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Abstract. Plateau’s problem asks to show the existence of a surface with

minimal area with a certain boundary. The field of geometric measure theory

was born out of a desire to apply methods of modern analysis to this problem.
This paper introduces integral currents, a geometric measure theoretic gener-

alization of surfaces, and uses them to formulate and prove the existence of

minimizing surfaces with a particular boundary.
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1. Introduction

Geometric measure theory is one of several important theories that were born out
of attempts to investigate Plateau’s problem, a central question in minimal surface
theory. Despite being first posed by Joseph-Louis Lagrange in 1760, and being
thoroughly studied by Joseph Plateau in the late 19th century, the first limited
solution to the problem was published by Jesse Douglas only in 1931. For this work
Douglas was awarded the first ever Fields Medal in 1936.

The first difficulty in solving Plateau’s problem comes when one tries to pose it.
The most basic statement is: given a boundary of some surface in Rn, find a surface
of least possible area with that boundary. However, the existence of such a surface
requires the space of surfaces with a given boundary to possess a ‘compactness’
property, in other words, any sequence of surfaces of decreasing area must have a
limit that is also a surface. This is not true if we take the word ‘surface’ to mean
a smooth manifold. Suppose we take our boundary to be a circle, and consider
a sequence of surfaces as in Figure 1. Essentially, by extending ever thinner and

1



2 RAMAN ALIAKSEYEU

Figure 1. A non-converging minimizing sequence of surfaces with
a circular boundary. ([3], pg. 5-7)

longer ‘tentacles’ out of a surface, we can keep reducing its area, but the limit of
our operations will be some surface with discontinuities.

In order to circumvent this issue, Douglas and others from the early 20th century
considered only surfaces which are images of sufficiently nice maps from D2 into
R3, and minimized their energy (L2 norm of the differential of the map) instead of
the area. While that eliminated the problem with tentacles (thin tubes add a lot of
energy), images of disks are generally not the correct class of surfaces to consider
when minimizing area. For instance, surfaces of non-zero genus pose an issue.

This illustrates the need for a class of surfaces which are as flexible as manifolds in
terms of their topology, and also have the desirable convergence and compactness
properties. The correct notion to consider here turns out to be that of integral
currents, which were developed by Federer and Fleming in the 1960s. The study
of these surfaces, and the analytic methods associated with them, grew into the
field of geometric measure theory. The goal of this paper is to develop, in broad
strokes, the theory of integral currents, convince the reader that currents qualify as
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generalizations of surfaces, and demonstrate the power of current theory by proving
the existence of area-minimizing currents with a particular boundary.

This paper will closely follow the treatment of the subject presented in [4]. In
a way, the goal is to abridge, clarify, and motivate the material in that book con-
cerned with the existence of minimizing integral currents. In order to keep this in-
troduction focused, it is assumed the reader is comfortable with measure-theoretic
analysis, some functional analysis, and other miscellaneous analytic and differential-
geometric prerequisites contained in chapters 1 and 2 of [4], or is willing to trust
those results when they are used. They will be named whenever they’re used so
one can research them independently if needed. Proofs of statements, or sketches of
proofs, will be included whenever they are helpful. The amount of detail given will
increase as we get closer to examining area-minimizing currents. Complete proofs,
or citations of full proofs, may be found in [4]. An effort was made to maintain
compatible notation.

2. Rectifiable Sets and Varifolds

2.1. Rectifiable Sets. Despite being the correct setting for considering Plateau’s
problem, which is geometric in nature, currents are not by default geometric objects.
There is a particular class of currents however, namely integral currents, that do
correspond to varifolds, which are manifold-like sets equipped with a multiplicity
function. Before we can talk about currents or varifolds, however, we need to define
exactly what ‘manifold-like’ sets are. They are known in geometric measure theory
as rectifiable sets.

Definition 2.1. A set M ⊂ Rn+l is a µ-countably n-rectifiable set if it is a subset
of N0 ∪ (∪∞

j=1Nj), where N0 has measure zero (with respect to µ) and Nj are C1

n-dimensional embedded submanifolds of Rn+l.

In other words, countably-n-rectifiable sets are collections of countably many
subsets of n-manifolds, together with a measure zero set. The following lemma
establishes a alternative definition in terms of images of Lipschitz functions, which
will be useful soon when we deal with n-rectifiable sets more analytically.

Lemma 2.2. M is countably-n-rectifiable if and only if it is a subset of N0 ∪
(∪∞

j=1Fj(Aj)), where Fj : Rn → Rn+l are Lipschitz functions.

Proof sketch: The only-if direction of this lemma is clear if one considers coordinate
maps ψ of Nj on balls of some sufficiently small radius r around points p ∈ M .
Because the range of these functions is restricted, they’re Lipschitz. On the other
hand, we know we can approximate a Lipschitz function Fj with continuous func-
tions such that they agree outside of an ϵ-measure set. Hence, we can pick a
countable sequence of continuous functions whose images (which are C1 manifolds)
contain the image of Fj up to a measure zero set. Repeating this procedure for all
j, we can get the desired expression of M in terms of manifolds. □

By this lemma, we can also write an n-rectifiable set as a union of subsets of
manifolds, so M = ∪∞

j=1Mj where Mj ⊂ Nj , an n-manifold of Rn+l.
Because we want n-rectifiable sets to be a generalization of manifolds, we need a

way to do calculus on them. This requires a notion of a tangent space. Of course,
n-rectifiable sets don’t need to be C1 anywhere, so we cannot define a tangent
space as we would for manifolds. Instead, we generalize based on the fact that
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tangent spaces are local linear approximations of manifolds. Approximate tangent
spaces will thus be defined as linear spaces that ‘locally’ behave similarly to their
n-rectifiable set under integration.

Definition 2.3. Let M be an Hn-measurable subset of Rn+l with Hn(M ∩K) <
∞ for any compact K. Then, an n-dimensional hyperplane P ⊂ Rn+l is the
approximate tangent space of M at x if

(2.4) lim
λ↓0

∫
ηx,λ(M)

f(y)dHn(y) =

∫
P

f(y)dHn(y)

Where f is any compactly supported continuous function on Rn+l and ηx,λ is the
“zoom-in on x by a factor of λ” function:

(2.5) ηx,λ(y) = λ−1(y − x)

If P exists, we denote it TxM , just like we would denote a tangent space.

Approximate tangent spaces characterize n-rectifiable sets as follows:

Theorem 2.6. Suppose M is Hn measurable with Hn(M ∩ K) < ∞ for every
compact K. Then M is countably n-rectifiable if and only if M has an approximate
tangent space at almost every x.

Proof sketch: For almost every point x ∈ M there is an associated tangent space
TxNj for some embedded C1 manifold Nj . Further, for almost every x in Nj , the
density of Nj around x is 1. Hence, by the upper density theorem,∫

ηx,λ(M)

f(y)dHn(y)
λ→∞−−−−→

∫
ηx,λ(Nj)

f(y)Hn(y)

Further, because ηx,λ(Nj) → TxNj , we have that TxNj = TxM , if the former exists.
This proves the forward direction of the theorem.

The other direction is significantly more technical. It uses the important fact
that the existence of an approximate tangent space at x implies that the following
are true for µ being Hn restricted to M :

lim
ρ↓0

µ(Bρ(x) ∩M)

ωnρn
= 1 lim

ρ↓0

µ(X1/2(πx, x))

ωnρn
= 0

Where Xα(πx, x), defined as the set {y ∈ Rn+l | dist(y − x, πx) ≤ α|y − x|} is the
cone of points that are ”over” the cone of slope α around x. If we use Egoroff’s
theorem, we can find a set E with µ(E) ≥ 1

2µ(R
n+l) on which the limits above a

uniform. If we find some directions πj such that the distance between some point y
and one of them is at most 1/16, and partition the set E into Ej corresponding to
which πj the πx is closest to at x, we can prove that Ej∩Bδ(x)∩X1/4(πx, x) is only
x. Hence, E ∩ Bδ(x) is contained in a finite union of Lipschitz graphs. Repeating
this procedure for the complement of E gives us a countable set of Lipschitz graphs
the union of which contains M up to a measure zero set. □

The theorem and lemma above are sufficient for us to redefine the familiar no-
tions from calculus on n-rectifiable sets. Here, the redefinitions of the gradient,
differential of a function, and the Jacobian are given:
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Definition 2.7. Let f be a locally Lipschitz function on an open U ⊂ Rn+l that
contains an n-rectifiable set M . Then if Nj is an n-dimensional C1 manifold, as in
(2.1) for almost every y ∈M we can define

∇Mf(y) = ∇Njf(y)

At all points where both TxM and ∇Mf exist, we can define

dMfx(τ) = Dτf(y) = ⟨τ,∇Mf(y)⟩
If J (x), we can define the Jacobian of M

Jf
M (x) =

√
detJ (x)

The element in the pth row and qth column of J (x) is given by Dτpf(x) ·Dτqf(x),
if τ1, . . . , τn are a basis of TxM .

Finally, we will think about purely unrectifiable sets.

Definition 2.8. A subset S ⊂ Rn+l is µ-purely n-unrectifiable if it contains no
µ-rectifiable n-subsets of non-zero measure.

The following lemma clarifies why this concept is useful to us.

Lemma 2.9. If A is a Hn σ-finite set, we have the decomposition A = R ∪ P ,
where R is countably n-rectifiable, and P is purely n-unrectifiable (If A is a Borel
set, then R can be picked to be Borel also).

