
POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE

WALKS

WEI CAI

Abstract. The theory of the mating-of-trees that encodes graphs as walks is

powerful in allowing one to reduce problems about Schramm-Loewner evolution
(SLE) and Liouville quantum gravity (LQG), to problems about Brownian

motions that are simpler and more well-studied. In this expository paper, we

explore the theory of mating-of-trees bijection for random planar maps and
their lattice walk analogs in Z2. In particular, we study the Mullin bijection

between spanning-tree-decorated planar maps and random walk, as well as
the bijection between site-percolated loopless triangulations and the Kreweras
walk.

Contents

1. Introduction 1
2. Spanning-tree-decorated planar maps 3
2.1. Walking around a spanning tree 4
2.2. Parenthesis systems and random walk in 2D 4
2.3. Mullin’s Bijection 6
3. Site-percolated loopless triangulations 7
3.1. Site-percolations on triangulations 8
3.2. Depth First Search 9
3.3. The Kreweras walk 12
3.4. The bijection 13
4. Extension: Depth First Search Algorithm 16
Acknowledgments 17
References 17

1. Introduction

Interest in the problem of the enumerative theory of planar maps stems from the
early sixties with William T. Tutte’s work on the enumeration of planar triangu-
lations. Over the past years it has seen development in combinatorics, statistical
physics, quantum gravity, enumerative topology and probability theory, which have
started to interact intensely in the last decade.

Deriving closed-form formulas for the number of certain types of planar maps is
difficult, but counting the corresponding lattice walks is often an easier and better-
studied problem. It is also much easier to sample a walk using a computer than
to sample a planar map. The problem hence is simplified into finding the right

Date: August 28, 2023.

1

2 WEI CAI

random walk to construct a bijection from the planar maps. We will first develop
some fundamental concepts about the definitions of maps and then we will move
to investigate the connection between planar maps and lattice walks.

Definition 1.1. A planar map M is a proper embedding of a connected graph
G = (V,E) into the two-dimensional, oriented sphere S, considered up to orientation
preserving homeomorphisms of the sphere S, meaning the vertices are represented
by distinct points and the edges are represented by arcs that only intersect at their
endpoints and agree with the incidence relation of G.

There can be loops and multiple edges. Breaking an edge at the midpoint results
in two half-edges, each incident to one of the endpoints. A face is a connected
component of S \G. A corner is the angular sector delimited by two consecutive
edges around a vertex. Each corner c is incident to a vertex v(c), to a face f(c),
and to two edges: in counterclockwise direction around v(c), let cw(c) denote the
edge preceding c and ccw(c) denote the edge following c. The degree of a vertex or
face is the number of incident corners. A map is a m-angulation if all its faces have
degree m, and in the special cases m = 3, 4, we call the 3-angulations triangulations
and 4-angulations quadrangulations.

The faces of a proper embedding M of a connected graph G in S are simply
connected. In particular the number of vertices v(M), the number of faces f(M)
and the number of edges e(M) of a planar map M follow Euler’s formula:

v(M) + f(M) = e(M) + 2.

In the context of this paper, we don’t need to distinguish between the abstract
graph G (the collection of vertices and edges) and the embedding M of the graph.
We will use M in the rest of the paper to refer to the planar map.

We now discuss the fundamental idea of duality.

Definition 1.2. The dual of a planar map M , denoted M∗, is the map obtained
by drawing a vertex f∗ of M∗ in each face f of M and drawing an edge e∗ of M∗

across each edge e of M .

By construction, each face of M∗ then contains exactly one vertex of M . The
superimposition of a map M and its dual M∗ (with vertices created at the at the
intersection of an edge e of M with its dual e∗) is a quadrangulation ∆(M) called
the derived map of M . Faces of ∆(M) are in one-to-one correspondence with corners
of M . An example of a dual map and a derived map is given in Figure 1.

Theorem 1.3. Duality is an involution on the set of planar maps. It preserves
the number of edges, and exchanges the numbers of vertices and faces: that is,
M∗∗ = M , e(M∗) = e(M), and v(M∗) = f(M).

To better visualize planar maps, the notions of rooted maps and orientation
naturally arise. We want to choose a point x0 of S in a face of M and identify
the punctured sphere S2\{x0} with the plane, sending x0 to infinity. In such a
representation, all faces are homeomorphic to discs, except for the exterior or outer
face containing x0. Depending on the choice of x0 we a priori get different drawings,
but up to orientation-preserving homeomorphisms of the plane, only the choice of
the face in which x0 is chosen matters. Accordingly, let a plane map (M,f) be
a planar map M with a marked face f , so that plane maps are in one-to-one

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 3

Figure 1. The map M , the dual map M∗, and the derived map
∆(M). [4]

correspondence with equivalence classes of proper embeddings of connected graphs
in the plane up to homeomorphisms of the oriented plane.

Definition 1.4. Let a rooted planer map (M, c) be a planar map with a marked
corner c. The root face, root vertex and root edge of (M, c) are then defined to be
f(c), v(c), and ccw(c).

Definition 1.5. A tree is a connected acyclic graph and a rooted tree is a tree
with a vertex distinguished as the root vertex. A vertex v is an ancestor of another
vertex v′ in a tree T if v is on the (unique) path in T from v′ to the root vertex of
T . When v is the first vertex encountered on that path, it is the father of v′. A
leaf is a vertex which is not a father.

