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Abstract. This paper mainly follows from [1], notes created by students
based on lectures from Professor Daniel Sanz-Alonso in the course STAT 31510
during Spring 2019. This paper introduces two algorithms in Markov Chain
Monte Carlo (MCMC) method for random samplings, with Metropolis Ad-
justed Langevin Algorithm (MALA) on the basis of Metropolis Hastings (MH)
Algorithm. An introduction about Monte Carlo integration and stochastic dif-
ferential equations (SDEs) is also given along the way.
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1. Preliminaries

We assume basic familiarity of measure theory based probability, Markov chain,
martingales, Brownian motion, and Real analysis. We now quickly review some key
concepts and important properties of Markov chains. Note that we are not proving
these properties as they are not the major points considered in this paper.

Definition 1.1. Markov chain. A collection X = {Xn, n = 0, 1, 2, ...} of random
variables taking values in a state-space E is called a Markov chain if

P(Xn=1 ∈ An+1 | Xn ∈ An, . . . , X0 ∈ A0) = P(Xn+1 ∈ An+1 | Xn ∈ An)

for all n ≥ 0, and all measurable An+1, An, . . . , A0 ⊂ E.

The most classic way of interpreting the Markov property is that the future state
only depends on the current state but not on any past states.

Definition 1.2. Time homogeneous Markov chain. AMarkov chain X is called
time homogeneous if its transition probabilities

P (x,A) = P(Xn+1 ∈ A | Xn = x)

do not depend on n. P (x,A) is called the transition kernel or Markov kernel of X.
1
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In other words, a Markov chain is time homogeneous if its transition probabil-
ities do not depend on time. Throughout this paper we will only work with time
homogeneous Markov chain, and we will refer to the Markov kernel by p(x, y).

Definition 1.3. n−th step transition probability density. The n-th step tran-
sition probability densities pn(x, y) are defined by

P(Xn ∈ A | X0 = x) = Pn(x,A) =

!

A

pn(x, y)dy.

A nice property of time homogeneous Markov chain is that we can easily compute
the probability density function (PDF) given an initial probability distribution and
its transition probability as we can see from the below theorem.

Theorem 1.4. If X0 ∼ π0 and X has n-th step transition probability densities
pn(x, y), then the PDF of Xn is given by

πn(x) =

!

E

π0(y)p
n(y, x)dy.

If the state space E is finite, then πn is a probability vector and πn = π0P
n,

where P is the transition probability matrix.

Moreover, it is very important to notice the large-time behavior of time-homogeneous
Markov chain, i.e. the behavior of Pn for large n. It turns out that as n goes to
infinity, the transition probability approaches to an equilibrium if certain conditions
are satisfied. This gives rise to the following definition.

Definition 1.5. Invariant probability distribution. A Markov kernel p(x, y)
satisfies the general balance equation with respect to π if

(1.6) π(x) =

!

E

π(y)p(y, x)dy.

.
We then say that π is an invariant distribution of the Markov kernel p(x, y).

This is also called a stationary probability distribution.
Note that if E is discrete, the general balance equation is simply π = πP .

It is, however, not always guaranteed that such invariant probability distribution
exists for every Markov chain. We then come up with the following definition.

Definition 1.7. Ergodic Markov chain. A Markov chain X is called ergodic if
there exists a distribution π such that

lim
n→∞

P(Xn ∈ A) = π(A)

for all A ⊂ E and initial distributions π0. We say that π is the limit distribution
of X.

Theorem 1.8. Let X be an ergodic Markov chain with Markov kernel p(x, y) and
limit distribution π. Then π is an invariant distribution for p(x, y). In particular,
if X is initialized at statistical equilibrium (X0 ∼ π) then Xn ∼ π for all n ≥ 0.

Given a probability distribution π, it is often difficult to find a Markov kernel
for which π satisfies Equation (1.6). Hence we often find a Markov kernel based on
another condition called the detailed balance, which is actually a stronger condition.
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Definition 1.9. Detaled balance. We say that a transition density p(x, y) satis-
fies detailed balance with respect to π if, for all x, y ∈ E,

π(x)p(x, y) = π(y)p(y, x).

Theorem 1.10. Let p(x, y) be a Markov kernel that satisfies detailed balance with
respect to a distribution π. Then π is an invariant distribution for p(x, y).

