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Abstract. An algebraic variety is the solution set to a system of polynomial equations.

The study of algebraic varieties is considerably complicated by the fact that varieties are

not, in general, smooth manifolds; indeed, the equation xy = 0 in R2
defines an algebraic

variety which is evidently not a manifold. In this paper, we explain tools for understanding

the topology of algebraic varieties, focusing on the locally cone-like structure of varieties,

and on the Milnor fibration.
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1. Introduction

Algebraic geometry is the study of algebraic varieties, which are solution sets to systems

of polynomial equations (in much the same way that linear algebra is the study of solution

sets to systems of linear equations).
What do algebraic varieties look like?

For instance, consider the complex algebraic variety

V = {(x, y) ∈ C2 | y2 = x3}.

The classical implicit function theorem can be used to show that V is mostly a man-

ifold. Specifically, V \ {0, 0} is a 1-dimensional complex manifold (that is, it is locally

biholomorphic to the unit ball U = {z ∈ C | |z| < 1}).
What is the topology of V near (0, 0), though? Brauner (cf. [2], section 1) made the

following remarkable observation.

Definition 1.1. Let X be a topological space. The cone on X , which we will denote by

Cone(X), is the space

Cone(X) = (X × [0, 1])/(X × {0})
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obtained by taking a cylinder on X and then crushing one face of it to a point; this point

is called the cone point of Cone(X).

Definition 1.2. A triple of topological spaces is a triple (X,Y, Z) where Z ⊆ Y ⊆ X. A
homeomorphism of triples

ϕ : (X,Y, Z) → (X ′, Y ′, Z ′)

is a homeomorphism ϕ : X → X ′
so that ϕ|Y is a homeomorphism between Y and Y ′,

and ϕ|Z is a homeomorphism between Z and Z ′.

Theorem 1.3 (Brauner). Let ϵ > 0, and let

Sϵ = {z ∈ C | |z| = ϵ},

Dϵ = {z ∈ C | |z| ≤ ϵ}
be the radius ϵ sphere and closed ball, respectively.

LetK ⊆ S3 denote a trefoil knot embedded in S3.The mapK ↪→ S3 induces a natural
inclusion Cone(K) ↪→ Cone(S3). Let ∗ denote the cone point of Cone(S3).

For all sufficiently small ϵ, there is a homeomorphism of triples

(Dϵ, Dϵ ∩ V, 0) ∼= (Cone(S3),Cone(K), ∗).

Proof. See [2], the unnumbered assertion on page 4. But if the reader recalls that a trefoil

knot is also a (2, 3)-torus knot, it is not so hard to directly prove this. □

In 1968, Milnor published a vast generalization of Theorem 1.3.

Milnor’s setting is as follows. Take V ⊆ Cn+1
any complex algebraic variety; that is,

some solution set to a system of polynomial equations over the complex numbers.

Milnor was interested in studying the local topology of V. Specifically, let p ∈ V be a

point, and U ∋ p some neighborhood of p in Cn+1. Milnor was interested in studying the

homeomorphism type of the triple (U,U ∩ V, p), just as Brauner did in the case where V
was given by y2 = x3.

The implicit function theorem can be used on the system of polynomial equations

defining V to prove that V is mostly a manifold, in the sense that for almost any point p of
V, every sufficiently small neighborhoodU of p is such that (U,U∩V, p) ∼= (R2n+2,Rd, 0),
for some integer d ≤ 2n+ 2.

Definition 1.4. A singularity of a complex algebraic variety V ⊆ Cn+1
is a point p of

V so that, for U any small neighborhood of p in Cn+1, the intersection U ∩ V is not a
(smooth) submanifold of Cn+1.

We write Σ(V ) for the set of all singularities of V.

Remark 1.5. This definition of singularity is a little different than the one given in a

standard course, however over C our definition is equivalent to the standard one, cf. [2],

page 13.

Example 1.6. If V is the variety y2 = x3 of Theorem 1.3, then

Σ(V ) = {(0, 0)}.

Theorem 1.3 showed that, despite the origin being a singularity of the variety y2 = x3,
we could still quite concretely describe the topology of that variety near the origin. Quite

miraculously, Milnor was able to show that the phenomenon observed in Theorem 1.3 is

just the starting point of a very deep story connecting knot theory and algebraic geometry.



SINGULARITIES, MILNOR FIBRATIONS, AND VANISHING CYCLES 3

In the course of this paper, for proofs we will mostly follow Milnor, and study isolated
singularities. However, there is still an incredibly rich theory for non-isolated singulari-

ties, and we will state (mostly without proof) the results in the general case. Our hope

is to motivate the general statements by comparison with the special case of isolated

singularities.
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2. The topology of a variety near a singular point

We start with a very general result describing the local topology of algebraic varieties.

Theorem 2.1. Suppose V is a real or complex affine variety (meaning V is the solution set
to a system of polynomial equations in n real or complex variables). Take x0 ∈ V an isolated

point of Σ(V ), and let Dϵ(x0) denote the closed ball of radius ϵ at x0.
For every sufficiently small ϵ, the intersection V ∩Dϵ(x0) is homeomorphic to the cone

over
K = V ∩ Sϵ(x0).

In fact, there is a homeomorphism of triples

(2.2) (Dϵ(x0), V ∩Dϵ(x0), x0) ∼= (Cone(Dϵ(x0)),Cone(K), ∗),

for ∗ the cone point of C(Dϵ(x0)).
The topological spaceK will be a manifold. The homeomorphism (2.2) can be chosen such

that it becomes a diffeomorphism when you remove the cone point of Cone(K) and the point
x0 from V ∩Dϵ(x0).

This section will be dedicated to a proof of Theorem 2.1. Before we can state it, we

make two remarks.

Firstly, Theorem 2.1 only applies to isolated singularities. However, there is a generaliza-

tion ofTheorem 2.1 to arbitrary varieties; this is called the theory ofWhitney stratifications,
which we explore later.

Secondly, Theorem 2.1 tells us nothing about the topology of the setK.The rest of this

paper will contain a more detailed study ofK.
As complex varieties are also real varieties of double the dimension, it suffices to prove

the result in the real case ofTheorem 2.1. We now start our proof of Theorem 2.1, assuming

V is a real variety, and x0 is some isolated singularity.