Definition 1.6. Given a rooted planar map M , a spanning tree of M is a subset
T of the set of edges of M that forms a tree and that is incident to every vertex of
M (contains every vertex of M). A spanning tree inherits its root from the map.
A tree-rooted map (M,T, c) is thus a rooted map M together with a distinguished
spanning tree T .

If M is rooted with root edge e0, then the dual map M∗ is rooted with root edge
e∗0 oriented from the right of e0 to the left of e0. If T is a spanning tree of M , the
dual tree is the spanning tree T ∗ of M∗ consisting of the dual of the edges of M
not in T . T ∗ is a spanning tree of M∗. Indeed, if T is connected, then T ∗ is acyclic
and vice versa.

Theorem 1.7. Let (T1, T2) be a partition of the edges of a planar map M . Then
T1 is a spanning tree of M if and only if T ∗2 is a spanning tree of M∗.

The trees T1 and T ∗2 are called dual spanning trees (Figure 2) . It should be
noted that the edges of T ∗2 are not the duals of the edges of T1, but rather the
duals of the edges not in T1. Here, the spanning tree and the corresponding dual
spanning tree being mated together is a vivid illustration of the name of the theory
“mating of trees”.

2. Spanning-tree-decorated planar maps

Tree-rooted maps commonly arise in counting problems. To further build some
intuition about standard combinatorics of planar maps, we will start with the Mullin
Bijection.

4 WEI CAI

Figure 2. The superimposition of a map M and its dual map M∗,
and two dual spanning trees. [4]

Figure 3. A counterclockwise contour walk around a spanning
tree, with each corner labelled with the order of visit. [4]

2.1. Walking around a spanning tree. Let (M,T, c) be a tree-rooted planar
map with n edges. The counterclockwise walk around (T1, c) starting and finishing
at the root induces a total order, the order of appearance, on the vertex set and on
the edge set of the tree by traveling on the border of the tree. Each edge is visited
twice during the walk and four symbols can be used to record the four distinct types
of moves during the walk:

• ↑ first time following an edge of the spanning tree
• ↓ second time following an edge of the spanning tree
• → first time crossing an edge not in the spanning tree
• ← second time crossing an edge not in the spanning tree

We call this walk a counterclockwise contour code. An example is given in Figure
3. The transition between corners are: 1→ 2 ↑ 3→ 4 ↑ 5→ 6 ↑ 7 ↑ 8← 9← 10←
11→ 12→ 13 ↓ 14← 15 ↑ 16← 17→ 18← 19→ 20 ↓ 21→ 22→ 23 ↓ 24← 25 ↓
26← 27 ↓ 28←, and thus the contour code is:
→↑→↑→↑↑←←←→→↓←↑←→←→↓→→↓←↓←↓←

2.2. Parenthesis systems and random walk in 2D. A counterclockwise contour
walk can also be viewed as a shuffle of two parenthesis systems, the definition of
which is introduced in this section. A word w on a set A, called the alphabet, is
a finite sequence of elements (called letters) in A. The length of w is denoted |w|
and for a in A, the number of occurrences of a in w is denoted |w|a. A word w
on the two-letter alphabet {a, ā} is a parenthesis system if |w|a = |w|ā and for all

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 5

Figure 4. The random walk corresponding to the word abbābaab̄b̄āāb̄
. [2]

prefixes w′, |w′|a ≥ |w′|ā. For instance, the word aaāaāā is a parenthesis system.
A shuffle of two parenthesis systems (or parenthesis shuffle for short), is a word on
the alphabet {a, ā, b, b̄} such that the subword of w consisting of letters in {a, ā}
and the subword consisting of letters in {b, b̄} are parenthesis systems respectively.
An example is the word abbābaab̄b̄āāb̄.

Shuffles of parenthesis systems can also be mapped to walks in the first quad-
rant. We consider two-dimensional walks with four distinct non-zero straight steps:
{(1, 0), (−1, 0), (0, 1), (0,−1)}. We also impose the restriction that the start and
end point of the walk must be the origin and the walk should remain in the quarter
plane {(x, y) ∈ R2 : x, y ≥ 0} to make it correspond to the shuffle of parenthesis
system. The correspondence can be obtained by considering each letter a as a (1, 0)
step, ā as a (−1, 0) step, b as a (0, 1) step and b̄ as a (0,−1) step. For instance, we
represent the word abbābaab̄b̄āāb̄ in Figure 4.

Corollary 2.1. The number of parenthesis systems of size n (total length 2n) is
the nth Catalan number Cn = 1

n+1

(
2n
n

)
. From this, the number of shuffles of two

parenthesis systems is Sn = CnCn+1.