Proof. Let A = ∪∞
j=1Aj with Aj of finite measure, and suppose without loss of

generality that A is Borel (otherwise pick a union B = ∪Bj that is the same in
measure as A and consider A ∩ R and A ∩ P instead of R and P ). Then let αj

be the supremum of Hn(S) over all S ⊂ Aj countably n-rectifiable. Choose n-
rectifiable Borel sets Ri,j such that Hn(Ri,j) > αj − 1/i. Their union R will be
countably n-rectifiable, and A \ R will be purely unrectifiable, by the fact that αj

are supremums. □

We conclude our discussion of rectifiable sets with a remarkable structure theo-
rem for σ-finite unrectifiable sets, due to Besicovich for n = l = 1, and to Federer
in general. Its proof is very much beyond the scope of this paper (the theory re-
quired to prove it takes up more than a hundred pages of [2]), but it will play an
important role in proving the rectifiability theorem for currents in a future section.
Additionally, it gives us a geometric intuition for what unrectifiable sets look like,
and inspires confidence in our choice of n-rectifiable sets as the geometric setting
for varifolds.

Theorem 2.10. Suppose Q is a σ-finite n-unrectifiable subset of Rn+l. Then
Hn(p(Q)) = 0 for almost all orthogonal projections p onto n-dimensional subspaces
of Rn. Here ‘almost-all’ is defined in terms of the Haar measure on the group
O(n+ l, n) of orthogonal projections.

A simple corollary of this theorem is that every σ-finite rectifiable set R has
Hn(p(R)) > 0 for some set of orthogonal projections p with non-zero measure.

Images of projections of a set can be thought of as shadows of a set onto a sheet
of paper produced by shining a flashlight on it from different directions. In that
case, an unrectifiable set has no shadow from almost every direction.

We can construct a purely 1-unrectifiable set as follows: first take a square
C0 = [0, 1]2 ⊂ R2, remove its central cross and keep the four squares of side length
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Figure 2. Boundaries of C0, C1, C2, C3, stages in the construction
of an unrectifiable set C ([3], pg. 37)

1/4. Call this set C1. Note that the projections of C0 and C1 onto the line y = x/2
are both full line segments of length 3√

5
. If we keep removing the middle crosses

of squares, letting Cn be the set of 4n squares of side length 4−n (see Figure 2),
the projection onto the line stays invariant. Hence, the limit set C = ∩∞

n=0Cn has
positive H1 measure. However, C’s projections onto the x and y axes are Cantor-
like sets of measure 0, which cannot happen if C contained a non-zero measure
subset of a 2-manifold. This example, and the theorem above, hopefully illustrate
how nasty unrectifiable sets are, and why we generally don’t want to deal with
them.

2.2. Varifolds. A slight generalization of an n-rectifiable set will be very useful to
us. Sometimes a ‘weight’ on certain parts of a rectifiable set is necessary to make
sure sequences of surfaces properly converge. This is the job varifolds can do for
us.

Definition 2.11. Let M be a countably n-rectifiable subset of Rn+l, and let θ
be a positive locally Hn-integrable function. Then define an n-(rectifiable)-varifold

v(M, θ) to be the equivalence class of all pairs (M̃, θ̃) such that Hn((M \M̃)∪ (M̃ \
M)) = 0 and θ = θ̃ Hn-almost everywhere on M . If θ is an integer-valued function,
v(M, θ) is called an integral varifold.

Note that in literature (like [2] or [3]) it is rare that authors define rectifiable
varifolds. They instead deal with general n-varifolds over U , defined as Radon
measures on the cross product U × G(n,m), where G(n,m) is the Grassmannian
of all m-dimensional linear subspaces of an n-dimensional vector space. It is a
theorem that a general n-varifold is rectifiable if it has an approximate tangent
space almost everywhere (with respect to the measure it induces), but because we
only care about varifolds with this property, and because rectifiable varifolds are
more obviously geometric, we will use the terms ‘varifold’ and ‘rectifiable varifold’
interchangeably.

Defining varifolds in terms of equivalence classes lets us ignore the measure-
zero subset N0 (as defined in (2.1)) of the corresponding n-rectifiable set M of a
particular varifold representative (M, θ), and lets us derive more information by
integrating functions over varifolds.
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Associated with each varifold V there is a Radon measure µT , defined

(2.12) µV (A) =

∫
A∩M

θ(x)dHn(x)

For some particular representative (M, θ) of V . The measure doesn’t change based
on our choice of representative. We define the mass of a varifold M(V ) with respect
to this measure:

(2.13) M(V ) = µV (Rn+l) =

∫
M

θdHn

The tangent space TxV for a varifold V = v(M, θ) is simply the tangent space TxM
for x in the corresponding rectifiable set M . We also define the support of V sptV
to be equal to the support of its corresponding measure sptµV . The restriction
V ⌞A of V to A will be defined by v(M ∩A, θ |M∩A).

Let U and W be open sets in Rn+l, and suppose f : U ∩ sptV → W is proper,
Lipschitz, and injective. We define the image f#V of V under f as the varifold
v(f(M), θ ◦ f−1). Note that as a consequence of the area formula, θ ◦ f−1 is locally
integrable in W , so f#V is indeed a varifold.

If f above is not injective, redefine the multiplicity θ̃ of f#V to account for fibers
of y ∈ f(M):

θ̃(y) =
∑

x∈f−1(y)∩M

θ(x)

In this more general case, if JMf is the Jacobian of f relative to M by the area
formula we have

(2.14) M(f#V ) =

∫
f(M)

θ̃dHn =

∫
M

(JMf)θdHn

We would now like to define an analogue of minimal surfaces for varifolds, using
a first variation formula. This is where the definitions above will be useful. Let
ϕt : U × (−ϵ, ϵ) → U be a smooth homotopy between two diffeomorphisms that are
identity outside a compact subset of U such that ϕ0(x) = x, and each ϕt is also
identity outside of a compact subset of U . Then if K ⊂ U is compact,

M(ϕt#(V⌞K)) =

∫
M∩K

JMϕtθdHn

If we set

X |x=
∂

∂t
ϕ(x, t) |t=0

The first variation formula for a varifold V is

(2.15)
d

dt
M(ϕ0(x)) |t=0=

∫
M

divMXdµT

Definition 2.16. A varifold V is stationary if its first variation is 0. So,

d

dt
M(ϕ0(x)) |t=0=

∫
M

divMXdµT = 0

3. Currents

Before we define differential currents, we review the usual results from the theory
of differential forms, and establish some notation.
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3.1. Differential Forms. First we review some definitions relating to differential
forms. Consider an orthonormal basis e1, . . . , en of Rn. There is a corresponding
basis dx1, . . . , dxn of the dual space Rn∗, such that dxi(ej) = δij . This dual space

is otherwise denoted Λ1(RP ). Then, Λk(RP ), the set of alternating k-tensors, is
defined as the set of alternating linear functions (swapping two adjacent arguments
switches the sign) on RP × · · · × RP , k times. If ω1, . . . , ωk ∈ Λ1(RP ), then we
define the wedge product of ω1, . . . , ωk as a k-tensor in Λk(RP ):

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) = det([ωi(vj)])

Hence, we know

ω ∈ Λk(RP ) ⇐⇒ ω =
∑

α∈Ik,n

ωαdx
α

where Ik,n is the set of multi-indices (i1, . . . , ik) with 1 ≤ i1 ≤ · · · ≤ ik ≤ n, ωα are
coefficients in R, and dxα = dxi1 ∧ · · · ∧ dxik . We may define dot products on this
space analogously to how we define them for vector spaces:∑

α∈Ik,n

ωαdx
α ·

∑
α∈Ik,n

ηαdx
α =

∑
α∈Ik,n

ωαηα

We can define Λk(RP ) = Λk(Λ1(Rk)) as the set of k-tensors over the vector space
of linear maps over Rk. By the double dual identification, the objects in this space
are spanned by all the e1 ∧ · · · ∧ eik = eα, where e1, . . . , en are a basis of RP and
α is a k multi-index in Ik,n. This is the space of k-vectors over RP . We define the
differential k-forms Ωn(U) to be the continuous maps from Λn(RP ) to U . In other
words,

ω ∈ Ωn(U) ⇐⇒ ω =
∑

α∈Ik,n

ωαdx
α ωα ∈ C∞(U)

The exterior derivative d : Ωn(U) → Ωn+1(U) of ω is defined

(3.1) dω =

n∑
j=1

∑
α∈Ik,n

∂ωα

dxj
dxj ∧ dxα

There’s also the pullback operation on a form Ωn(V ) (V ⊂ Rm) with respect to a
smooth map f : U → V , defined

(3.2) f#ω := (dfx)
#(ω |f(x))

where the right hand side is defined as usual for pullbacks.
Forms, when combined with using k-vectors to represent oriented k-dimensional

tangent spaces, are the most natural things to integrate over manifolds. If ω =
ωαdx

α for some k-multi-index α, we define the integral of it over an open subset U
of RP as

(3.3)

∫
U

ω =

∫
U

ωαdx
α

The integral on the right is defined as a k-iterated integral with respect to the
variables prescribed by the multi-index α. If M ⊂ RP is a k dimensional manifold
such that ξ : M → Λn(RP ) is a map such that M(x) is the k-vector v1 ∧ · · · ∧ vk
that represents the orientation of M at x, then

(3.4)

∫
M

ω =

∫
M

⟨ξ(x), ω(x)⟩dHn(x)
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The most important property of integration of forms over manifolds is the Stokes’
theorem. If ∂M is the k − 1 dimensional manifold that is a boundary of M , we
have

(3.5)

∫
∂M

ω =

∫
M

dω

We will denote the compactly-supported k-forms, i.e. ones with compactly sup-
ported coefficients, as Dn(U). The norm of a compactly-supported k-form is defined
similarly to the norm of a vector:

(3.6) |ω| = sup
x∈U

√
ω(x) · ω(x)

3.2. General Currents. We are now ready to define a general n-current.

Definition 3.7. T is an n-current if it is a continuous linear functional on Dn(U).
The set of such n-currents will be denoted Dn(U) (since it is the dual space of
Dn(U))

Continuity here is defined in terms of the locally convex topology on Dn(U). In it,
ωk =

∑
ωkαdx

α converges to ω =
∑
ωαdx

α if all the coefficients ωkα are supported
on the same compact set K, and limDβωkα = Dβωα, where D

β is any m-derivative
of ω (for any m) with respect to variables prescribed by the multi-index β.