Notation 2.3. For convenience, we setM1 := V \Σ(V ) the set of all nonsingular points
in V.
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2.1. Step 1: topological preliminaries. We start by showing thatK is a manifold for

small ϵ > 0.

Lemma 2.4. Every sufficiently small sphere Sϵ(x0) intersects V in a smooth manifold (or
the empty set).

Furthermore, the intersection is transverse: every vector based at a point on V ∩Sϵ can be
written (perhaps not uniquely) as a sum of a vector tangent to V and a vector tangent to Sϵ.

Proof. Define
g(x) = ||x− x0||2.

Themap g is a polynomial in x (which is why we use squared distance instead of distance);

it is a classical, but slightly technical, fact that any polynomial on the smooth locus

M1 = V \ Σ(V ) of V has finitely many critical points; see lemma 2.7 of [2].

As there are only finitelymany critical points, for sufficiently small ϵ, themap g|M1∩Dϵ(x0)

will have no critical points—except possibly for a critical point at x0—as we may just

shrink ϵ until it is smaller than the distance between x0 and the closest critical point to x0.
The regular value theorem of differential topology then tells us that

(g|M1∩Dϵ(x0))
−1(ϵ) = Sϵ(x0) ∩M1

will be a smoothmanifold of codimension 1 in V . But recall that x0 is an isolated singularity,
and so for ϵ sufficiently small, we have

Sϵ(x0) ∩M1 = Sϵ(x0) ∩ V,
as there will be no singularities of V located within ϵ of x0 except for x0 itself. In particular,

K = Sϵ(x0) ∩ V = Sϵ(x0) ∩M1 = (g|M1∩Dϵ(x0))
−1(ϵ)

is a smooth manifold of codimension 1 in V, as desired.
Transversality is equivalent to the claim that, for any point p ∈ K = Sϵ(x0) ∩ V, we

have

(2.5) TpSϵ(x0) + TpV = TpRn.

Since TpSϵ(x0) has codimension 1 in Rn
(as is immediate from directly computing the

tangent space of a sphere!), the only way the sum in (2.5) can fail to span TpRn
is if

TpV ⊆ TpSϵ(x0).
At the start of the proof of this lemma, we chose ϵ small enough so that p is a regular

point of the map

r :M1 ∩Dϵ(x0) → R.
In particular, the differential of r at p is rank 1. In other words, there is some tangent

vector

v ∈ Tp(M1 ∩Dϵ(x0))

so that moving along v causes a change in r; in particular, v ̸∈ TpSϵ(x0), since Sϵ(x0) is
the level set of r. But, asM1 ⊆ V, we find that

Tp(M1 ∩Dϵ(x0)) ⊆ TpV,

and so v ∈ TpV is a tangent vector not contained in TpSϵ(x0).Thus TpV ̸⊆ TpSϵ(x0),
which as explained above implies

TpSϵ(x0) + TpV = Rn,

our desired transversality. □

So, we restrict attention to ϵ sufficiently small so that K is a smooth manifold and

Dϵ(x0) contains no singular points of V except x0.
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2.2. Step 2: constructing a vector field. The rest of our proof will use a strategy common

in Riemannian geometry: to construct the homeomorphism posited by Theorem 2.1, we

will construct a certain vector field on Dϵ(x0), and then flow along it.

Definition 2.6. If M is a manifold and v : M → TM is a vector field on M, then
an integral curve of v is a curve c : I → M, for some time interval I ⊆ R, so that

c′(t) = v(c(t)).The flow generated by v is the map

Φ :M × R →M

generated by sending (p, t) to cp(t), where cp : R → M is the integral curve obeying

cp(0) = p.
We remark that the flow of a vector field does not always exist, since in general solutions

to ODEs exist only in a small time interval.

We start by constructing a vector field ξ : Dϵ(x0) \ {x0} → Rn
on the punctured disk

Dϵ(x0)− {x0} which has two properties:

(1) for every x ∈ Dϵ(x0) \ {x0}, we have ⟨ξ(x), x− x0⟩ > 0,
(2) and ξ(x) always lies tangent toM1 (recall Notation 2.3) whenever x ∈M1.

The first property is used to ensure that flowing along an integral curve of ξ will always
get you closer to x0, and the second property is used to ensure that an integral curve

which originates from a point ofM1 will never leaveM1.
To define ξ,we construct vector fields obeying these two conditions locally, and then use

a partition of unity to patch the resulting vector fields together. For each p ∈ Dϵ(x0)\{x0},
we will define an open set Up ⊆ Dϵ(x0) \ {x0} and a vector field ξp : Up → Rn

on Up

as follows.

If p ̸∈ V, then just define Up = Dϵ(x0) \ V, and let

ξp(x) = x− x0

This vector field ξp will clearly obey our first desired property, since

⟨ξp(x), x− x0⟩ = ||x− x0||2 > 0,

and it will obey our second desired property vacuously since Up ∩M1 = ∅.
If p ∈ V, then since ϵ is small and p ∈ Dϵ(x0)\{x0},we have that p ∈M1 = V \Σ(V ).

Choose a chart u : Up → Rn
of Rn

so that the submanifoldM1 is cut out by the locus

u1 = · · · = uρ = 0, where ρ is the codimension ofM1.
Consider the map

r :M1 → R,
r(x) = ||x− x0||2,

as in the proof of Lemma 2.4 from the previous step of this argument. As explained in the

proof of Lemma 2.4, for sufficiently small ϵ, the point p ̸= x0 will not be a critical point of
r, as the only critical point of r onM1 ∩Dϵ(x0) is x0 itself.

We thus find that at least one of the partials ∂r/∂uρ+1, ..., ∂r/∂un is nonzero at p.
Say ∂r/∂uh is not zero at p. Shrinking Up

if needed, we can assume ∂r/∂uh is never

0 on Up
, and so is either always positive or always negative on Up

. Define

ξp(x) = (−1)s
(
∂x1
∂uh

, ...,
∂xn
∂uh

)
,

where xi : Rn → R are the standard coordinate functions, and we differentiate them with

respect to the component uh of the chart u chosen above. Here, the sign (−1)s is chosen
to be negative if ∂r/∂uh < 0 on Up, and positive if ∂r/∂uh > 0 on Up.
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We then have

2 ⟨ξp(x), x− x0⟩ = (−1)s
n∑

i=1

2(xi − xi0)
∂xi
∂uh

(x)

= (−1)s
n∑

i=1

∂r

∂xi

∂xi
∂uh

= (−1)s
∂r

∂uh
> 0,

since the sign (−1)s was chosen to make (−1)s∂r/∂uh positive on Up.This verifies the

first desired property of our vector field.