Proof. We first prove that the number of parenthesis systems of size n is the nth

Catalan number Cn = 1
n+1

(
2n
n

)
. We use the standard terminology “left parenthesis”

and “right parenthesis” instead of a and ā to better visualize a valid parenthesis
system. We know

(
2n
n

)
is the total number of writing n left and n right parentheses

regardless of validity and we want to show
(

2n
n+1

)
is the number of writing invalid

parentheses system.
The parenthesis sequence is valid if when we read from left to right, there are at

least as many left parentheses as right parentheses. Suppose a sequence L is not
valid, then there is a least k where there is a right parenthesis at position k and
equally k−1

2 left and k−1
2 right parentheses before k. If we swap all left parentheses

for right and all right for left in the first k positions of L, we will get a collection
of n+ 1 left parentheses and n− 1 right parentheses. Conversely, given a sequence
of n + 1 left and n − 1 right parentheses, let k be the first position where there
are more left parentheses than right parentheses up to that point. Flipping all left
parentheses for right and all right for left in the first k positions will result back
in an invalid sequence of n left parentheses and n right parentheses since there are

6 WEI CAI

more right parentheses than left up to k. It’s not hard to see that the first and
second mappings are inverse. Therefore, the number of invalid sequences of n left
and n right parentheses is equal to the total number of sequences of n+ 1 left and
n− 1 right parentheses, which is

(
2n
n+1

)
. The number of valid parenthesis systems

of size n is
(
2n
n

)
−
(

2n
n+1

)
= 1

n+1

(
2n
n

)
= Cn.

Given a parenthesis system A of size k on {a, ā} and a parenthesis system B of
size n− k on {b, b̄}, we want to form a combined parenthesis system of size n. For
each k, 0 ≤ k ≤ n, there are

(
2n
2k

)
ways to insert all the letters of A into the merged

parenthesis system. Summing over all k, we get the result:

Sn =

n∑
k=0

(
2n

2k

)
CkCn−k

=

n∑
k=0

(
2n

2k

)
1

k + 1

(
2k

k

)
1

n− k + 1

(
2n− 2k

n− k

)

=

n∑
k=0

1

k + 1

1

n− k + 1

(2n)!

(2k)!(2n− 2k)!

(2k)!

k!k!

(2n− 2k)!

(n− k)!(n− k)!

=
(2n)!

(n+ 1)!2

n∑
k=0

(
n+ 1

k

)(
n+ 1

n− k

)
=

(2n)!

(n+ 1)!2

(
2n+ 2

n

)
=

(2n)!

(n+ 1)!(n+ 1)!

(2n+ 2)!

(n)!(n+ 2)!

=
1

n+ 1

(
2n

n

)
1

n+ 2

(
2n+ 2

n+ 1

)
= CnCn+1.

□

The counterclockwise contour code can be seen as a word w on the alphabet
{↑, ↓,←,→} whose ith letter is the ith move, with the restriction that |w|→ = |w|←
(resp. |w|↑ = |w|↓) and for all prefixes w′ of w, |w′|← ≥ |w′|→ (resp. |w′|↑ ≥ |w′|↓).
Mullin’s bijection essentially states that this encoding is one-to-one.

2.3. Mullin’s Bijection.

Theorem 2.2. The contour code is a bijection between tree-rooted planar maps
(M,T, c) with n edges, and shuffles of parentheses systems on {→,←} and {↑, ↓}
of size n (total length 2n).

Proof. We first consider touring the spanning tree as described in Section 2.1. Recall
that ↑ is the first time we follow an edge of the spanning tree, ↓ second time we
follow an edge,→ first time we cross an edge not in the spanning tree and← second
time we cross an edge not in the spanning tree.

The reverse mapping can be constructed as follows: given a parenthesis shuffle
w, we first create the tree corresponding to the subword of w consisting of letters
{↑, ↓}, which will give the spanning tree. Next, we glue to this tree a head for each
letter → and a tail for each letter ←. There is only one way to connect heads to

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 7

tails to ensure no edges intersect so that the result is a planar map. If the map M
has size n, then the corresponding parenthesis-shuffle w has size n, since |w|↑ is the
number of edges in the tree and |w|→ is the number of edges not in the tree. A
more detailed decomposition of the reverse mapping involves an in-depth discussion
of tree orientation, vertex explosion and non-crossing partitions that are discussed
in [2]. □

This mapping establishes a one-to-one correspondence between tree-rooted maps
of size n and parenthesis shuffles of size n. As a result, there are CnCn+1 tree-rooted
maps of size n.

Corollary 2.3. The number of tree-rooted maps with n edges is

(2.4)
∑

i+j=n
i,j≥0

(
2n

2i

)
CiCj = CnCn+1

This means that the tree-rooted maps of size n are in one-to-one correspondence
with pairs of plane trees of size n and n+ 1 respectively.

Let (M, c) be a rooted planar map, T be a spanning tree of M and T ∗ be the
dual spanning tree of M∗. It can further be observed that counterclockwise walk
around the spanning tree T is simultaneously a clockwise walk around T ∗. Using
the same symbol as the counterclockwise contour code, we can define the clockwise
contour code of the rooted map (M∗, c) with the tree T ∗.

Proposition 2.5. The total order induced by the counterclockwise walk around T
starting from c in M is identical to the total order induced by the clockwise walk
around T ∗ starting from c in M∗, as illustrated in Figure 5. In particular the
counterclockwise contour code of (M, c) with T and the clockwise contour code of
(M∗, c) with T ∗ are mapped onto the other by exchanging ↑ ⇔ ← and ↓ ⇔ → (first
time crossing an edge exchanged with first time going along an edge and second time
crossing an edge exchanged with second time going along an edge).