Despite not looking like it at first glance, currents are natural generalizations of
oriented k-manifolds with locally finite Hn measure, since such manifolds are one
class of objects that ‘act’ on forms in a continuous way. So, given a k-manifold
M with an orientation ξ, as in (3.4), we have the corresponding n-current [[M ]]
defined by

(3.8) [[M ]](ω) :=

∫
M

⟨ξ(x), ω(x)⟩dHn(x)

Inspired by the formula above and Stokes’ theorem, we define the boundary n− 1-
current ∂T of an n-current T like so:

(3.9) ∂T (ω) := T (dω) ω ∈ Dn(U)

Also motivated by this example, we define mass of T over the open set W ⊂ U as

MW (T ) := sup
|ω|≤1,ω∈Dn(U),sptω⊂W

T (ω)

As such, the mass of [[M ]] is its n-measure Hn(M). If W = U , we can denote the
mass of T as simply M(T ).

Currents T over U such that MW (T ) + MW (∂T ) is finite for all W compactly
supported in U will be the most general setting on which we will prove a lot of our
results. So, they deserve a special name, and are commonly referred to as normal
currents in literature ([3], p. 49)

The support of a current T on Dn(U) is defined as U \∪W , where W are all sets
compactly contained in U such that T (ω) = 0 whenever ω ∈ Dn(U) is compactly
supported in W . In other words, ∪W is where all the forms in the kernel of T are
supported.

Notice we can apply the Riesz Representation Theorem to any current T with
a finite mass MW (T ) for any W ⊂⊂ U to get a Radon measure µT on U and a
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µT -measurable, Λn(Rn)-valued function T⃗ , such that T can be expressed as

(3.10) T (ω) =

∫
U

⟨ω(x), T⃗ (x)⟩dµT

The measure µT is a nice representation of the current, since µT (U) = M(T ),
and sptT = sptµT in the usual sense of supports of measures. Similarly to how
we defined a restriction of varifolds to sets, we define the restriction T⌞A of an
n-current T to a µT -measurable set A ⊂ U by

(3.11) (T⌞A)(ω) :=
∫
A

⟨ω, T⃗ ⟩dµT

For all ω ∈ Dn(U), with T⃗ as above. Similarly, we can apply a locally µt-integrable
function ϕ to a current:

(3.12) (T⌞ϕ)(ω) :=
∫

⟨ω, T⃗ ⟩ϕdµT

We would like to talk about the compactness properties of Dn(U), hence we will
need a topology on this space. We use the weak∗ topology on Dn(U), in which we say
the sequence of currents {Tq} converges to T (denoted Tq → T ) if limq→∞ Tq(ω) =
T (ω) for all continuous n-forms on U . Currents, however, are defined in terms of
smooth forms, and we say that {Tq} converges weakly to T (denoted Tq ⇀ T ) if the
limit condition above is true for ω ∈ Dn(U). Note that if all Tq have finite mass on
all W compactly supported in U , (3.10) gives us a way to plug in continuous forms
by approximating them with smooth ones and taking the limit using dominated
convergence, and hence weak pointwise convergence becomes equivalent to weak∗

convergence. Now, by the Banach-Aloglou theorem combined with the Eberlein-
Šmulian theorem, we know Dn(U) is sequentially compact. Namely,

Lemma 3.13. If {Tq} is a sequence of n-currents, and supn≥1 M(Tq) <∞ for each
W compactly contained in U , then there is a subsequence {Tq} and a T ∈ Dn(U)
such that ∫

U

⟨ω, T⃗q′⟩dµT →
∫
U

⟨ω, T⃗ ⟩dµT

Because mass is defined with the operator norm, it is lower-semicontinuous with
respect to weak∗ topology. In other words, if Tq ⇀ T , we have

(3.14) MW (T ) ≤ lim
q→∞

MW (Tq)

This shows the topology induced by the norm M is weaker than the topology in-
duced by the pointwise convergence. In other words, Tq ⇀ T implies limq→∞ M(Tq−
T ) = 0.

In the next section we will want to ‘slice’ a current by a Lipschitz function, like
one would slice some surface by horizontal planes to get level sets. The general
definition of a slice is relatively opaque, but slices of integral currents, which we
will define soon, have some nice properties.

Definition 3.15. Let f be a Lipschitz function in U , and T be a normal current.
Denote

L(−)(t) = {x ∈ U : f(t) < t} L(+)(t) = {x ∈ U : f(t) > t}
For a normal current T ∈ Dn(U), define quantities

⟨T, f, t−⟩ = ∂(T⌞L(−))− (∂T )⌞L(−) ⟨T, f, t+⟩ = ∂(T⌞L(+))− (∂T )⌞L(+)
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Whenever ⟨T, f, t−⟩ = ⟨T, f, t+⟩, their shared value is the n − 1 current called the
slice of T by f , denoted ⟨T, f, t⟩. Note that this quantity exists for all but countably
many t, i.e. those for which M(T⌞{f = t}) + M((∂T )⌞{f = t}) > 0 (since the
current is normal).

We will want the following bound on the integral of slices with respect to f using
the derivative of f .

Lemma 3.16. Let f be Lipschitz on U (hence differentiable almost everywhere),
and let T ∈ Dn(U) be normal. Then∫ b

a

MW (⟨T, f, t⟩) ≤ esssupW |Df |M(T⌞{a < f < b})

Proof Sketch: We will prove this result for continuous maps. Take some smooth
increasing function γ : R → R+ such that

γ(t) =

{
0 t < a

1 t > b
0 ≤ γ′(t) ≤ 1 + ϵ

b− a
for a < t < b

for some arbitrary ϵ > 0. Then

((∂T )⌞γ ◦ f)(ω)− ∂(T⌞γ ◦ f)(ω) = T (γ′(f)df ∧ ω)
The left hand side converges to ⟨T, f, t+⟩ as b → a, and on the right hand side we
have the bound

M(T (γ′(f)df ∧ ω)) ≤ sup
W

|Df |1 + ϵ

b− a
MW (T⌞{a < f < b})|ω|

with sptω in W . Then, also letting ϵ→ 0, we have a bound

(3.17) M(⟨T, f, t+⟩) ≤ esssupW |Df | lim inf
h↓0

h−1MW (T⌞{t < f < t+ h})

With a similar argument we get

(3.18) M(⟨T, f, t−⟩) ≤ esssupW |Df | lim inf
h↓0

h−1MW (T⌞{t− h < f < t})

Notice that

lim inf
h↓0

h−1MW (T⌞{t < f < t+ h}) = d

dt
MW (T⌞{f < t})

and similarly for lim infh↓0 h
−1MW (T⌞{t−h < f < t}). Because MW (T⌞{f < t})

is increasing in t, it is differentiable almost everywhere, and so∫ b

a

d

dt
MW (T⌞{f < t})dt ≤ MW (T⌞{a < f < b})

This gives us the result. □

We will also need to know what a pushforward of a current by a map is.

Definition 3.19. If T is an n-current on Dn(U), f : U → V for open U ⊂ Rn, V ⊂
Rm and f restricted to sptT is proper, then the m-current f#T on Ωm

c (V ) called
the pushforward of f is defined as

(3.20) f#T (ω) := T (ξf#ω)

for any ω ∈ Dn(V ) and smooth ξ on U that is equal to 1 on a neighborhood of
sptT ∪ spt f#ω.
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By Rademacher’s theorem and (3.10) (when the conditions of the latter are
satisfied), the pushforward is still valid if f is only Lipschitz. In that case, we have
the following representation of the pushforward:

(3.21) f#T =

∫
⟨f#ω, T⃗ ⟩dµT =

∫
⟨ω |f(x), dfx#T⃗ (x)⟩dµT

Notice that the pushforward commutes with the boundary operator: ∂f#T =
f#∂T .

We also want to define products of currents.