If x ∈ M1 ∩ Up, then we wish to check that ξp(x) is tangent toM1. In the chart u,
the submanifoldM1 is described by u1 = · · · = uρ = 0. As ξp(x) = ∂/∂uh at x, and as

h > ρ, we find that ξp(x) is clearly tangent toM1.Thus ξp obeys both desired properties

of our vector field.

Choose a partition of unity ρp of Dϵ(x0) subordinate to the open cover Up
. We can

therefore blend all these ξp to get a vector field

ξ : Dϵ(x0) \ {x0} → Rn,

ξ =
∑
p

ρpξp,

which obeys our two desired properties: it has ⟨ξ(x), x− x0⟩ > 0, and is tangent toM1.
Thefirst property holds since each ρp is non-negative, and each ξp obeys ⟨ξp(x), x− x0⟩ >
0; the second property holds since a linear combination of vectors tangent toM1 is still

tangent toM1.
To make the explicit computations below slightly easier, we define

ν(x) =
ξ(x)

2 ⟨ξ(x), x− x0⟩
a normalized version of ξ.The quantity in the denominator is never 0, as we verified above

that ⟨ξ(x), x− x0⟩ > 0.

2.3. Step 3: flowing along our vector field. Armed with a vector field, we will flow

along its integral curves. However, integral curves in general only exist locally; we prove

that the integral curves of ν exist globally.

Consider the ODE p′(t) = ν(p(t)). Any solution p of this ODE obeys

d

dt
r(p(t)) =

d

dt

(
n∑

i=1

(p(t)i − xi0)
2

)

=

n∑
i=1

2p′(t)i(p(t)i − xi0)

= 2 ⟨p′(t), p(t)− x0⟩
= 2 ⟨ν(p(t)), p(t)− x0⟩

=
⟨ξ(p(t)), p(t)− x0⟩
⟨ξ(p(t)), p(t)− x0⟩

= 1.
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Thus r(p(t)) = t+C. Subtracting a constant from our time parameter (this corresponds

to just shifting the interval parametrizing t), wemay asssume that r(p(t)) = t. In particular,
p(ϵ2) ∈ Sϵ(x0).

Lemma 2.7. Let a ∈ Sϵ(x0).There is a unique function p : (0, ϵ2] → Dϵ(x0)\{x0} solving
the ODE p′(t) = ν(p(t)) with initial condition p(ϵ2) = a.

Proof. By the theory of existence of ODEs, there is some unique solution p with our given

initial condition defined in (α, ϵ2], for some α > 0.
We will show that any solution p defined over (α, ϵ2] can be extended to (0, ϵ2]. Indeed,

let α be minimal so that our initial value problem p′(t) = ν(p(t)), p(ϵ2) = a has a solution
defined over (α, ϵ2]. Assume for the sake of contradiction that α > 0.

As the set Dϵ(x0) is compact, there is some sequence of times tn → α so that p(tn)
converges to a point x′ ∈ Dϵ(x0). By continuity of r, this point x′ has (recalling that

r(p(t)) = t from above)

r(x′) = lim
n→∞

r(p(tn)) = lim
n→∞

tn = α > 0.

By the existence and uniqueness theorem for ODEs, there is some δ > 0 so that

for every x′′ within δ of x′ and every sufficiently large n, there is a unique solution

qx′′,n : (tn − δ, tn + δ) → Dϵ \ {x0} to our ODE with initial condition

qx′′,n(tn) = x′′.

Let qn := qp(tn),n.Then p = qn on their common domain of definition, by uniqueness of

solutions of ODEs, since qn(tn) = p(tn). For sufficiently large n,we will have tn− δ < α,
and therefore we can extend p’s domain of definition from (α, ϵ]2 to (tn− δ, ϵ2], by setting

p(t) = qn(t)

for t ∈ (tn − δ, tn + δ). As p = qn on (α, tn + δ), the resulting function will still be

smooth, and still solve our ODE.

Thus we can actually extend p past α, contradicting α’s definition as the minimal

number so that a solution to our initial value problem existed on (α, ϵ2].. Thus, there is a

solution to our initial value problem defined on (0, ϵ2], as desired. □

2.4. Step 4: the diffeomorphism. Let P : Sϵ(x0)× (0, ϵ2] → Dϵ(x0) \ {x0} be given
by P (a, t) = pa(t), for pa the unique solution to the ODE p′a(t) = ν(pa(t)) with initial

condition pa(ϵ
2) = a. Such a solution pa exists over (0, ϵ2] by Lemma 2.7.

We can extend P to a continuous map P : Sϵ(x0)× [0, ϵ2] → Dϵ(x0) by setting

P (a, 0) = x0,

since ||pa(t)− x0||2 = r(pa(t)) = t, and so as t→ 0 we find pa(t) → x0. As P maps all

of Sϵ(x0)× {0} to x0, it induces a map

P̃ : Cone(Sϵ(x0)) → Dϵ(x0).

Lemma 2.8. This function P maps Sϵ(x0)× (0, ϵ2] diffeomorphically ontoDϵ(x0) \ {x0}.

Proof. The map P is smooth. It also has a smooth inverse: for any x ∈ Dϵ(x0) \ {x0},
there’s a unique solution px to our ODE with px(|x − x0|2) = x. Via the method of

Lemma 2.7, we can extend this solution to one defined on (0, ϵ2], which will force x =
P (px(ϵ

2), |x− x0|2).This map

x 7→ (px(ϵ
2), |x− x0|2)
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is smooth by smooth dependence of the solution of an ODE on the initial condition, and

so we conclude that P has a smooth inverse, and hence is a diffeomorphism. □

Lemma 2.9. Any solution p : (0, ϵ2] → Dϵ(x0) \ {x0} of our ODE which lies in V at some
time is in fact contained in V.