The following concepts and results from measure theory are also important for
later proofs. Similarly, we omit the proofs of these results.

Definition 1.11. Stationary sequence. Random variables X0, X1, . . . are said
to be a stationary sequence if for every k, the shifted sequence Xk+n, n > 0 has the
same distribution, i.e., the joint probability distribution of the sequence is invariant
over time.

Definition 1.12. Measure-preserving transformation. Let (Ω,F ,P) be a prob-
ability space. A measurable map ϕ : Ω → Ω is said to be measure preserving if
P(ϕ−1A) = P(A) for all A ∈ F .

Remark 1.13. Let ϕn be the nth iterate of ϕ defined inductively by ϕn = ϕ(ϕn−1)
for n ≥ 1, where ϕ0(ω) = ω. If X ∈ F , then Xm(ω) = X(ϕm(ω)) defines a
stationary sequence.

Remark 1.14. A set A ∈ F is said to be invariant if ϕ−1A = A. We use I to
denote the collection of invariant events. Note that I is a σ-field, and X ∈ I if and
only if X is invariant, i.e., X ◦ ϕ = X a.s. 1

Remark 1.15. A measure-preserving transformation on (Ω,F ,P) is said to be
ergodic if I is trivial, i.e., for every A ∈ I,P(A) ∈ {0, 1}. For an ergodic Markov
chain, I is trivial.

Theorem 1.16. (Dominated Convergence Theorem)2. Suppose that fn are mea-
surable real-valued functions and fn(x) → f(x) for each x. Suppose there exists a
non-negative integrable function g such that |fn(x)| ≤ g(x) for all x. Then

lim
n→∞

!
fndµ =

!
fdµ.

The conclusion still holds if fn(x) → f(x) almost everywhere.

Theorem 1.17. (Bounded convergence theorem). Let E be a set with µ(E) < ∞.
Suppose fn vanishes on Ec, |fn(x)| ≤ M , and fn → f in measure. Then,

!
fdµ = lim

n→∞

!
fndµ.

Finally, the following definitions are fundamental to our study in stochastic cal-
culus in later sections. Notations and symbols of these terms will be the same
throughout the paper.

Definition 1.18. Filtration. IfX1, X2, . . . is a sequence of random variables, then
the associated (discrete time) filtration is the collection {Fn} where Fn denotes the
information in X1, . . . , Xn.

1a.s. stands for almost surely, which is the same thing as the definition of almost everywhere
in measure theory.

2A detailed version of the proof is at [2], pg. 62-63.
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Definition 1.19. Brownian Motion. A stochastic process3 Bt is called a (one-
dimensional) Brownian motion with drift m and variance σ2 starting at the origin
if it satisfies the following.

1. B0 = 0.
2. For s < t, the distribution of Bt − Bs is normal with mean m(t − s) and

variance σ2(t− s).
3. If s < t, the random variable Bt − Bs is independent of the values Br for

r ≤ s.
4. With probability 1, the function t → Bt is a continuous function of t.
If m = 0,σ2 = 1, then Bt is called a standard Brownian motion.

We will encounter Brownian motion when we introduce stochastic differential
equation (SDE).

2. Monte Carlo Integration

Monte Carlo method is usually used to approximate some distribution by random
sampling. To first give an idea of it, we consider a simple but classic implementation:
to find, or approximate, the value of π. The procedure is simple. We first consider
a circle inscribed in a square, and then uniformly generate random points over the
region of the square. Then, we count S, total number of points generated, and C,
number of points inside the circle. The ratio C

S will give an approximation to the
value π

4 , which gives the desired result. We will see later that the procedure of
”generating random points over some region”, in mathematical world, is just the
repeated random sampling over a distribution.

There are undeniably various applications of Monte Carlo method in mathemat-
ics and other fields such as engineering, computer science, and finance. In this
paper, we are particularly interested in Monte Carlo integration, an application
that gives numerical approximation of a definite integral that is usually difficult to
solve by normal computation.

Remark 2.1. Normally, Monte Carlo methods can compute integrals of the form

(2.2) If [h] =
!

E

h(x)f(x)dx ≡ EX∼f [h(X)],

where f is a PDF supported on E and h : E → R. The first equality is supported
by the following result in measure theory.

Theorem 2.3. Suppose X is a random variable with distribution µX , and f is a
Borel measurable function. Then,

E[g(x)] =
!