Definition 3.22. Let T and S be s and t-currents on Ωs
c(U1) and Ωt

c(U2) respec-
tively (U1 ⊂ Rn1 and U2 ⊂ Rn2). Express ω ∈ Ωs+t

c (U1 × U2) like

ω =
∑

(α,β)∈Is′,n1
×It′,n2

s′+t′=s+t

ωαβ(x, y)dx
αdyβ

Then, define S × T as a current over Ωs+t
c (U1 × U2) like

S × T (ω) := T

∑
β

S

(∑
α

ωαβdx
α

)
dyβ


Notice this definition plays well with manifolds interpreted as currents: ifM1,M2

are s and t-dimensional manifolds in Rn1 and Rn2 respectively, then [[M1]]×[[M2]] =
[[M1 ×M2]]. Also, for any W1,W2 compactly contained in U1, U2 respectively, we
have MW1×W2

(S × T ) = MW1
(S)MW2

(T ).
The boundary of a product of currents is computed using the definition of current

boundary (3.9):

(3.23) ∂(S × T ) = (∂S)× T + (−1)sS × ∂T

Consider the current [[(0, 1)]] that corresponds to the 1-current given by the open
interval (0, 1) ⊂ Rn interpreted as a manifold with the usual orientation. Then,
denoting the 0-current on smooth maps over U : {p}(ω) = ω(p) as {p}, the formula
above gives

(3.24) ∂([[(0, 1)]]× T ) = {1} × T − {0} × T − [[(0, 1)]]× ∂T

By computing ∂h#([[(0, 1)]]×T ) using the identities above we derive the important
homotopy formula:

Lemma 3.25. Let T ∈ Dn(U), f, g : U → V be smooth, and h : [0, 1]× U → V be
a homotopy between f and g such that h |[0,1]×sptT be proper, we have

g#T − f#T = ∂h#([[(0, 1)]]× T ) + h#([[(0, 1)]]× ∂T )

We also have a mass bound on the image of [[(0, 1)]]× T of an affine homotopy.

Lemma 3.26. If f, g and T are as in (3.25), and h is the affine homotopy h(x, t) =
tg(x) + (1 − t)f(x) between f and g such that h |sptT is a proper map into V , we
have

MW (h#([[(0, 1)]]×T )) ≤ sup
x∈sptW∩Wh

|f(x)−g(x)| · sup
x∈spt t∩Wh

(|dfx|+ |dgx|)nMWh
(T )

Where Wh = p(h−1(W )) for some W ⊂⊂ U , with p : (x, t) 7→ x.
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Proof. Notice that ⃗[[(0, 1)]]× T = e1 ∧ T⃗ , and µ[[(0,1)]]×T = L1 ×µT , so by Fubini’s
theorem (which we can use since W is compactly contained in U) and (3.21) we
have for any n-form ω on V :

MW (h#([[(0, 1)]]× T ))

= sup
|ω|≤1,sptω⊂W

∫ 1

0

∫
W

⟨ωh(t,x), dh(t,x)#(e1 ∧ T⃗ (x))⟩dµT (x)dt

= sup
|ω|≤1,sptω⊂W

∫ 1

0

∫
W

⟨ωh(t,x), (g(x)− f(x)) ∧ (tdgx − (1− t)dfx)#T⃗ (x)⟩dµT (x)dt

The bound falls out after performing the pushforward. □

This is a good time to mention a characterization of boundaryless currents, called
the Constancy Theorem.

Theorem 3.27. If U is open and connected in Rn, if T ∈ Dn(U) and ∂T = 0 then
there is a constant c such that T = c[[U ]].

Proof Sketch: By using mollifiers, we can express T in the interior of a ball Bρ(x0) ⊂
U as a bounded linear functional, and get a representation of it like

T (adx1 ∧ · · · ∧ dxn) =
∫
ãθdLn

for some bounded measurable function θ and ã a smooth, compactly supported
map. Then we know there’s a form ωjσ such that dωjσ = (Djã)σdx

1 ∧ · · · ∧ dxn.
So, we have ∫

Dj ãθ = T (dωj) = ∂T (ωj) = 0

Since T has no boundary. But this implies θ is constant in the interior of Bρ(x0) ⊂
U , and thus T is some constant multiple of the current associated with the interior
of Bρ(x0). Because U is connected and T is continuous, we’re done. □

By a similar argument, using the compactness of bounded variation functions
BVloc, we have that if MW (∂T ) < ∞ then the boundedness of |

∫
Dj ãθ| implies

that there is some θ ∈ BVloc(U) such that

(3.28) T (ω) =

∫
aθdLn

3.3. Integral Currents. Integral currents are those currents that correspond to
integral varifolds with oriented approximate tangent spaces.

Definition 3.29. If T ∈ Dn(U) where U ⊂ Rn+l, then T is a integer multiplicity
current if it can be expressed like

(3.30) T (ω) =: τ(M, θ, ξ)(ω) =

∫
M

⟨ω(x), ξ(x)⟩θ(x)dHn

WhereM is anHn-measurable, n-rectifiable set, θ :M → Z is locallyHn integrable,
and ξ : M → Λn(Rn+l) is an Hn-measurable map such that ξ(x) is τ1 ∧ · · · ∧ τn
where {τi} form an orthonormal basis for the approximate tangent space TxM . We
call θ the multiplicity, and ξ the orientation of T .

There is an important lemma telling us that the pushforward of an integral
current is again an integral current.
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Lemma 3.31. Let f : U →W be locally Lipschitz, f restricted to sptT be proper,
and T = τ(M, ξ, θ) ∈ Dn(U) be an integer multiplicity current. Then f#T is an
integer multiplicity current in W .

Proof. By (3.21), we have

f#T (ω) =

∫
M

⟨ωf(x), d
Mfx#ξ(x)⟩θ(x)dHn(x)

We also have |dMfx#ξ(x)| = JMf(x), so by the area formula

f#T (ω) =

∫
f(M)

〈
ω |y,

∑
x∈f−1(y)∩M+

θ(x)
dMfx#ξ(x)

|dMfx#ξ(x)|

〉
dHn(y)

WhereM+ = {x ∈M : |∇Mf(x)| > 0}. SinceM is an n-rectifiable set, so is f(M).
Hence, given an orthonormal basis for Ty(f(M)) {τ1, . . . , τn} for almost every x we
have

dMfx#ξ(x)

|dMfx#ξ(x)|
= ±τ1 ∧ · · · ∧ τn

Denote the orientation of this approximate tangent space at y by η(y). Then

f#T (ω) =

∫
f

(M)⟨ω(y), η(y)⟩N(y)dHn(y)

Where

N(y)η(y) =
∑

x∈f−1(y)∩M+

θ(x)
dMfx#ξ(x)

|dMfx#ξ(x)|

So, N(y), the multiplicity of f#T , has to be an integer. This proves the lemma. □

Slices over integral currents can be defined more explicitly than with general
currents. Here we use ⌞ on v ∈ Λn(TxM) and w ∈ TxM as a way of denoting
v⌞w ∈ Λn−1(TxM) such that ⟨v⌞w, a⟩ = ⟨v, w ∧ a⟩ for some a ∈ Λn−1(TxM).

Definition 3.32. Let f be Lipschitz on Rn+l, and define M+ = {x ∈ M :
|∇Mf(x)| > 0}. Then, if T ∈ Dn(U), for almost every t we define the slice ⟨T, f, t⟩
as the n− 1-current

(3.33) ⟨T, f, t⟩ = τ(Mt, θt, ξt)

Where Mt = f−1(t) ∩M+,

θt(x) =

{
0 ∇Mf(x) = 0

θ(x) ∇Mf(x) ̸= 0
restricted to Mt; ξt(x) = ξ(x)⌞ ∇Mf(x)

|∇Mf(x)|

This definition agrees with the more general one in the case that T is normal.
This also gives us ⟨∂T, f, t⟩ = −∂⟨T, f, t⟩ for almost every t. Another important
property is that for each open W ⊂ U :

(3.34)

∫ ∞

−∞
MW (⟨T, f, t⟩)dt =

∫
M∩W

|∇Mf |θdHn

So, the slices “glue together” to become the whole current over all values of t.
Finally, we prove the completeness of integral currents under the topology in-

duced by the mass norm. This is a crucial step to proving their completeness under
the weak∗ topology.
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Lemma 3.35. The set of integer multiplicity currents in Dn(U) is complete with
respect to the mass norm topology.

Proof. Let {TQ} ⊂ Dn(U) be a Cauchy sequence of integral currents with respect
to every semi-norm MW , W ⊂⊂ U . Denote

TQ = τ(MQ, θQ, ξQ)

Then, the Cauchy condition is that for P ≥ Q,

MW (TQ − TP ) =

∫
W

|θP ξP − θQξQ|dHn < ϵW (Q)

and ϵW (Q) → 0 as Q→ ∞. Since |ξP | = 1 where it is defined, we get∫
W

|θP − θQ|dHn < ϵW (Q)

Hence θP converge in L1(Hn) locally in U to some integer values function θ. Notice
that MQ also converges in measure to M+, defined {x ∈ U | θ(x) > 0}. Finally,∫

W

θP |ξP − ξQ|dHn < 2ϵW (Q)

So ξP converges in L1(Hn) locally in U to some orientation function ξ on M+.
Finally, TxM+ = TxMQ except on a set of measure ≤ ϵW (Q) in M+ ∩W , hence
M+ is n-rectifiable by (2.6). Hence, MW (T −TP ) → 0, where T = τ(M+, θ, ξ). □

4. Deformation Theorem and its Consequences

The deformation theorem states roughly that we can approximate any normal n-
current T by a polyhedral current chain P , consisting of currents corresponding to
scaled n-faces of the cubical integer lattice Zn+l. This approximation can be chosen
so the supports of P and T are arbitrarily close together, and the masses of P and T
are of the same order. The deformation theorem turns out to be extremely useful,
and yields surprisingly simple proofs of the important isoperimetric inequality and
boundary rectifiability property, which we will need in the next section.