Proof. Assume that p(t0) ∈ V for some time t0.Then

p′(t0) = ν(p(t0))

is tangent to V, by our assumption that ν sends points in V to vectors tangent to V.Thus

by existence and uniqueness applied to V, we find that there’s a local solution p̃ to our

ODE defined in the hypersurface V.
The argument of Lemma 2.7 can be used to extend p̃ to a solution to the ODE on (0, ϵ2]

which lies in V. But p̃ = p by uniqueness of solutions to ODEs (since both have the

same value at time t0), and so we deduce that the integral curve p is contained in V, as
desired. □

It follows from Lemma 2.8 and Lemma 2.9 that P mapsK × (0, ϵ2] diffeomorphically

onto (Dϵ(x0) \ {x0}) ∩ V.The induced map

P̃ : Cone(K) → Dϵ(x0) ∩ V
obtained by sending the cone point of Cone(K) to x0 will then be a homeomorphism: it is

continuous; it is a bijection, since P mapsK × (0, ϵ2] bijectively ontoDϵ(x0) \ {x0})∩V
and we just added an extra cone point toK × (0, ϵ2] to hit x0, and Cone(K), Dϵ(x0)∩ V
are compact Hausdorff spaces, so P̃ being a continuous bijection implies it is a homeo-

morphism.

The map P̃ is then the homeomorphism which Theorem 2.1 claims exists; thus we

conclude the proof.

We introduce a piece of notation.

Definition 2.10. If V is an algebraic variety with an isolated singularity at a point x0, for
small ϵ, we say that the Milnor link of V at x0 is the intersection

K = V ∩ Sϵ(x0),

which recall by Theorem 2.1 is a manifold which, up to diffeomorphism, does not depend

on ϵ.

3. Whitney stratifications

Theorem 2.1 extends beyond the case of isolated singularities, albeit becoming more

complicated in the process.

The idea starts with a simple observation of Whitney: while a variety X is not a

manifold, X \ Σ(X) is; likewise, while Σ(X) is not a manifold, Σ(X) \ Σ(Σ(X)) is;
continuing in this way, we can filter X as

X ⊇ Σ(X) ⊇ Σ(Σ(X)) ⊇ · · ·
in such a way that the difference between any two adjacent sets in the filtration is a

manifold. This inspires the following notion.

Definition 3.1. A filtered space is a Hausdorff space X with a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xn = X

where each Xi
is closed.
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We write Xi = Xi \Xi−1
if i ≥ 0.The connected components of the Xi are called

the strata of X.The strata of Xn are called the regular strata, and the rest are called the

singular strata, and the union of the singular strata is called the singular locus of X, and
we typically write ΣX or Σ(X) to mean the singular locus. Note that ΣX = Xn−1.

Unfortunately, the story does not end here. Let us recall Lemma 2.4, which showed that

an algebraic variety with an isolated singularity at 0 intersects every sufficiently small

sphere transversally. The transversality of this intersection is a significant fact, and it is

desirable that we should have some transversality in general. This requires us to make

sense of transversality for filtered spaces, but that is not so hard.

Definition 3.2. LetM be a manifold, and take X,Y ⊆M two closed filtered subsets of

M, with the property that each stratum of X,Y is a submanifold ofM.We say that X
and Y intersect transversally if each strata of X intersects each strata of Y transversally.

One might hope that every algebraic variety, with its filtration by Σ(X),Σ(Σ(X)),
etc. intersects sufficiently small spheres transversally, as in Lemma 2.4. Unfortunately,

Whitney observed that this is false. To save it, he needed to introduce more complicated

stratifications of algebraic varieties. We attempt to briefly explain what he needed to do.

First, we introduce the frontier hypothesis, a condition on filtered spaces capturing

the idea that strata should either be separated from each other, or one should be on the

boundary of the other.

Definition 3.3. A stratified space is a filtered spaceX obeying the frontier hypothesis: for
every two strata S, T, if S ∩ T ̸= ∅, then S ⊆ T .

We write S ≺ T to denote that S ∩ T ̸= ∅.

Simplicial complexes are a very good mental model of stratified spaces.

Example 3.4. If X is an n-dimensional simplicial complex, then we can give X the

structure of a filtered space by letting Xi
denote the union of the i-dimensional simplices.

The strata are then just the interiors of the simplices. If two strata S, T obey S ∩ T ̸= ∅,
then either S is the interior of some face of T, or S = T, and so S ⊆ T .

We are now going to state two additionally hypotheses, bearing Whitney’s name.

Definition 3.5 (Whitney regularity conditions). LetM be a manifold, and let X,Y be

two disjoint C1
submanifolds ofM.

We say that (X,Y ) obeys theWhitney condition (a) at a point x ∈ X ∩ Y if, for any

sequence yn ∈ Y so that yn → x and so that Tyn
Y converges to a hyperplane T∞,we have

TxX ⊆ T∞ (take this limit by taking a chart ofM at x and then using a Grassmannian).

We say that (X,Y ) obeys the Whitney condition (b) at x ∈ X ∩ Y if, for any sequence

(xn, yn) ∈ X × Y such that xn → x, yn → y, the lines ℓn from xn to yn converge to

some line ℓ∞, and the subtangent spaces Tyn
Y converge to T∞, then we have ℓ∞ ⊆ T∞.

If S ⊆ M is a stratified space whose strata are C1
submanifolds ofM, then we say

that S obeys Whitney’s condition (a) (resp. (b)) if each pair of its strata do. We say that S
is a Whitney stratified space if S obeys both of Whitney’s conditions.

At first, these conditions seem complicated and unruly. We are going to state without

proof a few results about these two conditions, to hopefully motivate them.

Recall that the whole problem with the naive stratification X ⊇ Σ(X) ⊇ Σ(Σ(X)) ⊇
· · · was that we did not have good transversality properties. Whitney’s condition (a) is

equivalent to stating that transversality along S is an open condition.
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Theorem 3.6. Let M be a manifold, and S ⊆ M a stratified space whose strata are
C1 submanifolds ofM.Then S obeys Whitney’s condition (a) if and only if for every C1

submanifold N, the set

{C1 function which are transverse to the strata of S}
is open in the set C1(N,M).

Proof. See [4]’s theorem 2.12. □

Theorem 3.6 helps explain the meaning of Whitney’s condition (a). The meaning of

Whitney’s condition (b) is a little more complicated, but we try to explain. Crucial to our

proof of Theorem 2.1 was the construction of a certain vector field which we could flow

along. Thom invented a beautiful notion of a controlled vector field, allowing him to gener-

alize the properties of the vector field we constructed in the proof of Theorem 2.1. With

this notion, it is possible to prove the following, which evidently generalizes Theorem 2.1

to Whitney stratified spaces.

