞ − ∂iu
k)∂jv + akij∂iu

k∂jv.

The first term goes to zero since akij → a∞ij uniformly, the second term goes to zero

because uk → u∞ in H1 and therefore the partials converge weakly, and the last
term goes to zero since∫

U

akij∂iu
k∂jv = −

∫
U

∂i(a
k
ij∂iu

k)v = −
∫
U

∂ifiv =

∫
U

fk · ∇v =

∫
U

f∞ · ∇v = 0
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because f∞ is constant and v is compactly supported. But then u∞ is harmonic
after a linear change of variables5. Therefore we have the quadratic approximation
by Taylor expansion6,

|u∞(x)−∇u∞(0) · x− u∞(0)| ≤ C|x|2.

for C based on ∥u∞∥L∞ . But then the lemma holds for u∞. If b = ∇u∞(0), we
fulfill the conditions of the lemma. Since the uk → u∞ uniformly, the lemma also
holds for ∥uk − u∥L∞ < ε for ε small enough, contradicting our assumption. □

Now we prove the iteration necessary to move to smaller and smaller scales.

Lemma 5.5. Assume u : B1 → R is a solution with oscB1 u ≤ 1. Let C0 and r0 be
as in Lemma 5.3. Then there exists ε1 > 0 such that if [aij ]α, [f ]α < ε1, then

oscB
rk0

u− bk · x ≤ r
k(1+α)
0

for some bk ∈ Rd. Furthermore, |bk − bk−1| ≤ C0r
αk
0 .

Proof. For k = 0, the statement is just oscB1
u ≤ 1, and for k = 1, the statement

is the previous lemma (bk is an indexing term). Set

v(x) = r
−k(1+α)
0 [u(rk0x)− bk · rk0x]

so that

∂i(v) = r−kα
0 [∂iu(r

k
0x)− bki ]

Set ãij(x) = aij(r
k
0x) and f̃ = f(rk0x). But then

∂i(ãij∂jv) = ∂i(aij(r
k
0x)r

−kα
0 [∂ju(r

k
0x)− bki ]) = ∂igi

for some gi where oscB1
gi ≤ ε1 + ε1|bk|. This is because

sup
|aij(rk0x)− aij(r

k
0y)|

(rk0 |x− y|)α
≤ [aij ]α ≤ ε1 =⇒ osc ãij(x)r

−kα
0 |bki | ≤ ε1|bki |,

and since

r−kα
0 aij(r

k
0 (x)∂ju(r

k
0x)) = r−kα

0 f̃i,

a similar calculation gives

oscB1
r−kα
0 f̃i = oscB1

fi = ε1.

By subadditivity of oscillation we obtain oscB1 g ≤ ε1 + ε1|bk|. Now if we assume
the lemma holds up to k, then

|bk| ≤
k−1∑
j=0

|bj+1 − bj | ≤
k−1∑
j=0

C0r
jα ≤ C0

1− rα0

for all k (we let b0 = 0). Therefore taking ε1 small such that ε1(1+C0)/(1−rα0 ) < ε0,
we can continue to smaller and smaller scales. By assumption, oscB1

v ≤ 1, and

5Let A = a∞ij = UDU−1 by spectral theorem. Then change variables with x = UD−1 on the

integral 0 =
∫
U a∞ij ∂iu

∞∂jv.
6Via Gilbarg-Trudinger [4] Theorem 2.10, for harmonic functions w, we have the estimate

supB1/2
|∇w| ≤ C1 supB1

w and supB1/2
|D2w| ≤ C2 supB1

w, so that C is absolute and controlled

by ∥w∥L∞ . Then since uk → u∞ uniformly, and the uk have controlled L∞ norms, so does u∞,
so our C is absolute.
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oscB1
g < ε0, and oscB1

aij(r
k
0 (x)) = rkα oscBr

aij(x) ≤ ε1. Therefore we may apply

Lemma 5.3 to v to conclude that there exists b̃ such that

oscBr0
v − b̃ · x ≤ r1+α

0 .