Proof. If we draw the contour walk as a curve C traveling between the spanning
tree T and the dual spanning tree T ∗ in the superimposition of M and M∗, the
intersections of the curve C with edges of M\T and M∗\T ∗ create a quadrangle
of four vertices in the middle of every half-edge of M and M∗ that is not in T or
T ∗. In the superimposition of M\T , M∗\T ∗ and C, each of these new vertices is
adjacent to three other new vertices (two along C and one along an edge of M\T
or M∗\T ∗) and to one vertex of M or M∗. We call each quadrangle Q.

We first prove that the dual spanning tree to T ∗ is T itself. If T ∗∗ is the dual
spanning tree to T ∗, then the edges of T ∗∗ correspond to edges of M∗∗ which don’t
cross an edge of T ∗. The edges of T ∗ are the edges of M∗ which don’t cross an edge
of T . Therefore, T ∗∗ is exactly T . Hence, the quadrangle Q used in building the
contour walk for (M,T) is the same as the quadrangle used when doing the contour
walk with (M∗, T ∗), except now when we build the contour, passage through a
quadrangle bisected by T ∗ corresponds to ↑/↓ and passage through one bisected by
T corresponds to ←/→. □

3. Site-percolated loopless triangulations

In this section, we will explore a different bijection between maps and walks.

8 WEI CAI

Figure 5. The contour walk between a spanning tree and its dual. [4]

3.1. Site-percolations on triangulations. As defined above, a triangulation is a
planar map in which every face has degree 3 and a cubic map is a map such that every
vertex has degree 3 . A loopless triangulation is a triangulation without self-loops,
but multiple edges between two vertices are still allowed. A near-triangulation
is a planar map in which all faces except one have degree 3 and we can always
arbitrarily choose the outer face to be the face which doesn’t have degree 3. A
near-triangulation such that the boundary of the root face is simple (that is, without
cut points) is a triangulation with a simple boundary. We denote the set of rooted
loopless triangulations with a simple boundary by T .

A site-percolation configuration on a planar map M is any coloring of its vertices
in black or white. A site-percolated planar map (or percolated map for short) (M,σ)
consists of a planar map M and a site-percolation configuration σ. An edge of
(M,σ) is unicolor if its endpoints are of the same color, and bicolor otherwise.
Keeping only unicolor edges of (M,σ) gives a disjoint union of planar maps called
percolation clusters that could be either black or white.

Now suppose M is a near-triangulation. Each inner triangle of (M,σ) is either
unicolor, meaning all of its vertices have the same color, or bicolor, meaning it is
incident to two bicolor edges. Drawing in each bicolor triangle a curve joining the
middle of the two incident bicolor edges results in a set of disjoint curves, which we
call percolation interfaces. If a percolation interface is a cycle, we call it a percolation
cycle. Otherwise, it is a path starting and ending on the boundary of M , which
we call a percolation path. The percolation interfaces separate the clusters of black
and white vertices of M , as shown in Figure 6. Note percolation interfaces are also
simple paths and cycles on the dual map M∗. The length of a percolation interface
is the number of triangles of M it crosses.

We say a site-percolated near-triangulation (M,σ) satisfies the root-interface
condition if the root-edge is oriented from a white vertex to a black vertex, and no
other outer edge goes from a white vertex to a black vertex in the counterclockwise
direction around the root face. We denote the set of such (M,σ) by TP .

For any (M,σ) ∈ TP , the percolation path connects the root-edge to another
bicolor outer edge and the latter is called the top-edge. The white and black
endpoints of the top-edge are called the top-left and top-right vertices respectively.

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 9

Figure 6. (a) A rooted triangulation with a simple boundary
M ∈ T . (b) The rule for drawing the percolation interfaces. (c) A
site-percolation configuration σ on M , with the percolation cycles
and paths indicated in red lines. The configuration satisfies the
root-interface condition. (M,σ) is in TP and (M,σ) = Φ(w) for
w = abbaabbcaccbcaaaabcbbbbacacc as defined in Definition 3.8. [3]

The white and black outer vertices are called the left vertices and right vertices
respectively, while the unicolor white and unicolor black outer edges are called left
edges and right edges. An example is given in Figure 6.

3.2. Depth First Search. We now introduce a popular algorithm called the depth-
first search algorithm (DFS) and DFS trees.

Definition 3.1. Let G be a connected graph and v0 a vertex. A depth-first search
of G starting at v0 is a visit of its vertices by a “chip” according to the following
rule. At the beginning of the process, the chip is placed at v0 and the vertex v0
is considered “visited”, while all the other vertices are “unvisited”. We repeat the
following step, and let u denote the current position of the chip:

• If there exists some edge between u and an unvisited neighbor v, we choose
such an edge e = {u, v} and move the chip from u to v. Then we mark v
as visited, call u the parent of v and e the parent edge of v.
• If there is no unvisited neighbor for the current vertex u and if u ≠ v0,
the chip moves back to the parent of u and explores any other unvisited
neighbor of the parent of u. On the other hand, if u = v0, which means all
reachable vertices have been visited, the depth first search finishes.

It should be noted that the tree associated to a depth first search is the spanning
tree of G made of the set T of all the parent edges.

Next, we define a set of DFS trees and a set of percolation configurations.