Theorem 3.7 (Thom-Mather). LetM be a C2 manifold, and X ⊆M a Whitney stratified
space whose strata are C2 submanifolds of M. Then for each stratum Σ and each point
x0 ∈ Σ, there exists some open neighborhood U of x0 inside ofM, and a stratified space
L ⊆ Sk−1 (the sphere), and a homeomorphism

h : (U,U ∩X,U ∩ Σ) → (U ∩ Σ)× (Bk,Cone(L), ∗),
for ∗ the cone point of Cone(L) and Bk the ball.

Proof. See [4]’s theorem 2.17. □

It is true that every algebraic variety admits a Whitney stratification, but the proof is

quite hard.

4. The Milnor fibration

The local topology of an algebraic variety V near an isolated singularity x0 is, by

Theorem 2.1, completely determined by the Milnor linkK at x0. In the coming sections,

we will explain an assortment of useful and foundational results on the topology ofK, all
first proven by Milnor.

Milnor’s study of the topology ofK was inspired by the fact that, in the simplest cases

(as in Theorem 1.3), the manifold K is a knot (in the case where V is a surface, K will

be a compact 1-manifold embedded in S3
; but the only compact 1-manifolds are disjoint

unions of circles, and a circle embedded in S3
is exactly a knot). In knot theory, one often

studies a knot by looking at its complement.

To imitiate this knot theoretic idea, Milnor devised a certain technical notion: the

Milnor fibration. First, we remind the reader what a fiber bundle is.

Definition 4.1. Let π : E → B be a continuous surjection, with B connected, and

F a topological space. We say that π is a fiber bundle with fiber F , total space E, and
base space B if for every x ∈ B, there is some open U ∋ x and a homeomorphism

ϕ : π−1(U) → U × F so that the diagram

π−1(U) U × F

U

π

ϕ
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commutes. We say that E is fibered over B.

Recall that the Milnor linkK at x0 is defined asK = Sϵ(x0)∩ V, for sufficiently small

ϵ. Milnor proved that the complement Sϵ(x0) \ K of the Milnor link in the sphere is

fibered over S1. Using this fiber bundle, called the Milnor fibration, he was able to prove

great results on the homotopy and homology groups ofK.

4.1. TheMilnor fibration of a hypersurface. Fix V an affine hypersurface. That is, V
is an algebraic variety of the form

(4.2) V = {(x1, ..., xn+1) ∈ Cn+1 | f(x1, ..., xn+1) = 0},
for f a non-constant polynomial.

Warning 4.3. In this section, we will always assume V is the zero locus of a single

nonconstant polynomial f, as in (4.2). We call such a V an affine hypersurface.

We introduce some notation from complex calculus.

Definition 4.4. If f : Cm → C is an analytic function, then we define

grad f =
(
∂f/∂z1, ..., ∂f/∂zm

)
.

Remark 4.5. The conjugates are chosen so that if p : [0, 1] → Cm
is a curve, then

df(p(t))

dt
=

〈
dp

dt
, grad f

〉
.

Finally, our main object of study.

Definition 4.6. Let f : Cm → C be a polynomial, and let

K := f−1(0) ∩ Sϵ

denote the Milnor link of f at 0.

The Milnor map of f at 0 is the the function ϕ : Sϵ \K → S1
given by

ϕ(z) =
f(z)

|f(z)|
,

where the division is always defined sinceK is excluded from the domain of ϕ.

We will prove that the Milnor map is a smooth fiber bundle. We first show that,

for all small ϵ, the Milnor map has no critical points. Fix f : Cm → C a polynomial,

K = f−1(0) ∩ Sϵ, and ϕ : Sϵ \K → S1
the Milnor map.

While log f(z) is multivalued, since any two branches differ by a constant, the derivative

grad log f(z) is single valued. As you might guess from the definition of ϕ, it is closely
related to grad log f(z).

The next two lemmas are all exercises in multivariable calculus, and so we omit the

proofs. For complete proofs, see section 4 of [2], but the reader is encouraged to work out

the details for themselves.

Lemma 4.7. The critical points of the Milnor map are precisely those points z0 ∈ Sϵ \K so
that i grad log f(z0) is a real multiple of z0.

Lemma 4.8. Assume that f is a polynomial, and that f(0) = 0.Then there is some ϵ0 > 0
so that, for all z ∈ Cm \ V with ||z|| ≤ ϵ0, the two numbers z, grad log f(z) are either
linearly independent over C, or

grad log f(z) = λz

where λ ̸= 0 is a complex number whose argument has absolute value less than π/4.
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With these two lemmas, we can prove that ϕ has no singularities.

Corollary 4.9. Assume that f(0) = 0.Then for every ϵ ≪ 1, the Milnor map ϕ has no
critical points.

Proof. By Lemma 4.7, it suffices to prove that for every z ∈ Cm \ V which is sufficiently

close to 0, then z and i grad log f(z) are R-linearly independent. But Lemma 4.8 immedi-

ately implies this. □

Thus the Milnor map ϕ associated to a polynomial has no critical points. In particular,

for every point of S1, the fiber

Fθ = ϕ−1(eiθ) ⊆ Sϵ \K
of the Milnor map above θ is a smooth (2m − 2) dimensional manifold, by the regular

value theorem.

We are going to prove that ϕ is actually the projection map of a locally trivial fibration.

We need some more analysis. The proof will be similar to the proof of Theorem 2.1, which

used a very clever argument involving ODEs to construct certain homeomorphisms. The

idea of that proof was to construct a vector field on V ∩Dϵ which always pointed away

from x0 and was always tangent to V.
We start with a similar step: we produce a tangent vector field which obeys a certain

inner product condition, analogous to the pointing away condition.

Lemma 4.10. If ϵ ≪ 1, then there exists a smooth vector field V (z) on Sϵ \K , tangent
everywhere to Sϵ, so that, for every z ∈ Sϵ \K, the complex inner product

⟨V (z), i grad log f(z)⟩
is nonzero, and has argument less than π/4 in absolute value.

Proof. As in Theorem 2.1, it suffices to construct the vector field locally, since then we

can use a partition of unity to blend them together. This argument is extremely similar to

Theorem 2.1, so we omit the details; see [2], lemma 4.6 for a complete proof. □

Next we normalize, as we did in the proof of Theorem 2.1. Set

W (z) =
V (z)

ℜ ⟨V (z), i grad log f(z)⟩
.