R
g(x)dµX .

Note that in measure theory, the expectation of g(x) is defined by the Lebesgue
integral of g(x) with respect to a probability measure P. If X has a PDF f , then
we have

E[g(X)] =

! ∞

−∞
g(x)f(x)dx.

One way to approximate If [h] is to sample from f , and this is known as the
classical Monte Carlo, which we will be using in later Markov Chain Monte Carlo
(MCMC).

3A collection of random variables indexed by time.
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Algorithm 1 Classical Monte Carlo Integration

Input: Target distribution f and test function h.

1: Sample X(1), . . . , X(N) i.i.d∼ f .

Output: Monte Carlo estimator IMC
f [h] := 1

N

N"

n=1

h(X(n)) ≈ If [h].

Observe that this procedure is exactly the same as the classic example of ap-
proximating the value of π as shown above. Using this method, one of the main
reason we directly sample from f is because it is easy to sample from. In the case
of approximating π, it is convenient to sample from a square because the area of a
square is easily determined.

Also, it is worth noticing that in Classical Monte Carlo Integration, the target
distribution needs to be uniformly distributed. Hence, this method faces large
obstacles when we want to study any distribution, including those that are non-
uniform. This gives rise to another method that combines Monte Carlo together
with Markov Chain.

3. Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) method is another way of approximating
integrals such as Equation (2.2). We will see later that combining Markov chain
and Monte Carlo with several procedures helps to implicitly construct a Markov
kernel that can be sampled from. We will show that f is exactly its invariant
distribution and repeated random samplings over this Markov kernel can be used
to approximate

If [h] ≈
1

N

N"

n=1

h(X(n)).

We begin by introducing the Metropolis Hastings algorithm, one of the MCMC
method that gives a flexible way to construct a nice Markov kernel.

Algorithm 2 Metropolis Hastings Algorithm

Input: Target f , initial distribution π0, and proposal Markov kernel q(x, y).

Initial draw: Sample X(0) ∼ π0.

Subsequent samples: For n = 0, . . . , N − 1 do:

1: Sample Y ∗ ∼ q(X(n), ·).

2: Update X(n+1) =

#
Y ∗ w.p. a(X(n), Y ∗),

X(n) w.p. 1− a(X(n), Y ∗).

Output: Samples X(1), . . . , X(N) and approximation If [h] ≈ 1
N

N"

n=1

h(X(n)).

Note that in Metropolis Hastings, the initial proposal Markov kernel q(x, y) is
not strictly determined, although we do hope that its stationary distribution is
close to f .
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In this algorithm, we draw samples iteratively based on an accept/reject mech-
anism as shown in the second procedure. As we will show later that, by specific
selection of a(x, y), the probability of accepting a proposed move from x to y, we
indeed turns q(x, y) into another Markov kernel for which f is invariant.

Observe that in classical Monte Carlo method, the samples drawn from the dis-
tribution are independent, which is a necessary condition in Algorithm 1. However,
in MCMC the samples are clearly not independent as they satisfy the Markov prop-
erty. Luckily, the Metropolis Hastings Algorithm still holds based on the following
theorem, which is known as the Law of Large Numbers.

Theorem 3.1. Let h : E → R and let X = {Xn}∞n=0 be an ergodic Markov chain
with stationary distribution π. Then π−almost surely

1

N

N"

n=1

h(Xn)
N→∞−→

!

E

h(x)π(x)dx ≡ Iπ[h].

This result directly follows from Birkhoff’s Ergodic Theorem, which is stated as
follows.

Theorem 3.2. (Birkhoff ’s Ergodic Theorem). For any X ∈ L1,

1

n

n−1"

m=0

X(ϕmω) → E(X | I) a.s. and in L1.

Since this theorem is vital to the implementation of many MCMC methods, it de-
serves a detailed proof. Many of the preliminaries have already been stated starting
from Definition 1.12, while we still need the following lemma for preparation.

Lemma 3.3. (Maximal ergodic lemma). Let Xj(ω) = X(ϕjω), Sk(ω) = X0(ω) +
· · ·+Xk−1(ω), and Mk(ω) = max(0, S1(ω), . . . , Sk(ω)). Then E(X;Mk > 0) ≥ 0.