The geometric idea of the proof is illustrated clearly in the case when the current
is a 1-manifold in 3-space, approximated by edges of cubes in the lattice Z3. In order
to get the polyhedral chain to approximate the curve, we first project it radially
(from the centers of cubes outwards) onto the faces of the cubes via map ψ2, and
then radially from the centers of those faces onto the edges of the cubes via map ψ1.
The union of all edges of the lattice that cover the image of the composition ψ of
these two projections, with multiplicity, will be our polyhedral approximation. Of
course, because we are approximating a curve with straight line segments of length
1, this approximation will be rough. In order to get a better one, we can first scale
the curve by some factor > 1, get a polyhedral chain for that scaled curve, and
then scale the approximation back to fit the original curve.

The only possible snag we might hit during this procedure is if the curve wraps
very tightly, or passes through, one of the centers of the cubes (as in Figure 4).
Then the mass of the resulting approximation could become arbitrarily large. The
proof of [4] avoids this issue by instead projecting radially away from some carefully
chosen point a close to the center of the cube. Of course, proving that we can pick
such a point is difficult.
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To begin to generalize and formalize this idea, we first introduce some notation.
Let C = [0, 1]n+l ⊂ Rn+l denote the standard unit cube, let q = (1/2, . . . , 1/2) be
its center, and let S1, . . . SN be all the linear subspaces in Rn+l that contain faces
of C. In R3, those will be the xy, xz, and yz planes. Let pi denote the orthogonal
projection onto Si. As usual, let Zn+l denote the integer lattice in Rn+l. We can
cover Rn+l with the following union of the copies of C:

(4.1) Rn+l =
⋃

z∈Zn+l

(z +C)

Denote by Lj the j-skeleton of this decomposition. For example, if n + l = 3,
L0 = Z3 is the union of vertices of the lattice, L1 is the union of edges (points with
at least 2 of the 3 coordinates being integers), and L2 is the union of faces of the
cubes (1 of 3 coordinates is an integer). Denote by Lj the set of j-faces F in Lj .
Lj(ρ) is the set Lj with all faces scaled by a factor of ρ. Finally, denote by Lk−1(a)
the shifted (k − 1)-skeleton a+ Lk−1 for a ∈ B1/4(q), and by Lk−1(a, ρ) the set of
all points at most ρ away from the skeleton (ρ < 1/4). Note that we can construct
Lk−1(a, ρ) out of tubes surrounding the inverse images of the projections onto Sj

as such:

(4.2) Lk−1(a, ρ) =

N⋃
j=1

⋃
z∈Zn+l∩Sj

p−1
j (Bρ(pj(a) + z))

This set will be the setting in which to account for ‘wrapping’ in k dimensions.
This way, with say k = 2, we could say a 2-current coils around some axis through
a point.

Now, we want a map ψ that generalizes the one we described earlier.

Lemma 4.3. For any a ∈ B1/4(q) there is a locally Lipschitz map ψ : Rn+l \
Lk−1(a) → Rn+l \ Lk−1(a) such that

(1) ψ maps C \ Lk−1(a) to Ln, and is the identity on C ∩ Ln.
(2) |Dψ(x)| ≤ c

ρ for almost every x ∈ C \ Lk−1(a, ρ), 0 < ρ < 1/4, and c

dependent on n and k.

Proof. We will first construct an appropriate ψ, (1) and the fact that ψ is locally
Lipschitz will then be obvious given the construction. For any j ≥ n + 1, let aF
be the orthogonal projection of a onto a j-face F ∈ Lj (aF = a if F = C), and

denote by ψF the radial retraction of F \ {aF } onto ∂F . So, x ∈ F \ {aF } maps to
y ∈ ∂F such that the line passing through x and y also passes through aF . Then,
define ψj , the map from the union of j-faces F \ {aF } to the union of j− 1-faces G
piecewise by ψ |F\{aF }= ψF . Finally

(4.4) ψ0 = ψn+1 ◦ · · · ◦ ψn+l |C\Lk−1(a)

ψ0 is a map only on a subset of C, to get a map ψ on Rn+l \Lk−1(a) set ψ(x+z) =
ψ0(x) + z for x ∈ C \ Lk−1(a) and z ∈ Zn+l. By the construction of ψF , it should
be clear why ψ is the identity on C \Ln. It is also Lipschitz because it fixes a given
cube C + z.

Now we prove the condition (2) on the derivative of ψ by induction on l, the
additional dimensions of the ambient space on top of n. Recall that by definition

(4.5) |Dψ(x)| = lim sup
y→x

|ψ(y)− ψ(x)|
|y − x|
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If l = 1, ψ on C is just ψn+1, the radial retract away from a. Then we know we
have sup |Dψ| < c/ρ.

Now suppose that the statement is true for some l−1. Let x be any point in the
interior of C \Lk−1(a, ρ), and let F be a face that contains y = ψn+l(x). If pF is the
orthogonal projection onto F , by orthogonality of the lattice frame, aF ∈ Lk−1(a),
so we have

|y − aF | ≥ dist(y, Lk−1)

But also by definition of ψn+l, and because ρ < 1/4, we have

|y − aF | ≤
3

4

|pF (x− a)|
|x− a|

Let L̃k−2 = Lk−1(a) ∩ F , and let ψ̃ be the radial retract of F \ L̃k−2(a) onto the

n-faces of F (so, ψ̃ is what one needs to compose ψn+l by to get ψ restricted to C).
But then we can apply the induction hypothesis together with the two inequalities
above to get

|Dψ̃(y)| ≤ c

dist(y, L̃k−2(a))
≤ 4c

3

|x− a|
dist(x, Lk−1(a))

By the base case of our induction we have

|Dψn+l(x)| ≤ c

|x− a|
Hence by chain rule we conclude

|Dψ(x)| ≤ |Dψ̃(y)||Dψn+l(x)| ≤ c

dist(x, Lk−1(a))

This proves (2). □

In figure (4) the images of the black 1-current under ψ3 and ψ3 ◦ ψ2 = ψ0 are
shown in orange and purple respectively. Notice how projection with respect to a
eliminates the problem that would be posed by the coiling around q if we projected
instead with respect to q.

Condition (2) in the above lemma will be crucial in establishing the mass bounds
of the deformation theorem, which is stated formally below.

Theorem 4.6 (Deformation Theorem). Suppose T is a normal n-current in Rn+l.
Then we can write

T = P + ∂R+ S

Where P =
∑

F∈Ln
βF [[F ]] for some βF ∈ R is a polyhedral chain such that

(4.7) M(P ),M(R) ≤ cM(T ) M(∂P ),M(S) ≤ cM(∂T )

(C dependent on n and k) and

sptP ∪ sptR ⊂ {x : dist(x, sptT ) < 2
√
n+ l}(4.8)

spt ∂P ∪ spt ∂R ⊂ {x : dist(x, spt ∂T ) < 2
√
n+ l}(4.9)

If T and ∂T are integer multiplicity then so are P , R, and S.

For a graphical demonstration of this theorem in the case T is a 1-current con-
tained in U = R3, see figure (4). In this figure, the lattice has side length 1,
R = S1 + S2.
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Figure 3. Images of the constituent projections of ψ of the de-
formation map in lemma (4.3).

Figure 4. Illustration of currents given by the deformation theo-
rem. ([3] pg. 62)

There will be three steps to proving this theorem. First, we will show we can
choose a point a such that Lk−1(a, ρ) contains portions of T and ∂T bounded by
a quantity on the order of ρn+1 (so, we find some a around which T and ∂T don’t
‘coil’, in any copy of C). Then, by taking the limit of ρ→ 0, we will find currents Q,
R1 and S1 so that Q (limit of pushforwards of T without Lk−1(a, ρ)) is supported
on Ln, and the mass/distance conditions of the theorem hold. Finally, we will show
that this won’t be spoiled if we replace Q with a polyhedral chain P that contains
it.
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Proof. Let xj be the central point of the n+ 1-face Fj contained in a subspace Sj

of Rn+l. Define the ‘good’ subset Gj ⊂ Fj ∩B1/4(xj) as the set of all points g that
satisfy

M(T⌞ ∪z∈Zn+l∩Sj
p−1
j (Bρ(g + z))) ≤ βρn+1M(T )

So, T doesn’t ‘coil’ around a in the direction normal to Sj in any of the cubes in
the lattice. We will now show that the bad ‘coiling’ set Cj = Fj ∪ B1/4(xj) \ Gj

has a small (n+ 1)-measure. More speficially, for some β,

(4.10) Ln+1(Cj) ≤ 20n+1β−1ωn+1

(
1

4

)1/4

We will choose an appropriately large β soon.
Choose a cover {Bρc

(c)} of Cj so that

(4.11) M(T⌞ ∪z∈Zn+l∩Sj
p−1
j (Bρc(c+ z))) > βρn+1

c M(T )

for each c. By the Vitali 5-covering lemma, there exists a pairwise disjoint subcol-
lection {Bρl

(cl)} of the cover so that Cj ⊂ ∪lB5ρl
(cl). Adding up the inequalities

(4.11) for every member of the cover, we get the following by disjointness of Bρl
(cl):