Definition 3.2. Let M be a near-triangulation in T and let M∗ be the dual map.
Let v0 be the root vertex of M∗. An inner coloring of M is a coloring of the inner
vertices of M in black or white. We denote the set of inner colorings of M by PercM
and the set of DFS trees T of M∗ rooted at v0 such that the root-edge e∗0 of M∗ is
in T by DFSM∗,v0 .

It can been proven that a spanning tree T of G can be obtained by a DFS of G
starting at v0 if and only if for any two adjacent vertices of G, one of the vertices

10 WEI CAI

Figure 7. Given forward face f of M∗, left forward edge e2 and
right forward edge e3, in a DFS defined in Definition 3.3, e2 is
chosen if f is black and e3 is chosen otherwise. [3]

is the ancestor of the other in the tree T . We call such a tree a v0-DFS tree of
G. It’s not hard to discover that for all M ∈ T , the trees in DFSM∗,v0

contain no
edge incident to v0 apart from the root-edge e∗0. Otherwise v0 would have several
children and the characterization of v0-DFS trees would be violated. This implies
that during a DFS of M∗ starting at v0, the chip doesn’t visit v0 except at the first
and last step. For each visited vertex v ̸= v0, we consider the incident edges e1, e2,
e3 in clockwise order around v. We call e1 the parent edge of v, e2 the left forward
edge of v and e3 the right forward edge. The face f containing the corner between
e2 and e3 is the forward face of v.

We now define the bijection ∆M between PercM and DFSM∗,v0 .

Definition 3.3. Given an inner coloring σ◦ ∈ PercM , we consider the corresponding
coloring of the faces of M∗ with the convention that the faces of M∗ dual to the
outer vertices of M are colored white. We define ∆M (σ◦) as the spanning tree of
M∗ obtained by the DFS of M∗ defined as follows:

(1) The chip starts at the root vertex v0 of M and first moves along the root
edge e∗0 of M∗.

(2) If several edges are possible when moving to an unvisited neighbor v from
the current position u, if the forward face f is black, the chip moves along
the forward left edge. Otherwise, the chip moves along the forward right
edge. This is explicitly illustrated in Figure 7.

We can now state the bijection between DFS trees and percolation configurations.

Definition 3.4. Given a v0-DFS tree T ∗ ∈ DFSM∗,v0 , and the dual spanning tree
T of M , we define a coloring ΛM (T ∗) of M as follows. Let u be an inner vertex of M .
Let e be the parent-edge of u in the spanning tree T of M . The edge e∗ ∈M∗ \ T ∗
joins a vertex v1 to one of its descendents v2 in T ∗. If the edge e∗ is on the left of
the path of T ∗ from v0 to v2 at v1, we color u white. Otherwise, we color u black.
An example is illustrated in Figure 8.

From the above mapping, we obtain the following theorem

Theorem 3.5. The mapping ∆M is a bijection from PercM to DFSM∗,v0 and ΛM

is its inverse. An example is shown in Figure 9. Moreover, for any site-percolation
configuration σ of M that satisfies the root-interface condition and for any inner
coloring σ◦ ∈ PercM that agrees with coloring of σ, the tree T ∗ = ∆M (σ◦) satisfies
these properties:

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 11

Figure 8. An edge e∗ of M∗ is incident to the face u∗ such that
the cycle inside T ∗ ∪ {e∗} separates u∗ from the root face, with v1,
v2 being the endpoints of e∗ and v1 being the ancestor of v2. u is
colored white if e∗ is on the left of T ∗ at v1 and black otherwise.
[3]

Figure 9. Left: An inner coloring σ◦ ∈ PercM represented as a
coloring of the faces of M∗ not incident to the root vertex v0. Right:
The v0-DFS tree T ∗ = ∆M (σ◦). [3]

.

(1) The percolation path of (M,σ) is contained in T ∗.
(2) For any percolation cycle C of (M,σ), every edge of C except one is in T ∗.
(3) Consider the coloring of the faces of M∗ corresponding to the configuration

σ. Any edge of T ∗ separating a black face and a white face of M∗ has the
white face on its left when oriented from parent to child.

Proof. The following proof is outlined in [3]. We first prove that ∆M is injective.
Let σ◦1 , σ

◦
2 be distinct inner colorings of M and let F be the set of faces of M∗

having different colors in σ◦1 and σ◦2 . Let u be the first vertex of M∗ incident to a
face in F encountered during the DFS of M∗ corresponding to ∆M (σ◦1). It is clear
that u is also the first vertex of M∗ incident to a face in F encountered during the
DFS corresponding to ∆M (σ◦2). It can also be observed that the parent-edge e1 of u
is the same in ∆M (σ◦1) and ∆M (σ◦2). The trees ∆M (σ◦1) and ∆M (σ◦2) each contain
a different forward edge of u due to their different colorings as a direct result of
Definition 3.3 (2). Hence ∆M (σ◦1) ̸= ∆M (σ◦2) and ∆M is injective.