Then expand

v− b̃ ·x = r−k
0 (1+α)[u(rk0x)− bk · rk0x]− b̃ ·x = r

−k(1+α)
0 [u(rk0x)− (bk + rkαb̃) · rk0x]

So if we let bk+1 = bk + rkαb̃, we verify |bk+1 − bk| = |rkαb̃| ≤ Crkα. Then
multiplying over we find

oscB
rk0

u− bk+1 · x = oscBr0
u(rk0x)− bk+1 · rk0x ≤ r(k+1)(1+α)

as desired. □

Since |bk − bk+1| ≤ Crkα, bk → b∞, and |u(x) − b∞ · x − u(0)| ≤ Crk(1+α) on
Brk0

. Then rk(1+α) ≥ oscB
rk

(
u−bk ·x

)
= oscB

rk

(
u−bk ·x−u(0)

)
, testing at x = 0

yields that |u− bk · x− u(0)| ≤ rk(1+α). Therefore on Brk0
,

|u− b∞ · x− u(0)| ≤ |u− bk − u(0)|+ |
∞∑
j=k

(bj+1 − bj) · x| ≤

rk(1+α) + rk
∞∑
j=k

C0r
α(j+1) ≤ rk(1+α) + rk

C0r
α(1+k)

1− rα
≤ rk(1+α)

(
1 +

C0r
α

1− rα

)
as desired, and we meet the conditions of Lemma 5.2.

Theorem 5.6 (Schauder). Let aij ∈ Cα(B1) be a uniformly elliptic matrix with
ellipticity constants λ,Λ. Let f : B1 → R be such that fi ∈ Cα(B1). Then if
∂i(aij∂ju) = ∂ifi, then u ∈ C1,α.

Note that without loss of generality we can assume the conditions of Lemma 5.5
since u is C1,α if ũ is C1,α. To get into the scheme of the lemma, we apply

ũ =
u

oscB1
u+ [f ]α/ε1

, f̃ =
f

oscB1
u+ [f ]α/ε1

.

Proof. Assume that u meets the conditions of Lemma 5.5. For x0 ∈ B1/2 set
ur(x) = u(r(x− x0)) and likewise for arij and fr. Then

∂i(a
r
ij∂ju

r) = r∂if
r
i

and [arij ]Cα(B1) = rα[aij ]Cα(Br) < [aij ]Cα(B1). Therefore u
r meets the conditions of

the lemma, which allows us to conclude via Lemma 5.2 that ur is C1,α at 0 so that
u is C1,α at x0. Therefore, u ∈ C1,α(B1/2). □

Schauder also give higher regularities. If the equation ∂i(aij∂ju) = ∂ifi where aij , f
have higher regularity, we expect u to also have higher regularity.

Corollary 5.7. Let the conditions of Theorem 3.4 hold except with aij , f ∈ Ck,α.

Then u ∈ C(k+1),α.

The proof is roughly the same. Instead of subtracting a linear function l, we subtract
a k + 1-degree polynomial, and show that control of the oscillation corresponds to
C(k+1),α regularity. Then we can approximate the harmonic solution by a (k + 1)
degree polynomial using the fact that all derivatives of harmonic functions are
bounded by their L∞ norm. Finally, we iterate as before.
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Using Di Giorgi and Schauder, we are now ready to resolve Hilbert’s 19th Prob-
lem (Example 1.10).

Proof. First, we need that u is H2
loc, which follows from Theorem 2.1.

If we commute a ∂j on the equation, we get

∂i(∂ijF (∇u)∂j(∂ku)) = 0

so letting ∂ku = v ∈ H1, this implies

∂i(∂ijF (∇u)∂jv) = 0.

Since ∂ijF is uniformly elliptic, we satisfy the the conditions of Di Giorgi’s theorem,
and therefore v is Cα, i.e. u is C1,α. This means ∂ijF (∇u) is Cα, so by Schauder,
v is C1,α, so u is C2,α. Then ∂ijF (∇u) is C1,α, so v is C2,α, so u is C3,α, and so
on. This process, called bootstrapping, implies that u is smooth. □

Using De Giorgi and the H2 bound for the ∂i(aij∂ju) = ∂ifi, we can ob-
tain smoothness for minimizers of the full energy function (1.5), finally answering
the question: minimizers of energy functinonals with uniformly convex, quadratic
growth and smooth Lagrangian are smooth.