ThenW is a tangential vector field on Sϵ \K so that

ℜ (⟨W (z), i grad log f(z)⟩) ≡ 1

identically, but

|ℑ(⟨W (z), i grad log f(z)⟩)| < 1.

As in Theorem 2.1’s proof, we prove an existence and uniqueness theorem.

Lemma 4.11. Let z0 ∈ Sϵ \K.Then there exists a unique smooth curve

p : R → Sϵ \K
so that p(0) = z0 and p′(t) =W (p(t)).

Proof. As in Theorem 2.1, we have by standard theory that such a solution exists locally,

and can be extended to a maximal interval I ⊆ R.We prove that I = R by assuming for

sake of contradiction that it wasn’t, and then showing how to extend; the argument is

analogous to the one employed in Theorem 2.1, so we omit the proof. Refer [2], lemma 4.7

to see a complete argument. □
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Let P : (Sϵ \K)× R → Sϵ \K be the function given by

P (a, t) = pa(t),

for pa the unique solution to p′a(t) =W (p(t)) with pa(0) = a.
Define ht : Sϵ \K → Sϵ \K as ht(a) = P (a, t).
We claim that each ht is a diffeomorphism. Indeed, it has inverse map h−t. More

interestingly, the fiber Fθ = ϕ−1(eiθ) of the Milnor map deforms in a simple way under

ht.
Suppose that a ∈ Fθ.Then by definition, f(a) = eiθ|f(a)|.We have ht(a) = pa(t).The

argument of f(pa(t)) is just the imaginary part of log f(pa(t)), and an easy computation

proves that the derivative of this imaginary part is identically 1, and so we find that

ht(a) ∈ Fθ+t.Thus ht(Fθ) ⊆ Fθ+t, and combining this with the same observation on

h−t, we get that ht : Fθ → Fθ+t is a diffeomorphism.

This easily implies that the Milnor map is a smooth fiber bundle.

Theorem 4.12. Let V be a complex hypersurface defined by some polynomial equation
f. Assume also that f(0) = 0, and that 0 is an isolated singularity of V. Then, for every
sufficiently small ϵ, the Milnor map ϕ : Sϵ \K → S1, defined by ϕ(z) = f(z)/|f(z)| on
the complement of

K = {z ∈ Sϵ | f(z) = 0}.
Then ϕ is a smooth fiber bundle.

Proof. Set Fθ = ϕ−1(θ).
Suppose that U = S1 \ {θ}.We can then define a continuous map α : U → R so that

eiα(p) = p for p ∈ U.We define a smooth map

ψ : ϕ−1(U) → U × F0

by

ψ(a) = (ϕ(a), h−α(ϕ(a))(a)).

This map is a diffeomorphism, with inverse

(a, f) 7→ hα(a)(f).

These maps ψ for different choices of θ witness the fact that ϕ is a fiber bundle, and so

we conclude. □

Thus, we have proven the existence of the Milnor fibration. The Milnor fibration will

be an incredibly useful technical tool to us; to get the most out of it, we start by studying

its fibers Fθ in more detail.

Definition 4.13. The Milnor fiber of f is the diffeomorphism type of any fiber Fθ of the

corresponding Milnor fibration ϕf , recalling that any two fibers of a smooth fiber bundle

are diffeomorphic.

We end this section by presenting an equivalent version of the Milnor fibration.

Theorem 4.14. Let V be a complex affine hypersurface cut out by the equation f = 0, and
suppose that V has an isolated singularity at 0. Fix a small ϵ > 0, and let

K = V ∩ Sϵ

be the associated Milnor link. For δ > 0, set

Aδ = {z ∈ C | |z| = δ}.
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Then, for every sufficiently small δ ≪ ϵ, the map

f : f−1(Aδ) ∩Bϵ → Aδ

is a smooth fiber bundle; this fiber bundle is isomorphic to the Milnor fibration

ϕf : Sϵ \K → S1,

in the sense that there is a commutative diagram

f−1(Aδ) ∩Bϵ Sϵ \K

Aδ S1,

α

ϕf

β

where the top and bottom horizontal arrows α, β are diffeomorphisms.
In particular, these two fiber bundles have diffeomorphic fibers, and so the Milnor fiber

Fθ of ϕf is canonically diffeomorphic to f−1(c) ∩Bϵ, for c some small complex number of
argument θ. In particular, since every complex variety is automatically a complex manifold
and hence orientable, each fiber Fθ of the Milnor fibration is orientable.

Proof. We omit the proof of this result, but remark that it can be found as the main result

of section 5 of [2]. Above, we saw two arguments of the form ‘construct a vector field, and

then flow along it to get an ODE’; the proof of this theorem goes in exactly the same way,

by constructing a third vector field, and then flowing along it—all the ideas are present in

the previous two cases. □

Theorem 4.14 is an incredibly useful reinterpretation of the Milnor fibration, as it relates

the topology of the singular fiber f−1(0) of f with the topology of the nearby smooth

fibers f−1(c) for small values of c.

5. The topology of the Milnor link and the Milnor fibers

As in the previous section, fix f : Cn+1 → C a polynomial with f(0) = 0, and let V
denote the affine hypersurface described by f = 0. Suppose that 0 is an isolated singularity
of V.Thus our previous results apply, and so we have a Milnor linkK, a Milnor fibration

ϕ : Sϵ \K → S1
with Milnor fibers Fθ := ϕ−1(θ).

In this section, we give a collection of results on the topology ofK and Fθ.
Our results in this section will typically suppose n ≥ 1, that is, Cn+1

is not just C.
This is because the zero set of a polynomial equation in one variable is just a finite discrete

set, and so there is not much of interest to say about the topology.

5.1. Computing the homology.

Lemma 5.1. Each Milnor fiber is a 2n-dimensional manifold. The closure Fθ is a manifold
with boundary, having interior Fθ and boundaryK. (In particular, dimK = dimFθ − 1 =
2n− 1.)

Proof. See lemma 6.1 of [2]. The proof is not complicated, but requires a technical tool

due to Milnor called the curve selection lemma which we wish to avoid for purposes of

space. □

Lemma 5.1 has some powerful corollaries.

Corollary 5.2. The spaces Fθ and Sϵ \ Fθ are homotopy equivalent.
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Proof. We have the Milnor fibration

ϕ : Sϵ \K → S1.