M(T ) ≥ β−1
(∑

ρn+1
l

)
M(T )

Which implies β−1 ≥
∑
ρn+1
l . Because {B5ρl

(cl)} is a cover, we have

Ln+1(Cj) ≤
5n+1

β−1
ωn+1

Which, after some algebra, gives us (4.10).
We want a point a around which there’s no coiling in any direction, so we will

need a way to bound from below the intersection of Gj for all j. For this we use
the fact

(4.12) Ln+l(p−1(Gj) ∩B1/4(q)) ≥
(
1− ωn+1

ωn+l
20n+1β−1

)
ωn+l

(
1

4

)n+l

Then, choosing β small enough so that 20n+1ωn+1Nβ
−1 < ωn+l

2(n+l) , we know by

the above inequality that the set of ‘good’ a, GT = ∩N
j=1(p

−1
j (Gj) ∩ B1/4(q)), has

non-zero measure. Hence, there is a point a for which

(4.13) M(T⌞Lk−1(a, ρ)) ≤ Nβρn+1M(T )

However, by the way we chose β, the set GT occupies more than half of B1/4(q).
Hence, repeating the argument above with ∂T to get the set G∂T of good a for ∂T ,
we find that GT ∩G∂T ̸= ∅. So, denoting for brevity

Tρ = T⌞Lk−1(a, ρ) ∂Tρ = ∂T⌞Lk−1(a, ρ)

We know there exists an a so that

(4.14) M(Tρ) ≤ Cρn+1M(T ) M((∂T )ρ) ≤ Cρn+1M(∂T )

for some 0 < ρ < 1/4. This concludes the first step of the proof.
Let h be an affine homotopy on Rn+l \ Lk−1(a, σ) (σ > 0) between the identity

and ψ(x), i.e. h(x, t) = x+ t(ψ(x)− x). Then, applying (3.26) and using (4.3), we
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get

M(ψ#(Tρ − Tρ/2)) ≤ M(h#([[0, 1]]× T ))

≤ sup |ψ(x)− x| · sup
(
1 +

c

ρ

)n

MWh
(T )

≤ c

ρn
ρn+1M(T ) ≤ cρM(T )(4.14)

By a similar technique

(4.15) M(ψ#(∂Tρ − ∂Tρ/2)) ≤
c

ρn−1
ρn+1M(∂T ) ≤ cρM(∂T )

But then by adding Tρ − Tρ/2, Tρ/2 − Tρ/4, etc., and applying (4.14) we get

M(ψ#(Tρ − Tρ/2ν )) ≤ M

( ∞∑
ν=1

ψ#(Tρ/2ν−1 − Tρ/2ν )

)
≤ 2cρM(T )

A similar condition is true for ∂T . By exploiting the arbitrariness of ρ and η, we
establish the following property for any 0 < σ < 1:

(4.16) M(ψ#(T − Tσ)) ≤ cM(T ) M(ψ#(∂T − ∂Tσ)) ≤ cM(∂T )

Then, by picking ρk = 1/2k+2, by (4.14) and (4.15), we get that the following are
Cauchy sequences with respect to M:

ψ(T − Tρk
)k

h#([[(0, 1)]]× (T − Tρk
))k

ψ(∂T − ∂Tρk
)k

h#([[(0, 1)]]× ∂(T − Tρk
))k

Hence there are currents Q,S1 ∈ Dn(Rn+l) and R1 ∈ Dn+1(Rn+l) that are the
limits of the first, second, and last sequences above with respect to the mass norm.
By the homotopy formula we get

(T −Tρk
)−ψ$(T −Tρk

) = ∂(h#([[(0, 1)]]× (T −Tρk
)))−h#([[(0, 1)]]× ∂(T −Tρk

))

Taking the limit k → ∞, (switching the sign of S1 for convenience) we get

(4.17) T −Q = ∂R1 + S1

Because sptψ#(T − Tρn
) ⊂ Ln, sptQ ⊂ Ln also. Also, because ψ maps copies of

C to themselves, we satisfy the distance requirements

sptR1 ∪ sptQ ⊂ {x : dist(x, sptT ) <
√
n+ l}

sptS1 ⊂ {x : dist(x, spt ∂T ) <
√
n+ l}

and mass requirements (by (4.16) and semicontinuity of mass under weak conver-
gence)

(4.18) M(Q) ≤ cM(T ) M(R1) ≤ cM(T ) M(S1) ≤ cM(∂T ) M(∂Q) ≤ cM(∂T )

This concludes the second step of the proof.
Denote by F̃ the interior of a face F ∈ Ln. Now realize that by our construction

of Q, p#(Q⌞F̃ ) = Q⌞F̃ . Hence, by (3.28), we can express Q⌞F̃ as

(Q⌞F̃ ) =
∫
F̃

⟨e1 ∧ · · · ∧ en, ω(x)⟩θF (x)dLn(x)
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Where

M(Q⌞F̃ ) =
∫
F̃

|θF |dLn M((∂Q)⌞F̃ ) =
∫
F̃

|DθF |dLn(x)

Now pick βF ∈ Z such that θF is either at least or at most β on a set of Ln measure
1/2. Then, by the Poincaré inequality, we get

M(Q⌞− βF [[F ]]) ≤ c

∫
F̃

|DθF | = cM(∂Q⌞F̃ )(4.19)

M(∂(Q⌞− βF [[F ]])) ≤ c

∫
F̃

|DθF | = cM(∂Q⌞F̃ )(4.20)

(4.21)

Hence if we define P =
∑

F∈Ln
βF [[F ]] we have

M(Q− P ) ≤ cM(∂Q)(4.22)

M(∂Q− ∂P ) ≤ cM(∂Q)(4.23)

By our choice of βF we have |βF | ≤ 2
∫
|θF |, so

M(P ) ≤ cM(Q) M(∂P ) ≤ cM(∂Q)

Rewrite (4.17) by setting R = R1 and S = S1 + (Q − P ), and we are done. The
additional fact about preservation of integer multiplicity follows by applying the
completeness of integral currents in appropriate places throughout the proof. The
scaled version follows by the method described earlier. □

The deformation theorem gives us two important facts that we will use frequently
in the next section. The first is an isoperimetric inequality for integer multiplicity
currents.

Theorem 4.24 (Isoperimetric Theorem). Suppose T ∈ Dn−1(Rn+l) is an integer
multiplicity current, n ≥ 2, sptT is compact, and ∂T = 0. Then there is an integer
multiplicity current R ∈ Dn(Rn+l) with sptR compact, ∂R = T , and

M(R)
n−1
n ≤ CM(T )

where C is a constant dependent on n and k.

Proof. Let P,R, S be integer multiplicity currents given by (4.6) for some ρ > 0,
and note S = 0 because ∂T = 0. Because P is a sum of polyhedral currents, for
some positive integer N(ρ) we have

M(P ) = N(ρ)ρn−1

But also M(P ) ≤ cM(T ) for a constant c given by the deformation theorem. Setting
ρ = (2cM(T ))1/(n−1), we get N(ρ) ≤ 1/2, hence N(ρ) = 0 and P = 0. Thus (4.6)
gives T = ∂R, and the mass bound gives us M(R) ≤ cρM(T ) = C(M(T ))1/(n−1).

□

The next fact is the weak polyhedral approximation theorem.

Theorem 4.25 (Weak Polyhedral Approximation). Given any integer multiplicity
normal T ∈ Dn(U) there is a sequence {Pk} of polyhedral n-currents

Pk =
∑

F∈Ln(ρk)

βk
R[[F ]]

With ρk ↓ 0, such that Pk ⇀ T .
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Proof Sketch: In the case that U = Rn+l, the sequence of currents Pk given by the
scaled version of the deformation theorem using any sequence of ρk ↓ 0 is sufficient.
If U is some open subset of Rn+l, use a non-negative Lipschitz function ϕ that is
supported on U , and such that {x ∈ U | ϕ(x) > λ} is compactly contained in U
for all λ > 0.Consider currents Tλ = T⌞{ϕ < λ} on Rn+l. By the above argument,
we have a sequence of polyhedral currents converging weakly to every Tλ, hence we
have a sequence converging weakly to T as λ ↓ 0. □

5. Rectifiability and Compactness

The deformation theorem, weak approximation by polyhedral currents, and the
presence of an isoperimetric inequality for normal currents suggest that they have
some intrinsic relationship to geometric objects. However, with a minor additional
condition on the upper density of their associated measure µT , we can prove that
all normal currents T are derived from actions of varifolds on forms. This result
is called the rectifiability theorem. When proving this theorem, we will be relying
heavily on the following lemma and its consequences.

Lemma 5.1. If α ∈ In,P , denote by pα the orthogonal projection of RP onto Rn

given by (x1, . . . , xP ) 7→ (xi1 , . . . , xin). Suppose E is a closed subset of U , U open in
RP , with Ln(pα(E)) = 0 for each α ∈ In,P . Then T⌞E = 0 whenever T ∈ Dn(U)
is normal.