6. Calderon-Zygmund Estimates

Schauder estimates are very powerful, as long as we have some sort of Ck,α

regularity. It is natural to ask if Schauder estimates hold at the endpoints, that is,
if f ∈ C0, it is the case that u ∈ C2? We can interpret this as Schauder for the
endpoint α = 0. Unfortunately, this is not the case. Let u : R2 → R2 be defined as

u(x, y) = (x2 − y2) log | log(x2 + y2)|.
Here, we can check that ∆u is continuous, but second derivatives are not. However,
the Calderon-Zygmund estimates allow us to show that if ∆u = f ∈ L∞(B1), then

u ∈ C1,1−ε
loc (B1) for any ε > 0. Roughly, if all second derivatives of u are bounded,

then u ∈ C1,1, but only having boundedness on ∆u can almost get us there. We
will use a fact about scaling. Let ur(x) = u(rx). Then

(6.1) ∆ur(x) = r2f(rx).

Since f is uniformly bounded, the Laplacian of ur(x) gets smaller and smaller as
we zoom in and r → 0, so as we zoom in, ur(x) looks more and more harmonic
and try to gain regularity like that. To do this, we first need to decompose u into
harmonic and zero-boundary parts. Set

I[w] =

∫
B1

1

2
|∇w|2dx.

With fixed boundary condition w = u on ∂B1, Theorem 1.6 gives that the minimizer
exists. But from the Euler-Lagrange equation, we find that the minimizer w solves
∆w = 0 in B1 with w = u on ∂B1. Then for v = u − w, ∆v = ∆u in B1, and
v = 0 on ∂B1. We call w the harmonic replacement of u and v the zero boundary
replacement.

Proposition 6.2. Let u solve{
∆u = f in Br,

u = g in ∂Br.
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Then ∥u∥L∞(Br) ≤ C(∥f∥L∞(Br) + ∥g∥L∞(∂Br)).

Proof. Define ũ = u/
(
∥f∥L∞(Br) + ∥g∥L∞(∂Br)

)
, so that ũ solves{

∆ũ = f̃ in Br,

ũ = g̃ in ∂Br

with |f̃ | ≤ 1, |g̃| ≤ 1. Now we let h(x) = r2−|x|2
2d + 1, then ∆h = −1 in Br, and

h ≥ 1 on ∂Br. By comparison principle, we know that ũ ≤ h in Br so the estimate
becomes

u ≤ r2 + 2d

2d
(∥f∥L∞(Br) + ∥g∥L∞(∂Br)).

Repeating the same argument with −ũ gives the lower bound and concludes the
estimate. In the special case of the zero-boundary replacement v, we have the

estimate ∥v∥L∞(Br) ≤ r2

2d∥f∥L∞(Br). Since v = 0 on the boundary, we can take

h(x) = r2−|x|2
2d and apply the same argument. □

Now, we mimic the improvement of flatness lemma in the Schauder inequality.
Importantly, the contradiction argument is not necessary, and we can provide a
constructive proof due to the fact that every time we zoom in, the Laplacian gets
smaller and smaller, and therefore “more harmonic”.

Lemma 6.3. For all ε > 0, there exists δ > 0 and r0 ∈ (0, 1) such that if oscB1
u ≤

1, and ∥f∥L∞(B1) < δ, then there exists b ∈ Rd such that

oscBr0
u− b · x ≤ r2−ε

0 .

Observe that by Proposition 6.2, there is no loss of generality in assuming the
conditions of the lemma because we can replace any solution u by

ũ =
u

oscB1 u+
∥f∥L∞(B1)

δ

.

Alternatively, by (6.1), zooming in reduces the Laplacian and the oscillation, so
applying the lemma on ur(x) for x ∈ B1 for r small concludes the full estimate.