Proof. Let Xj(ω) = X(ϕjω), Sk(ω) = X0(ω) + · · · + Xk−1(ω), and Mk(ω) =
max(0, S1(ω), . . . , Sk(ω)).

For j ≤ k, we have Mk(ϕω) ≥ Sj(ϕω), which implies that

X(ω) ≥ X(ω) + Sj(ω)−Mk(ϕω) = Sj+1(ω)−Mk(ϕω) for j = 1,= . . . , k.

Since S1(ω) = X0(ω) = X(ω) and Mk(ϕω) ≥ 0, we have

X(ω) ≥ S1(ω)−Mk(ϕω).

Therefore,

E(X(ω);Mk > 0) ≥
!

Mk>0

[max(S1(ω), . . . , Sk(ω))−Mk(ϕω)]dP

=

!

Mk>0

[Mk(ω)−Mk(ϕω)]dP

Since Mk(ω) = 0 and Mk(ϕω) ≥ 0 on {Mk > 0}c, we have
!

Mk>0

[Mk(ω)−Mk(ϕω)]dP ≥
!
[Mk(ω)−Mk(ϕω)]dP

Finally, since ϕ is measure preserving,
$
Mk(ω) − Mk(ϕω)dP = 0. Hence, the

theorem is proved. □
We now give a proof to Birkhoff’s Ergodic Theorem. This part requires heavy

knowledge on real analysis and many of the results will be directly used.
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Proof. Let Xj(ω) = X(ϕjω), Sk(ω) = X0(ω) + · · · + Xk−1(ω), and Mk(ω) =
max(0, S1(ω), . . . , Sk(ω)). By Remark 1.14, E(X | I) is invariant under ϕ. Then,
by letting X ′ = X − E(X | I) we can assume without lost of generality that
E(X | I) = 0.

Let X = lim supSn/n. Take arbitrary ε > 0, and let D = {ω : X > ε}. Note
that X(ϕω) = X(ω), which implies D ∈ I by Remark 1.14. We now want to show
that P (D) = 0.

Let

X∗(ω) = (X(ω)− ε)1D(ω), S∗
n(ω) = X∗

n(ω) + · · ·+X∗(ϕn−1ω),

M∗
n(ω) = max(0, S∗

1 (ω), . . . , S
∗
n(ω)), Fn = {M∗

n > 0},

F =
%

n

Fn =

#
sup
k≥1

S∗
k/k > 0

&
.

Note that sinceX∗(ω) = (X(ω)−ε)1D(ω) andD = {lim supSk/k > ε}, it follows
that

F =

#
sup
k≥1

Sk/k > 0

&
∩D = D.

Observe that since E|X∗| ≤ E|X|+ε < ∞, by Theorem 1.16 we have E(X∗;Fn) →
E(X∗;F ). Also, by Lemma 3.3 which we just proved, E(X∗;Fn) ≥ 0. Therefore,
we have that E(X∗;F ) ≥ 0.

Now, since F = D ∈ I, this implies that

0 ≤ E(X∗;D) = E(X − ε;D) = E(E(X | I);D)− εP (D) = −εP (D).

Hence, P (D) = 0 = P (lim supSn/n > ε). Since ε > 0 is arbitrary, it follows that
lim supSn/n ≤ 0. Similarly, we can apply the last result to −X and thus we show
that Sn/n → 0 a.s.

Let X ′
M (ω) = X(ω)1(|X(ω)|≤M) and X ′′

M (ω) = X(ω)−X ′
M (ω). At this stage we

have shown that

1

n

n−1"

m=0

X ′
M (ϕmω) → E(X ′

M | I) a.s.

We now show that this convergence occurs in L1. Note that sinceX ′
M is bounded,

by Theorem 1.17 we have that

E

'''''
1

n

n−1"

m=0

X ′
M (ϕmω)− E(X ′

M | I)

'''''→ 0.

Also, observe that

E

'''''
1

n

n−1"

m=0

X ′′
M (ϕmω)

'''''≤
1

n

n−1"

m=0

E|X ′′
M (ϕmω)| = E|X ′′

M |

and that

E|E(X ′′
M | I)| ≤ E(E(|X ′′

M | | I)) = E|X ′′
M |.
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Hence, we have that

E

'''''
1

n

n−1"

m=0

X ′′
M (ϕmω)− E(X ′′

M | I)

''''' ≤ 2E|X ′′
M |

lim sup
n→∞

E

'''''
1

n

n−1"

m=0

X ′′
M (ϕmω)− E(X ′′

M | I)

''''' ≤ 2E|X ′′
M |.