Proof. For ω ∈ Dn(U) as ω =
∑

α∈In,P
ωαdx

α for ωα ∈ C∞
c (U). Then we write

T (ω) =
∑
α

T (ωαdx
α) =

∑
α

(T⌞ωα)(dx
α) =

∑
α

(T⌞ωα)p
#
α dy

=
∑
α

pα#(T⌞ωα)(dy)

Where dy = dy1 ∧ dyn for y1, . . . yn the standard coordinate functions on Rn.
Choosing the β ∈ In,P for which pβ#(T⌞ωβ)(dy) is maximal among the terms in
the sum, and replacing all the other terms with it, we get the inequality

(5.2) M(T ) ≤ NM(pβ#(T⌞ωβ))

For some positive integer N .
We now want to show that pβ#(T⌞ωβ) has a finite boundary, since that lets us

use (3.28). Since for any η ∈ Dn−1(U) product rule yields

∂(T⌞ωβ)(η) = T (ωβη)− T (dωβ ∧ η)

we have

MW (∂(T⌞ωβ)) ≤ MW (∂T )|ωβ |+MW (T )|dωβ |
and

M(∂pβ#(T⌞ωβ)) = M(pβ#∂(T⌞ωβ)) ≤ M(∂(T⌞ωβ)) <∞
Hence, by (3.28) we can express

pβ#(T⌞ωβ)(η) =

∫
pβ(U)

⟨η, e1 ∧ . . . en⟩θβdLn

This implies pβ#(T⌞ωβ)⌞pβ(E) = 0 by the hypothesis.
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We then get another inequality involving the mass of pβ#(T⌞ωβ) for anyW such
that sptω ⊂W ⊂ U :

M(pβ#(T⌞ωβ)) ≤ M(pβ#(T⌞ωβ)⌞(RP \ pβ(E)))

= M(pβ#((T⌞ωβ)⌞(RP \ p−1
β pβE)))

By the homotopy formula (3.25), we can continue this chain:

M(pβ#((T⌞ωβ)⌞(RP \ p−1
β pβE))) ≤ M((T⌞ωβ)⌞(RP \ p−1

β pβE))

≤ MW (T⌞(RP \ E)) · |ωβ |

≤ MW (T⌞(RP \ E)) · |ωβ |

Combining this last inequality with (5.2), we get

MW (T ) ≤ CMW (T⌞(RP \ E))

which also implies
MW (T⌞E) ≤ CMW (T⌞(RP \ E))

Which, by definition of µT , says

µT (W ∩ E) ≤ CµT (W \ E)

Let K be some compact subset of E. Then we can choose a decreasing sequence
of sets {Wq} the intersection of which is K. Using the above inequality on this
sequence gives us µT (K ∩ E) ≤ 0, so M(T⌞K) = 0 and in fact, µT (K) = 0.
However, since µT is a Radon measure, µT (E) is the supremum of the measures of
all possible K, all of which are 0. Thus, µT (E) = 0, as desired. □

We know the hypothesis Ln(pα(E)) is satisfied if Hn(E) = 0. Further, because
µT is a Radon measure, for any Borel set C, µT (C) = supµT (E) where E ⊂ W is
closed. Hence, Hn(C) = 0 implies µT (C) = 0, so we get

Corollary 5.3. If T is a normal current, µT is absolutely continuous with respect
to Hn in U .

On the other hand, let Q be any orthogonal transformation of RP . We have
MW (T ) = MQW (Q#T ), so MW (T ) < ∞ implies µQ#T (Q(A)) = µT (A) for each
A ⊂ U , which guarantees

(5.4) Ln(Q(E)) = 0 =⇒ µT (E) = 0

We can now state and prove the Rectifiability Theorem.

Theorem 5.5 (Rectifiability Theorem). Suppose T is a normal current, and

Θ∗n(µT , x) > 0

for µT -almost-every x ∈ U . Then, T is rectifiable, or in other words, T = τ(M, θ, ξ),
where (M, θ) is a varifold and ξ is an orientation on its tangent space.

Proof. Note that because µT is a Radon measure, for t > 0 and A ⊂ W a subset
of an open W ⊂⊂ U ,

(5.6) Hn({x ∈ A | Θ∗n(µT , x) > t}) ≤ t−1µT (A) ≤ t−1µT (W )

A similar inequality is true for ∂T . Taking t→ ∞, and covering U with appropriate
W , gives

Hn({x ∈ U | Θ∗n(µT , x) = ∞}) = Hn({x ∈ U | Θ∗n(µ∂T , x) = ∞}) = 0
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By (5.3), we get

(5.7) µT ({x ∈ U | Θ∗n(µT , x) = ∞}) = µT ({x ∈ U | Θ∗n(µ∂T , x) = ∞}) = 0

Denote by M the set of all x ∈ U such that Θ∗n(µT , x) > 0. Writing

M = ∪∞
j=1Mj Mj = {x ∈M | Θ∗n(µT , x) > 1/j}

and applying (5.6), we realize M must be σ-finite. Suppose P ⊂ M is Hn purely
unrectifiable. Then, by σ-finiteness ofM , we can apply the structure theorem (2.10)
to get an orthogonal transformation Q of Rn+l corresponding to every α ∈ In,n+l

such that Hn(pα(QP )) = 0, where pα is defined as in (5.1). Then, by (5.4) we
conclude µT (P ) = 0. In other words, every purely unrectifiable subset of M has
zero Hn measure. By (2.9), we have shown that M is rectifiable.

Recalling once more that µT is absolutely continuous with respect to Hn, we
invoke the Radon-Nikodym theorem to get that for any µT measurable A:

µT (A) =

∫
A

θdHn

for some positive locally Hn integrable θ supported on U . Then by Riesz Repre-
sentation theorem we get

T (ω) =

∫
U

⟨ω, T⃗ ⟩dµT =

∫
U

⟨ω, ξ⟩θdHn

For some Hn measurable function with values in Λn(Rn+l) ξ with |ξ| = 1. To
conclude the proof we only need to show that ξ is an orientation of TxM for almost
every x ∈M , so ξ(x) = ±τ1 ∧ · · · ∧ τn almost everywhere for an orthonormal basis
{τi} of TxM . We do this by using the familiar ‘zoom-in’ function ηx,λ defined the
same way as in (2.3), and proving that ηx,λ#T for a specific x behaves ‘locally’ like
integration over a linear tangent space for almost every x. This will force ξ to be
of the appropriate form.

By (2.1) we may write M as a union of a measure zero set and Mj , pairwise
disjoint subsets of some C1 Rn+l-submanifolds Nj . By the upper density theorem,
the density of µT⌞((Nj \Mj) ∪ (∪k ̸=jMk)) is 0 for almost every x ∈Mj . Then for
every such x, we have

ηx,λ#T (ω) = T (η#x,λω) =

∫
Nj

⟨ξ(y), η#x,λω(y)⟩θdH
n(y) + ϵ(λ)

where ϵ(λ) ↓ 0 as λ ↓ 0. After performing the substitution z = ηx,λ(y) (equivalently
y = x+ λz), we get

ηx,λ#T (ω) =

∫
ηx,λ(Nj)

⟨ξ(x+ λz), ω(z)⟩θ(x+ λz)dHn(z) + ϵ(λ)

Because Nj is a continuous manifold, the limit of ηx,λ(Nj) as λ ↓ 0 is the tangent
space TxNj of Nj at x, and

lim
λ↓0

ηx,λ#T (ω) = θ(x)

∫
TxNj

⟨ξ(x), ω(z)⟩dHn(z)

for almost every x ∈ Mj . Thus TxNj equals TxM , the approximate tangent space
of M at x, for all such x ∈Mj . Examining the boundary ∂ηx,λ#T (ω), however, we



INTEGRAL CURRENTS AND PLATEAU’S PROBLEM 25

find that as λ ↓ 0,

∂ηx,λ#T (ω) = ∂T (η#x,λω) =

∫
Bx,λ(y)

⟨ωηx,λ(x)
, ηx,λ#∂⃗T ⟩dµ∂T

≤ C|ω|λ1−nµ∂T (BλR(x)) → 0

by (5.7) and the definition of upper density. Thus by the above two statements,
we know there is a sequence of factors λl such that ηx,λl#T ⇀ Sx, where Sx ∈
Dn(Rn+l) and

Sx(ω) = θ(x)

∫
TxM

⟨ξ(x), ω(z)⟩dHn(z)

Hence ∂Sx = 0. To see how this ensures ξ orients TxM , let τ1, . . . , τn, . . . , τn+l be
an extension of the orthonormal basis τ1, . . . , τn of TxM , and select ω ∈ Dn−1(U)
defined by ω(y) = yjϕ(y)dτα where α ∈ In−1,n+l, j ≥ n+1, {dyi} are the coordinate
functions on Rn+l associated with the {τi} basis, and ϕ is an arbitrary smooth
compactly supported function on Rn+l. Then since τj = 0 on TxM we deduce

∂Sx(ω) = Sx(dω) = θ(x)

∫
TxM

ϕ(y)⟨ξ(x), dyj ∧ dyα⟩dHn =

θ(x)

∫
TxM

ϕ(y)ξ(x) · (τj ∧ τα)dHn(y)

Because ∂Sx(ω) = 0, and ϕ is arbitrary, we have ξ(x)·(τj∧τα) = 0 for j, α as above.
Then, expressing ξ(x) =

∑
β∈In,n+l

wβτβ , we know every wβ with β containing any

j with j ≥ n + 1 must be 0. So, recalling that |ξ(x)| = 1, ξ(x) is forced to be
±τ1 ∧ · · · ∧ τn, as required. □

We are now in a position to prove the compactness theorem for integral currents.
First, we will prove a weak version of the theorem, and later we will remove the
extra assumptions.