Note that S1 \ {θ} ∼= R is contractible, and therefore the pullback of ϕ to the bundle

ϕ′ : Sϵ \ (K ∪ Fθ) → S1 \ {θ}
is trivial, as every smooth fiber bundle over R is trivial; thus

Sϵ \ (K ∪ Fθ) ∼= R× Fθ′

for any fiber Fθ′ of ϕ′. But Fθ = K ∪ Fθ by Lemma 5.1 and Fθ′ ∼= Fθ as all Milnor fibers

are diffeomorphic. Thus Sϵ \ Fθ is homeomorphic to the product of Fθ and R, so that

Sϵ \Fθ is homotopy equivalent to Fθ, which is in turn homotopy equivalent to Fθ, as any
compact manifold with boundary is homotopy equivalent to its interior. □

Corollary 5.3. Suppose n ≥ 1.The Milnor fiber Fθ has the homology of a point in degrees
0, 1, ..., n− 1, and in degrees n+ 1, n+ 2, ..., 2n. (Recall dimFθ = 2n.) In particular, the
only homology group of Fθ which has a chance of being nontrivial is Hn(Fθ).

Proof. By Alexander duality,

H̃2n−i(Sϵ \ Fθ) ∼= H̃i(Fθ).

By Theorem 4.14, each Fθ is homeomorphic to the intersection of an open ball with a

smooth hypersurface. There is a classical, and beautiful, theorem of Andreotti-Frankel [1]

that such a manifold is homotopy equivalent to a CW complex of dimension at most n.

Thus for i ≥ n+ 1, we find that H̃i(Fθ) = 0, and so

H̃q(Sϵ \ Fθ) = 0

for q = 0, 1, ..., n− 1. But Corollary 5.2 tells us that

Fθ ≃ Fθ ≃ Sϵ \ Fθ,

and so we conclude.

The result about degrees n+1 and higher follows immediately from Andreotti-Frankel.

□

5.2. Vanishing cycles. Corollary 5.3 leaves open the question of computing the middle

homology Hn(Fθ) of the Milnor fiber. To determine this, we first state without proof the

following result of Milnor.

Theorem 5.4. Suppose n ≥ 1.The Milnor fiber Fθ is (n − 1)-connected, and the Milnor
linkK is (n− 2)-connected and orientable.

Proof. The argument relies on a certain lengthy analysis using Morse theory; see theorem

5.2 and lemma 6.4 of [2]. □

Corollary 5.5. Assume n ≥ 1.The Milnor fiber has the homotopy type of a wedge sum of
some finite number of n-spheres.

Proof. First assume n ≥ 2.
By the Hurewicz theorem, since Fθ is (n−1)-connected, the Hurewicz homomorphism

h : πn(Fθ) → Hn(Fθ)

is surjective (in fact it is also an isomorphism, but we only need the surjectivity).

The homology Hn(Fθ) must be free abelian, as any torsion classes would (by the

universal coefficients theorem) give rise to a class in Hn+1(Fθ;Z). But Fθ is, by the
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Andreotti-Frankel theorem mentioned in the proof of Corollary 5.3, homotopy equivalent

to a finite CW complex of dimension at most n, and hence must have trivial cohomology

in degree n+ 1.Thus Hn(Fθ) is (by finiteness of the CW complex in Andreotti-Frankel)

some finitely generated free abelian group, so that Hn(Fθ) = Zµ
for some µ ≥ 0.

Take maps a1, ..., aµ : Sn → Fθ so that h(a1), ..., h(aµ) generate Hn(Fθ) = Zµ.This

is possible since h is surjective. Then the induced map

a : Sn ∨ · · · ∨ Sn → Fθ

is a continuous function between two simply connected spaces (as n ≥ 2) which induces

an equivalence on homology (this is obvious in degree n, and both domain and codomain

have trivial homology in all other degrees). Whitehead’s theorem then implies that a is a
homotopy equivalence, and so we deduce that Fθ has the homotopy type of a wedge sum

of spheres, as desired.

In the case of n = 1, the argument is even simpler: we already know by Andreotti-

Frankel that Fθ has the homotopy type of a 1-dimensional CW complex, so Fθ is homotopy

equivalent to a connected graph. But every connected graph is homotopy equvialent to a

wedge sum of circles (this is a classical result; to prove it, just collapse a maximal spanning

tree). □

By Corollary 5.5, Hn(Fθ) ∼= Zµ
for some integer µ ≥ 0.This integer µ is often called

theMilnor number of f. Elements ofHn(Fθ) are often called vanishing cycles. To motivate

this name, recall that Fθ
∼= f−1(δeiθ) ∩ Bϵ (for Bϵ the open ball) whenever δ ≪ 1. As

we let δ → 0, this intersection approaches f−1(0)∩Bϵ, which recall is homeomorphic to

Cone(K), and in particular contractible. Thus the cycles inHn(Fθ) ∼= Hn(f
−1(δeiθ)∩Bϵ)

‘vanish,’ in the sense that they become homologous to 0 as you let δ → 0.

Example 5.6. Consider the case where n = 1 and f(x, y) = y2 − x3 − x2. In this case,

the associated variety is an elliptic curve; for c ̸= 0, the level set f−1(c) is just the once
punctured torus; the intersection of the torus with a small ball is homeomorphic then to a

cylinder. The cylinder has first homology Z.The zero set f−1(0) is a pinched torus: the

homology class of the cylinder is pinched down to a point, and hence becomes trivial in

homology, as c→ 0.Thus, our nonzero homology cycle vanishes in the c→ 0 limit.

We can also use Theorem 5.4 to say something about the homology ofK.

Theorem 5.7. The Milnor linkK has the homology of a point in all degrees except possibly
n− 1 and n.

Proof. For each integer 0 < k ≤ n− 2, Poincare duality tells us that there is an isomor-

phism

H2n−1−k(M ;Z) ∼= Hk(M) = 0.

In particular, the integral cohomology groups in degrees n + 1 to 2n − 2 are trivial.