Finally, by Theorem 1.16, E|X ′′
M | → 0 as M → ∞. This completes the proof.

□

Theorem 3.1 is an application of Birkhoff’s Ergodic Theorem as I becomes triv-
ial(Remark 1.15) and applying the theorem to h(Xn(ω)) gives

1

n

n"

n=1

f(Xn) →
!

E

f(x)π(x)dx a.s. and in L1.

As stated before, it is necessary to decide a(x, y), the probability of accepting a
proposed move from x to y. This is given by

a(x, y) := min{1, f(y)q(y, x)
f(x)q(x, y)

}.

The approximation If [h] ≈ 1
N

N"

n=1

h(X(n)) relies on the construction of Markov

kernel by this algorithm. The following theorem gives the construction and a proof
of discrete case is provided.

Theorem 3.4. The Metropolis Hastings Markov kernel is given by

pMH(x, y) = q(x, y)a(x, y) + δx(y)r(x),

where

r(x) =

(
))*

))+

"

y∈E

q(x, y)(1− a(x, y)) if E is discrete,

!

E

q(x, y)(1− a(x, y))dy if E is continuous,

and δx(y) denotes a Dirac measure at x.

Proof. (Discrete case.) In order to move from x to y, assuming x ∕= y, then state y
need to be proposed and accepted. Then, the probability of moving from x to y is
given by q(x, y)a(x, y).

In order to move from x to x, or x to y where x = y, the following two things
may happen:

1. Propose x as new state and accept it. This happens with probability q(x, x)a(x, x).
2. Propose any y ∈ E and reject it. This happens with probability

r(x) =
"

y∈E

q(x, y)(1− a(x, y)).

Therefore, Theorem 3.4 satisfies all condition where x moves to y.
□
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Observe that if x ∕= y, then we have

pMH(x, y) = q(x, y)a(x, y).

This helps to show the following theorem.

Theorem 3.5. The Metropolis Hastings kernel pMH satisfies detailed balance with
respect to f .

Proof. Take arbitrary x, y ∈ E. If x = y, then we simply have

f(x)pMH(x, y) = f(y)pMH(y, x).

Suppose that x ∕= y, then

pMH(x, y) = q(x, y)a(x, y)

= f(x)q(x, y)min{1, f(y)q(y, x)
f(x)q(x, y)

}

= min{f(x)q(x, y), f(y)q(y, x)}.
Since the RHS is symmetric in x and y, then we again have

f(x)pMH(x, y) = f(y)pMH(y, x).

Therefore the result follows.
□

As a result, by Theorem 1.10 we have that f is an invariant distribution for
pMH , and thus we can apply Theorem 3.1 to obtain an approximation for If [h].

4. Stochastic Differential Equations (SDEs)

Before we get into Metropolis Adjusted Langevin Algorithm (MALA), it is im-
portant to understand some basic concepts in stochastic differential equations and
ways to find their solution to these equations. This is clearly not a detailed in-
troduction to stochastic differential equations as many important properties and
proofs are omitted. Instead, we aim to quickly get a sense of what stochastic dif-
ferential equations are and equip with us most of the knowledge and intuition we
need for MALA. We will see later that the core of MALA relies on a nonlinear SDE
which does not have an analytical solution. Hence, we will need to use numerical
approximation via discretization.

Before we get to SDEs, it is reasonable to first look back at a general differential
equation written in the following way

df(t) = C(f(t), t)dt

with initial condition f(0) = x0. It is known that the solution to this equation will
be given by

f(t) = x0 +

! t

0

C(f(s), s)ds.

Stochastic differential equations look similar, except that there is another ”white
noise” that adds randomness to the system. The general equation of this form looks
like the following:

(4.1) dXt = µ(Xt, t)dt+ σ(Xt, t)dBt.
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It is worth noticing that the white noise is created by the derivative of Bt,
a standard Brownian motion. The equation is interpreted as stating that Xt is
evolving like a Brownian motion with drift µ(t,Xt) and variance σ(t,Xt)

2 at time
t.