Next we want to show ∆M ◦ ΛM = Id. Let T ∗ ∈ DFSM∗,v0 , σ
◦ = ΛM (T ∗), and

T ′ = ∆M (σ◦). Suppose by contradiction that T ′ ̸= T ∗. Let e be the first edge
in T ′\T ∗ added to T ′ during the DFS corresponding to ∆M (σ◦). Let u, v be the
endpoints of e, with u being the parent of v in T ′. Note that the path P from v0 to

12 WEI CAI

u is the same in T ∗ and in T ′ (by the choice of e). Let e1 be the parent edge of u in
T ∗ (or equivalently in T ′). Let f be the forward face at u and let e2 and e3 be the
left-forward and right-forward edges respectively. Equivalently, e1, e2 and e3 are
the edges incident to u in clockwise order, with e1 in P and f being the face of M∗

between e2 and e3. We know that for vertices u and v, one is the ancestor of the
other in T ∗ and moreover v cannot be an ancestor of u in T ∗ because it is not on P .
Hence v is a descendent of u in T ∗. Let Q be the path of T ∗ from u to v. Observe
that Q ∪ {e} forms a cycle of M∗ and P and f are on different sides of this cycle
because the paths P , Q ⊂ T ∗ cannot cross. In particular, f is not incident to v0
and hence f is the dual of an inner face of M . In fact, u is the first vertex incident
to f encountered during the DFS corresponding to ∆M (σ◦). Thus by definition of
∆M , the face f is black if e = e2 and white if e = e3. However, by definition of ΛM ,
the face f is white if e = e2 and black if e = e3, which is a contradiction. Hence
T ′ = T ∗ and ∆M ◦ ΛM = Id. Given ∆M is injective, we see that ∆M is a bijection
and ΛM is the inverse mapping.

Finally, we proceed to prove the three properties about percolation interfaces.
From the definitions, the chip will visit all the vertices on the percolation path from
v0 to its other end before visiting any other vertex, which proves (1). Similarly,
given any percolation cycle C of (M,σ), we consider the first time the DFS reaches
a vertex v of M∗ on the cycle. In the next steps, the chip will follow the edges of
the cycle C starting at v without visiting any vertex not on C until it reaches the
second neighbor of v on C and this proves (2). To prove (3), the direction in which
the percolation interface C is followed is such that the black faces are on the right
and the white faces are on the left, which concludes the proof. □

3.3. The Kreweras walk. In this section, we consider the set of walks in corre-
spondence with the site-percolations on triangulations defined above. The set of
Kreweras walks, denoted K, is referred to as the set of lattice walks in the Z2 plane
starting from the origin, staying in the first quadrant and consisting of three kinds
of steps: {a = (1, 0), b = (0, 1), c = (−1,−1)}. In addition, we denote the finite
words that are in one-to-one correspondence with a Kreweras walk as the set W on
the alphabet {a, b, c} with the restriction that any prefix w′ of the word contains
no more c’s than a’s and than b’s. Equivalently, |w′|a ≥ |w′|c, |w′|b ≥ |w′|c.

For a word w = w1w2...wn ∈ W , we say wi is an a-step (resp. b-step, c-step) if
wi = a (resp. wi = b, wi = c). An a-step wi and a c-step wk are matching if there
are as many a-steps and c-steps in each subword wiwi+1...wk for i < k, and there
are strictly more a-steps than c-steps in wiwi+1...wj for i ≤ j ≤ k − 1. Visually,
the subwalk wiwi+1...wk stays strictly to the right of w1w2 . . . wi and w1w2 . . . wk.

Each a-step or b-step has at most one matching c-step and those without a
matching c-step are called unmatched. Each c-step has at most one matching a-step
and at most one matching b-step, the absence of one of which makes the c-step
unmatched. In the special case of w ∈ K, every c-step is matched. If a walk w ∈ K
has x unmatched a-steps and y unmatched b-steps, then it ends at the point (x, y).

A c-step wk is of type a if wk has a matched b-step wj and either no matching
a-step or a matching a-step wi with i < j. Similarly, a c-step wk is of type b if wk

has a matched a-step wi and either no matching b-step or a matching b-step wj

with j < i.

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 13

Corollary 3.6. The number of walks of length 3n beginning and ending at the
origin is

(3.7) kn =
4n

(n+ 1)(2n+ 1)

(
3n

n

)
Proof. Unlike the proof provided in Corollary 2.1, this closed-form expression has
no simple proof. A constructive proof was shown by Bousquet-Melou in 2015 [6],
but a simpler derivation and a more direct combinatorial explanation are yet to be
provided. □

3.4. The bijection.

Definition 3.8. For a walk w ∈ K, (M,σ) = Φ(w) is constructed in the following
way: For w = w1w2...wn, we define Φ(w) = ϕwn

◦ ϕwn−1
◦ · · · ◦ ϕw1

(M,σ0), where
(M,σ0) ∈ TP is a percolated map with a single root-edge going from a white vertex
to a black vertex, and for each step wi ∈ {a, b, c}, ϕwi

obey the following rules,
which are further illustrated in Figure 10. An example of the bijection Φ is presented
in Figure 11.