Proof. First, since | supBr
f | ≤ ∥f∥L∞(Br) and | infBr f | ≤ ∥f∥L∞(Br),

oscBr
v ≤ 2∥v∥L∞(Br)

Write u = v + w with w as the harmonic replacement. Since w is harmonic and
therefore smooth, we can estimate |w(x)−w(0)−∇w(0)·x| ≤ Cr2. Since w = u−v,
we write

|u(x)− v(x)− w(0) + x · ∇w(0)| ≤ Cr2 =⇒
oscBr

(
u(x)− x · ∇w(0)

)
≤ 2Cr2 + 2oscBr

v(x)

Crucially, C is absolute based on oscB1
u because it is dependent on first and second

derivatives of w, and we can bound |D2w| and |∇w| by oscu7. Choose r0 small
so that rε0 ≤ 1

4C , which gives that 2Cr20 ≤ r2−ε
0 /2. In view of the bound on v by

Proposition 6.2,

∥v∥L∞(Br0
) ≤ ∥v∥L∞(B1) ≤

∥f∥L∞(B1)

2d

7see the proof of Lemma 5.3. Let ũ = u− inf u, so that ∇w = ∇w̃. But then supB1/2
|∇w| ≤

C supB1
w̃ = supB1

ũ = oscB1
u, and similarly for |D2w|.
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Therefore as long as ∥f∥L∞(B1) ≤ dr2−ε
0 , oscBr0

v(x)+oscBr0
o(x) ≤ r2−ε

0 as desired.
□

We arrive at the theorem:

Theorem 6.4 (Calderon-Zygmund). Let u ∈ H1(B1) solve ∆u = f ∈ L∞(B1).

Then u ∈ C1,1−ε
loc (B1) for any ε > 0.

Proof. Again, there is no loss of generality assuming oscB1 u ≤ 1 and ∥f∥L∞(B1) ≤ δ
for δ given by Lemma 6.3 by simply dividing. The first step is given by the lemma.
We have that

oscBr0
u− b1 · x ≤ r2−ε

0 ,

where b1 = ∇w(0). Then we zoom in. Set u1(x) = r
−(2−ε)
0 [u(r0x) − b1 · r0x] so

∆u1(x) = rε0f(x). Since the Laplacian of u1 is smaller than the Laplacian of u, and
of course the oscillation of u1 is smaller than 1, we may continue reapplying the
lemma. We then have the estimate

oscBr
u1 − b̃2 · x ≤ r2−ε =⇒ oscBr2

u(x)− [b+ r1−εb̃2] · x ≤ r2(2−ε)

to conclude b2 = b+r1−εb̃2. Continuing, uk(x) = rk(−2+ε)[u(rkx)−bk ·rkx] implies

r2−ε ≥ oscBr
uk − b̃k+1 · x =⇒

r(k+1)(2−ε) ≥ oscBr u(r
kx)− bk · rkx − rk(1−ε)b̃k+1 · rkx

= oscB
rk+1

u(x)− [bk + rk(1−ε)b̃k+1] · x.

Since oscB1
uk = 1, by Lemma 6.3, b̃k+1 = ∇wk(0) is uniformly bounded. Since

|bk−1 − bk| = (r1−ε)k|b̃k| ≤ Crk(1−ε), bk converges to some b∞ such that

oscB1
|uk(x)− b∞| ≤ Cr2−ε.

Using Lemma 5.2, we conclude that u is C1,1−ε at 0. Rescaling to different
points gives the regularity on u for the interior of B1. We have the estimate
∥u∥C1,1−ε(B1/2) ≤ C(∥u∥L∞(B1) + ∥f∥L∞(B1)). □

7. The Obstacle Problem

Many interesting problems lie outside the realm of “smooth calculus of varia-
tions”, where De Giorgi and Schauder estimates may not apply. In Definition 1.1
we assumed that the Lagrangian was smooth, yet there are many such problems
where this is not the case. One canonical example is the obstacle problem. Given
a smooth function φ, called the obstacle, the solution to the obstacle problem is the
function that minimizes the energy functional