But by the universal coefficients theorem for cohomology, there are split exact sequences

(5.8) 0 → Ext1Z(Hk−1(K),Z) → Hk(K;Z) → Hom(Hk(K),Z) → 0

for each k.
For n+ 1 ≤ k ≤ 2n− 2, we have Hk(K;Z) = 0, and in particular the only way that

(5.8) can be a split exact sequence is ifHom(Hk(K),Z) = 0 and Ext1Z(Hk−1(K),Z) = 0.
As Hom(Hk(K),Z) = 0, the abelian group Hk(K) must be torsion. And as

Ext1Z(Hk−1(K),Z) = 0,
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we deduce that Hk−1(K) is torsion free (as any torsion elements of Hk−1(K) would
create a nonzero class in Ext1Z(Hk−1(K),Z)).

This creates a tension: for n+ 1 ≤ k ≤ 2n− 2, the group Hk(K) is torsion, but for
n ≤ k ≤ 2n− 3, the group Hk(K) is torsion free.

In particular, for n + 1 ≤ k ≤ 2n − 3, the group Hk(K) must be both torsion and

torsionfree, implying Hk(K) = 0 for n+ 1 ≤ k ≤ 2n− 3.
For k = 2n− 2, we can at least deduce that H2n−2(K) is torsion. ButK is orientable,

and every orientable compact manifold has torsionfree integral homology in degree one

less than its dimension; thus H2n−2(K) is torsion and torsionfree, so it is 0.

AsK is connected and orientable, we also have thatH2n−1(K) = Z.We conclude. □

Thus, just as with the Milnor fiber, the only two homology groups of the Milnor link

K which we need to compute are the middle two, Hn−1(K) and Hn(K). In the general

case, computing these two homology groups is still an open problem.

6. Connection to exotic spheres

We started this paper by giving a fascinating result, Theorem 1.3, stating that the

singularity of y2 = x3 looked like the cone on a trefoil knot. In the previous sections, we

generalized this to get a very interesting description of the local topology of a variety near

any isolated singularity. There are many more things one can say about this story, but

to end we will return to the beginning in some sense, by explaining another fascinating

geometric phenomenon that can happen: sometimes, singularities can be cones on exotic

spheres.

Recall that an exotic sphere is a smooth n-manifold which is homeomorphic to Sn, but
not diffeomorphic to Sn.

Let’s take the same setup as before: f : Cn+1 → C is a polynomial so that V = f−1(0)
has an isolated singularity at the origin;K is the Milnor link of this singularity, which we

have proven is some smooth (2n− 1)-manifold.

We will be hunting for polynomials f makingK an exotic sphere. There are two steps

to this: first, we need to be able to tell ifK is a topological sphere, and then we need to

prove that it has a non-standard smooth structure. For the first step, we use the following

easy theorem.

Theorem 6.1. Suppose n ≥ 3.The Milnor linkK is homeomorphic to the (2n− 1) sphere
if and only Hn−1(K) = Hn(K) = 0.

Proof. IfK is a sphere, then it has trivial homology in every degree except 0 and (2n− 1),
and so one implication is trivial.

If Hn−1(K) = Hn(K) = 0, then (by our earlier computation of the other homology

groups), we find that K is a simply connected manifold (simply connected since K is

(n − 2)-connected and n ≥ 3) with the homology of Sn. Using Hurewciz’s theorem

and Whitehead’s theorem similarly to the proof of Corollary 5.5, this implies that K is

homotopy equivalent to Sn. But the Poincare conjecture, proven in large dimensions by

Smale [8], then tells us thatK is homeomorphic to the sphere, as desired. □

Hirzebruch [9], building on work of Breiskhorn, Pham, and Milnor, produced a family

of examples whose Milnor links were topological spheres. Let n ≥ 3 be a fixed integer,

and take a = (a0, a1, ..., an) a tuple of integers ai ≥ 2. Set

fa(z0, ..., zn) = za0
0 + · · ·+ zan

n ,

Va := f−1
a (0).
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Hirzebruch was able to show that, for certain values of the tuple a, the Milnor linkK
of Va at 0 was a topological sphere.

It is a theorem (which we did not prove) that every Milnor link bounds a parallelizable

manifold (in fact, the Milnor fiber is parallelizable fiber and bounded byK).

In their study of exotic spheres, Milnor-Kervaire showed that the operation of connected

sum makes the set of diffeomorphism classes of manifolds homeomorphic to Sk
into a

finite abelian group whenever k ≥ 5.This group, denoted Θk, has a subgroup BPk+1

consisting of those k-spheres which bound a parallelizable manifold.

We focus on the case k = 4m − 1. The group BP4m is then known to be cyclic;

furthermore, if Σ ∈ BP4m is an exotic (4m− 1)-sphere, with intersection form IΣ, then
it is known that there is a class gm ∈ BP4m generating BP4m so that τ(IΣ)/8 · gm
represents Σ in BP4m, where τ denotes the signature of a quadratic form (to compute τ,
diagonalize IΣ over R; then τ is the number of positive entries of the diagonalized matrix

minus the number of negative entries).

Thus, to determine ‘which’ exotic sphere our Milnor linkK is, we need only study its

intersection form.

In this way, Hirzebruch was able to construct varieties whose Milnor links are exotic

spheres. For instance, consider the case of n = 3.There are 28 distinct exotic 7-spheres;

these exotic 7-spheres end up being the Milnor links of the varieties

z30 + z6k−1
1 + z22 + z23 = 0,

where k ∈ {1, ..., 27, 28}.

7. Further directions

The local topology of an algebraic variety near its singularities is an incredibly deep

and fascinating topic; as we just saw, algebraic varities can resemble phenomenon from

knots to exotic spheres. In this paper, we focused on the case of isolated singularities;

however, the general case is also incredibly deep and fascinating.

In the more topological direction, there are the theories of intersection homology and

stratified Morse theory, developed by Goresky-MacPherson in [3] and [5]. These play a

major role in modern algebraic geometry.

In the more algebraic direction, Deligne and Grothendieck developed a theory of

Milnor fibrations over an arbitrary field (and using their theory, they were able to prove

results that Milnor had conjectured but could not prove). Beilinson-Bernstein-Deligne-

Gabber developed this further into the theory of perverse sheaves, which have proven

to be an incredibly useful tool in algebraic geometry and representation theory. The

idea of the topological story is that, while fiber bundles are hard to make sense of in

complete generality, there are two topological invariants of a fibration which you can

make sense of: the cohomology of the fiber, and the monodromy of the fibration. Deligne

and Grothendieck found an algebraic tool, working over any field, that could encode both

the cohomology groups and the monodromy. [6] and [7] are the original references on

these theories.
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