• If wi = a, the map ϕa(M,σ) is obtained by gluing a triangle with two white
vertices and one black vertex to the top-edge of (M,σ).
• If wi = b, the map ϕb(M,σ) is obtained by gluing a triangle with two black
vertices and one white vertex to the top-edge of (M,σ).
• If wi = c, for (M,σ) ∈ TP having both a left edge and a right edge, we
define ϕc(M,σ) as follows: Let el be the left edge incident to the top-left
vertex vl, and let er be the right edge incident to the top-right vertex vr.
Let P be the percolation path of (M,σ) and consider P as starting at the
root-edge and ending at the top-edge e. By definition of TP , the inner
triangles tl and tr incident to el and er respectively are on P ; one of them
t ∈ {tl, tr} is the last triangle on P incident to a left or right edge. If t = tr,
then we recolor the vertex vr in white and glue the edges e and el together
so that vl becomes an inner white vertex. Symmetrically, if t = tl, then we
recolor the vertex vl in black and glue the edges e and er together so that
vr becomes an inner black vertex.

Next we introduce some more detailed corresponding concepts between the steps
of w ∈ K and the vertices, faces and edges of (M,σ), which follow naturally from
the construction of Φ(w) and will be used in statement of Theorem 3.10.

Definition 3.9. Let w = w1w2...wn ∈ K and (M,σ) = Φ(w) = ϕwn ◦ ... ◦
ϕw1

(M,σ0).

• We call the in-edges of (M,σ) the edges which are neither a left edge, a
right edge nor the top-edge. Let E be the set of in-edges of (M,σ). We
define the mapping ηE from {1, 2, .., n} to E as follows: For each i, applying
ϕwi makes the top edge an in-edge e of (M,σ) and we set ηE(i) = e.
• Let V and F be the sets of inner vertices and inner triangles of M respec-

tively. We define the mapping ηV F from {1, 2, .., n} to V ∪ F as follows: if
wi is an a-step or b-step, then applying ϕwi

adds one inner triangle f to
(M,σ) and we set ηV F (i) = f . If wi is a c-step, then applying ϕwi

adds one
inner vertex v to (M,σ) and we set ηV F (i) = v.
• For an unmatched a-step (resp. b-step) wi, the triangle ηV F (i) is incident
to a left (resp. right) edge e of (M,σ) and we set ηLR(i) = e.

14 WEI CAI

Figure 10. The mappings ϕa, ϕb and ϕc. For ϕc, the case where
P crosses the triangle t = tr is shown on the left and the other case
on the right. [3]

Figure 11. Bijection Φ for the word w = abbaabbcaccbcac. [3]

Theorem 3.10. The mapping Φ is a bijection between K and TP . For a walk
w ∈ K and its image Φ(w) = (M,σ), we have:

(1) The mapping ηE gives a one-to-one correspondence between the steps of w
and the in-edges of (M,σ).

(2) The mapping ηV F gives a one-to-one correspondence between the a-steps
and b-steps of w and the inner triangles M . The mapping ηV F also gives
a one-to-one correspondence between the c-steps of w of types a (resp. b)
with the white (resp. black) inner vertices of (M,σ).

(3) The mapping ηLR gives a one-to-one correspondence between the unmatched
a-steps (resp. b-steps) of w and the left (resp. right) edges of (M,σ).

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 15

Proof. See below. □

The proof of this theorem is based in the “dual” setting of near-cubic maps
instead of near-triangulations. Cubic maps are maps such that every vertex has
degree 3 and near cubic maps are maps such that every non-root vertex has degree
3. To understand the proof, we need to define another mapping Ω between the set
of Kreweras walks K and the set CT of near-cubic maps with a marked spanning
tree.

Definition 3.11. Let C = (M∗, e∗, T ∗) ∈ CT , let v0 be the root vertex of M∗ and
let v be the head vertex.

• The image Ωa(C) (resp. Ωb(C)) is obtained from C by replacing e∗ by a new
vertex u incident to three new edges e1, e2 and e3 in clockwise order around
u, with e1 joining u to v, and e2, e3 joining u to v0. The edge e1 is added
to the tree T ∗ and the edge e3 (resp. e2) becomes the new head-edge.
• If wi is a c-step, we consider the edges e∗l and e∗r that precede and follow

the head edge e∗ in counterclockwise order around v0. The image Ωc(C) is
only defined if the edges e∗l and e∗r are both distinct from the root edge of
M∗ and we consider the non-root endpoints vl, vr of e∗l and e∗r . Since T ∗ is

in DFSe
∗

M∗ , the vertices vl, vr are both ancestors of the head vertex v and
one is an ancestor of the other. If vl is an ancestor of vr, Ωc(C) is obtained
by deleting e∗ and e∗l , and replacing them by an edge between v and vl,
while e∗r becomes the new head edge. If vr is an ancestor of vl, Ωc(C) is
obtained by deleting e∗ and e∗r , and replacing them by an edge between v
and vr, while e∗l becomes the new head edge.

Theorem 3.12. The mapping Ω as defined above is a bijection between K and CT .

Proof of Theorem 3.10. We will provide a brief summary of the result proven by
Bernardi [1].

For a non-root outer edge e of M , we denote by PerceM the set of site-percolation
configurations of M satisfying the root-interface condition such that e is bicolor,
and such that the percolation path visits every inner triangle of M incident to an

outer edge. For a non-root outer edge e∗ of M∗ incident to v0, we denote by DFSe
∗

M∗

the set of trees T ∗ ∈ DFSM∗,v0
such that the non-root vertex v1 incident to e∗

is the descendant in T ∗ of every vertex of M∗ adjacent to v0. For T ∗ ∈ DFSe
∗

M∗ ,
we denote by Λe∗

M (T ∗) the unique site-percolation configuration of M that extends
the inner-coloring σ◦ = ΛM (T ∗) and satisfies the root-interface condition with a
bicolor.