J [v] =

∫
U

1

2
|∇v|2dx

subject to the conditions v ≥ φ in U , and boundary condition v ≥ g on ∂U .
The interpretation is that admissible functions must lie above the obstacle, and
the minimizer is the function with the least amount of “energy”. The existence of
minimizers is guaranteed by Theorem 1.6. Again, we are interested in the regularity
that solutions have.
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Remark 7.1. We can consider the obstacle problem to minimize the energy of
u = v − φ, and require u ≥ 0, and u = g − φ on the boundary. Then, we are
minimizing∫
U

1

2
|∇(u+ φ)|2 =

∫
U

1

2

[
|∇u|2 + |∇φ|2 + 2∇u∇φ

]
=

∫
U

1

2
|∇u|2 − u∆φ+

1

2
|∇φ|2

which amounts to minimizing ∫
U

1

2
|∇u|2 + fu dx

for f = −∆φ among all functions u ≥ 0, because
∫
U
|∇φ|2 is a fixed value.

Here, we have the stricter boundary condition u = g̃ = g−φ. We call this inter-
pretation the zero obstacle problem, or the variational formulation of the obstacle
problem. The problems are identical (so long as φ ∈ C1,1), and to move from one
to another, we need only to add/subtract the obstacle. At first, it appears that this
problem is the same as a smooth calculus of variations problem. However, we will
soon notice that the same perturbation methods do not work, or must be modified
to accomodate the obstacle, so that the problem does not fit the scheme of smooth
calculus of variations. We can consider this as∫

U

1

2
|∇u|2 + fu+ =

∫
U

1

2
|∇u|2 + fχ{u>0}u,

because we require u ≥ 0, causing the minimization problem to be nonsmooth. Our
calculus of variations techniques may not apply.

We note a nice interpretation in the zero obstacle problem. The first term, which
increases as |∇u| increases, is the elastic potential of the system, and the second
term, which increases as u increases, is the gravitational potential of the system,
leading to the gravitational interpretation of the obstacle problem

(7.2)

∫
U

1

2
|∇u|2 + u+dx

solving ∆u = χ{u>0}. Here, being above the obstacle at any point is the same
potential energy as being above the obstacle at any other point. We can view,
for example, a membrane descending over an obstacle, as an obstacle problem.
Critically, since we require the obsctacle to be smooth, we can zoom in to a point
until f is constant, then normalize so that the problem is in the same form as (7.2).

Now we are ready to show some properties of solutions to the obstacle problem.

Proposition 7.3. The minimizer u is weakly superharmonic, that is, ∆u ≤ 0 in
U .

Proof. Let η ∈ C∞
c (U), η ≥ 0, so that u+tη is an admissible function, and therefore

J [u] ≤ J [u+ tη] because u is the minimizer. Then for all t,

0 ≤ J [u+ tη]− J [u] =

∫
U

t∂iu∂iη +
t2

2
∂iη

2 = −t
∫
U

u∂iiη +
t2

2

∫
U

∂iη
2.

Sending t→ 0 we conclude that
∫
U
u∆η ≤ 0, so u is weakly superharmonic. □

Finally, we can fully characterize solutions to the obstacle problem.



22 DANIEL CHEN

Proposition 7.4. The solution to the obstacle problem is the least supersolution
above the obstacle and boundary, i.e. the least superharmonic (∆u ≤ 0) function
such that {

u ≥ φ onB1,

u ≥ g on ∂B1.

Moreover, u is harmonic where it does not touch the obstacle, i.e. ∆u = 0 in {u >
φ}. We denote Λ := {u = φ} the contact set, and Ω := {u > φ} the harmonic set,
and Γ := ∂Λ = ∂{u = φ} the free boundary.