Generally, the SDE will have the following solution

Xt = X0 +

! t

0

µ(Xs, s)ds+

! t

0

σ(Xs, s)dBs

where the first integral is easy to compute by ordinary integral method. The crucial
step now is how we should make sense of the second term.

Naturally, we would try using previously known integration method like Rie-
mann integral. However, recall that a standard Brownian motion has the following
property:

Theorem 4.2. With probability 1, the function t → Bt is nowhere differentiable.

Although Brownian motion is continuous, it is nowhere differentiable and there-
fore not Riemann integrable4. One commonly used approach to defining the second
term leads to the Ito integral.

The idea to construct the Ito integral is actually similar to both Riemann integral
and Lebesgue integral.

Recall that when we define Riemann integral to compute integral of the form
! b

a

f(t)dt,

a key idea is to partition the interval [a, b] into different intervals with the convention
that a = t0 < t1 < · · · < tn = b and then approximate f(t) by a step function

fn(t) = f(sj), tj−1 < t ≤ tj

for sj ∈ [tj−1, tj ]. We define
! b

a

fn(t)dt =

n"

j=1

f(sj)(tj − tj−1)

and if the norm (the maximum length of the subintervals of [a, b]) goes to 0, the
limit ! b

a

f(t)dt = lim
n→∞

! b

a

fn(t)dt

exists and defines the integral.
Ito’s integral is similar in the way that it first defines a simple process as an

analogy to a step function in Riemann integral. As we can see below from the
definition, a subtle difference is that the first endpoint t0 = 0 and the last endpoint
tn goes to ∞ for a simple process.

Definition 4.3. Simple process. A process At is a simple process if there exist
times

0 = t0 < t1 < · · · < tn < ∞
and random vvariables Yj , j = 0, 1, . . . , n that are Ftj -measurable such that

At = Yj , tj ≤ t < tj+1.

4Since Brownian motion is nowhere differentiable, it has unbounded variation. This implies
that we cannot directly use Riemann-Stieltjes integral either. More can be seen at [5].
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Here we set tn+1 = ∞. Since Yj is Ftj -measurable, At is Ft-measurable. We also

assume that E[Y 2
j ] < ∞ for each j.

Just like what we did in Riemann integral, we now define the Ito integral of a
simple process.

Definition 4.4. If At is a simple process we define

Zt =

! t

0

AsdBs

by

Ztj =

j−1"

i=0

Yi[Bti+1 −Bti ],

and more generally,

Zt = Ztj + Yj [Bti+1 −Bti ] if tj ≤ t ≤ tj+1

! t

r

AsdBs = Zt − Zr.

Recall that in the construction of Lebesgue integral, we first define the Lebesgue
integral of a simple function and then use this definition to define the Lebesgue
integral of a general measurable function. Similarly, in Ito integral we first define
a simple process and then move to the construction of integration of continuous
processes. Before giving the definition, we need the following theorem.

Theorem 4.5. Suppose At is a process with continuous paths, adapted to the fil-
tration {F} 5. Suppose also that there exists C < ∞ such that with probability one

|At| ≤ C for all t. Then there exists a sequence of simple processes A
(n)
t such that

for all t,

(4.6) lim
n→∞

! t

0

E[|As −A(n)
s |2]ds = 0.

Moreover, for all n, t, |A(n)
t | < C.

With the help of Theorem 4.5, we are able to find a sequence of simple processes

A
(n)
s satisfying Equation (4.6). It turns out that the existence of

Zt = lim
n→∞

! t

0

A(n)
s dBs

can be shown 6 and thus we can define
! t

0

AsdBs = Zt.

So far, we have given a mathematical definition to Ito integral and have made
solving a SDE like (4.1) meaningful. However, solving SDEs using the definition can
be inefficient and thus we require stronger tools. Hence, we are now introducing the
Ito’s formula, a general approach to solve many linear SDEs. Its role can be viewed
as the fundamental theorem of stochastic calculus and is vital to many theorems in
stochastic calculus. The Ito’s formula presented below is one of the many forms of
Ito’s formula and is sufficient for our later need.

5Note that At is adapted to the filtration {F} if At is Ft-measurable for each t.
6 For a detailed description on this fact, one can look for [6], pg. 90-91.
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Theorem 4.7. (Ito’s Formula). Suppose Xt satisfies

dXt = Rtdt+AtdBt

and suppose f(x, t) is a function that is C1 in t and C2 in x. Then,

df(Xt, t)[∂tf(Xt, t) +Rt∂xf(Xt, t) +
A2

t

2
∂xxf(Xt, t)]dt+At∂xf(Xt, t)dBt.