Recall that CT is the set of triples (M∗, e∗, T ∗) where M∗ is the dual of a near-
triangulation M ∈ T , e∗ is an edge of M∗ incident to the root-vertex v0 and T ∗ is in

DFSe
∗

M∗ . We call e∗ the head edge and the point of e∗ distinct from v0 the head vertex.
We also define M∗0 to be the rooted map with one vertex and one self-loop, with e∗0
as the root-edge and T ∗0 as the unique spanning tree. For w = w1w2...wn ∈ K, the
image Ω(w) is defined as the triple (M∗, e∗0, T

∗) = Ωwn
◦ ... ◦Ωw2

◦Ωw1
(M∗0 , e

∗
0, T

∗
0).

It can be shown that the composition of the bijection Ω with the mapping Λe∗

M is
equal to the mapping Φ. More precisely, for a walk w ∈ K, if Ω(w) = (M∗, e∗, τ∗),
then Φ(w) = (M,σ), where σ = Λe∗

M (τ∗). This shows that Φ is a bijection between
K and TP , which concludes the proof. □

As a consequence, we get the following corollary.

16 WEI CAI

Corollary 3.13. The number of cubic maps of size n with a distinguished DFS
tree is

(3.14) dn = kn =
4n

(n+ 1)(2n+ 1)

(
3n

n

)
4. Extension: Depth First Search Algorithm

On top of being an algorithm for constructing a spanning tree of a graph, the
DFS algorithm is one of the several essential graph algorithms for traversing graphs
and answering theoretical questions in combinatorial theory.

We revisit the DFS algorithm proposed by Tarjan [7] as a fundamental method to
traverse a graph G = (V,E). DFS follows paths as far as possible: from a vertex v
already reached, we proceed to any neighboring vertex w which has not been visited;
then we go from w to another vertex not yet visited as long as this is possible. If
we cannot move on, we backtrack as much as necessary until we are back to the
initial vertex v0. In this way, one constructs maximal paths starting at v0. In the
process, we label the vertices with numbers nr according to the order in which they
are visited, and we call the vertex from which a vertex w is accessed p(w). u(vw)
is used to denote whether the edge between vertex v and w has been reached.

Algorithm 1 Depth First Search

Require: G = (V,E) be a graph and v0 ∈ V a vertex of G
for v ∈ V do

nr(v)← 0
p(v)← 0

end for
for e ∈ E do

u(e)← false
end for
i← 1
v ← v0
nr(v0)← 1
repeat

while there exists w ∈ Av with u(vw) = false do
u(vw)← true for some w ∈ Av with u(vw) = false
if nr(w) = 0 then

p(w)← v
i← i+ 1
nr(w)← i
v ← w

end if
v ← p(v)

end while
until v = v0 and u(v0w) = true for all w ∈ Av0

It is not hard to see that each edge in the connected component of v0 is used
exactly once in each direction during the execution of Algorithm 1. DFS indeed
can be used to traverse a connected graph and solve real-world problems such as

POWERFUL BIJECTIONS FOR PLANAR MAPS AND LATTICE WALKS 17

finding the exit of a maze, rendering it one of the most powerful graph traversal
algorithms.

Acknowledgments

I would like to sincerely thank my mentor, Charley Devlin, for clarifying my
doubts on the topics discussed in this paper, guiding me along the way and providing
me with extremely detailed feedback on my draft. I would also like to express my
gratitude to Professor Ewain Gwynne for his lecture series on site percolation that
gave inspiration to the second part of this paper. Finally, I am grateful for the hard
work of Professor Peter May in organizing the 2023 University of Chicago Math
REU program during which this paper was written.

References

[1] O. Bernardi. Bijective counting of Kreweras walks and loopless triangulations. Journal of

Combinatorial Theory, Series A, 114(5):931–956,2007.
[2] O. Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Electron.

J. Combin., 14(9), 2006.

[3] O. Bernardi, N. Holden, X. Sun. Percolation on triangulations: a bijective path to Liouville
quantum gravity. Memoirs of the American Mathematical Society, 289(1440), 2023.

[4] M. Bona. Handbook of Enumerative Combinatorics. CRC Press, 2015.

[5] E. Gwynne, N. Holden, X. Sun. Mating of trees for random planar maps and Liouville quantum
gravity: a survey. https://doi.org/10.48550/arXiv.1910.04713.

[6] M. Bousquet-Melou. Walks in the quarter plane: Kreweras’ algebraic model. The Annals of

Applied Probability, 15(2):1451–1491, 2005.
[7] R.E.Tarjan. Depth first search and linear graph algorithms.SIAM J.Comp.1,146–160, 1972.

	1. Introduction
	2. Spanning-tree-decorated planar maps
	2.1. Walking around a spanning tree
	2.2. Parenthesis systems and random walk in 2D
	2.3. Mullin's Bijection

	3. Site-percolated loopless triangulations
	3.1. Site-percolations on triangulations
	3.2. Depth First Search
	3.3. The Kreweras walk
	3.4. The bijection

	4. Extension: Depth First Search Algorithm
	Acknowledgments
	References