Proof. First we show that Ω is open. Since u is weakly superharmonic, u is lower
semicontinuous8. Fix x0, then u(x0) − φ(x0) > ε for some ε. Since u is lower
semicontinuous and φ is continuous, there exists some δ > 0 such that u−φ > ε/2
on Bδ(x0). Becuase x0 was arbitrary, we can write Ω as the union of open sets. Now,
because we know Ω is open, pick x0 ∈ Ω with Bδ(x0) ⊂ Ω and infBδ(x0)(u−φ) > ε0.
Then choose some η ∈ C∞

c (Bδ(x0)). Since u+ εη is an admissible function, we set

i(ε) = J(u+ εη) =⇒ 0 = i′(0+) = lim
ε→0

J(u+ εη)− J(u)

ε
,

limiting i(·) : (ε0/∥η∥L∞ ,∞) → R, so that i is well defined in a neighborhood
around 0. Since u is a minimizer, the last expression is equal to

lim
ε→0

∫
Bδ(x0)

∂iu∂iη + ε∂iη
2 = 0 =⇒

∫
Bδ(x0)

u∆η = 0,

i.e. u is weakly harmonic on Bδ(x0) because η is any C∞
c (Bδ(x0)) function. Since

x0 was arbitrary, we are done.
Then let w be such that ∆w ≤ 0, w ≥ φ on B1, and w ≥ u on ∂B1, meeting

the same conditions as v. We want to show that w ≥ v, so that v is the least
supersolution that meets the requirements. On Λ, we know that w cannot be any
lower than f = u. Then on Ω, we can use the maximum principle. Consider w− v.
Since w ≥ v on the boundary, and ∆w ≤ 0, ∆(w − v) = ∆w − ∆v = ∆w ≤ 0 is
superharmonic and attains its minimum on the boundary. Therefore w−v ≥ 0. □

Now, we try to establish that u ∈ C1,1. The Calderon-Zygmund estimate (The-

orem 6.4) gives that u ∈ C1,1−ε
loc (B1) for any ε > 0. But the absolute best we can

do is C1,1 since ∆u = fχu>0 may be discontinuous. Indeed, solutions are C1,1.
There is some intuition that indicates that u is C1,1. Since u is harmonic and

therefore smooth on Ω, we focus our attention on ΩC . Critically, semiconvex and
superhamonic functions are C1,1. If u is convex and ∆u ≤ C, then eigenvalues
of D2u are nonnegative, and since

∑
λi ≤ C, each λi ≤ C and |D2u| ≲ C. So

if u is semiconvex, then D2u ≥ −C1I, so looking at v = u + C1|x|2 gives that
∆v = ∆u+2dC1 is bounded and convex, so v is C1,1, which implies that u is C1,1.
Notice u−φ is convex at the free boundary because it is a local minimum, and has
bounded Laplacian, so u is semiconvex, and by Proposition 7.4, u is superharmonic.
Therefore, u is C1,1 at free boundary points. However, this proof is not complete.
Our bound on |D2u| on the set Ω, from harmonic interior estimates, becomes
worse and worse as we approach the free boundary, and we have not yet stitched
together the regularity of Ω with the regularity of the free boundary. Instead of
this approach, we will use compactness to achieve the optimal regularity.

8See Fernández-Real, Ros-Oton [2] Lemma 1.17.
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Lemma 7.5. Let u solve the obstacle problem{
∆u = fχ{u>0} in B1

u ≥ 0 in B1.

Suppose that 0 ∈ ∂{u > 0}. Then there exists some C > 0 such that at least one of
the following holds for each 0 ≤ r ≤ 1/2:

1) supBr
u ≤ Cr2

2) supBr
u ≤ 4−j supB2jr

for some 2jr ≤ 1.

Proof. We work by contradiction. Suppose that there are infinitely many rn such
that supBrn

u > nr2n, and supBrn
u > 4−j supB2jrn

u for all 2jrn < 1. Choose rnk
a

decreasing subsequence and rename them to rn. Then fix n, and let an = supBrn
u.

Since
1

n
sup
Brn

u >
1

n+ k
sup
Brn

u ≥ 1

n+ k
sup

Brn+k

u =⇒ an >
n+ k

n
an+k

so

an >
(n+ k)2

n

an+k

n+ k
> (n+ k)r2n+k

so as n→ ∞, rn must approach zero. Set un(x) = u(rnx)/∥u∥L∞(Brn ), so that

∆un(x) =
r2n∆u(rnx)

∥u∥L∞(Brn )
=

r2n
∥u∥L∞(Brn )

f(rnx)χ{un>0}.