Theorem 5.8. Let {Tj} ⊂ Dn(RP ) be a sequence of integral currents with integral
boundaries, such that sup(MW (Tj) + MW (∂Tj)) < ∞ for all bounded W in RP ,
and sptTj ⊂ K for some fixed K. Further, let ∂T = 0. Suppose Tj ⇀ T ∈ Dn(U).
Then T is an integer multiplicity current.

Proof. Note that the theorem is equivalent to Cauchy completeness of RP for n = 0.
Now we proceed by induction on n, supposing the theorem is true for some n− 1.
Our goal is to show that the upper density condition holds on the limit T , then
apply (5.5), and finally show the resulting T = τ(M, θ, ξ) is integral.

Define for some fixed ξ ∈ RP the function f(r) = M(T⌞Br(ξ)) for r > 0. By(
3.18), (3.17), the definition (3.15) of a slice, and the hypothesis ∂T = 0, we get

(5.9) MW (∂(T⌞Br(ξ))) ≤ f ′(r)

Suppose Θn∗(µT , ξ) < η for some η > 0. Then since by definition lim supρ↓0
f(ρ)
ωnρn <

η, we have for sufficiently small δ:

1

δ

∫ δ

0

d

dr
(f1/n(r))dr ≤ δ−1f1/n(δ) ≤ ω1/n

n η

In other words,

(5.10)
d

dr
(f1/n(r)) ≤ 2ω1/n

n η
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for a set of r ∈ (0, δ) of positive measure. Now, by the inductive hypothesis
∂(T⌞Br(ξ)) is an integer multiplicity current for almost every r > 0, so using
the isoperimetric inequality (4.24), we can find an n-integer multiplicity current Sr

such that ∂Sr = ∂(T⌞Br(ξ)) and for a set of r of positive L1 measure in (0, δ),

M(Sr)
(n−1)/n ≤ cM(∂(T⌞Br(ξ))) ≤ cηM(T⌞Br(ξ))

(n−1)/n

where the last inequality is by (5.9) and (5.10). Now, consider some compact
subset C of {x ∈ RP | Θ∗n(µT , x) < η}. By the Vitali 5-covering lemma, we
may select a disjoint cover Bj = Bρj

(ξj) with ξj ∈ C that covers µT -almost all
of C, ∪jBj ⊂ {x | dist(x,C) < ρ}, and (by the above use of the isoperimetric

theorem) for some integer multiplicity S
(
jρ) with (1) M(S

(ρ)
j ) ≤ cηM(T⌞Bj) and

(2) ∂S
(ρ)
j = ∂(T⌞Bj). Because of this we have

Sρ
j = T⌞Bj = ∂(hξj#([[(0, 1)]]× (Sρ

j − T⌞Bj)))

where hξj (x, t) = tx − (1 − t)ξj is the affine homotopy centered at ξj . Thus by
(3.25) and (3.26), we get for an n-form ω,

|(S(ρ)
j − T⌞Bj)(ω) |≤ cρM(S

(ρ)
j − T⌞Bj)|dω|

and by the isoperimetric theorem bound,

|(S(ρ)
j − T⌞Bj)(ω) |≤ cρM(T⌞Bj)|dω|

Thus, taking ρ ↓ 0, we get

T +
∑
j

(S
(ρ)
j − T⌞Bj)⇀ T

Because the series
∑

j S
(ρ)
j and

∑
j T⌞Bj are absolutely convergent with respect

to M by (1) and disjointness of Bj , we can split apart the sum to get T⌞(RP \
∪jBj) +

∑
j S

(ρ)
j on the left hand side, and hence conclude

µT ({x | dist(x,C) < ρ}) ≤ µT ({x | dist(x,C) < ρ}) + cηµT ({x | dist(x,C) < ρ})

By choosing η such that cη < 1
2 and hence

µT ({x | dist(x,C) < ρ}) ≤ 2µT ({x | dist(x,C) < ρ})

which, as we let ρ ↓ 0, implies that µ(C) must be 0. Hence, Θ∗n(µT , x) > 0 for
almost every x ∈ RP .

We can now apply (5.5) to get a varifold (M, θ) associated with T . Now the only
thing left to prove is that T is integral, i.e. θ is integer valued. To do this first
realize that for almost every x ∈ M by the definition of an approximate tangent
space we have ηx,λ#T ⇀ θ(x)[[TxM ]] where [[TxM ]] is oriented by the same ξ that
orients (M, θ). Set π⊥ as the n-dimensional subspace containing x that’s normal
to TxM , denote Ω = Bn

1 (0)× π⊥, and let d(y) = dist(y, TxM). Then it is possible
to find a sequence λj ↓ 0 and a ρ > 0 such that MΩ(⟨ηx,λjT, d, ρ⟩) ≤ c, and in
fact, a subsequence {j′} ⊂ {j} and ρ > 0 such that ηx,λj ,#Tj′ ⇀ θ(x)[[TxM ]] and
MΩ(⟨ηx,λj

Tj′ , d, ρ⟩) ≤ c for each j′. Then, if Sj = (ηx,λ#)⌞{y | d(y) < ρ} then

sup
j≥1

(MΩ(Sj) +MΩ(∂Sj)) <∞
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Now let p be the restriction of RP to the orthogonal projection onto TxM , and let
S̃j be the n current obtained by setting S̃j(ω) = Sj(ω̃), such that ω̃ = ω in Ω but
0 elsewhere. Then by (3.28)

p#S̃j(ω) =

∫
Bn

1 (0)

aθjdLn

where a is such that ω = aξ, and θ is some integer-valued BVloc function on Bn
1 (0)

with

Mint(Bn
1 (0))(p#S̃j) =

∫
Bn

1 (0)

|θj |dLn

Mint(Bn
1 (0))(∂p#S̃j) =

∫
Bn

1 (0)

|Dθj |

Then, by the above and the supremum of the mass bound on Sj and ∂Sj , we apply
the compactness of BVloc functions to deduce that θj converge to an integer-valued

function θ∗. Finally, since p#S̃j ⇀ θ[[TxM ]], we know θ∗ = θ, and so we are
done. □

Notice that if ∂T is non-zero, it can be replaced with the zero boundary current
h#([[(0, 1)]] × ∂T ) − T (h is the affine homotopy centered at 0), and the sequence
of Tj by h#([[(0, 1)]]× ∂Tj)−Tj . Since h#([[(0, 1)]]× ∂T ) is an integer multiplicity
current, the theorem being true for the above substitutions implies it is true for T ,
Tj also. Hence, the ∂T = 0 condition may be dropped. Also, by replacing Tj with
Tj⌞Br(ξ) for some r > 0 and ξ ∈ U , and open subset of RP , we can replace RP

with an arbitrary open subset instead. Finally, the following lemma removes the
condition on ∂Tj being integer multiplicity:

Lemma 5.11 (Boundary Rectifiability). Suppose T is an integer multiplicity cur-
rent in Dn(U) with MW (∂T ) < ∞ for all W compactly contained in U . Then ∂T
is an integer multiplicity n− 1-current.

Proof. By the weak polyhedral approximation theorem (4.25) we have a sequence of
boundaries of polyhedral (hence integral) currents ∂Pk ⇀ ∂T . The weaker version
of the compactness theorem is then sufficient for us to conclude that ∂T is also an
integral multiplicity current. □

This gives us the Federer-Fleming compactness theorem for currents.

Theorem 5.12 (Federer-Fleming). If {Tj} ⊂ Dn(U) is a sequence of normal
integer-multiplicity currents then there is an integer multiplicity T ∈ Dn(U) and a
subsequence {Tj′} such that Tj′ ⇀ T in U .

As promised in the introduction, we will showcase the power of this theorem
by proving the existence of area-minimizing currents, proving the existence part of
Plateau’s problem for currents. Having built up the theory of integral currents, the
proof of Plateau’s problem is now fairly straightforward.

Theorem 5.13. Let S ∈ Dn−1(Rn+l) be integer multiplicity with sptS compact
and ∂S = 0. Then there is an integer multiplicity current T ∈ Dn(Rn+l) such that
sptT is compact and M(T ) ≤ M(R) for each integer multiplicity R ∈ Dn(Rn+l)
with sptR compact and ∂R = S.
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Proof. Let IS be the set of currents R that are integer multiplicity, have compact
support, and ∂R = S. Note that it is non-empty, the set h#([[(0, 1)]] × S) for
h the familiar affine homotopy is a member. Then take a sequence {Rq} ⊂ IS
that converges in mass to the infimum of M(R) for R ∈ IS . We cannot apply the
compactness theorem just yet, because that requires our currents to be normal,
which Rq don’t have to be. So instead, choose R > 0 such that BR(0) contains
sptS, and let f be the retraction of Rn+l to the nearest point of BR(0). Then by
(3.26) we have

M(f#Rq) ≤ M(Rq)

However, ∂f#Rq = f#∂Rq = f#S = S. SoM(Rq) → M(R) also impliesM(f#Rq) →
M(R), withM(f#Rq) finite for all q. Hence, by (5.12) we have a subsequence {q′} ⊂
{q} and an integer multiplicity current T to which f#Rq′ converge weakly. By the
lower-continuity of M with respect to weak convergence, M(T ) ≤ infR∈IS

M(R),
with support R in BR(0), hence compact, and ∂T = lim f#∂Rq′ = S. Thus, we are
done. □
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