We will not focus on how Ito’s formula contribute to the derivation of many
analytical solutions of some common linear SDEs since the SDE we will encounter in
later section is hardly solvable. Instead, we will use Ito’s formula in our derivation
of the Fokker-Planck-Kolmogorov (FPK) equation which we will see very soon.
Before that, we introduce the concept of diffusion and discuss its connection to
Markov chain.

Definition 4.8. Diffusion. We say that Xt is a diffusion if it is a solution to
an SDE of Equation (4.1). Here, µ(x, t) and σ(x, t) are functions. It is called
time-homogeneous if the functions do not depend on t, namely

dXt = µ(Xt)dt+ σ(Xt)dBt.

Note that a diffusion is a Markov chain since at time t, the state of the system
has all the information about the past to predict the future. In other words, present
is only what matters. This leads us to further discussion of its ergodic property
when we consider specific SDEs in later section.

For nonlinear SDE, in most cases there does not exist a general solution to it
by using traditional approach in linear SDEs. Guessing a solution by empirical
knowledge and using the Ito formula to check the solution is also not efficient. It
is, in fact, quite common that one expects a numerical approximation to a hardly
solvable nonlinear SDE.

Before we move to MALA, a final preparation is the following Fokker-Planck-
Kolmogorov (FPK) equation.

Theorem 4.9. The probability density p(x, t) of the diffusion of the SDE in Equa-
tion (4.1) solves the partial differential equation (PDE):

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

∂2

∂x2
[D(x, t)p(x, t)],

where D(xt, t) =
σ2(Xt,t)

2 .
This PDE is called the Fokker-Planck-Kolmogorov(FPK) equation.

We now give a proof through a direct computation approach where less analysis
is involved.

Proof. We first apply Theorem 4.7 where Rt = µ(Xt, t) and At = σ(Xt, t) for an
arbitrary twice differentiable function f(x) and we get

df

dt
=

∂f

∂x
µ(Xt, t) +

1

2

∂2f

∂x2
σ2(Xt, t).

By taking the expectation of both sides we get

(4.10)
dE[f ]
dt

= E[
∂f

∂x
µ(Xt, t)] +

1

2
E[

∂2f

∂x2
σ2(Xt, t)]
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Using integration by parts, the first term of the right-hand side yields

E[
∂f

∂x
µ(Xt, t)] =

!
∂f

∂x
µ(Xt, t)p(x, t)dx

= −
!

f(x)
∂

∂x
[µ(Xt, t)p(x, t)]dx(4.11)

where p(x, t) is the probability density of the solution to Equation (4.1).
Through integration by parts again, the second term becomes

1

2
E[

∂2f

∂x2
σ2(Xt, t)] =

1

2

!
∂2f

∂x2
σ2(Xt, t)p(x, t)dx

=
1

2

!
(
∂f

∂x
)
∂

∂x
[σ2(Xt, t)p(x, t)]dx

=
1

2

!
f(x)

∂2

∂x2
[σ2(Xt, t)p(x, t)]dx.(4.12)

Note that we also have

dE[f ]
dt

=
d

dt

!
f(x)p(x, t)dx

=

!
f(x)

∂

∂t
p(x, t)dx.(4.13)

Equation (4.10), (4.11), (4.12), and (4.13) together give the following equation
!

f(x)
∂

∂t
p(x, t)dx =−

!
f(x)

∂

∂x
[µ(Xt, t)p(x, t)]dx+

1

2

!
f(x)

∂2

∂x2
[σ2(Xt, t)p(x, t)]dx

which by rearrangement yields
!

f(x){ ∂

∂t
p(x, t) +

∂

∂x
[µ(x, t)p(x, t)]− 1

2

∂2

∂x2
[σ2(Xt, t)]p(x, t)}dx = 0.

Since we are considering arbitrary f(x) at the beginning, we have

∂

∂t
p(x, t) +

∂

∂x
[µ(x, t)p(x, t)]− 1

2

∂2

∂x2
[σ2(Xt, t)]p(x, t) = 0,

which gives the FPK equation. □

5. Metropolis Adjusted Langevin Algorithm (MALA)

Metropolis Adjusted Langevin Algorithm (MALA) is another MCMC method
to generate random samples from a target distribution. Similar to traditional Me-
tropolis Hastings, MALA provides a way to compute integrals like Equation (2.2).