But since 1/∥u∥L∞(Brn ) ≤ 1/(nr2n), we conclude that

|∆un| ≤
r2n
nr2n

|f(rnx)χun>0| ≤
1

n
∥f∥L∞(B1) → 0.

Since 0 ∈ ∂{u > 0}, there exists some x0 ∈ Brn(x) such that x0 ∈ {u > 0} so there
is no issue dividing by ∥u∥L∞(Brn ). Fix some arbitrary n. Then by the second
assumption we contradicted, for all k with 2nrk ≤ 1,

4n sup
B1

u(rkx) = 4n sup
Brk

u > sup
B2nrn

u = sup
B2n

u(rnx),

then dividing by ∥u∥L∞(Brk
), we obtain 4n = 4n supB1

uk(x) > supB2n
uk(x).

Therefore if we pick some Br with r < 2n, then find K such that 2nrk ≤ 1,
then for all k ≥ K, supBr

uk(x) ≤ supB2n
uk ≤ 4n. With this uniform bound for

k ≥ K, and the fact that ∆uk ≤ ∥f∥L∞(B1)/K, Theorem 6.4 allows us to conclude

that ∥uk∥C1,1−ε1 ≤ C1. Then since C1,1−ε1 ⊂⊂ C1,1−ε for 1 > ε > ε1, passing to a
subsequence uk → u∞ strongly in C1,1−ε. Now, fix any test function ψ ∈ C∞

c , and
n large so that suppψ ⊂ B2n . Now for k ≥ K,

lim
k→∞

∫
B2n

|∇ψ · ∇uk| ≤ lim
k→∞

1

k
∥∇ψ∥L2(B2n )∥f∥L∞(B1) = 0,

so that
∫
B2n

∇ψ · ∇uk → 0. But also, since ∇uk → ∇u∞ in C0,1−ε, by dominated

convergence theorem, ∫
B2n

∇ψ · ∇uk →
∫
B2n

∇ψ · ∇u∞ = 0.

Therefore, u∞ ≥ 0 is harmonic, and u∞(0) = 0. But then by Liouville’s theorem,
u∞ must be zero everywhere, contradicting that supu∞ = 1. □
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Theorem 7.6 (Optimal regularity). Let u solve the obstacle problem{
∆u = χ{u>0} in B1

u ≥ 0 in B1.

Then u is C1,1.

Proof. First, when u ≡ 0 which happens on Λ , D2u is controlled by D2φ, and
harmonic estimates can control D2u on Ω at points away from Γ. Therefore we
only need to look at the points on and near the free boundary. Now we use the
lemma. Pick some point x0 ∈ Γ ∩ B1/2, and zoom in, that is, let ux0

= u(rx0)
for r = 1/2, which also solves the obstacle problem, with ∆ux0

= χ{ux0>0}/2.

Take rk = 2−k. Then, if condition fails at J , for some j < J , supBrJ
ux0

≤
4−j supB2jrJ

ux0
. However,

4−j sup
B2jrJ

ux0
= 4−j sup

B
2j−J

ux0
≤ 4−jC(4j−J) = C4J = Cr2J ,

so the iteration never fails at any point. After upgrading C, supBr
ux0 ≤ Cr2.9

Since ux0
has quadratic growth near zero, D2u(0) stays bounded, which implies

that u is C1,1 at x0, with a bound |D2u(x0)| ≤ C for all x0 ∈ B1/2 ∩ Γ.
Now for points very close to the free boundary, choose x1 ∈ {u > 0}, and set

r = dist(x1,Γ). Find x0 ∈ Γ such that r = |x1 − x0|, so Br(x1) ⊂ B2r(x0). Then
set v = u(x) − |x − x1|/2d. Because ∆u = 1 on Br(x1), ∆v = 0 on Br(x1), we
can bound supBr/2(x1) |D

2v| ≤ C1

r2 supBr(x1) |v|. Therefore supBr(x1) v ≤ r2/2d +

supB2r(x0) ≤ 4Cr2, so that supBr/2(x1) |D
2v| ≤ 4C1C is bounded. Finally, because

D2v = D2u+ I/d, so our bound on D2v implies a bound on D2u. □
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