A simple but direct motivation to the study of MALA is that we can decide
the choice of our initial Markov kernel by inputting a step-size ε which we will see
later, rather than aiming to find a nice Markov kernel by empirical insight as in
traditional Metropolis Hastings. Moreover, MALA is actually more efficient than
traditional Metropolis Hastings when running simulations on computers because
it has a higher acceptance rate during the accept/reject mechanism as we will see
below7.

7One can look at [10] for more on the computation complexity of MALA.
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Algorithm 3 Metropolis Adjusted Langevin Algorithm (MALA)

Input: Target f , initial distribution π0, and step-size ε > 0.

1: Define the special Markov kernel:

qLgv(x, ·) := N (x+ ε∇ log f(x), 2εId).

2: Run Metropolis Hastings with inputs f,π0 and qLgv(x, y).

Output: Samples X(1), . . . , X(N) and approximation If [h] ≈ 1
N

N"

n=1

h(X(n)).

In MALA, the proposals are made according to the special Markov kernel defined
above, and the accept/reject mechanism is based on the same acceptance probability

a(x, y) := min{1, f(y)qLgv(y, x)

f(x)qLgv(x, y)
}

as in traditional Metropolis Hastings Algorithm. The rest of the paper aim to
discuss why MALA works.

The phrase ”Langevin” in MALA comes from Langevin equation, a common
type of SDE in the form of

dXt = µ(Xt, t)dt+ σdBt.

We are particularly interested in the following Langevin equation

(5.1) dX(t) = −∇V (X(t))dt+
√
2dW, 0 ≤ t < ∞

because its diffusion in Rd is ergodic and has π(x) = e−V (x) as its invariant
distribution. For this particular SDE, we shall now show that the diffusion has
stationary distribution π(x) = e−V (x). We will use the Fokker-Planck-Kolmogorov
(FPK) equation in Theorem 4.9 to achieve this.

Proof. We only need to put p(x, t) = e−V (x) into FPK equation and check if the
equilibrium holds. Given Equation (5.1), µ(Xt, t) = −∇V (Xt) = −V ′(Xt) and

σ(Xt, t) =
√
2.

Observe that

∂

∂t
p(x, t) = − ∂

∂x
[µ(x, t)p(x, t)] +

∂2

∂x2
[
σ2(Xt, t)p(x, t)

2
]

= − ∂

∂x
[−V ′(x)e−V (x)] +

∂2

∂x2
e−V (x)

= − ∂

∂x
[−V ′(x)e−V (x)] +

∂

∂x
[−V ′(x)e−V (x)]

= 0

□

Interestingly, we can think of choosing V (x) = − log f(x) so that the solution
of Equation (5.1) has f as its invariant distribution. This gives a very natural way
to think of applying this equation into MCMC method. As mentioned above for
several times, we wish to approximate the solution of the SDE by discretization.

One of such method is the Euler-Muruvama method, which is actually very
similar to Euler’s method in approximating ordinary differential equations.
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Theorem 5.2. (Euler-Muruyama method). In a given time t ∈ (0, T ], we can
approximate the solution of Equation (4.1) by letting

X(0) := X0,

X(k+1) := X(k) + µ(X(k), t)ε+ σ(X(k), t)∆Bi+1,

where

ε = ti+1 − ti,

∆Bi+1 = Bti+1 −Bti .

The random increment ∆Bi is computed as ∆Bi = zi
√
∆ti where zi is chosen from

N (0, Id). Note that this gives us a Markov chain.

Applying Euler-Muruyama method to Equation (5.1) with V (x) = − log f(x)
gives the approximation of X(tn) with X(n) where

(5.3) X(n+1) = X(n) + ε∇ log(f(X(n))) +
√
2εZi.

A problem of such discretization is that the ergodic property of the original
SDE is lost, namely f is no longer the invariant distribution of the output samples
{X(n)}n≥0.

8 By this reason, we use the Markov kernel

qLgv(x, ·) := N (x+ ε∇ log f(x), 2εId)

implicitly defined by Equation (5.3) that plays its role in keeping the ergodic prop-
erty.
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